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Abstract

- Kieran A. Murphy' - Heinrich M. Jaeger'

The properties of small clusters depend dramatically on the interactions between their constituent particles. However, it
remains challenging to design and tune the interactions between macroscopic particles, such as in a granular material. Here,
we use acoustic levitation to trap macroscopic grains and induce forces between them. Our main results show that particles
levitated in an acoustic field prefer to make contact along sharp edges. The radius of curvature of the edges directly controls
the magnitude of these forces. These highly directional interactions, combined with local contact forces, give rise to a diverse
array of cluster shapes. Our results open up new possibilities for the design of specific forces between macroscopic particles,

directing their assembly, and actuating their motion.
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1 Introduction

Shape provides an important means by which to tune key
properties of dense aggregates, whether their packing frac-
tion [1-3], contact configuration [4-8], or mechanical prop-
erties [9—15]. In each of these cases, the shape of a particle
determines the global properties of an aggregate by modify-
ing both the geometry of the packing and local inter-particle
contacts. These local contacts play a particularly important
role in jamming, where the precise type of contact between
faceted shapes may dramatically change the mechanical sta-
bility of a given packing. In addition, breaking spherical
symmetry in a dense granular packing produces a coupling
between normal forces and torques on the single-grain level.
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In addition to local contact forces and geometry, which
produce effects at the level of a single contact on a grain,
longer-range particle interactions also play an important
role in the properties of a granular material. Previous work
has shown that adding weakly attractive dipole—dipole
interactions to a granular material provides a means of self-
organisation for the force chains that form under compres-
sion, thus strengthening the force network that forms as a
result [16]. Alternatively, longer range forces can drive clus-
tering [17, 18] and particle motion [19, 20]. However, the
relation between attractive forces, particle shape, structure,
and mechanical properties remains to be fully understood.

In this article, we take a first step towards this goal by pro-
ducing shape-dependent, tunable attractive forces between
granular materials using acoustic levitation. Previous work
on acoustically levitated particles has focused on the force
between levitated particles with a high degree of symme-
try, such as spheres [21-25], cylinders [26—28], or between
smooth deformable objects such as liquid drops [29] and
bubbles [30]. Other work has focused on viscous and ther-
mal effects in the acoustic force [22, 31, 32]. More recently,
finite-element simulations have been shown to be an accu-
rate, general tool for the calculation of acoustic radiation
forces for particles of arbitrary shape [33, 34], for a variety
of boundary conditions [35].

We present results for a wide range of particle shapes and
constituent materials, showing that particles are attracted
to one another along sharp edges. Using finite element
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simulations, we demonstrate that the strength of the inter-
particle attraction is controlled by the sharpness of parti-
cle features. These bonds also support robust hinge-like
motions, which we suggest are oscillations about a minimum
in some energetic landscape. Finally, we consider the struc-
ture of clusters formed in the acoustic field. We suggest that
the unique structures we observe are due to a combination
of the highly anisotropic acoustic forces, packing efficiency,
and stabilisation from local inter-particle contacts.

2 Methods

We levitate grains using the setup illustrated in Fig. la. An
ultrasound transducer (Hesentec HS-4AH-3540, base diam-
eter 55 mm, frequency 40 + 1 kHz) generates ultrasound,
which is amplified by an aluminium horn bolted onto the
transducer (base diameter 38 mm). A schematic of the horn,
which is based on the design reported in Ref. [38], is shown
in Fig. 1b. In order to find the resonant frequency of the
transducer and horn, we invert the setup (so the bottom
surface of the horn is facing upwards) and scatter 100 pm
polyethylene grains on the surface. We then adjust the
driving frequency slowly until we find the peak displace-
ment of the grains on the transducer surface. This defines
the resonant frequency of the transducer (coupled to the
horn), f, = 45.65 kHz. The transducer is then driven at fre-
quency f, by applying an AC signal with peak-to-peak volt-
age 200 V.

A transparent acrylic reflector (( x w x & = 152 x 152 x 6 mm°)
is glued to a box, which is mounted to a lab jack and
adjusted so that the distance between transducer and
reflector is A,/2, corresponding to the transducer reso-
nant frequency f,, or wavelength 4, =~ 7.2 mm in air. The
setup (including transducer) is enclosed in an acrylic box
(Ixwxh=0.6x0.3 x 0.6m?) to mitigate the effect of side-
wind perturbations. The walls of the box are far from the
levitation area, such that the acoustic trap has open bound-
ary conditions. Particles levitate in this standing wave,
within a horizontal plane halfway between the reflector and
transducer. Levitated grains can be imaged from the side or
from the bottom. As shown in previous work [37], driving
the acoustic trap with frequency slightly above resonance
induces active fluctuations in the levitated particles. In
turn, these active fluctuations drive cluster rearrangements.
In this case, we induce active fluctuations by detuning the
trap to f = 45.76 kHz, or Af /f, = 2.5 X 1073. We note that
within the range of frequencies used for detuning, there is
no noticeable change in the displacement characteristics of
the transducer.

A wide range of particle shapes and constituent mate-
rials can be levitated in this setup. We take advantage of
the naturally cubic shape of salt grains (material density
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Fig.1 a A schematic of the apparatus. An ultrasound transducer gen-
erates sound waves in air (speed of sound ¢, = 343 m/s). The trans-
ducer consists of a commercial ultrasound transducer, the output of
which is amplified by an aluminium horn bolted onto its base. The
distance between the base of the horn and a transparent acrylic reflec-
tor is chosen so as to create a pressure standing wave with a single
node, with frequency f, =45.65 kHz and wavelength A, = c,/f.
Particles are levitated in this pressure node, and can be imaged from
the side or from below. The driving frequency f of the trap can be
detuned by Af = f — f,, inducing active fluctuations in the levitated
particles [36, 37]. b A scale drawing of a cross-section of the com-
bined transducer and horn (which are circularly symmetric). Parti-
cles are levitated beneath the bottom surface of the horn. ¢ A grain
of table salt levitated in the acoustic trap, imaged from the side. d
3D printed particles, levitated in the acoustic trap. From left to right:
cube (1 mm side length), tetrahedron (I mm side length), cylinder
(1 mm diameter, 1 mm height)

10ﬂm

2160kg m~3) to levitate isotropic cubes (Fig. 1c). Alter-
natively, we levitate spheres (polyethylene, diameter
710-850 pm, Cospheric, material density 1000 kg m™).
Finally, in order to create particles with controlled shapes
and sizes, we 3D print cubes (1 mm side length), tetrahedra
(1 mm side length), cones (I mm base diameter, opening
angle 60°), and cylinders (diameter 1 mm, height 1 mm). All
particles are printed in hard UV-cured plastic (Objet VeroW-
hite, material density 1180 kg m~3), on an Objet Connex 350
printer. Note that the particles are printed in stacked lami-
nae (thickness ~ 50 pm), producing highly frictional faces
(Fig. 1d).



Edges control clustering in levitated granular matter

Page3of8 77

3 Results

A single particle in the acoustic trap rotates freely about its
centre of mass, regardless of shape and material, confined
by the primary sound field in the vertical direction. When
a second particle is introduced, the primary sound field
confines it to the same levitation plane as the first particle.
In addition, acoustic scattering due to the presence of the
first particle produces an additional in-plane force, which
we refer to as the secondary acoustic force. This secondary
(induced) acoustic force, which for deformable particles is
known as the secondary Bjerknes force [25, 39, 40], stabi-
lises compact clusters. For spherical (isotropic) particles, the
acoustic force follows the axisymmetry of the particles in the
levitation plane, such that spherical particles cluster into a
close-packed, two-dimensional lattice [37]. However, since
the acoustic force is generated by scattering, anisotropy in
the particle shape results in anisotropy in the acoustic force.

Due to this anisotropic force, when a second cube is intro-
duced to the acoustic trap, the freely rotating cube is stabi-
lised: a pair of levitated cubes pack by sharing a single edge,
with the centre of masses of both cubes in the nodal plane, as
shown in Fig. 2a. This configuration contrasts sharply with
the arrangements that are generated through dipole—dipole
interactions [41], depletion forces [42], or entropic considera-
tions [43—45]. In order to confirm that the cluster configura-
tion we observe are driven by anisotropic acoustic forces, we
levitate different combinations of shape pairs. Two cones also
cluster by aligning a single edge, with the base of both cones
in the nodal plane (Fig. 2b). In addition, levitating a cylinder

Fig.2 Pairs of levitated parti-
cles imaged from the side. All
images are shown to the same
scale. a Two 3D printed cubes
attach via a single edge. b Two
cones attach by sharing an edge.
We also observe configurations
where both cones are pointed
upwards or downwards. ¢ A
polyethylene sphere (800 pm)
attaches to the edge of a cylin-
der. d Sequence of images from
the side showing a pair of salt
grains executing a hinge motion.
See Supplementary Movies for
dynamics

with a sphere produces a cluster where the sphere attaches to
the sharp edge of the cylinder (Fig. 2c).

These edge-mediated configurations are stable to fluctua-
tions induced by detuning the trap (see Supplementary Mov-
ies). Perturbing the cluster produces periodic variations in the
contact angle between the cubes, as in Fig. 2d. These hinge-
like motions suggest the existence of a restoring force towards
the equilibrium configuration shown in Fig. 2a. Increasing the
amplitude of active fluctuations by detuning the acoustic field
results in the cluster breaking due to energetic collisions with
the reflector. We do not observe face—face contacts when the
constituent parts of the cluster reassemble. This observation,
combined with the existence of periodic hinging motions, sug-
gests that these edge—edge contacts are to be understood as the
minimum of some energetic landscape.

In order to shed light on the energetic landscape underlying
the stability of edge—edge contacts, we calculate the acous-
tic potential around a perfectly scattering cube using finite-
element simulations. This acoustic potential is generated by
acoustic scattering from the levitated particles, and can be
calculated via a perturbation expansion of the acoustic fields
in the levitation medium [21, 23]. Within this approximation,
the acoustic potential U,,4 on a scatterer with radius a (much
smaller than ), speed of sound Cp and material density Py in
an inviscid fluid with speed of sound ¢, and density p, is
U=222n 550" - A2 m
where angled brackets denote time averages of the pressure p
and velocity v. The scattering coefficients f, and f, are given
by
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We emphasise that Eq. 1 is quantitatively accurate only
for spherical (point-like) scatterers, in the Rayleigh limit
(a < Ay). However, our particles are closer to the Mie
regime (a = 0.14, in this case), and in addition have finite
extent. Our simulation results should thus be interpreted as
an approximation of the true acoustic forces on our experi-
mental particles. Nevertheless, they provide a qualitative
demonstration of the acoustic forces on a point object due to
the presence of a single object with sharp edges, and provide
a useful starting point to explain our experimental observa-
tions. Future work could focus on a full simulation of the
interaction between a pair of cubes.

We use finite-element simulations (COMSOL) to calcu-
late the acoustic potential on a point scatterer in the vicin-
ity of a single cube. In these simulations, we reproduce the
experimental conditions (in the frequency domain) by driv-
ing the upper boundary at constant normal acceleration, then
establishing perfectly reflecting boundary conditions on a
parallel surface half a wavelength below. The simulation
domain contains only the levitation volume (we do not simu-
late outside of the boundaries of the transducer). Plane-wave
radiation conditions on the lateral boundaries dissipate the
acoustic field. Within this volume, we fix a perfectly scatter-
ing cube with side length [ = 0.14,,. Given these boundary
conditions, we compute the time-averaged quantities (p*)
and (»?) within the geometry of the trap. The acoustic fields
are computed by resolving the acoustic wave equations on a
physics-controlled mesh, with element size set to “extremely
fine” (maximum element size 2.94 x 10~*, minimum ele-
ment size 5.88 X 1077, maximum element growth rate 1.1).

Substituting the simulated pressure and velocity fields
into Eq. 1 thus produces the acoustic potential around a
perfectly scattering cube, acting on a point scatterer with
radius a = 0.14,, speed of sound c, = 2620 ms~!, and den-
sity py = 1180kgm~3 (material parameters were chosen
to match the 3D-printed experimental grains). In order to
most clearly show the contribution of the edges, we orient
the cube such that its longest diagonal is in the z-direction.
A cross-section of the three-dimensional acoustic poten-
tial is shown in Fig. 3a. The acoustic field shows a strong
gradient in the z direction, due to the primary confining
acoustic force—a levitated particle minimises energy by
having its centre of mass in the nodal plane (z =0). In
addition to the primary confining acoustic field, second-
ary acoustic scattering results in potential minima located
at regions of high curvature (the edges of the cube),
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Fig.3 a Cross-section of the simulated acoustic potential U,,4 around
a perfectly scattering cube (cross-section in white, drawn schemati-
cally using black lines) in an acoustic standing wave. We normal-
ise U, by U,, the primary acoustic potential on a point particle in the
center of the trap. b Schematic of simplified axisymmetric simulation
geometry. The acoustic potential is calculated around the surface of
revolution of a rounded square with side length / and corner radius of
curvature r, and side length /, fixed in the center of a standing wave.
¢ U,/ U, as a function of vertical distance from the levitation node z,
for different r,/I. d U,4/U, as a function of radial distance from
the particle surface r, for different r,//. e Depth of potential mini-
mum, U,,4(r = 0)/U,, as a function of r, /1
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indicating that a point particle in the acoustic trap would
be disproportionally attracted to the edges of the cube.

The boundary conditions at the surface of a levitated
particle connect geometry and acoustic forces. In particu-
lar, we model a perfectly scattering surface using the Neu-
mann boundary condition. For an acoustic wave incident
on a perfectly scattering surface with unit normal 7, in
an inviscid fluid with pressure p, the boundary condition
reads

f-Vp=0. )
Equation 2 implies that the pressure gradient at a perfectly
scattering surface must be orthogonal to the surface normal.
In this case, much like a conducting surface in an electric
field, the pressure gradient is forced to change with the cur-
vature of the surface. We suggest that this effect focuses the
acoustic field in regions of high curvature, thus producing
deep potential minima at the edges of the cube.

We illuminate the relation between geometry and acous-
tic force by quantifying the effect of a single edge on the
acoustic potential. Instead of simulating the acoustic poten-
tial around a fully three-dimensional cube, we instead use
an axisymmetric geometry (boundary conditions shown in
Fig. 3b), and calculate the acoustic field around the sur-
face of revolution of a square with side length [ = 0.14,,.
We parameterise the edge sharpness of the square using
the radius of curvature r, of the corners. Our results for the
acoustic potential in the z- and r-directions as a function of
nondimensional edge curvature r,// are shown in Fig. 3c,
d. As r,/l decreases from 1 (sphere) to 0 (sharp corners),
the depth of the acoustic potential increases sharply in both
the z- and r-direction.

In order to further quantify the relation between edge
sharpness and acoustic force, we simulate the normalised
depth of the potential minimum at the surface of the parti-
cle, U,q(r = 0)/U,, as a function of r,/I. Data is plotted in
Fig. 3e, and reveal that the depth of the acoustic potential
diverges as a power law as the edge curvature approaches
zero, with exponent —10/13. Our results confirm that the
near-field force between a point scatterer and a levitated par-
ticle in an acoustic field scales sensitively with the sharpness
of the edges on the levitated particle.

Based on our simulations of the acoustic field, we suggest
an explanation for the robustness of edge—edge contacts and
hinge-like motions between a pair of levitated cubes. When
two cubes are levitated, their centres of mass are confined to
the nodal plane due to the primary acoustic field. In addition,
the secondary acoustic force produces short-range attrac-
tive forces, which preferentially align the edges of faceted
shapes. Upon joining a pair of cubes in the configuration
shown in Fig. 2a, we note that rotation of a two-cube cluster
around their common edge results in motion of the centres
of mass out of the nodal plane. The hinging motion shown in

Fig. 2d thus arises from the interplay of geometry-controlled
interactions and the confining acoustic field.

The geometry of the cubes encourages packing in a
square lattice at high packing fractions. At the same time,
however, in an acoustic trap, the edges of the cubes give
rise to interactions that favour edge—edge contacts (such
as illustrated in Fig. 2a). Since each cube can only make
two edge—edge contacts (one on each side of a cube posi-
tioned as in Fig. 2a), as the cluster size grows, it becomes
harder and harder for all cubes in the cluster to satisfy their
constraints. The acoustic and contact forces that drive self-
assembly in an acoustic trap thus also produce highly frus-
trated clusters. Such clusters exhibit a multiplicity of particle
arrangements, transitions between which require extensive
reconfigurations.

As an example, Fig. 4a shows the assembly of two pos-
sible configurations of the 3-cube cluster: a linear chain of
cubes (ii), and a close-packed configuration where three
cubes share a corner (v). Only one of these shapes (close-
packed) is available to a cluster of three spheres, since a
linear chain of three spheres does not have enough bonds
to be rigid, and will thus fold into a close-packed arrange-
ment. In contrast, the edge—edge contacts of the cubes have
finite extent, so that local contact forces along the length of
the contact can stabilise linear chains of cubes. These lin-
ear chains also satisfy the condition that all particles in the
cluster only interact via their edges.

When active fluctuations in the acoustic field become
strong enough (the acoustic trap is far from resonance), the
clusters fluctuate up and down in the trap, occasionally col-
liding with the reflector. These collisions can break bonds
between particles in a cluster, disrupting the linear configu-
ration of cubes. The cluster then folds into its other, close-
packed configuration (Fig. 4a, ii—v). During this process, one
of the cubes detaches partially from the rest of the cluster,
leaving one of its corners attached. It then pivots about this
corner to a new position on the cluster, ultimately joining
the other two cubes at the connecting edge between them.
Despite the fact that the close-packed 3-cube cluster forces
a contact between an edge and a face, we observe that it
is stable to further fluctuations in the acoustic field, which
change the angle of each “hinge” in the cluster but do not
trigger dramatic rearrangements.

These two structural motifs—linear and close-packed—
form the basis of all larger cluster shapes. Figure 4b, ¢
shows two of the possible compact four-cube clusters (the
linear chain of four cubes is not shown). The cluster shown
in Fig. 4c was formed from a close-packed group of three
cubes, with an additional cube added to the side of the (tri-
angular) cluster. In contrast, the cluster shown in Fig. 4b
was formed from a pair of two-cube clusters that adjoined
side on, and thus has a different set of internal angles and
symmetries. Although the two clusters look similar, since
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At =10ms

-

Fig.4 Cluster formation driven by particle edges. a Sequence of
images from below showing the assembly and subsequent folding of a
3-cube cluster. Note that the 3-cluster exhibits two possible configura-
tions: a linear chain (ii) and a triangular cluster (v). See Supplemen-

the internal angles of each cluster are incommensurate with
the other, rearranging the constituent particles between the
shapes requires extensive reconfiguration through the close-
packed three-cube arrangement.

Adding another cube dramatically increases the number
of available configurations, only three of which we show
here (Fig. 4d—f). Each configuration achieves structural
stability by mixing linear chains and close-packed motifs.
For instance, the configuration shown in Fig. 4d resembles
the isostatic arrangement of five spheres in two dimensions,
and consists of a pair of linear chains arranged side by side.
Alternatively, the same cluster can be read as a pair of close-
packed 3-cube clusters that share a cube. We suggest that
this configuration may be interpreted as the “ground-state”
for the 5-cluster, because it involves the fewest number of
edge—face contacts. However, the degree of cooperativity
required to form this structure suggests that five cubes in
an acoustic trap are unlikely to generically form this cluster
shape without some degree of rearrangement.

Figure 4e, f show alternative 5-cube clusters, each of
which is formed from a close-packed 3-cube cluster, one
site of which is attached to a linear chain. We observe that
adding a cube onto the 4-cluster in (b) results in the 5-cluster
in (e), while adding a cube to the cluster in (c) produces the
cluster in (f). Importantly, rearranging (e) into the “ground-
state” configuration in (d) requires a single cube pivoting
into position. In contrast, because the 4-cluster in (c) is geo-
metrically incommensurate with the packing that leads to the
ground state of the 5-cluster system, rearranging (f) into (d)
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At = 15ms

At = 47ms

At = 35ms

tary Movies for dynamics. b, ¢ Two different possible configurations
of the 4-cube cluster. d—f Three possible configurations of the 5-cube
cluster. Note that b and d correspond most closely to the isostatic
cluster shapes of four and five spheres respectively

requires the deconstruction of the cluster into the appropri-
ate 3-cube motifs.

4 Discussion

We have presented acoustic levitation as a novel means
to tune anisotropic, attractive interactions in a granular
material. We show that particles in an acoustic field are
strongly attracted to sharp edges, leading to the forma-
tion of edge—edge (rather than face—face or face—edge)
contacts between cubes, cylinders, and tetrahedra. These
contacts support hingelike motions, which result from a
combination of the confining acoustic field and short-range
forces from acoustic scattering. Simulations show that the
magnitude of these short-range forces is controlled by the
radius of curvature of the particle edges. Our results apply
to a wide range of assembly environments (any medium
that supports an acoustic standing wave) and materials
(anything that scatters sound), opening possibilities for
the assembly of complex granular structures from directed
interactions. Future work could also utilise these direc-
tional acoustic forces to design and 3D print particles with
shapes that optimise their packing, or their dynamics, in
an acoustic trap.

The interplay of contact forces due to particle shape and
edge—edge interactions due to acoustic forces produces a
diverse range of cluster shapes. The structure and dynam-
ics of these clusters, particularly in the large number limit,
raises interesting questions about geometric frustration in
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self-assembly, ergodicity in activated granular matter, and
the effect of attractive forces on jamming.
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