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Abstract

We develop linear mixed models (LMMs) and functional linear mixed models

(FLMMs) for gene‐based tests of association between a quantitative trait and

genetic variants on pedigrees. The effects of a major gene are modeled as a fixed

effect, the contributions of polygenes are modeled as a random effect, and the

correlations of pedigree members are modeled via inbreeding/kinship coefficients.

F ‐statistics and χ2 likelihood ratio test (LRT) statistics based on the LMMs and

FLMMs are constructed to test for association. We show empirically that the

F ‐distributed statistics provide a good control of the type I error rate. The F ‐test
statistics of the LMMs have similar or higher power than the FLMMs, kernel‐based
famSKAT (family‐based sequence kernel association test), and burden test famBT

(family‐based burden test). The F ‐statistics of the FLMMs perform well when

analyzing a combination of rare and common variants. For small samples, the LRT

statistics of the FLMMs control the type I error rate well at the nominal levels
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α = 0.01 and 0.05. For moderate/large samples, the LRT statistics of the FLMMs

control the type I error rates well. The LRT statistics of the LMMs can lead to

inflated type I error rates. The proposed models are useful in whole genome and

whole exome association studies of complex traits.
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1 | INTRODUCTION

Next‐generation sequencing allows nearly complete eva-
luation of genetic variation, including several million
common (e.g., ≥ 1% population frequency) and rare
variants (e.g., < 1% population frequency) (Abecasis
et al., 2012; Lek et al., 2016; Rusk & Kiermer, 2008;
Tennessen et al., 2012). Thus, it is important to properly
reduce the high dimensionality of next‐generation sequen-
cing data to draw useful information. Rare variants have
very low frequencies, so the power of single variant‐by‐
variant association analysis of rare variants is limited. It is,
therefore, necessary to group the rare variants to perform
gene‐based analysis. In recent years, there has been great
interest in developing statistical methods to analyze rare
variants using grouped region‐based tests.

The existing gene‐based analysis methods fall into
three classes: (a) burden tests (BTs), (b) kernel tests, and
(c) fixed effect regression models. BTs are based on
collapsing rare variants to a single variable, which is then
used to test for an association with the phenotypes (Han
& Pan, 2010; Li & Leal, 2008; Morris & Zeggini, 2010;
Price et al., 2010). The kernel‐based tests, such as
sequence kernel association test (SKAT), its optimal
unified test (SKAT‐O), a combined sum test of rare and
common variant effects (SKAT‐C), and family‐based
SKAT (famSKAT), all aggregate the association between
variants and phenotypes via a kernel matrix, which
measures the similarity between individuals (Chen,
Meigs, & Dupuis, 2013; Ionita‐Laza, Lee, Makarov,
Buxbaum, & Lin, 2013; Lee et al., 2012; Wu et al.,
2011). It was found that SKAT/SKAT‐O tests have higher
power than BTs, such as the combined collapsing and
multivariate method, nonparametric weighted sum test
(Madsen & Browning, 2009), and the cohort allelic sums
test (Morgenthaler & Thilly, 2007).

Fixed regression models can be either traditional additive
models or functional regression models. By using functional
data analysis (fda) techniques, a class of fixed effect
functional models is developed to test associations between
complex traits (i.e., a quantitative or binary or survival trait)

and genetic variants for unrelated population samples
adjusting for covariates (Fan et al., 2013, 2014; Fan, Wang,
et al., 2016; Luo, Boerwinkle, & Xiong, 2011; Luo, Zhu, &
Xiong, 2012, 2013; Vsevolozhskaya, Zaykin, Greenwood,
Wei, & Lu, 2014; Vsevolozhskaya et al., 2016). The functional
models are very flexible and can analyze rare variants or
common variants or a combination of the two. The basic idea
of functional regression models is to treat multiple genetic
variants of an individual in a human population as a
realization of an underlying stochastic process (Ross, 1996).
The genome of an individual is viewed as a stochastic
function, which contains both physical position and linkage
disequilibrium (LD) information of the genetic markers. In
these models, the genome of an individual in a chromosome
region is treated as a continuum of sequence data rather than
discrete observations.

For unrelated samples, functional regression‐based
statistics have been built to test for association between
phenotypic traits and genetic variants. Extensive simula-
tions and real data analysis demonstrate that the fixed
effect functional models perform better in major gene
analysis than SKAT/SKAT‐O/SKAT‐C (Fan, Chiu, et al.,
2016). To date, the functional regression models have
only been developed to analyze unrelated population data
except for the famFLM method (Svishcheva, Belonogova,
& Axenovich, 2015). As members of a pedigree are
correlated with each other, existing functional regression
models cannot be directly applied to familial data. There
is a need to extend the models to analyze extended
pedigrees, properly taking pedigree member relatedness
into account (Jiang et al., 2018).

Here, we consider additive linear mixed models
(LMMs), which are widely used for quantitative trait
association studies because they have two remarkable
features. First, LMMs accurately control the type I error
rates and properly correct for confounding arising from
population stratification, family structure, and cryptic
relatedness. Second, LMMs can be applied to samples with
arbitrary combinations of related and unrelated individuals.
However, LMMs so far are mainly designed for testing the
association of common variants with quantitative traits
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(Astle & Balding, 2009; Aulchenko, de Koning, & Haley,
2007; Kang et al., 2010; Korte et al., 2012; Lippert et al.,
2011; Listgarten et al., 2012; Yang, Zaitlen, Goddard,
Visscher, & Price, 2014; Yu et al., 2006; Zhou & Stephens,
2012). They are typically carried out by testing the
association of a single variant, one at a time. There has
been very little research on how to utilize LMMs to perform
gene‐based analysis of rare variants or a combination of rare
and common variants to analyze extended families.

To take advantage of both LMMs and fda simulta-
neously, we build functional linear mixed models (FLMMs)
to connect the phenotypic traits to the genetic variants. Our
motivation arises from the superior performance of
functional regression models in analyzing unrelated data
and the expectation that this advantage should carry over to
the analysis of pedigree data. As in the functional regression
models developed previously, the effect of genetic variants is
modeled by a genetic effect function. The contribution of
polygenes is modeled as a separate random variation, and
the correlation of pedigree members is taken care of by
kinship coefficients. The LMMs and FLMMs are an
extension of traditional variance component models (Amos,
1994; Lange, 2002). We evaluate the performance of the
LMMs and FLMMs via extensive simulations and illustrate
their application by analyzing a complex trait, refractive
error, with exome chip genotyping of Amish pedigrees
(Musolf et al., 2017, 2018; Wojciechowski, Bailey‐Wilson, &
Stambolian, 2009; Wojciechowski, Stambolian et al., 2009).

2 | METHODS

Consider a sample consisting of multiple families. To
simplify notation, we consider one pedigree with n
individuals labeled i n= 1, 2,…, ; each individual i is
preceded by all of his/her ancestors. We denote the
quantitative traits of the pedigree members by a trait
vector y y yY = ( , ,…, )′n1 2 , where ′ denotes the transpose.
All individuals in each family are sequenced in a genomic
region that has m genetic variants with ordered genetic
locations ≤ ⋯t t T0 < < =m1 . Here, we assume that the
base pair position ℓt of each variant is known. We
normalize the region t T[ , ]1 to be [0, 1]. For the ith
individual, let X x t x t= ( ( ),…, ( ))′i i i m1 denote the geno-
types, coded as the number of minor alleles at each of the
m variants, and Z z z= ( ,…, )′i i ic1 denote the covariates.

For the n individuals who are phenotyped and
sequenced, let Ω be an n n× matrix containing diagonal
elements hΩ = 1 +ii i, where hi is the inbreeding
coefficient for individual i, and off‐diagonal elements

ϕΩ = 2ij ij. The parameter ϕij is the kinship coefficient
between individuals i and j, the probability that a
randomly chosen allele at a given locus from individual

i is identical by descent to a randomly chosen allele from
individual j conditional on their ancestral relationship.

2.1 | Linear mixed effect models

2.1.1 | LMMs

Here, we assume that the trait vector y y yY = ( , , …, )′n1 2
follows a multivariate normal distribution. By using genotype
data directly, we may relate the genetic variants to the trait
adjusting for covariates by the following additive LMM:

∑
ℓ

ℓ ℓy α Z α x t β G e= + ′ + ( ) + + ,i i

m

i i i0
=1

(1)

where α0 is an overall mean, α is a c × 1 vector of fixed
regression coefficients of the covariates, ℓβ is the effect of
the genetic variant ℓx t( )i , G G( , …, )′n1 is a normal random
vector with mean 0 and covariance matrix σ ΩG

2 , and
e e( , …, )′n1 is a normal vector of error terms with
N σ I(0, )e n n

2
× . Here, σG2 is a polygeneic variance component,

Gi is an additive polygenic variation, and In n× is an identity
matrix. We assume that Gi and ei are independent. Before
fitting the LMM (1), QR decomposition can be applied to
the genotype data to decompose the genotype matrix into
the product of an orthogonal matrix Q and a triangular
matrix R via the Gram–Schmidt process.

2.1.2 | General FLMMs

We denote the genetic variant function (GVF) of the ith
individual by ∈X t t( ), [0, 1]i . By using the genetic
information Xi, we may estimate the related GVF X t( )i .
To model the relationship between the trait and the GVF
X t( )i , consider the following FLMM:

∫y α Z α X t β t dt G e= + ′ + ( ) ( ) + + ,i i i i i0 0

1
(2)

where β t( ) is the genetic effect of GVF X t( )i at the
location t and the other terms are the same as additive
LMM (1). In the FLMM (2), the GVF X t( )i and genetic
effect function β t dt( ) are assumed to be continuous. The
continuity of the GVF X t( )i can be relaxed by considering
a model, where β t( ) is a smooth function, see below.

2.1.3 | Beta‐smooth only FLMMs

To remove the assumption of the continuity of the GVF
X t( )i in the FLMM (2), a simplified functional LMM is
obtained by replacing the integration term∫ X t β t dt( ) ( )i0

1
in

Model (2) by the summation term∑ℓ ℓ ℓx t β t( ) ( )m
i=1 . That is,

we have
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∑
ℓ

ℓ ℓy α Z α x t β t G e= + ′ + ( ) ( ) + + ,i i

m

i i i0
=1

(3)

where ℓβ t( ) is the genetic effect at the location ℓt and the
other terms are similar to those in the additive LMM (1)
and the general FLMM (2). In our previous study, we show
that a beta‐smooth only model performs very similarly to
the general functional linear models in applications and
simulation studies for population data, in which theGi term
is not included (Fan et al., 2013, 2014; Fan, Wang,
et al., 2016).

2.2 | Revised FLMMs

2.2.1 | Expansion of the genetic effect
function

The genetic effect function β t( ) in Models (2) and (3) is
assumed to be smooth. One may expand it using B‐spline or
Fourier basis functions. We expand the genetic effect
function β t( ) using a series of Kβ basis functions
ψ t ψ t( ),…, ( )K1 β

as β t ψ t β( ) = ( )′ , where β β β= ( ,…, )′K1 β

is a vector of coefficients β β,…, K1 β
and

ψ t ψ t ψ t( ) = ( ( ),…, ( ))′K1 β
. We consider two types of basis

functions: (a) The B‐spline basis function, where
ψ t B t k K( ) = ( ), = 1,…,k k β and (b) the Fourier basis
function, where ψ t ψ t πrt( ) = 1, ( ) = sin(2 ),r1 2 +1 and

∕ψ t πrt r K( ) = cos(2 ), = 1,…, ( − 1) 2r β2 . Here, for the
Fourier basis, Kβ is a positive odd integer (de Boor, 2001;
Ferraty & Romain, 2010; Horváth & Kokoszka, 2012;
Ramsay, Hooker, & Graves, 2009; Ramsay & Silver-
man, 2005).

2.2.2 | Estimation of the GVF

To estimate the GVFs X t( )i from the genotypes Xi, we use
an ordinary linear square smoother. Let ϕ t k K( ), = 1,…,k
be a series of K basis functions, such as the B‐spline
basis and Fourier basis functions, and let
ϕ t ϕ t ϕ t( ) = ( ( ), …, ( ))′K1 . Let Φ denote the m ×K matrix
containing the values ℓϕ t( )k . Using the discrete realizations
X x t x t= ( ( ), …, ( ))′i i i m1 , we may estimate the GVF X t( )i
using an ordinary linear square smoother as follows:

X t x t x t ϕ tˆ ( ) = ( ( ), …, ( ))Φ[Φ′Φ] ( ).i i i m1
−1 (4)

2.2.3 | Revised FLMMs

Here, we expand X t( )i by the ordinary linear square
smoother (4). We expand the genetic effect function β t( )
as β t ψ t ψ t β β ψ t β( ) = ( ( ), …, ( ))( , …, )′ = ( )′K K1 1β β

. Repla-

cing X t( )i in the FLMM (2) by X tˆ ( )i in (4) and β t( ) by
the expansion ψ t β( )′ , we have a revised LMM:

∫
y α Z α

x t x t ϕ t ψ t dt β

G e
α Z α W β G e

= + ′

+ [( ( ), …, ( ))Φ[Φ′Φ] ( ) ′( ) ]

+ +
= + ′ + ′ + + ,

i i

i i m

i i

i i i i

0

1
−1

0

1

0

(5)

where ∫W x t x t ϕ t ψ t dt′ = ( ( ), …, ( ))Φ[Φ′Φ] ( ) ′( )i i i m1
−1

0
1

.
In the above‐revised Model (5), one needs to calculate
Φ[Φ′Φ]−1 and∫ ϕ t ψ t dt( ) ′( )0

1
to getWi . In the statistical R

package (The R Project for Statistical Computing, https://
www.r-project.org/) fda or Matlab, code is readily
available to calculate them (Ramsay et al., 2009).

2.2.4 | Revised beta‐smooth only FLMMs

In Model (3), ℓβ t( ) is introduced as the genetic effect at the
location ℓt . We assume that the genetic effect function β t( )
is a function of the genetic location t . Therefore, ℓβ t( ),
ℓ m= 1, 2, …, , are the values of function β t( ) at the m
genetic locations. The genetic effect function β t( ) is
assumed to be smooth. One may expand it by B‐spline or
Fourier or linear spline basis functions as above. Replacing

ℓβ t( ) by the expansion, Model (3) can be revised as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑

ℓ

ℓ ℓ ℓ

y α Z α

x t ψ t ψ t β β

G e
α Z α W β G e

= + ′

+ ( )( ( ), …, ( )) ( , …, )′

+ +
= + ′ + ′ + + ,

i i
m

i K K

i i

i i i i

0

=1
1 1

0

β β

(6)

where ∑ℓ ℓ ℓ ℓW x t ψ t ψ t′ = ( )( ( ), …, ( ))i
m

i K=1 1 β
. In Model (3)

and its revised version (6), we use the raw genotype data
X x t x t= ( ( ), …, ( ))′i i i m1 directly in the analysis. In addition,
we assume that the genetic effect function β t( ) is smooth.
Hence, we call the models the “beta‐smooth only” approach.

2.3 | Dealing with missing
genotype data

If some genotype data are missing, the FLMMs can be
modified to analyze the data. For example, assume there
is no genotype information at the first variant for the ith
individual (i.e., we only have X x t x t= (?, ( ), …, ( ))′i i i m2 ).
Let Φ1 denote the m( − 1) × K matrix containing the
values ϕ t( )k j , where ∈j m2, …, . Then, we may revise the
estimate (4) as

ℓX t ϕ t x t x tˆ ( ) = ( )′[Φ′ Φ ] Φ′ ( ( ), …, ( ))′.i i i m1 1
−1

1 2 (7)

Note that the estimate (7) only depends on the available
genotype data x t x t( ( ), …, ( ))′i i m2 . Hence, each individual's
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GVF is estimated by his/her own nonmissing data, a
practical advantage of the fda approach. Using (7), one
may revise the FLMM (2) to be a form of Model (5)
accordingly.

If, for example, X x t x t= (?, ( ), …, ( ))′i i i m2 , where x t( )i 1
is missing, we may revise the beta‐smooth only FLMM
(3) as

∑
ℓ

ℓ ℓy α Z α x t β t G e= + ′ + ( ) ( ) + + .i i

m

i i i0
=2

(8)

The revised FLMM (8) only depends on the available
genotype data x t x t( ( ), …, ( ))′i i m2 , and it can be revised
accordingly to be a form of Model (6) as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑

ℓ

ℓ ℓ ℓ

y α Z α

x t ψ t ψ t β β G

e

= + ′

+ ( )( ( ), …, ( )) ( , …, )′ +

+ .

i i
m

i K K i

i

0

=2
1 1β β

2.4 | Likelihood of LMMs and FLMMs

The log‐likelihood is defined by

∣ ∣L n π E EY Y Y Y= −
2

log(2 ) − 1
2

log Σ − 1
2

( − )′Σ ( − ).−1

In the log‐likelihood L, the mean component EY is
∑ℓ ℓ ℓE y α Z α x t β( ) = + ′ + ( )i i

m
i0 =1 for the additive LMM

(1) and α Z α W β+ ′ + ′i i0 for the FLMMs (5) and (6), and
Σ is an n n× variance–covariance matrix defined as

σ σ IΣ = Ω +G e n n
2 2

× . Note that typically the variance–
covariance matrix differs from pedigree to pedigree.
Under the normality assumption of the LMM, the
marginal likelihood has a closed form and maximum
likelihood estimation can be performed conveniently for
quantitative traits.

2.5 | Parameter estimation and test
statistics

To test for association between the quantitative trait
and the genetic variants, the null hypothesis is
H β: = 00 . Under the null hypothesis, the FLMMs (5)
and (6) simplify to

y α Z α G e= + ′ + + .i i i i0 (9)

The null LMM (9) is also a null model of LMM (1). The
LMM (1) or FLMM (5) or (6) and the null Model (9)
are nested. To facilitate parameter estimation, we use

the Cholesky decomposition of the covariance struc-
ture. Briefly, let LLΣ = ′, where L is the Cholesky
factor. Let us denote LX Y= −1 . Then, we have

L L IXVar( ) = Σ( ′) = n
−1 −1 . Therefore, the transformed

traits X are standard normal and can be analyzed as
independent data. By using the transformed traits X,
we may reformulate the null Model (9) as

⎜ ⎟
⎛
⎝

⎞
⎠ εL Z α

α
X = + ,−1 0 (10)

where

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⋮ ⋮Z

Z

Z
=

1 ′

1 ′n

1

and ε is a vector of independent standard normal
variables. Similarly, the FLMM (5) or (6) can be rewritten
as

⎜ ⎟
⎛
⎝

⎞
⎠ εL Z α

α
L W βX = + ′ + ,−1 0 −1 (11)

where W W W= ( , …, )n1 . The LMM (1) can be rewritten
using X as a form of Model (11). By fitting Models (10)
and (11), we may test the null H β: = 00 using an
F ‐distributed or a χ2‐distributed likelihood ratio test
(LRT) statistic.

2.6 | Simulation studies

To evaluate the performance of the test statistics, we
simulated data to estimate empirical type I error rates
and power levels. In our simulations, we consider a
variant to be rare if its minor allele frequency (MAF) is
<0.03. Two scenarios were considered: (a) Some variants
are common and the rest are rare and (b) all variants
are rare.

2.6.1 | Pedigree template A of
25 families

We first simulated 25 families by randomly choosing
progeny sizes from a negative binomial distribution.
We assumed that each child within the second
generation has a 25% chance of having offspring. The
final structure of the pedigrees included 228 indivi-
duals (119 males and 109 females; 70 founders and 158
nonfounders). The pedigree size ranged from 4 to 24
with an average value of 9.12.
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2.6.2 | Pedigree template B of 50 families

By doubling the 25 families, the pedigree structures
included 456 individuals (238 males and 218 females; 140
founders and 316 nonfounders) within 50 families.

2.6.3 | Pedigree template C of 75 families

By tripling the 25 families, the pedigree structures
included 684 individuals (357 males and 327 females;
210 founders and 474 nonfounders) within 75 families.

2.6.4 | Genetic variants

The sequence data are of European ancestry from 10,000
chromosomes covering a 1‐Mb region, simulated by
Yun Li at the University of North Carolina, Chapel Hill
using the calibrated coalescent model as programmed in
COSI (Schaffner et al., 2005, available at: http://www.
broadinstitute.org/~sfs/). The sequence data were gener-
ated using COSI's calibrated best‐fit models, and the
generated European haplotypes mimic centre d’Etude du
polymorphisme humain (CEPH) Utah individuals with
ancestry from northern and western Europe in terms of
site frequency spectrum and LD patterns (The Interna-
tional HapMap Consortium, 2007). To evaluate empirical
type I error rates and power, we used a gene‐dropping
simulation approach, first randomly sampling two haplo-
types for each founder. Then, for each nonfounder in the
pedigree, we chose one haplotype at random from each of
his or her parents. Genotypes were constructed by
summing up two haplotypes for each individual to
determine the number of minor alleles at each base pair
(bp) position within the 1‐Mb region, assuming no
recombination events in this small region during meioses.

2.6.5 | Type I error simulations

To evaluate type I error rates of the F ‐test and LRT
statistics, we utilized the three pedigree templates A, B,
and C described above. For each pedigree template set,
we generated phenotype data sets using the model

y α z z G e= + + + + ,i i i i i0 1 2 (12)

where α = −4.600 , zi1 is a dichotomous covariate taking on
values 0 and 1 with a probability of 0.5, zi2 is a continuous
covariate from a standard normal distribution N (0, 1),
σ σ= 0.2, = 0.75G e , and G G( , …, )′n1 is generated as a
normal vector with mean 0 and a covariance matrix σ ΩG

2 .
Genotypes were selected from variants in 3,6,…, 27,30 kb

subregions randomly selected from the 1‐Mb region. Notice
that the trait values are not related to the genotypes and so

the null hypothesis holds. For each simulation scenario,106

phenotype–genotype data sets were generated; for each data
set, we fit the models and calculated the test statistics and
related p‐values. Then, an empirical type I error rate was
calculated as the proportion of 106 p‐values, which were
smaller than a given α level.

2.6.6 | Empirical power simulations

To evaluate the power of the F ‐test and LRT statistics,
trait values were generated for each individual based
upon the genotypes. To do this, we considered an LMM.
We simulated data sets under the alternative hypothesis
by randomly selecting subregions to obtain causal
variants. First, we generated genotypes of m variants in
a selected subregion, similar to the type I error
simulations. Then, M of the m variants were randomly
selected to be causal, yielding causal genotypes
x u x u( ( ), …, ( ))i i M1 . For each data set, the causal variants
are the same for all the individuals in the data set, but we
allow the causal variants to be different from data set to
data set. Then, we generated the quantitative traits by

⋯y α z z β x t β x t G e= + + + ( ) + + ( ) + + ,i i i i M i M i i0 1 2 1 1

(13)

where α z z, , ,i i0 1 2 and G G( , …, )′n1 were the same as in the
type I error Model (12), x t x t( ( ), …, ( ))′i i M1 were genotypes of
the ith individual at the causal variants, and the β 's are
additive effects for the causal variants defined as follows. In
Model (13), we used ∣ ∣ ∣ ∣∕β c= log (MAF ) 2j j10 , where c is
defined below and MAFj is the MAF of the jth variant.
Three different settings were considered: 5%, 10%, and 15% of
variants in the subregions are chosen as causal variants.
Here, for the scenario where some variants are common and
the rest are rare, the percentage is over all variants; and for
the scenario where all variants are rare, the percentage is
over all rare variants. When 5%, 10%, and 15% of the variants
were causal, ∕ ∕c k k= log(30) , log(20) , and ∕klog(15) ,
respectively. For the template C of 75 two‐ or three‐
generation families, k increases and genetic effect sizes
decrease as region sizes increase:

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

k =

1.00 if region size=3 kb,
1.25 if region size=6 kb,
1.50 if region size=9 kb,
1.75 if region size=12 kb,
2.00 if region size=15 kb,
2.25 if region size=18 kb,
2.50 if region size=21 kb
2.75 if region size=24 kb,
3.00 if region size=27 kb,
3.25 if region size=30 kb.

(14)
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In addition to varying the percentage of causal
variants in the subregion, we also varied the direction
of effect. We considered situations where (a) all causal
variants have positive effects, (b) 20%/80% causal variants
have negative/positive effects, and (c) 50%/50% causal
variants have negative/positive effects. BTs are expected
to be most powerful when all of the causal variants have
effects in the same direction [e.g., under scenario (a)]. For
each setting, 1,000 data sets were simulated to calculate
the empirical power as the proportion of p‐values, which
are smaller than a given α level.

2.7 | Analysis of refractive error data in
the Myopia Family Study

To evaluate the performance of the F ‐test and LRT statistics
in a more realistic setting, we exploit exome chip genotypes
and a quantitative trait, refractive error measured in
Diopters, from Amish families that are part of the Myopia
Family Study (Wojciechowski, Bailey‐Wilson, et al., 2009;
Wojciechowski, Stambolian, et al., 2009). After sample
quality checks using a thorough and rigorous data cleaning
pipeline, which included checks for chromosomal aberra-
tions, gender, Hardy–Weinberg equilibrium, relatedness,
duplicates, and genotype quality, 300 genotyped and
phenotyped individuals were available for analysis (see
Wojciechowski, Bailey‐Wilson, et al., 2009, for details of
quality control on phenotype data; Musolf et al., 2017, 2018,
for details of exome chip genotype data quality control
processes). To completely specify the pedigree structures, we
included nongenotyped or nonphenotyped individuals who
shared the same family with phenotyped and genotyped
family members. The connected pedigrees contained 409
pedigree members who are used to calculate the kinship
coefficients. A total number of 52,035 autosomal variants
were included in the study within 8,282 genes, which
contain at least two variants and 1,572 genes, which contain
at least six variants. As refractive error is nonnormally
distributed in this sample, inverse normal rank transforma-
tion was applied before association analysis. We adjusted for
gender because it is significantly associated with refractive
error in the null model (p=0.049).

2.8 | fda parameters

In the data analysis and simulations described above, we
used functions in the R package fda (Ramsay et al., 2009)
to create the basis functions. In the simulations presented
in the main text and Supporting Information I, the order
of the B‐spline basis was 4, the number of B‐spline basis
functions was K K= = 20β , and the number of Fourier
basis functions was K K= = 21β . To make sure that
the results are valid and stable, we examined a wide

range of parameters: ≤ ≤K K6 = 27β for the B‐spline
and Fourier basis functions.

As most genes contain only a few variants in
the Myopia Family Study data, we took a conservative
strategy when analyzing the data: The order of the
B‐spline basis was 4, the number of B‐spline basis
functions was K K= = 6β , and the number of Fourier
basis functions was K K= = 7β .

3 | RESULTS

3.1 | Simulation results

In this section, we present simulation results for the
type I error rates and power levels using bar plots, where
the statistics evaluated in the figures are identified using
the abbreviations defined in Table 1. In the table, five
F ‐distributed statistics, famSKAT, and famBT are pre-
sented. The five F ‐distributed statistics are based on the
additive LMM (1) and FLMMs (5) and (6). The famSKAT
and famBT are from Chen et al. (2013) (see also
Oualkacha et al., 2013; Schifano et al., 2012).

3.1.1 | Simulations investigating type I
error rates

Extensive simulations were carried out, comparing the
type I error rates at five nominal significance levels of the
five different F ‐distributed statistics (listed in Table 1)
and five LRT statistics, varying the region size from 3 to
30 kb. The empirical type I error rates are reported at five

TABLE 1 Abbreviations used in the main text and figures

Notation Description and interpretation

LMMs Linear mixed models

FLMMs Functional linear mixed models

GVF Genetic variant function

F_FLMM_BS F ‐test of FLMM (5) with the B‐spline basis
vs. null model (9)

F_FLMM_FR F ‐test of FLMM (5) with the Fourier basis
vs. null model (9)

F_beta_BS F ‐test of FLMM (6) with the B‐spline basis
vs. null model (9)

F_beta_FR F ‐test of FLMM (6) with the Fourier basis
vs. null model (9)

F_add_LMM F ‐test of additive LMM (1) vs. null
model (9)

famSKAT Family‐based sequence kernel
association test

famBT Family‐based burden tests
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nominal significance levels α = 0.05, 0.01, 0.001, 0.0001,
and 0.00001.

In Tables 2 and 3, the results are based on the template
C of 75 families. The empirical type I error rates of the F ‐
test statistics of the LMM (1) and FLMMs (5) and (6) are
generally lower than the nominal levels. Hence, the F ‐test
statistics are conservative and control the type I error rates
correctly, no matter whether the genotype data are
smoothed or not or which basis functions are used to
smooth the GVF and β t( ) or if both rare and common
variants are used or only rare variants are used. The
empirical type I error rates of the LRT statistics of the
FLMMs (5) and (6) are around the nominal levels at
α = 0.05, 0.01, 0.001, and 0.0001 levels, but can be higher

than the α = 0.00001 nominal level. As the region size and
number of variants increase, the type I error rates at the
nominal level α = 0.00001 of the LRT statistics of the
FLMMs (5) and (6) are gradually become closer to 0.00001.
The empirical type I error rates of the LRT statistics of the
LMM (1) are generally higher than the nominal levels.

In Tables A.1 and A.2 of Supporting Information, we
show the type I error rates using the template B of 50
families. The empirical type I error rates of the F ‐test
statistics of the LMM (1) and FLMMs (5) and (6) are lower
than the nominal levels, and the F ‐test statistics are
conservative. The empirical type I error rates of the LRT
statistics of the FLMMs (5) and (6) are around the nominal
levels at 0.05, 0.01, and 0.001 levels, but can be higher than

FIGURE 1 The empirical power of the F ‐test statistics, famSKAT, and famBT at α = 0.001 using the 75 two‐ or three‐generation
families with a total of 684 individuals as a template, when some variants are common and the rest are rare, 20% causal variants have
negative effects, and the region sizes are 6, 12, and 18 kb, respectively. Note. The order of B‐spline basis was 4, the number of basis functions
of B‐spline was K K= = 20β , and the number of Fourier basis functions was K K= = 21β . Causal_pct: percentage of causal variants; famBT:
family‐based burden test; famSKAT: family‐based sequence kernel association test
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the nominal levels when α = 0.0001 and 0.00001. The
empirical type I error rates of the LRT statistics of the LMM
(1) are generally higher than the nominal levels.

In Tables A.3 and A.4 of Supporting Information, we
show the type I error rates using the template A of 25
families. The empirical type I error rates of the F ‐test
statistics of the LMM (1) and FLMMs (5) and (6) are lower
than the nominal levels, and the F ‐test statistics are
conservative. The empirical type I error rates of the LRT
statistics of the FLMMs (5) and (6) are around the nominal
levels at 0.05 and 0.01 levels, but can be higher than the
nominal levels when α = 0.001, 0.0001, and 0.00001.

3.1.2 | Empirical power simulations
using the template C of 75 families

Based on the simulated sequence data, the power of
the F ‐test statistics was compared with the power of

the famSKAT and famBT statistics. Figures 1 and 2
report the results when 20%/80% causal variants have
negative/positive effects and region sizes are 6, 12, and
18 kb. In Figure 1, some variants are common and the
rest are rare, and the variants are all rare in Figure 2. In
Supporting Information, we report more results in
Figures A.1–A.10 when some variants are common
and the rest are rare and in Figures A.11 – A.20
when the variants are all rare. In Plots (a1)–(a3) of
Figures A.1 – A.20, all causal variants have positive
effects; when 20%/80% causal variants have negative/
positive effects, we present the results in Plots (b1) – (b3);
when 50%/50% causal variants have negative/positive
effects, the results are presented in Plots (c1) – (c3).
Therefore, the results of Figure 1 are Plots (b1) – (b3) in
Figures A.2, A.4, and A.6, respectively, and the results of
Figure 2 are Plots (b1) – (b3) in Figures A.12, A.14, and
A.16, respectively.

FIGURE 2 The empirical power of the F ‐test statistics, famSKAT, and famBT at α = 0.001 using the 75 two‐ or three‐generation
families with a total of 684 individuals as a template, when all variants are rare, 20% causal variants have negative effects, and the region
sizes are 6, 12, and 18 kb, respectively. Note. The order of B‐spline basis was 4, the number of basis functions of B‐spline was K K= = 20β ,
the number of Fourier basis functions was K K= = 21β . Causal_pct means percentage of causal variants; famBT: family‐based burden test;
famSKAT: family‐based sequence kernel association test
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When some variants are common and the rest are rare,
the F ‐test statistics of LMM (1) and FLMMs (5) and (6)
have higher power than the kernel and burden tests,
famSKAT and famBT, respectively, in Figures 1 and A.1–
A.10. The four F ‐test statistics of FLMMs (5) and (6)
perform similarly, whereas the F ‐test statistic of LMM (1)
performs the best. If all variants are rare and the region
sizes are 3 and 6 kb, the F ‐test statistics of LMM (1) and
FLMMs (5) and (6) have similar power as famSKAT in Plots

(a1) – (a3) of Figure 2, and Figures A.11 and A.12. If all
variants are rare and the region sizes are between 9 and
30 kb, the F ‐test statistic of LMM (1) has the highest power,
whereas famSKAT performs similarly to or better than the
F ‐test statistics of FLMMs (5) and (6) in Plots (b1) – (b3)
and (c1) – (c3) of Figure 2, and Figures A.13 – A.20.

The high power levels of the F ‐test statistic of LMM
(1) in Figures 2 and A.11–A.20 show that the LMM (1) is
useful in analyzing rare variants. When some variants are

FIGURE 3 Q–Q plots for the F ‐test and LRT statistics, famSKAT, and famBT for the Myopia Family Study data. F_add_LMM: F‐test of
additive LMM (1) vs. null model (9); F_beta_BS: F‐test of FLMM (6) with the B‐Spline basis vs. null model (9); F_beta_FR: F‐test of FLMM
(6) with the Fourier basis vs. null model (9); F_FLMM_BS: F‐test of FLMM (5) with the B‐Spline basis vs. null model (9); F_FLMM_FR:
F‐test of FLMM (5) with the Fourier basis vs. null model (9); famBT: family‐based burden tests; famSKAT: family‐based sequence kernel
association test; FLMMs: functional linear mixed models; GVF: genetic variant function; LMMs: linear mixed models; LRT: likelihood
ratio test
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common and the rest are rare, the LMM (1) is also
powerful especially in the presence of a large number of
variants. The famSKAT has higher power than the
burden test famBT. The four F ‐test statistics of FLMMs
(5) and (6) have similar good power levels. The power
levels of the F ‐test statistics of beta‐smooth only FLMM
(6) are almost identical to those of the F ‐test statistics of
FLMM (5), which smooth both the GVFs X u( )i and the
genetic effect function β t( ), regardless of basis choice.
Hence, the four F ‐test statistics of FLMMs (5) and (6) are
very stable in terms of power performance and they do
not strongly depend on whether the genotype data are
smoothed or not, nor on which basis function is used.

3.2 | Analysis of refractive error data in
the Myopia Family Study

We carried out gene‐based tests to investigate genes on
autosomes that may affect the variation of refractive error
using the F ‐test and LRT statistics, the family kernel‐based
(famSKAT), and burden test (famBT; Chen et al., 2013).
Quantile–quantile (Q–Q) plots of the gene‐based statistics in
Figure 3 show that the F ‐test and LRT statistics, famSKAT,
and famBT statistics had similar λGC values. In Table 4, the
strongest association was detected between refractive error
andNAV2with p‐values of FLMMs (5) and (6) tests <0.0001,
and associations were detected for genes HSPG2;
CELA3B, HP1BP3, TEC, SLC9A1;WDTC1, and CADM1;
LOC101928985 with p‐values of LMM (1) and FLMMs (5)
and (6) tests are smaller than or around 0.001. Interestingly,
famSKAT and famBT show an association signal at the gene
HSPG2;CELA3B, but not at the others. We note that none of
the genes shows a significant association after a Bonferroni
correction ∕0.05 8282 = 6.04 × 10−6 in this moderately sized
sample that includes 36 pedigrees and 300 genotyped/
phenotyped individuals.

Quantile–quantile (Q–Q) plots of the gene‐based statis-
tics in Figure 3 show that the F ‐test and LRT statistics,
famSKAT, and famBT statistics had similar λGC values.

4 | DISCUSSION

In this paper we develop tests based on LMMs and
FLMMs for gene‐based tests of association between a
quantitative trait and genetic variants on pedigrees. In
the models, the effect of a major gene is modeled as a
fixed effect, the contribution of polygenes is modeled as a
separate random variation, and the correlation of
pedigree members is modeled by inbreeding/kinship
coefficients. Cholesky decomposition is utilized to make
the traits standard normal. Then, F‐distributed statistics
and LRT statistics based on the LMMs and FLMMs areT
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built to test for association between the quantitative trait
and the genetic variants. By simulation, we show that the
F distributed statistics are conservative and control type I
errors correctly. The proposed models are useful in whole
genome and whole exome association studies of complex
traits.

The F‐test statistics of LMMs have similar or higher
power than the FLMMs, kernel‐based famSKAT, and
burden test famBT. The FLMMs perform well when
analyzing a combination of rare and common variants.
The kernel-based famSKAT performs better than
burden test famBT. In our previous work, we showed
that the tests of fixed effect regression models have
higher power than SKAT for population data in major
gene association studies (Fan, Chiu, et al., 2016).
Therefore, our models provide an alternative competi-
tive method for carrying out gene‐based association
tests based on next‐generation sequencing data.

For small samples of only 25 pedigrees (template A),
the LRT statistics of the FLMMs (5) and (6) control type I
errors correctly at 0.05 and 0.01 levels, but can inflate
type I errors when α = 0.001, 0.0001, and 0,00001 when
the number of B‐spline basis functions was K = Kβ = 20,
and the number of Fourier basis functions was K = Kβ =
21. Hence, the LRT statistics of the FLMMs (5) and (6)
can be used in candidate gene analysis for small samples.
When the sample sizes increase, the LRT statistics of the
FLMMs (5) and (6) control the type I error rates at lower
levels = 0.001; 0.0001; and they can be used in genome‐
wide or exome‐wide analysis. The empirical type I error
rates of the LRT statistics of the LMM (1) are generally
higher than the nominal levels.

In Svishcheva et al. (2015), FLMMs were proposed to
test association using F‐distributed statistics which are
essentially our Models (2) and (3). However, our LMM
(1) was not included in Svishcheva et al. (2015), which
actually performs the best among the models we
considered. In addition, we examine the performance of
the LRT statistics of LMMs and FLMMs, and show the
LRT statistics of FLMMs are useful in candidate gene
analysis for small samples and are useful in genome‐wide
or exome‐wide analysis if the sample sizes are moderate
or large.

COMPUTER PROGRAM

The methods proposed in this paper are implemented
using fda procedures implemented in the statistical
package R. The R codes for data analysis and simulations
are available from the web https://sites.google.com/a/
georgetown.edu/ruzong-fan/about.
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