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Abstract

The importance to integrate survival analysis into genetics and genomics is
widely recognized, but only a small number of statisticians have produced
relevant work toward this study direction. For unrelated population data,
functional regression (FR) models have been developed to test for association
between a quantitative/dichotomous/survival trait and genetic variants in a
gene region. In major gene association analysis, these models have higher
power than sequence kernel association tests. In this paper, we extend this
approach to analyze censored traits for family data or related samples using FR
based mixed effect Cox models (FamCoxME). The FamCoxME model effect of
major gene as fixed mean via functional data analysis techniques, the local gene
or polygene variations or both as random, and the correlation of pedigree
members by kinship coefficients or genetic relationship matrix or both. The
association between the censored trait and the major gene is tested by likelihood
ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT
control the type I error rates accurately/conservatively and have good power
levels when both local gene or polygene variations are modeled. The proposed
methods were applied to analyze a breast cancer data set from the Consortium
of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME
provides a new tool for gene-based analysis of family-based studies or related
samples.

KEYWORDS
association study, common variants, complex diseases, functional data analysis, mixed effect Cox

models, rare variants

1 | INTRODUCTION

Understanding the determinants of time to events (e.g.,
age at onset) is of great importance in dissecting complex
disorders, but statistical methods for identifying genetic
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variants that affect disease progression are not well
developed. Some statisticians have recognized the im-
portance of using the time to event data into genetic risk
assessment and some research in such analyses has been
done. For gene-based association studies using sequen-
cing data, the available methods can analyze survival
traits of unrelated samples (Chen et al., 2014; Fan, Wang,
et al., 2016; Tzeng, Lu, & Hsu, 2014). There are limited
gene-based approaches to analyze censored data from
studies of either familial or cryptically related individuals.
To our knowledge, Leclerc (2015) can analyze related
samples but it targets on regions containing a small
number of variants while Chein, Bowden, and Chiu
(2017) does not release related software.

Familial or cryptically related data are useful in
association analysis since they may oversample affected
individuals who are likely to harbor risk variants (Amin,
van Duijn, & Aulchenko, 2007; Chiu et al., 2018; Lange,
2002). Moreover, these data are available in the studies of
the Consortium of Investigators of Modifiers of BRCA1
and BRCA2 (CIMBA), lung cancer, mental health, and
eye diseases (Couch et al., 2013; data set of breast cancer;
Leutenegger et al., 2003). Analyzing the existing data by
powerful methods can identify important variants and
elucidate genetic architecture. However, investigators
cannot adequately analyze them due to the lack of
powerful methods and software to handle cryptic
relatedness, large samples, and high dimension sequen-
cing data. In practice, genetic studies of survival out-
comes have been proposed and conducted for cancers in
cryptically related samples, but only common variants are
mainly used so far.

Compared with genetic studies based only on un-
related individuals, family-based association studies have
unique advantages and strengths: controlling population
stratification, studying parent-of-origin effects, identify-
ing rare causal variants, and detecting de novo mutations.
Cryptically related samples can be viewed as a large
pedigree with hidden relatedness and should not be
analyzed as unrelated individuals. To model correlation
of familial or cryptic relatedness, mixed models are useful
in analyzing common variants, but the existing mixed
models cannot be applied to analyze sequencing data
directly due to a large number of rare variants.

Many genetic analyses use individual single nucleo-
tide polymorphisms (SNPs) in mapping genes such as
genome-wide association studies. In the presence of a
large number of rare variants, gene-based analysis is
more powerful than testing of individual variants (Lee
et al., 2012; Li & Leal, 2008; Madsen & Browning, 2009;
Morris & Zeggini, 2010). For unrelated samples, func-
tional regression (FR) test statistics perform markedly
better than sequence kernel association test procedure in

major gene association analysis (Fan et al., 2013, 2014;
Fan, Chiu, et al., 2016; Fan, Wang, et al. 2016; Luo,
Boerwinkle, & Xiong, 2011; Luo, Zhu, & Xiong, 2012,
2013; Svishcheva, Belonogova, & Axenovich, 2015;
Vsevolozhskaya, Zaykin, Greenwood, Wei, & Lu, 2014,
2016). However, functional models and related tests are
not well-developed to analyze familial- or cryptic-related
data for survival traits.

Motivated by real data analysis needs and the
elegant performance of functional and mixed models,
we develop FR based mixed effect Cox models in this
paper to analyze familial and cryptically related
censored data at the gene level (FamCoxME). The
FamCoxME model the effect of major gene as fixed
mean via functional data analysis techniques, the local
gene or polygene variations or both as random and the
correlation of pedigree members by kinship coefficients
or genetic relationship matrix (GRM) or both. The
models cope with high dimensionality and relatedness
and can be utilized to elucidate the genetic architecture
of cancers and complex disorders. The association
between the censored trait and the major gene is tested
by likelihood ratio tests (FamCoxME FR LRT). Ex-
tensive simulations are performed to evaluate the type
I error rates and power performance of FamCoxME FR
LRT. The models are applied to analyze an ovarian
cancer data set in CIMBA.

2 | METHODS

Here we describe FR-based mixed effect Cox models for
association analysis of censored traits with sequencing
data from pedigrees or a combination of population and
pedigrees. Consider a sample of n individuals from
multiple extended pedigrees and individual singletons.
The n individuals can be cryptically related. The pedigree
may include members who are sequenced and pheno-
typed, and members who are not sequenced or pheno-
typed. In the sample, assume that n individuals are
phenotyped and sequenced in a genomic region that has
m variants. We assume that the m variants are located in
a region with  ordered physical positions
0 <u < ---<uy, and that the physical position of each
variant u; is known. To make the notation simple, we
normalize the region [u, u,] to be [0, 1]. For the ith
individual, let T; denote the survival time, and C; denote
the respective right-censoring time. Let y, = min(T;, C;)
be the observed time-to-event and censoring indicator
8 = 1y,=1). In addition, let X; = (x;(u1), ..., x;(Un))’
denote a genotype vector of the m variants and
Z; = (zi, .-, Zic)! denote a ¢ x 1 vector of fixed effect
covariates. For the genotypes, we assume that
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x;(u;)(=0, 1, 2) is the number of minor alleles of the
individual at the jth variant located at the position u;.

To model random variations and correlation among
the n individuals, we consider the contributions from
both local gene and polygenes. To model correlation
among the n individuals due to the polygenic effect, we
consider two types of correlation matrices: a kinship
matrix and an empirical GRM. For pedigree data, the
pedigree members who are not sequenced or phenotyped
are used to calculate relations among the pedigree
members, that is, kinship coefficients. For the n
individuals who are phenotyped and sequenced, let Q
be a n X n matrix containing diagonal elements Q; = 1
and off-diagonal elements Q; = 2¢,,. The parameter ¢; is
the kinship coefficient between individuals i and j, the
probability that a randomly chosen allele at a given locus
from individual i is identical by descent (IBD) to a
randomly chosen allele from individual j conditional on
their ancestral relationship.

For population data with structure or a combination of
population and pedigree data, the GRM can be calculated
based on marker data other than those of the local gene to
account for population structure and cryptic relatedness. For
individuals i and j from different pedigrees, the kinship
coefficient is ¢; = 0. However, the genetic relationship
coefficient of individuals i and j can be non-zero since they
may be cryptically related. In the following, the kinship
matrix or the empirical GRM is denoted by Q.

To model correlation among the n individuals due to the
local gene under the consideration, we estimate regional
proportion of alleles shared identical by state (IBS) of the ith
and the jth individuals by marker information as follows
(Yang et al., 2010; Zhu & Xiong, 2012)

m
1
T = — /4 Thje

m,—

i m [xz([é’) 2Pg][3€f(t€)—ng], oy
m 2p€(1 - Pg)

3 [x,-(te)]2 — A+ 2p)x) + 2 =j’
2p,(1 — p,) '
®
where
Xxi(te) — 2p,|[xi(tp) — 2
[x; (tz) Pe][](f) pe]’ oy

2p,(1 = p,)
Thje = 2 2
- [xi(t2) > — (1 + 2p,)x;(te) + 2p;
ng(l - Pg)

s

is the proportion of alleles shared IBS at Ith variant by the
ith and jth individuals. Let II be an n X n matrix
containing diagonal elements 7; for the pedigree.
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2.1 | FR-based mixed effect cox models

In addition to the time-to-event observation y, and covariates
of the ith individual, we denote the ith individual’s genetic
variant function (GVF) as X;(u), u € [0, 1]. Note that the
data set includes n discrete realizations or observations X; of
the genotypes. Using the genetic variant information X;, we
can estimate the related genetic variant function X;(u),
which will be discussed below. To relate the genetic variant
function to the time-to-event observation adjusting for
covariates, we consider the following FR-based mixed effect
Cox proportional hazard model

2512 X8 G) = 2a©)exp( 2+ [} Xiwpw)du

+8+G) @

where 1y(s) is the baseline hazard function, @ isac X 1
vector of fixed regression coefficients of covariates, §(u)
is the genetic effect of genetic variant function X;(u) at
the position u, (g, ..., g,)’ is a normal random vector with
mean 0 and covariance matrix ngl'l, and (Gy, ..., G,)' is
random vector with mean 0 and covariance matrix gz Q.
Here agz and oZ are local and polygenic variances,
respectively.

In the Cox model (2), the genetic variant functions
X;(u) are assumed to be smooth. This assumption can be
relaxed by considering the following mixed effect -
smooth only Cox model

= Jo(s)exp| Z'a + Do xiw)B W) + g + Gif, (3)
j=1

where the genetic effect function S (u) is assumed to be
continuous/smooth and so it is called 5-smooth only Cox
model. The integration term j(;lX,-(u)ﬁ (u)du in Cox
model (2) is replaced by a summation term
Z;.":lxi(uj)ﬁ (4;) in the above model (3), and we make
no assumption about smoothness of the genetic variant
functions X;(u). We use the raw genotype data
X; = (x;(uy), ..., x; (Uy,))" directly in the B-smooth only
Cox model (3).

Fan, Wang, et al. (2016) proposed FR models to
analyze survival traits for unrelated population data.
Therefore, there were no random terms g; and G; in the
models of Fan et al., 2016. In this paper, the models (2)
and (3) are designed for pedigree data or related samples.
In addition to the fixed effect terms, the random terms g;
and G; are utilized to model the correlation among the
pedigree members. To omit the random terms of
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(g, -.» 8,) from the models, the models (2) and (3) can be
revised as

Ai(s1Z;, X;, Gy)
= Ao(s)exp(Zi’oc + ./O'lXi(u)ﬁ(u)du + Gi), 4)

/ll'(s |Zl'5 )(ia Gl)

= Ao(s)exp[Zi’oc + Yox(u)B ) + G,-]. 5)

j=1

To omit the random terms of (G, ..., G,)’ from the
models, the models (2) and (3) can be revised as

Ai(s |Zi7 )(ia gl)

= Ao(s)exp(Zi’oc + l/(;le-(u),B(u)du + gi), (6)
Ai(s|Zi, X3, 8)

= Ao (s)exp[Zi’oc + in(uj)ﬁ () + gi]. 7

j=1

2.2 | Revised mixed effect cox models

The genetic effect function (u) in Cox models (2) and (3)
is assumed to be smooth, that is, B(u) is a
continuous function of physical position u. One may
expand it using B-spline or Fourier basis functions.
Formally, let us expand the genetic effect function §(u)
by a series of Ky basis functions %, (u), ...,szﬁ(u) as
) = Wiy, W)(Byr o i) = Y(u)'B,  where
B =@, ...,[)’Kﬁ)’ is a Kgx 1 vector of coefficients and
) = @), ..., gbKB(u))’. We consider two

types of basis functions: (a) the B-spline basis:
P (u) =By(u),k=1,..,Kg; and (b) the Fourier
basis: ¢, (u) = 1,9, () =sin2zru), and ¢, (u) =

cos(2mru), r = 1, ...,(Kg — 1)/2. Here for a Fourier
basis, Kz is taken as a positive odd integer (Ramsay &
Silverman, 2005).

To estimate the genetic variant functions X;(u) from
the genotypes X;, we use an ordinary linear square
smoother (de Boor, 2001; Ferraty & Romain, 2010;
Horvath & Kokoszka, 2012). Let ¢, (u), k=1, .., K, be
a series of K basis functions, such as the B-spline basis
and Fourier basis functions. Let ® denote the m X K
matrix containing the values ¢, (u;), and we Ilet
d(u) = (¢, (), ..., . (u))’. Using the discrete realizations
Xi = (x;(wy), ..., x;(uy,))’, we estimate the genetic variant
function X;(u) using an ordinary linear square smoother
as follows

Xi(w) = (@), oy Xi(Un)) O[T (). (8)

Assume that the genetic effect S(u) is expanded
by a series of basis functions ¢, (u),k=1,..,Kp,
as B(u) =ypw)'B. Replacing X;(u) in the FR-based
mixed effect Cox model (2) by X;(u) in (8) and S(u)
by the expansion, we have a revised mixed effect
Cox model

Ai(s1Z;, X, g, Gy)

= (s)exp(Z,-’cx + O (W), ..., xi(Up)) @ [@'P]!

So$@w @dus +g,+ G)

= Ao(s)exp(Zi'a + W'B + g + G, ©)

where W' = (x; (1), ., Xi (1))@ [@' @] [ $ ()9 ()du. In
the statistical packages R, codes to calculate ®[®'®]!
and ‘/(')1 ¢(w)y'(u)du are readily available (Ramsay,
Hooker, & Graves, 2009).

For the f-smooth only mixed effect Cox model (3),
B (u;) is introduced as the genetic effect at the position
u;. In this article, we assume that the genetic effect
function §(u) is a continuous function of the physical
position u. Therefore, f(u;),j=1,2,..,m, are the
values of function S(u) at the m physical positions.
Expanding §(u;) by B-spline or Fourier basis functions
as above, the mixed effect Cox model (3) can be
revised as

Ai(s1Z;, X, g;, Gy)

= lo(S)eXP[Z/OC + [ZM(%‘)(%(WL wes TPKB(M]‘))]

j=1

(Brr - Br)' + 8 + Gl-]
= Ao(8)exp(Zi'a + W'B + g + Gy, (10)

where W' = Z;.'lzlxi(uj)(zpl(uj), v P, (). In the
same manner, the models (4) and (5) can be revised to
obtain

Ai(s1Zi, Xi, g) = Ao(s)exp(Zi'a + W'B + Gi). (11)

In the same manner, the models (6) and (7) can be revised to
Ai(s1Zi, Xi, g) = Ao(s)exp(Zi'a + Wi'B + &). (12)

23 |

To test for association between the m genetic variants
and the survival trait, the null hypothesis is
Hy: 8= (B, ...,,BKﬁ)’ = 0. By fitting the mixed effect

Test statistics and parameters
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Cox models (9)-(12), we may test the null Hy: § = 0 by
a y?-distributed LRT (FamCoxME FR LRT) statistic
with Kz degrees of freedom (Cox, 1972; Cox & Oakes,
1984; Therneau & Grambsch, 2000).

In the data analysis and simulations, we use functions
in the fda R package to create the basis functions.
The order of the B-spline basis was 4, the number of B-
spline basis functions was K = Kg = 10, and the number
of Fourier basis functions was K =Kz=11. To
make sure that the results are valid and stable, we
examined a wide range of parameters, 6 < K = Kg <13
for B-spline and Fourier basis functions.

2.4 | Simulation studies

Extensive simulations were performed to evaluate the
performance of the proposed FamCoxME FR LRT
statistics. In our simulations, we define rare variants to
be the genetic variants whose minor allele frequencies
(MAFs) are less than or equal to 0.03. Two scenarios were
considered: (a) some causal variants are rare and some
are common and (b) all causal variants are rare. The
pedigree structures are described below.

2.4.1 | Pedigree template of 25 families

We simulated 25 families by randomly choosing progeny
sizes from a negative binomial distribution. Each child
within the second generation has a 25% chance of having
offspring. The structure of the pedigrees included 228
individuals (119 males and 109 females; 70 founders and
158 nonfounders). The pedigree size ranged from 4 to 24
with an average value of 9.12.

2.4.2 | Pedigree template of 50 families

By doubling the 25 families, the pedigree structures
included 456 individuals (238 males and 218 females; 140
founders and 316 nonfounders) within the 50 families.

2.4.3 | Genetic variants

The sequence data are of European ancestry from
10,000 chromosomes covering 1 Mb regions using the
calibrated coalescent model as programmed in COSI.
The sequence data were generated using COSI’s
calibrated best-fit models, and the generated
European haplotypes mimic CEPH Utah individuals
with ancestry from northern and western Europe in
terms of the site frequency spectrum and LD
patterns (figure 4 in Schaffner et al., 2005). Genetic
regions of 6, 9, and 12kb length were randomly
selected for empirical type I error and power calcula-
tions. To evaluate empirical type I error and

power levels, we randomly sampled two haplotypes
for each founder. For each nonfounder, we chose one
haplotype at random from his or her parents.
Genotypes were constructed by summing up two
haplotypes for each individual to determine the
number of minor alleles.

2.4.4 | Type I error simulations

For a constant a > 0, let U;~U (0, a) denote a uniform
random variable on (0, a). To evaluate the type I error
rates of the proposed LRT statistics, we generated
baseline survival time from a Weibull (2, 2) by (Bender,
Augustin, and Blettner 2005)

T (zi1» Zi2> Gi)

_ 4log U (13)
“\ exp(0.005(z;; — 50) + 0.05z» + G;)

where U; was uniformly distributed random variable
U(0,1), zp is a continuous covariate from a normal
distribution N (50, 5%), z;» is a dichotomous covariate
taking values 0 and 1 with a probability of 0.5, and
(Gy, ..., G,)' is generated as a normal vector with mean 0
and a covariance matrix o3Q, og = 0.2. Four censoring
schemes were considered: (a) C; = o0, no censoring, (b)
C;~U(0,10), (c) C;~U(0,5), and (d) C;~U(0,3). The
time-to-event time is calculated by y, = min(7, C;) and
the censoring indicator is calculated by &; = 1(z<c, for a
random sample T;, C;, i = 1, 2, ..., n. The proportions of
censored observations in four censoring schemes are 0%,
17.5%, 35.0%, and 56.5%, respectively.

Genotypes were selected from variants in 6, 9, and
12kb subregions which were randomly selected from
the 1 Mb region. Note that the trait values are not related
to the genotypes, and so the null hypothesis holds.
For each combination of a pedigree template and a
censoring scheme, 1,010 independent seeds were used to
calculate type I error rates and 1,000 datasets were
generated for a seed. The simulations were carried on
National Institutes of Health (NIH) high-performance
computational capabilities of the Biowulf cluster which
killed a simulation if it took more than 10 days. Thus, we
used 1,010 independent seeds to make sure enough data
sets were generated to calculate a valid type I error rate.
For a combination of a pedigree template and a censoring
scheme, 10° phenotype-genotype data sets or slightly
more were generated. For each data set, we fit the
proposed Cox models (2)-(7). The related FamCoxME
FR LRT statistics and related p values were calculated.
After the simulations were complete, an empirical
type 1 error rate was calculated as the proportion of



* L WiLEY

CHIU Er AL.

the total p values which were smaller than a given
significant level a.

2.4.5 | Empirical power simulations

To evaluate the power of the proposed FamCoxME FR
LRT statistics, we simulated data sets under the
alternative hypothesis by randomly selecting 6, 9, and
12 kb subregions to obtain causal genetic variants. For
each sample data set, a subset of q causal variants located
in the selected subregion was then randomly selected,
yielding genotypes X; = (x;(w), ..., x(ug))’. Then, we
generated the survival time by

T (zi1, iz Xi» Gi)

B 4log U
exp(0.005(z;; — 50) + 0.05z;, + B, (ur)
et (1y)) + G

(14)

where z;; and z;; were the same as in the type I error
model (13), X; = (x;(w), ..., X; (ug))’ were genotypes of the
ith individual at the causal variants, and the f’s are
additive effects for the causal variants defined as follows.
We used | 5] | =c | log,,(MAF))|, where MAF; was the
MAF of the jth variant. Three different settings were
considered: 5%, 10%, and 15% of variants in the 6kb
subregion are chosen as causal variants. When 5%, 10%,
and 15% of the variants were causal and all causal variants
are rare, ¢ = log(90) /k, log(70) /k and log(50) /k, respec-
tively. When 5%, 10%, and 15% of the variants were causal
and some causal variants are common and the rest are
rare, ¢ = log(90)/(2k), log(70)/(2k) and log(50)/(2k),
respectively. For the template of 50 two- or three-
generation families with a total of 456 related individuals,
the constants k and genetic effect sizes decrease as region
sizes increase

1.25 if region size = 6 kb,
k=415 if region size = 9 kb, 15)
1.75  ifregion size = 12 kb.

In addition to varying the percentage of causal
variants in the subregion, we also varied the
direction of effect. We considered situations where
(a) all causal variants have positive effects; (b) 20%/
80% causal variants have negative/positive effects; and
(c) 50%/50% causal variants have negative/positive
effects. For each setting, 1,000 datasets were
simulated to calculate the empirical power as the
proportion of p values which are smaller than a given
a level. For each data set, the causal variants are the

same for all the individuals in the data set, but we
allow the causal variants to be different from data set
to data set.

2.5 | Real data analysis: Application to
CIMBA ovarian cancer data

To evaluate the proposed FamCoxMe FR LRT, we
analyzed an ovarian cancer data set from the CIMBA
data, which aims to identify genetic factors associated
with breast cancer risk in BRCA1 and BRCA2 mutation
carriers. These mutation carriers were recruited
through cancer genetics clinics or research studies of
high-risk families in 25 countries. In total, 7,912 women
of European ancestry were available for analysis.
The sample consists of 5,381 clusters, in which 1,401
have a size greater than one and 3,980 are singletons.
For clusters which have a size greater than one, the
individuals within a cluster are cryptically related
and GRM was used to model their correlations. Among
the clusters which have more than one individuals,
the cluster size varies between 2 and 38, for a total of
3,932 subjects.

The SNP set analyzed comprises 186 variants across
the KCNABI1 locus on chromosome 3 (positions
156158932-156647297). SNPs were genotyped on the
collaborative oncological gene-environment study
(iCOGS) custom array. iCOGS methodology and
quality control procedures are detailed elsewhere
(Couch et al., 2013). The MAF of the SNPs ranges
from 0.0019 to 0.4986. The entries of the IBD matrix
were estimated using the genotype data of the iCOGS
array other than the tested KCNABI region (Amin
et al.,, 2007). The phenotype of each individual is
defined by age at ovarian cancer diagnosis or age at
last follow-up. The observations are right-censored if
any of the following three events occurs before
ovarian cancer diagnosis: breast cancer diagnosis,
bilateral prophylactic mastectomy, or lost to follow-
up. The censoring rate is 7.3%.

3 | RESULTS

3.1 | Empirical type I error rates

The empirical type I error rates for the proposed FamCoxMe
FR LRT statistics are reported in Tables 1 and 2 at four
nominal significance levels « = 0.05,0.01,0.001, and
0.0001. In Table 1, all variants were used to generate
genotype data but none of them relates to the
trait. In Table 2, only rare variants were used to generate
genotype data.
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(Continued)

TABLE 1

only

2
g

Model local variance o

Model local variance o2 only

2
g

and local o

Model both polygenic o

Cox model (4) Cox model (5) Cox model (6) Cox model (7)

Cox model (3)

Cox model (2)

The censoring Nominal

scheme
U (0, 10)

Region size

B-spline Fourier

B-spline Fourier B-spline Fourier B-spline Fourier

Fourier  B-spline Fourier

B-spline

level x
0.05
0.01

(# variants)

0.060243 0.061634 0.060245 0.061634

0.060971 0.062214 0.060977 0.062214
0.013027 0.013300 0.013027 0.013300

0.052430
0.009954
0.000879

0.051306
0.009691
0.000787

0.052430
0.009954
0.000879

0.051300
0.009689
0.000786

0.012047 0.012522 0.012048 0.012522

0.001081 0.001191 0.001081 0.001190

8.34E—05 0.000114 8.43E—05 0.000114

0.001377 0.001497 0.001377 0.001497
0.000138 0.000155 0.000138 0.000155
0.061499 0.062182 0.061501 0.062182

0.001

7.24E—-05
0.052237
0.009914
0.000853

5.56E—05
0.051838
0.009684
0.000856

7.24E—-05
0.052237
0.009914
0.000853

5.46E—05
0.051835
0.009680
0.000854

0.0001
0.05
0.01

0.059208 0.060040 0.059212 0.060039

U(o,5)

0.011765 0.012078 0.011770 0.012080

0.001106 0.001131 0.001109 0.001131

7.53E—05 0.000101

0.013069 0.013345 0.013074 0.013345
0.001398 0.001430 0.001401 0.001430

0.001

7.62E—05 0.000101

0.000132 0.000155 0.000136 0.000155

7.52E—05
0.052373
0.009927
0.000885

5.94E—-05
0.051942
0.009965
0.000914

7.52E—05
0.052373
0.009927
0.000885

5.74E—-05
0.051937
0.009959
0.000914

0.0001
0.

0.058012 0.058653 0.058024 0.058653

0.011573 0.011666 0.011578 0.011665

0.061822 0.062142 0.061831 0.062142

05

U(o,3)

0.013255 0.013432 0.013263 0.013432

0.01

0.001104 0.001091 0.001105 0.001091

0.001445 0.001464 0.001445 0.001464

0.001

9.32E—-05 0.000103 9.32E—05 0.000103

0.000127 0.000154 0.000127 0.000154

8.13E—-05 5.85E—-05 8.13E—05

5.95E—-05

0.0001

Kz =11.

Kz = 10; the number of Fourier basis functions was K =

Note: The order of B-spline basis was 4, and the number of basis functions of B-spline was K

When some variants are common and the rest are
rare, Tables 1 shows that the FamCoxMe FR LRT
statistics of the Cox models (2), (3), (6), and (7) control
the type I error rates correctly, whether the genotype data
are smoothed or not and regardless of which basis
functions are used to smooth the GVF and f(u). When
all variants are rare, Table 2 shows that the type I error
rates are well controlled for the Cox models (2) and (3)
except for the heaviest censoring level scheme U (0, 3)
and region sizes of 6 kb and 9kb, and the type I error
rates of (6) and (7) are slightly higher. The type I error
rates of models (4) and (5) are inflated in both Tables 1
and 2. Therefore, only modeling the random term G; may
lead to a high false-positive rate.

The results of the Cox models (2), (4), and (6) are
very similar to those of f-smooth only models (3), (5),
and (7), respectively. Therefore, the FamCoxME FR
LRT statistics do not strongly depend on whether the
genotype data are smoothed or not, or which basis
functions are used.

3.2 |

The power of the proposed FamCoxME FR LRT statistics
was evaluated by using the simulated sequence data.
Since the type I error rates of LRT statistics of Cox models
(2) and (3) are well-controlled when the region size is
12 kb, we reported in Figures 1 and 2 the power levels for
the region. In Figure 1, some causal variants are rare and
some are common. In Figure 2, all causal variants are
rare.

We compared the power of FamCoxME FR LRT statistics
of the models (2) and (3) by B-spline and Fourier basis
functions. In the two FamCoxME FR LRT statistics to use B-
spline (or Fourier) basis functions, one is to smooth both
genetic variant functions and genetic effect function §(u) in
model (2), and the other is only to smooth the genetic effect
function 8 (u) (ie., S-smooth only model (3). The four LRT
statistics have similar power.

When some causal variants are rare and some are
common, the power levels are pretty high in Figure 1.
Relatively, the power levels in Figure 2 are lower when
all causal variants are rare.

Statistical power evaluation

3.3 | Real data analysis: Application to
CIMBA ovarian cancer data

Table 3 shows the results of the association analysis of
CIMBA ovarian cancer data for the gene KCNABI using
the proposed FamCoxME FR LRT of models (2) and (3).
We analyzed the data three times in the gene region for
each case of “All subjects” and “Clusters only”: (a) all 186
genetic variants, (b) 110 common variants only, and (c)
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TABLE 2 (Continued)

only

2
g

Model local variance o

Model local variance o2 only

and local o

2
G

Model both polygenic o

Cox model (4) Cox model (5) Cox model (6) Cox model (7)

Cox model (3)

Cox model (2)

The censoring Nominal

scheme
U (0, 10)

Region size

CHIU Er AL.

B-spline Fourier

B-spline Fourier B-spline Fourier B-spline Fourier

Fourier B-spline  Fourier

B-spline

level x
0.05
0.01

(# variants)

0.064272 0.065219 0.064303 0.065232 0.061222 0.062298 0.061268 0.062293

0.014135 0.014524 0.014156 0.014529 0.012456 0.012605

0.001660 0.001676 0.001679 0.001678 0.001178 0.001221

0.053685
0.010314
0.000940

0.053163
0.010260
0.000906

0.053681
0.010313
0.000942

0.053154
0.010259
0.000906

0.012601

0.012485

0.001189 0.001218

0.001

0.000186 0.000226 0.000206 0.000227 0.000108 0.000140 0.000118 0.000139

8.80E—-05
0.055327
0.010660
0.000960

7.16E—-05
0.054796
0.010641
0.000925

9.07E—-05
0.055327
0.010661
0.000964

7.07E—05
0.054780
0.010636
0.000929

0.0001
0.05
0.01

0.066037 0.066878 0.066062 0.066882 0.062056 0.063002 0.062052 0.062998

0.014827 0.014933 0.014852 0.014937 0.012649 0.012716 0.012655

U(o,5)

0.012724
0.001266

0.000137 0.000136 0.000140

0.067295

0.001711 0.001781 0.001720 0.001786 0.001228 0.001262 0.001231

0.000244 0.000258 0.000250 0.000257 0.000133
0.071801 0.072469 0.071888 0.072486 0.066545
0.016533 0.016888 0.016587 0.016908 0.014033

0.001

8.67E—-05
0.060537
0.012386
0.001142
0.000101

8.68E—05
0.060218
0.012213
0.001156
0.000116

8.75E—-05
0.060531
0.012374
0.001132

8.77E—-05
0.060170
0.012197
0.001154
0.000115

0.0001
0.

0.066598 0.067284

05

U, 3)

0.014281
0.001457
0.000152

0.014274 0.014053

0.01

0.001994 0.002022 0.002031 0.002037 0.001449 0.001452 0.001451

0.000269 0.000283 0.000299 0.000293 0.000167 0.000143

0.001

0.000173

9.26E—05

0.0001

Kz =11.

Kz = 10; the number of Fourier basis functions was K =

Note: The order of B-spline basis was 4, and the number of basis functions of B-spline was K

76 rare variants only. Here the rare variants are defined
as those that the MAF < 0.05, and common variants are
defined as those that the MAF > 0.05.

The most significant results were found in the analysis
of 76 rare variants using all subjects, with a p value
6.42 X 1077 by B-spline basis functions for both models
(2) and (3) and a p value 3.61 X 10~ by Fourier basis
functions. From the analysis of CIMBA data, we may see
that rare variant rather than common variants in the
KCNABI gene region may play an important role in
ovarian cancer. An analysis by combining rare and
common variants together may dilute or reduce the
signal of the rare variants.

In Table 3, the results of the FamCoxME FR LRT
statistics of -smooth only model (3) are identical to
those of model (2) by smoothing both genetic variant
functions X;(u) and genetic effect function §(u). Thus,
whether the genetic variant functions are smoothed or do
not have much impact on the results. This shows that the
FR models perform very stable as shown in the
simulations.

4 | DISCUSSION

In this article, we developed a mixed effect Cox
proportional hazard models and related FamCoxME
FR LRT statistics for gene-based association
analysis of survival traits to analyze familial and
cryptically related samples. Extensive simulations are
performed to evaluate empirical type I error rates and
power of the LRT statistics. We show that the
FamCoxME FR LRT statistics control the type I error
well when variations and correlations of both local
gene and polygenes are modeled. The FamCoxME FR
LRT statistics have good power to analyze related
samples. The proposed methods were applied to
analyze a CIMBA ovarian cancer data set and it was
found that rare variants play an important role in
ovarian cancer, and this helps to elucidate cancer risk
and progression.

In the proposed FR-based Cox models, the random
variations and correlations of the local gene or
polygene contributions or both are modeled to account
for familial relatedness. To handle high dimension
genetic data, the genetic effects are treated as a
function of the physical position and the
genetic variant data are viewed as stochastic
functions of the physical position (Ross, 1996). It was
found that only modeling the polygenic variation G;
may inflate the type I errors while simultaneously
modeling variations and correlations of both local
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FIGURE 1 The empirical power of the statistics at « = 0.01 using the 50 two- or three-generation families with a total of 456 related

individuals as a template, when some variants are common and the rest are rare, genetic effect sizes are given by (15), and the region size is

12 kb. The order of B-spline basis was 4, and the number of basis functions of B-spline was K = Kg = 10; the number of Fourier basis

functions was K = Kg =

gene and polygene contributions can stabilize the type
one errors.

To fit the proposed Cox models, one needs to
estimate parameters and the procedure can be slower
than kernel-based tests. In our simulation studies on
our Linux system, it takes about 120 hr or 5 days to
analyze 10° phenotype-genotype data sets to calculate
the four FamCoxME FR LRT statistics in Tables 1 and
2 for 50 pedigree template. For the CIMBA ovarian
cancer data set, it takes about a week to finish the
analysis. Hence, the computational burden is heavy.
The models can be used to analyze candidate genes for
large samples. For the whole genome and whole

11. Neg pct, percentage of causal variants which have negative effects; pct, percent

exome association studies and moderate samples, the
models and related test statistics can be utilized by
dividing large number of gene regions to be small
number ones to be analyzed in a parallel way to speed
up the analysis.

FR models are utilized to perform association
analysis for quantitative and dichotomous traits for
both population and related samples. This paper fills
the gaps by using functional and mixed models to
analyze related samples of survival traits and high
dimension genetic data. The models can be used to
dissect architecture of complex disorders by analyzing
survival traits.
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FIGURE 2 The empirical power of the statistics at @ = 0.01 using the 50 two- or three-generation families with a total of 456 related
individuals as a template, when all variants are rare, genetic effect sizes are given by (15), and the region size is 12 kb. The order of B-spline

basis was 4, and the number of basis functions of B-spline was K = Kg = 10; the number of Fourier basis functions was K = Kz = 11. Neg

pct, percentage of causal variants which have negative effects; pct, percent

TABLE 3 Application to CIMBA ovarian cancer data

Number
Type of variants of variants
All 186
Rare 76
Common 110

Type of data
All subjects
Cluster only
All subjects
Cluster only
All subjects
Cluster only

Model both polygenic o2 and local a'g

Cox model (2)

Cox model (3)

The sample

size B-spline Fourier B-spline Fourier
7,912 1.51E-05 0.000354 1.51E—-05 0.000354
3,932 0.002830 0.002508 0.002830 0.002508
7,912 6.42E—-07 3.61E—06 6.42E—-07 3.61E—06
3,932 0.000254 0.000136 0.000254 0.000136
7,912 0.002373 0.008107 0.002373 0.008107
3,932 0.010498 0.005116 0.010498 0.005116

Note: In all subjects, 7,912 women of European ancestry were available for analysis. The sample of all subjects consists of 5,381 clusters, in which 1,401 have a
size greater than one and 3,980 are singletons. In “Cluster only,” the 1,401 clusters which have more than one individuals are analyzed. The order of B-spline
basis was 4, and the number of basis functions of B-spline was K = Kz = 10; the number of Fourier basis functions was K = Kz = 11.
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