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Abstract
The properties of small clusters depend dramatically on the interactions between their constituent particles. However, it 
remains challenging to design and tune the interactions between macroscopic particles, such as in a granular material. Here, 
we use acoustic levitation to trap macroscopic grains and induce forces between them. Our main results show that particles 
levitated in an acoustic field prefer to make contact along sharp edges. The radius of curvature of the edges directly controls 
the magnitude of these forces. These highly directional interactions, combined with local contact forces, give rise to a diverse 
array of cluster shapes. Our results open up new possibilities for the design of specific forces between macroscopic particles, 
directing their assembly, and actuating their motion.
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1  Introduction

Shape provides an important means by which to tune key 
properties of dense aggregates, whether their packing frac-
tion [1–3], contact configuration [4–8], or mechanical prop-
erties [9–15]. In each of these cases, the shape of a particle 
determines the global properties of an aggregate by modify-
ing both the geometry of the packing and local inter-particle 
contacts. These local contacts play a particularly important 
role in jamming, where the precise type of contact between 
faceted shapes may dramatically change the mechanical sta-
bility of a given packing. In addition, breaking spherical 
symmetry in a dense granular packing produces a coupling 
between normal forces and torques on the single-grain level.

In addition to local contact forces and geometry, which 
produce effects at the level of a single contact on a grain, 
longer-range particle interactions also play an important 
role in the properties of a granular material. Previous work 
has shown that adding weakly attractive dipole–dipole 
interactions to a granular material provides a means of self-
organisation for the force chains that form under compres-
sion, thus strengthening the force network that forms as a 
result [16]. Alternatively, longer range forces can drive clus-
tering [17, 18] and particle motion [19, 20]. However, the 
relation between attractive forces, particle shape, structure, 
and mechanical properties remains to be fully understood.

In this article, we take a first step towards this goal by pro-
ducing shape-dependent, tunable attractive forces between 
granular materials using acoustic levitation. Previous work 
on acoustically levitated particles has focused on the force 
between levitated particles with a high degree of symme-
try, such as spheres [21–25], cylinders [26–28], or between 
smooth deformable objects such as liquid drops [29] and 
bubbles [30]. Other work has focused on viscous and ther-
mal effects in the acoustic force [22, 31, 32]. More recently, 
finite-element simulations have been shown to be an accu-
rate, general tool for the calculation of acoustic radiation 
forces for particles of arbitrary shape [33, 34], for a variety 
of boundary conditions [35].

We present results for a wide range of particle shapes and 
constituent materials, showing that particles are attracted 
to one another along sharp edges. Using finite element 

This article is part of the Topical Collection: In Memoriam of 
Robert P. Behringer.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1003​5-019-0926-2) contains 
supplementary material, which is available to authorized users.

 *	 Melody X. Lim 
	 mxlim@uchicago.edu

	 Heinrich M. Jaeger 
	 jaeger@uchicago.edu

1	 Department of Physics and James Franck Institute, The 
University of Chicago, Chicago, IL 60637, USA

http://orcid.org/0000-0001-9588-0925
http://crossmark.crossref.org/dialog/?doi=10.1007/s10035-019-0926-2&domain=pdf
https://doi.org/10.1007/s10035-019-0926-2


	 M. X. Lim et al.

1 3

   77   Page 2 of 8

simulations, we demonstrate that the strength of the inter-
particle attraction is controlled by the sharpness of parti-
cle features. These bonds also support robust hinge-like 
motions, which we suggest are oscillations about a minimum 
in some energetic landscape. Finally, we consider the struc-
ture of clusters formed in the acoustic field. We suggest that 
the unique structures we observe are due to a combination 
of the highly anisotropic acoustic forces, packing efficiency, 
and stabilisation from local inter-particle contacts.

2 � Methods

We levitate grains using the setup illustrated in Fig. 1a. An 
ultrasound transducer (Hesentec HS-4AH-3540, base diam-
eter 55 mm, frequency 40 ± 1 kHz ) generates ultrasound, 
which is amplified by an aluminium horn bolted onto the 
transducer (base diameter 38 mm). A schematic of the horn, 
which is based on the design reported in Ref. [38], is shown 
in Fig. 1b. In order to find the resonant frequency of the 
transducer and horn, we invert the setup (so the bottom 
surface of the horn is facing upwards) and scatter 100 μm 
polyethylene grains on the surface. We then adjust the 
driving frequency slowly until we find the peak displace-
ment of the grains on the transducer surface. This defines 
the resonant frequency of the transducer (coupled to the 
horn), f0 = 45.65 kHz . The transducer is then driven at fre-
quency  f0 by applying an AC signal with peak-to-peak volt-
age 200 V.

A transparent acrylic reflector ( l × w × h = 152 × 152 × 6mm3 ) 
is glued to a box, which is mounted to a lab jack and 
adjusted so that the distance between transducer and 
reflector is �0∕2 , corresponding to the transducer reso-
nant frequency  f0 , or wavelength �0 ≈ 7.2 mm in air. The 
setup (including transducer) is enclosed in an acrylic box 
( l × w × h = 0.6 × 0.3 × 0.6m3 ) to mitigate the effect of side-
wind perturbations. The walls of the box are far from the 
levitation area, such that the acoustic trap has open bound-
ary conditions. Particles levitate in this standing wave, 
within a horizontal plane halfway between the reflector and 
transducer. Levitated grains can be imaged from the side or 
from the bottom. As shown in previous work [37], driving 
the acoustic trap with frequency slightly above resonance 
induces active fluctuations in the levitated particles. In 
turn, these active fluctuations drive cluster rearrangements. 
In this case, we induce active fluctuations by detuning the 
trap to  f = 45.76 kHz , or �f∕f0 = 2.5 × 10−3 . We note that 
within the range of frequencies used for detuning, there is 
no noticeable change in the displacement characteristics of 
the transducer.

A wide range of particle shapes and constituent mate-
rials can be levitated in this setup. We take advantage of 
the naturally cubic shape of salt grains (material density 

2160 kgm−3 ) to levitate isotropic cubes (Fig. 1c). Alter-
natively, we levitate spheres (polyethylene, diameter 
710–850 μm , Cospheric, material density 1000 kg m−3). 
Finally, in order to create particles with controlled shapes 
and sizes, we 3D print cubes (1 mm side length), tetrahedra 
(1 mm side length), cones (1 mm base diameter, opening 
angle 60◦ ), and cylinders (diameter 1 mm, height 1 mm). All 
particles are printed in hard UV-cured plastic (Objet VeroW-
hite, material density 1180 kgm−3 ), on an Objet Connex 350 
printer. Note that the particles are printed in stacked lami-
nae (thickness ∼ 50 μm ), producing highly frictional faces 
(Fig. 1d).

(a) (b)

(c)

(d)

Fig. 1   a A schematic of the apparatus. An ultrasound transducer gen-
erates sound waves in air (speed of sound c

s
= 343 m/s). The trans-

ducer consists of a commercial ultrasound transducer, the output of 
which is amplified by an aluminium horn bolted onto its base. The 
distance between the base of the horn and a transparent acrylic reflec-
tor is chosen so as to create a pressure standing wave with a single 
node, with frequency  f

0
= 45.65  kHz and wavelength  �

0
= c

s
∕f

0
 . 

Particles are levitated in this pressure node, and can be imaged from 
the side or from below. The driving frequency  f of the trap can be 
detuned by �f ≡ f − f

0
 , inducing active fluctuations in the levitated 

particles  [36, 37]. b A scale drawing of a cross-section of the com-
bined transducer and horn (which are circularly symmetric). Parti-
cles are levitated beneath the bottom surface of the horn. c A grain 
of table salt levitated in the acoustic trap, imaged from the side. d 
3D printed particles, levitated in the acoustic trap. From left to right: 
cube (1  mm side length), tetrahedron (1  mm side length), cylinder 
(1 mm diameter, 1 mm height)
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3 � Results

A single particle in the acoustic trap rotates freely about its 
centre of mass, regardless of shape and material, confined 
by the primary sound field in the vertical direction. When 
a second particle is introduced, the primary sound field 
confines it to the same levitation plane as the first particle. 
In addition, acoustic scattering due to the presence of the 
first particle produces an additional in-plane force, which 
we refer to as the secondary acoustic force. This secondary 
(induced) acoustic force, which for deformable particles is 
known as the secondary Bjerknes force [25, 39, 40], stabi-
lises compact clusters. For spherical (isotropic) particles, the 
acoustic force follows the axisymmetry of the particles in the 
levitation plane, such that spherical particles cluster into a 
close-packed, two-dimensional lattice [37]. However, since 
the acoustic force is generated by scattering, anisotropy in 
the particle shape results in anisotropy in the acoustic force.

Due to this anisotropic force, when a second cube is intro-
duced to the acoustic trap, the freely rotating cube is stabi-
lised: a pair of levitated cubes pack by sharing a single edge, 
with the centre of masses of both cubes in the nodal plane, as 
shown in Fig. 2a. This configuration contrasts sharply with 
the arrangements that are generated through dipole–dipole 
interactions [41], depletion forces [42], or entropic considera-
tions [43–45]. In order to confirm that the cluster configura-
tion we observe are driven by anisotropic acoustic forces, we 
levitate different combinations of shape pairs. Two cones also 
cluster by aligning a single edge, with the base of both cones 
in the nodal plane (Fig. 2b). In addition, levitating a cylinder 

with a sphere produces a cluster where the sphere attaches to 
the sharp edge of the cylinder (Fig. 2c).

These edge-mediated configurations are stable to fluctua-
tions induced by detuning the trap (see Supplementary Mov-
ies). Perturbing the cluster produces periodic variations in the 
contact angle between the cubes, as in Fig. 2d. These hinge-
like motions suggest the existence of a restoring force towards 
the equilibrium configuration shown in Fig. 2a. Increasing the 
amplitude of active fluctuations by detuning the acoustic field 
results in the cluster breaking due to energetic collisions with 
the reflector. We do not observe face–face contacts when the 
constituent parts of the cluster reassemble. This observation, 
combined with the existence of periodic hinging motions, sug-
gests that these edge–edge contacts are to be understood as the 
minimum of some energetic landscape.

In order to shed light on the energetic landscape underlying 
the stability of edge–edge contacts, we calculate the acous-
tic potential around a perfectly scattering cube using finite-
element simulations. This acoustic potential is generated by 
acoustic scattering from the levitated particles, and can be 
calculated via a perturbation expansion of the acoustic fields 
in the levitation medium [21, 23]. Within this approximation, 
the acoustic potential Urad on a scatterer with radius a (much 
smaller than �0 ), speed of sound cp , and material density �p in 
an inviscid fluid with speed of sound c0 and density �0 is

where angled brackets denote time averages of the pressure p 
and velocity v. The scattering coefficients  f1 and  f2 are given 
by

(1)U =
4�

3
a3�0

�
f1
1

2
c2
0
⟨p2⟩ − f2

3

4
⟨v2⟩

�
,

Fig. 2   Pairs of levitated parti-
cles imaged from the side. All 
images are shown to the same 
scale. a Two 3D printed cubes 
attach via a single edge.  b Two 
cones attach by sharing an edge. 
We also observe configurations 
where both cones are pointed 
upwards or downwards.  c A 
polyethylene sphere (800 μm) 
attaches to the edge of a cylin-
der.  d Sequence of images from 
the side showing a pair of salt 
grains executing a hinge motion. 
See Supplementary Movies for 
dynamics

(a) (b) (c)

(d)
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We emphasise that Eq. 1 is quantitatively accurate only 
for spherical (point-like) scatterers, in the Rayleigh limit 
( a ≪ 𝜆0 ). However, our particles are closer to the Mie 
regime ( a ≈ 0.1�0 in this case), and in addition have finite 
extent. Our simulation results should thus be interpreted as 
an approximation of the true acoustic forces on our experi-
mental particles. Nevertheless, they provide a qualitative 
demonstration of the acoustic forces on a point object due to 
the presence of a single object with sharp edges, and provide 
a useful starting point to explain our experimental observa-
tions. Future work could focus on a full simulation of the 
interaction between a pair of cubes.

We use finite-element simulations (COMSOL) to calcu-
late the acoustic potential on a point scatterer in the vicin-
ity of a single cube. In these simulations, we reproduce the 
experimental conditions (in the frequency domain) by driv-
ing the upper boundary at constant normal acceleration, then 
establishing perfectly reflecting boundary conditions on a 
parallel surface half a wavelength below. The simulation 
domain contains only the levitation volume (we do not simu-
late outside of the boundaries of the transducer). Plane-wave 
radiation conditions on the lateral boundaries dissipate the 
acoustic field. Within this volume, we fix a perfectly scatter-
ing cube with side length l = 0.1�0 . Given these boundary 
conditions, we compute the time-averaged quantities ⟨p2⟩ 
and ⟨v2⟩ within the geometry of the trap. The acoustic fields 
are computed by resolving the acoustic wave equations on a 
physics-controlled mesh, with element size set to “extremely 
fine” (maximum element size 2.94 × 10−4 , minimum ele-
ment size 5.88 × 10−7 , maximum element growth rate 1.1).

Substituting the simulated pressure and velocity fields 
into Eq. 1 thus produces the acoustic potential around a 
perfectly scattering cube, acting on a point scatterer with 
radius a = 0.1�0 , speed of sound cp = 2620m s−1 , and den-
sity �0 = 1180 kgm−3 (material parameters were chosen 
to match the 3D-printed experimental grains). In order to 
most clearly show the contribution of the edges, we orient 
the cube such that its longest diagonal is in the z-direction. 
A cross-section of the three-dimensional acoustic poten-
tial is shown in Fig. 3a. The acoustic field shows a strong 
gradient in the z direction, due to the primary confining 
acoustic force—a levitated particle minimises energy by 
having its centre of mass in the nodal plane ( z = 0 ). In 
addition to the primary confining acoustic field, second-
ary acoustic scattering results in potential minima located 
at regions of high curvature (the edges of the cube), 

f1 = 1 −
c2
p
�p

c2
0
�0

f2 =
2(�p∕�0 − 1)

2�p∕�0 + 1
.

(a)

(b)

(c)

(d)

(e)

Fig. 3   a Cross-section of the simulated acoustic potential U
rad

 around 
a perfectly scattering cube (cross-section in white, drawn schemati-
cally using black lines) in an acoustic standing wave. We normal-
ise U

rad
 by U

0
 , the primary acoustic potential on a point particle in the 

center of the trap. b Schematic of simplified axisymmetric simulation 
geometry. The acoustic potential is calculated around the surface of 
revolution of a rounded square with side length l and corner radius of 
curvature r

s
 and side length l, fixed in the center of a standing wave. 

c U
rad
∕U

0
 as a function of vertical distance from the levitation node z, 

for different  r
s
∕l . d U

rad
∕U

0
 as a function of radial distance from 

the particle surface  r, for different  r
s
∕l . e Depth of potential mini-

mum, U
rad
(r = 0)∕U

0
 , as a function of r

s
∕l
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indicating that a point particle in the acoustic trap would 
be disproportionally attracted to the edges of the cube.

The boundary conditions at the surface of a levitated 
particle connect geometry and acoustic forces. In particu-
lar, we model a perfectly scattering surface using the Neu-
mann boundary condition. For an acoustic wave incident 
on a perfectly scattering surface with unit normal n̂ , in 
an inviscid fluid with pressure p, the boundary condition 
reads

Equation 2 implies that the pressure gradient at a perfectly 
scattering surface must be orthogonal to the surface normal. 
In this case, much like a conducting surface in an electric 
field, the pressure gradient is forced to change with the cur-
vature of the surface. We suggest that this effect focuses the 
acoustic field in regions of high curvature, thus producing 
deep potential minima at the edges of the cube.

We illuminate the relation between geometry and acous-
tic force by quantifying the effect of a single edge on the 
acoustic potential. Instead of simulating the acoustic poten-
tial around a fully three-dimensional cube, we instead use 
an axisymmetric geometry (boundary conditions shown in 
Fig. 3b), and calculate the acoustic field around the sur-
face of revolution of a square with side length l = 0.1�0 . 
We parameterise the edge sharpness of the square using 
the radius of curvature rs of the corners. Our results for the 
acoustic potential in the z- and r-directions as a function of 
nondimensional edge curvature rs∕l are shown in Fig. 3c, 
d. As rs∕l decreases from 1 (sphere) to 0 (sharp corners), 
the depth of the acoustic potential increases sharply in both 
the z- and r-direction.

In order to further quantify the relation between edge 
sharpness and acoustic force, we simulate the normalised 
depth of the potential minimum at the surface of the parti-
cle, Urad(r = 0)∕U0 , as a function of rs∕l . Data is plotted in 
Fig. 3e, and reveal that the depth of the acoustic potential 
diverges as a power law as the edge curvature approaches 
zero, with exponent −10∕13 . Our results confirm that the 
near-field force between a point scatterer and a levitated par-
ticle in an acoustic field scales sensitively with the sharpness 
of the edges on the levitated particle.

Based on our simulations of the acoustic field, we suggest 
an explanation for the robustness of edge–edge contacts and 
hinge-like motions between a pair of levitated cubes. When 
two cubes are levitated, their centres of mass are confined to 
the nodal plane due to the primary acoustic field. In addition, 
the secondary acoustic force produces short-range attrac-
tive forces, which preferentially align the edges of faceted 
shapes. Upon joining a pair of cubes in the configuration 
shown in Fig. 2a, we note that rotation of a two-cube cluster 
around their common edge results in motion of the centres 
of mass out of the nodal plane. The hinging motion shown in 

(2)n̂ ⋅ ∇p = 0.

Fig. 2d thus arises from the interplay of geometry-controlled 
interactions and the confining acoustic field.

The geometry of the cubes encourages packing in a 
square lattice at high packing fractions. At the same time, 
however, in an acoustic trap, the edges of the cubes give 
rise to interactions that favour edge–edge contacts (such 
as illustrated in Fig. 2a). Since each cube can only make 
two edge–edge contacts (one on each side of a cube posi-
tioned as in Fig. 2a), as the cluster size grows, it becomes 
harder and harder for all cubes in the cluster to satisfy their 
constraints. The acoustic and contact forces that drive self-
assembly in an acoustic trap thus also produce highly frus-
trated clusters. Such clusters exhibit a multiplicity of particle 
arrangements, transitions between which require extensive 
reconfigurations.

As an example, Fig. 4a shows the assembly of two pos-
sible configurations of the 3-cube cluster: a linear chain of 
cubes (ii), and a close-packed configuration where three 
cubes share a corner (v). Only one of these shapes (close-
packed) is available to a cluster of three spheres, since a 
linear chain of three spheres does not have enough bonds 
to be rigid, and will thus fold into a close-packed arrange-
ment. In contrast, the edge–edge contacts of the cubes have 
finite extent, so that local contact forces along the length of 
the contact can stabilise linear chains of cubes. These lin-
ear chains also satisfy the condition that all particles in the 
cluster only interact via their edges.

When active fluctuations in the acoustic field become 
strong enough (the acoustic trap is far from resonance), the 
clusters fluctuate up and down in the trap, occasionally col-
liding with the reflector. These collisions can break bonds 
between particles in a cluster, disrupting the linear configu-
ration of cubes. The cluster then folds into its other, close-
packed configuration (Fig. 4a, ii–v). During this process, one 
of the cubes detaches partially from the rest of the cluster, 
leaving one of its corners attached. It then pivots about this 
corner to a new position on the cluster, ultimately joining 
the other two cubes at the connecting edge between them. 
Despite the fact that the close-packed 3-cube cluster forces 
a contact between an edge and a face, we observe that it 
is stable to further fluctuations in the acoustic field, which 
change the angle of each “hinge” in the cluster but do not 
trigger dramatic rearrangements.

These two structural motifs—linear and close-packed—
form the basis of all larger cluster shapes. Figure 4b, c 
shows two of the possible compact four-cube clusters (the 
linear chain of four cubes is not shown). The cluster shown 
in Fig. 4c was formed from a close-packed group of three 
cubes, with an additional cube added to the side of the (tri-
angular) cluster. In contrast, the cluster shown in Fig. 4b 
was formed from a pair of two-cube clusters that adjoined 
side on, and thus has a different set of internal angles and 
symmetries. Although the two clusters look similar, since 
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the internal angles of each cluster are incommensurate with 
the other, rearranging the constituent particles between the 
shapes requires extensive reconfiguration through the close-
packed three-cube arrangement.

Adding another cube dramatically increases the number 
of available configurations, only three of which we show 
here (Fig. 4d–f). Each configuration achieves structural 
stability by mixing linear chains and close-packed motifs. 
For instance, the configuration shown in Fig. 4d resembles 
the isostatic arrangement of five spheres in two dimensions, 
and consists of a pair of linear chains arranged side by side. 
Alternatively, the same cluster can be read as a pair of close-
packed 3-cube clusters that share a cube. We suggest that 
this configuration may be interpreted as the “ground-state” 
for the 5-cluster, because it involves the fewest number of 
edge–face contacts. However, the degree of cooperativity 
required to form this structure suggests that five cubes in 
an acoustic trap are unlikely to generically form this cluster 
shape without some degree of rearrangement.

Figure 4e, f show alternative 5-cube clusters, each of 
which is formed from a close-packed 3-cube cluster, one 
site of which is attached to a linear chain. We observe that 
adding a cube onto the 4-cluster in (b) results in the 5-cluster 
in (e), while adding a cube to the cluster in (c) produces the 
cluster in (f). Importantly, rearranging (e) into the “ground-
state” configuration in (d) requires a single cube pivoting 
into position. In contrast, because the 4-cluster in (c) is geo-
metrically incommensurate with the packing that leads to the 
ground state of the 5-cluster system, rearranging (f) into (d) 

requires the deconstruction of the cluster into the appropri-
ate 3-cube motifs.

4 � Discussion

We have presented acoustic levitation as a novel means 
to tune anisotropic, attractive interactions in a granular 
material. We show that particles in an acoustic field are 
strongly attracted to sharp edges, leading to the forma-
tion of edge–edge (rather than face–face or face–edge) 
contacts between cubes, cylinders, and tetrahedra. These 
contacts support hingelike motions, which result from a 
combination of the confining acoustic field and short-range 
forces from acoustic scattering. Simulations show that the 
magnitude of these short-range forces is controlled by the 
radius of curvature of the particle edges. Our results apply 
to a wide range of assembly environments (any medium 
that supports an acoustic standing wave) and materials 
(anything that scatters sound), opening possibilities for 
the assembly of complex granular structures from directed 
interactions. Future work could also utilise these direc-
tional acoustic forces to design and 3D print particles with 
shapes that optimise their packing, or their dynamics, in 
an acoustic trap.

The interplay of contact forces due to particle shape and 
edge–edge interactions due to acoustic forces produces a 
diverse range of cluster shapes. The structure and dynam-
ics of these clusters, particularly in the large number limit, 
raises interesting questions about geometric frustration in 

(a)

(b) (c) (d) (e) (f)

Fig. 4   Cluster formation driven by particle edges. a Sequence of 
images from below showing the assembly and subsequent folding of a 
3-cube cluster. Note that the 3-cluster exhibits two possible configura-
tions: a linear chain (ii) and a triangular cluster (v). See Supplemen-

tary Movies for dynamics. b, c Two different possible configurations 
of the 4-cube cluster. d–f Three possible configurations of the 5-cube 
cluster. Note that b and d correspond most closely to the isostatic 
cluster shapes of four and five spheres respectively
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self-assembly, ergodicity in activated granular matter, and 
the effect of attractive forces on jamming.
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