

A COMPLETE CLASSIFICATION OF HEREDITARILY EQUIVALENT PLANE CONTINUA

L. C. HOEHN AND L. G. OVERSTEEGEN

ABSTRACT. A continuum is hereditarily equivalent if it is homeomorphic to each of its non-degenerate sub-continua. We show in this paper that the arc and the pseudo-arc are the only non-degenerate hereditarily equivalent plane continua.

1. INTRODUCTION

By a *continuum*, we mean a compact connected metric space. A continuum is *non-degenerate* if it contains more than one point. We refer to the space \mathbb{R}^2 , with the Euclidean topology, as *the plane*. The Euclidean distance between two points x, y in \mathbb{R}^2 (or \mathbb{R}^3) will be denoted $\|x - y\|$. An *arc* is a space which is homeomorphic to the interval $[0, 1]$. By a *map* we mean a continuous function.

A continuum X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua. This concept was introduced by Mazurkiewicz, who was interested in topological characterizations of the arc. In the second volume of *Fundamenta Mathematicae* in 1921, Mazurkiewicz [Maz21] asked (Problème 14) whether the arc is the only non-degenerate hereditarily equivalent continuum.

A continuum X is *decomposable* if it is the union of two proper subcontinua, and *indecomposable* otherwise. X is *hereditarily indecomposable* if every subcontinuum of X is indecomposable. X is *arc-like* (respectively, *tree-like*) if for every $\varepsilon > 0$ there exists an ε -map from X to $[0, 1]$ (respectively, to a tree), where $f : X \rightarrow Y$ is an ε -map if for each $y \in Y$ the preimage $f^{-1}(y)$ has diameter less than ε . Henderson [Hen60] showed that the arc is the only decomposable hereditarily equivalent continuum. Cook [Coo70] has shown that every hereditarily equivalent continuum is tree-like.

Problème 14 of Mazurkiewicz was formally answered by Moise [Moi48] in 1948, who constructed another hereditarily equivalent plane continuum which he called the “pseudo-arc”, due to this property it has in common with the arc. The pseudo-arc is a one-dimensional fractal-like hereditarily indecomposable arc-like continuum. Such a space was constructed by Knaster [Kna22] in 1922, and another by Bing [Bin48] in 1948 which he proved was topologically homogeneous. Bing [Bin51] proved in 1951 that the pseudo-arc is the only hereditarily indecomposable arc-like continuum. From this characterization it follows that the spaces of Knaster,

Date: March 27, 2020.

2010 *Mathematics Subject Classification.* Primary 57N05; Secondary 54F15, 54F65.

Key words and phrases. plane continua, hereditarily equivalent, pseudo-arc, hereditarily indecomposable.

The first named author was partially supported by NSERC grant RGPIN 435518.

The second named author was partially supported by NSF-DMS-1807558.

Moise, and Bing are all homeomorphic, and also it can immediately be seen that the pseudo-arc is hereditarily equivalent.

Since Moise's article, the question has been: What are all hereditarily equivalent continua? The main result of this paper is:

Theorem 1. *If X is a non-degenerate hereditarily equivalent plane continuum, then X is homeomorphic to the arc or to the pseudo-arc.*

It remains an open question whether there exists any other hereditarily equivalent continuum in \mathbb{R}^3 . We remark that by Cook's result [Coo70], all hereditarily equivalent continua are 1-dimensional, hence are embeddable in \mathbb{R}^3 .

As part of the sequel we will also give a new characterization (Theorem 7) of the pseudo-arc.

2. PLANE STRIPS

If a continuum admits an ε -map to an arc then it can be covered by a chain of open sets whose diameters are less than ε (i.e. a set that roughly looks like a tube of small diameter). The notion of an ε -strip (see Definition 3 below), introduced in [OT82] in a slightly different form, conveys a similar feeling. However, it was observed in [OT82, Figure 1] that, for arbitrarily small $\varepsilon > 0$, there exists an ε -strip which does not admit a 1-map to an arc. Nevertheless we show in this paper (Theorem 8 below) that if a hereditarily indecomposable plane continuum is contained in an ε -strip for arbitrarily small $\varepsilon > 0$, then it must in fact be homeomorphic to the pseudo-arc.

Given two points x, y in the plane \mathbb{R}^2 we denote by \overline{xy} the straight line segment joining them. Given points v_1, \dots, v_n in \mathbb{R}^2 , the *polygonal arc* A with vertices v_1, \dots, v_n is the union of the straight line segments $\overline{v_1v_2}, \dots, \overline{v_{n-1}v_n}$. Denote the *vertex set* of A by $V_A = \{v_1, \dots, v_n\}$. If $v_n = v_1$, then we call A a *polygonal closed curve*. We will need the following lemma which was proved in [OT82].

Lemma 2 ([OT82], Lemma 2.1). *Let T be a polygonal closed curve in \mathbb{R}^2 with vertex set V_T . Given any $z \in \mathbb{R}^2 \setminus T$ we say z is *odd* (respectively, *even*) with respect to T if there exists a polygonal arc A with vertex set V_A from z to a point in the unbounded component of $\mathbb{R}^2 \setminus T$ so that $A \cap V_T = \emptyset = T \cap V_A$ and the number of crossings between A and T is odd (respectively, even). By a crossing we mean a pair of segments (between adjacent vertices), one from A and one from T , which intersect.*

Then this notion of odd/even is well-defined, i.e. independent of the choice of A .

Equivalently, z is odd (respectively, even) if the winding number of T around z is odd (respectively, even). Observe that the orientation of T is irrelevant here.

A component U of $\mathbb{R}^2 \setminus T$ is called *odd* (respectively, *even*) if each point of U is odd (respectively, even) with respect to T . Clearly the unbounded complementary domain of T is even.

A map $f : [0, 1] \rightarrow \mathbb{R}^2$ is *piecewise linear* if there are finitely many points $0 = t_1 < t_2 < \dots < t_n = 1$ such that for each $i = 1, \dots, n-1$, as t runs from t_i to t_{i+1} , $f(t)$ parameterizes the straight line segment $\overline{f(t_i)f(t_{i+1})}$. If f is a piecewise linear map, then clearly $f([0, 1])$ is a polygonal arc.

Definition 3 (ε -strip). Suppose that $f, g : [0, 1] \rightarrow \mathbb{R}^2$ are two piecewise linear maps into the plane such that $f([0, 1]) \cap g([0, 1]) = \emptyset$ and for all $t \in [0, 1]$, $\|f(t) -$

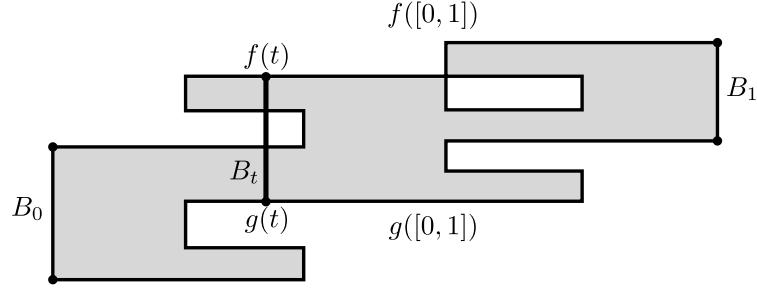


FIGURE 1. An illustration of an ε -strip, with a generic bridge B_t drawn. This strip has one odd domain, which is shaded gray.

$g(t)\| < \varepsilon$. Let $B_t = \overline{f(t)g(t)}$, and let $T_t = B_0 \cup f([0, t]) \cup g([0, t]) \cup B_t$. We denote the union of all odd (respectively, even) complementary domains of T_t by S_t^- (respectively, S_t^+). If $B_0 \cap B_1 = \emptyset$, then we say that S_1^- is an ε -strip with disjoint ends.

See Figure 1 for an illustration of a simple ε -strip.

We say a continuum X is contained in an ε -strip with disjoint ends if there exist such f, g as in the above definition such that $X \subset S_1^-$. Observe that in this situation, $X \cap B_0 = \emptyset = X \cap B_1$.

If X is an indecomposable and hereditarily equivalent plane continuum, then it contains uncountably many pairwise disjoint copies of itself. In particular it contains a copy of $X \times C$, where C is the Cantor set [vD93]. This is the key observation behind the following result.

Lemma 4 ([OT84], Theorem 15). *Suppose that X is a non-degenerate, indecomposable and hereditarily equivalent plane continuum. Then there exists a non-degenerate subcontinuum Y such that for each $\varepsilon > 0$, Y is contained in an ε -strip with disjoint ends.*

3. SEPARATORS

In light of Lemma 4 above, to prove Theorem 1 it suffices to show that any hereditarily indecomposable continuum X contained in arbitrarily small plane strips is homeomorphic to the pseudo-arc (Theorem 8). Our strategy below is to consider a small strip containing the continuum X , and to approximate X by a graph G contained in that strip. If we vary t from 0 to 1, the bridge B_t in the strip sweeps across the graph G . As it does so, it may wander back and forth in G , in a pattern whose essential property is captured in the following result. We will then use the crookedness of the hereditarily indecomposable continuum X to match with that pattern (see Theorems 6 and 7 below) to obtain an ε -map to an arc.

Lemma 5. *Suppose that a graph G is contained in an ε -strip S_1^- with disjoint ends. Let*

$$C = \{(x, t) \in G \times [0, 1] : x \in B_t\}.$$

Then C separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$.

Proof. Define the function $\varphi : G \times [0, 1] \rightarrow \mathbb{R}$ by

$$\varphi(x, t) = \begin{cases} +d(x, B_t) & \text{if } x \in S_t^+ \\ -d(x, B_t) & \text{if } x \in S_t^- \\ 0 & \text{otherwise,} \end{cases}$$

where $d(x, B_t) = \inf\{\|x - b\| : b \in B_t\}$. Then φ is a continuous function (see the proof of Lemma 2.3 in [OT82]). Since $S_0^- = \emptyset = B_0 \cap G$, $\varphi(x, 0) > 0$ for each $x \in G$. Similarly, since $G \subset S_1^-$, $\varphi(x, 1) < 0$ for each $x \in G$. Hence the set of points C where $\varphi(x, t) = 0$ must separate $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$. \square

In [HO16, Theorem 20], the authors gave a characterization of hereditarily indecomposable continua in terms of sets as in Lemma 5 which separate $G \times \{0\}$ from $G \times \{1\}$ in the product $G \times [0, 1]$ of a graph G with $[0, 1]$. Here we give a simplified version of that theorem, which is more broadly applicable.

Theorem 6. *A continuum X is hereditarily indecomposable if and only if for any map $f : X \rightarrow G$ to a graph G , and for any open set $U \subseteq G \times (0, 1)$ which separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$, there exists a map $h : X \rightarrow U$ such that $f = \pi_1 \circ h$ (where $\pi_1 : G \times [0, 1] \rightarrow G$ is the first coordinate projection).*

Proof. According to [HO16, Theorem 20], a continuum X is hereditarily indecomposable if and only if for any map $f : X \rightarrow G$ to a graph G with metric d , for any set $M \subseteq G \times (0, 1)$ which separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$, for any open set $U \subseteq G \times [0, 1]$ with $M \subseteq U$, and for any $\varepsilon > 0$, there exists a map $h : X \rightarrow U$ such that $d(f(x), \pi_1 \circ h(x)) < \varepsilon$ for all $x \in X$. The condition in the present theorem is clearly stronger than this condition from [HO16, Theorem 20]. Therefore, to prove the present theorem we need only consider the forward implication.

Suppose X is hereditarily indecomposable, let $f : X \rightarrow G$ be a map to a graph G with metric d , and let $U \subset G \times (0, 1)$ be an open set which separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$. It is well-known (see e.g. [Kur68, Theorem §46.VII.3]) that there exists a closed set $M \subset U$ which also separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$. Let $\varepsilon > 0$ be small enough so that the open set

$$U_1 = \{(g, t) \in G \times [0, 1] : \text{there exists } (g', t') \in M \text{ such that} \\ d(g, g') < \varepsilon \text{ and } |t - t'| < \varepsilon\}$$

is contained in U . Let

$$U_2 = \{(g, t) \in G \times [0, 1] : \text{there exists } (g', t') \in M \text{ such that} \\ d(g, g') < \frac{\varepsilon}{2} \text{ and } |t - t'| < \varepsilon\},$$

and apply [HO16, Theorem 20] to obtain a map $h' : X \rightarrow U_2$ such that $d(f(x), \pi_1 \circ h'(x)) < \frac{\varepsilon}{2}$ for all $x \in X$.

Define $h : X \rightarrow U$ by $h(x) = (f(x), \pi_2 \circ h'(x))$, where $\pi_2 : G \times [0, 1] \rightarrow [0, 1]$ is the second coordinate projection. Clearly this function h is continuous, and $f = \pi_1 \circ h$. To see that the range of h is really contained in U , let $x \in X$, and denote $h'(x) = (g, t)$, so that $h(x) = (f(x), t)$. Because $h'(x) \in U_2$, there exists $(g', t') \in M$ such that $d(g, g') < \frac{\varepsilon}{2}$ and $|t - t'| < \varepsilon$. Moreover, by choice of h' we have $d(f(x), g) < \frac{\varepsilon}{2}$. So by the triangle inequality, we have $d(f(x), g') < \varepsilon$, which means $h(x) \in U_1 \subseteq U$, as desired. \square

By Bing's [Bin51] result a hereditarily indecomposable continuum is homeomorphic to the pseudo-arc if and only if it is arc-like. A new characterization of the pseudo-arc, involving the notion of *span zero* (see [Lel64]), was obtained in [HO16]. It states that a hereditarily indecomposable continuum is a pseudo-arc if and only if it has span zero. The more technical characterization of the pseudo-arc in Theorem 7 below is useful in cases when (like in the case of hereditarily equivalent plane continua) it is not a priori known that X has span zero.

In the statement below we assume that all spaces (i.e., X , G , and I) are contained in Euclidean space \mathbb{R}^3 . One could just as well use the Hilbert cube $[0, 1]^\mathbb{N}$, depending on the intended application.

Theorem 7. *Suppose that $X \subset \mathbb{R}^3$ is a hereditarily indecomposable continuum. Then the following are equivalent:*

- (1) *X is homeomorphic to the pseudo-arc;*
- (2) *For each $\varepsilon > 0$ there exist a graph $G \subset \mathbb{R}^3$, a map $f : X \rightarrow G$ with $\|x - f(x)\| < \varepsilon$ for each $x \in X$, and an arc $I \subset \mathbb{R}^3$ with endpoints a and b , such that the set*

$$U = \{(x, t) \in G \times (I \setminus \{a, b\}) : \|x - t\| < \varepsilon\}$$

separates $G \times \{a\}$ from $G \times \{b\}$ in $G \times I$.

Proof. Suppose X is homeomorphic to the pseudo-arc, and fix $\varepsilon > 0$. Note X is arc-like and, hence [Lel64], X has span zero. Therefore, according to Theorem 4 of [HO16], there exists $\delta > 0$ such that for any graph $G \subset \mathbb{R}^3$ and arc $I \subset \mathbb{R}^3$ both within Hausdorff distance δ from X , the set $U = \{(x, t) \in G \times I : \|x - y\| < \varepsilon\}$ separates $G \times \{a\}$ from $G \times \{b\}$ in $G \times I$, where a, b are the endpoints of I . We may assume that $\delta < \varepsilon$. Since X is arc-like, we may choose an arc $G \subset \mathbb{R}^3$ within Hausdorff distance δ of X and a map $f : X \rightarrow G$ such that $\|x - f(x)\| < \varepsilon$ for all $x \in X$. Choose any arc I within Hausdorff distance δ from X . Then G , f , and I satisfy the conditions of statement (2), as desired.

Conversely, suppose statement (2) holds. To prove that X is homeomorphic to the pseudo-arc, by [Bin51] it suffices to show that for each $\varepsilon > 0$ there exists an ε -map from X to an arc. Fix $\varepsilon > 0$. Suppose that $G \subset \mathbb{R}^3$ is a graph, $f : X \rightarrow G$ is a map such that $\|x - f(x)\| < \frac{\varepsilon}{4}$ for all $x \in X$, $I \subset \mathbb{R}^3$ is an arc with endpoints a and b , and

$$U = \left\{ (x, t) \in G \times (I \setminus \{a, b\}) : \|x - t\| < \frac{\varepsilon}{4} \right\}$$

separates $G \times \{a\}$ from $G \times \{b\}$ in $G \times I$. Denote by $\pi_1 : G \times I \rightarrow G$ the first coordinate projection and by $\pi_2 : G \times I \rightarrow I$ the second coordinate projection. By Theorem 6 there exists a map $h : X \rightarrow U$ such that $f = \pi_1 \circ h$. We claim that $\pi_2 \circ h(x) : X \rightarrow I$ is an ε -map. To see this suppose that $\pi_2 \circ h(x_1) = \pi_2 \circ h(x_2)$. Then

$$\begin{aligned} \|x_1 - x_2\| &\leq \|x_1 - f(x_1)\| + \|\pi_1 \circ h(x_1) - \pi_2 \circ h(x_1)\| + \\ &\quad + \|\pi_2 \circ h(x_2) - \pi_1 \circ h(x_2)\| + \|f(x_2) - x_2\| < \varepsilon. \end{aligned}$$

□

4. PROOF OF MAIN RESULT

We now apply the results established above to prove the following key theorem.

Theorem 8. *Let $X \subset \mathbb{R}^2$ be a hereditarily indecomposable plane continuum such that for each $\varepsilon > 0$, there is an ε -strip with disjoint ends containing X . Then X is homeomorphic to the pseudo-arc.*

Proof. Let $\varepsilon > 0$, and consider an $\frac{\varepsilon}{2}$ -strip with disjoint ends containing X . That is, consider piecewise linear maps $f, g : [0, 1] \rightarrow \mathbb{R}^2$ such that $f([0, 1]) \cap g([0, 1]) = \emptyset$, $\|f(t) - g(t)\| < \frac{\varepsilon}{2}$ for each $t \in [0, 1]$, and $X \subset S_1^-$. Identify \mathbb{R}^2 with $\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$, and adjust f slightly to obtain a map $f' : [0, 1] \rightarrow \mathbb{R}^3$ which is one-to-one (so that $f'([0, 1])$ is an arc) and $\|f(t) - f'(t)\| < \frac{\varepsilon}{2}$ for all $t \in [0, 1]$.

Clearly X is 1-dimensional, so there exists a graph $G \subset S_1^-$ and a map $h : X \rightarrow G$ such that $\|x - h(x)\| < \varepsilon$ for all $x \in X$. By Lemma 5, the set

$$C = \{(x, t) \in G \times [0, 1] : x \in B_t\}$$

separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$. Clearly this set C is contained in

$$U = \left\{ (x, t) \in G \times (0, 1) : \|x - f(t)\| < \frac{\varepsilon}{2} \right\},$$

and the image of this set U under the homeomorphism $\text{id} \times f' : G \times [0, 1] \rightarrow G \times f'([0, 1])$ is contained in

$$U' = \{(x, y) \in G \times f'((0, 1)) : \|x - y\| < \varepsilon\}.$$

Therefore U' separates $G \times \{f'(0)\}$ from $G \times \{f'(1)\}$ in $G \times f'([0, 1])$. Hence, by Theorem 7, X is homeomorphic to the pseudo-arc. \square

We are now ready to prove our main result, Theorem 1.

Proof of Theorem 1. Let X be a non-degenerate hereditarily equivalent plane continuum. If X is decomposable, then X is an arc by [Hen60]. Suppose then that X is indecomposable, and hence hereditarily indecomposable. By Lemma 4, we may assume that X is embedded in the plane so that for each $\varepsilon > 0$, X is contained in an ε -strip with disjoint ends. It then follows from Theorem 8 that X is homeomorphic to the pseudo-arc. \square

REFERENCES

- [Bin48] R. H. Bing, *A homogeneous indecomposable plane continuum*, Duke Math. J. **15** (1948), 729–742. MR 0027144 (10,261a)
- [Bin51] ———, *Concerning hereditarily indecomposable continua*, Pacific J. Math. **1** (1951), 43–51. MR 0043451 (13,265b)
- [Coo70] H. Cook, *Tree-likeness of hereditarily equivalent continua*, Fund. Math. **68** (1970), 203–205. MR 0266164 (42 #1072)
- [Hen60] George W. Henderson, *Proof that every compact decomposable continuum which is topologically equivalent to each of its nondegenerate subcontinua is an arc*, Ann. of Math. (2) **72** (1960), 421–428. MR 0119183 (22 #9949)
- [HO16] Logan C. Hoehn and Lex G. Oversteegen, *A complete classification of homogeneous plane continua*, Acta Math. **216** (2016), no. 2, 177–216. MR 3573330
- [Kna22] B. Knaster, *Un continu dont tout sous-continu est indécomposable*, Fund. Math. **3** (1922), 247–286.
- [Kur68] K. Kuratowski, *Topology. Vol. II*, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, New York, 1968.
- [Lel64] A. Lelek, *Disjoint mappings and the span of spaces*, Fund. Math. **55** (1964), 199–214. MR 0179766 (31 #4009)
- [Maz21] S. Mazurkiewicz, *Problème 14*, Fund. Math. **2** (1921), 286.

- [Moi48] Edwin E. Moise, *An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua*, Trans. Amer. Math. Soc. **63** (1948), 581–594. MR 0025733 (10,56i)
- [OT82] Lex G. Oversteegen and E. D. Tymchatyn, *Plane strips and the span of continua. I*, Houston J. Math. **8** (1982), no. 1, 129–142. MR 666153 (84h:54030)
- [OT84] ———, *Plane strips and the span of continua. II*, Houston J. Math. **10** (1984), no. 2, 255–266. MR 744910 (86a:54042)
- [vD93] Eric K. van Douwen, *Uncountably many pairwise disjoint copies of one metrizable compactum in another*, Topology Appl. **51** (1993), no. 2, 87–91. MR 1229705

(L. C. Hoehn) NIPISSING UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE & MATHEMATICS,
100 COLLEGE DRIVE, BOX 5002, NORTH BAY, ONTARIO, CANADA, P1B 8L7

Email address: loganh@nipissingu.ca

(L. G. Oversteegen) UNIVERSITY OF ALABAMA AT BIRMINGHAM, DEPARTMENT OF MATHEMATICS,
BIRMINGHAM, AL 35294, USA

Email address: overstee@uab.edu