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INTRODUCTION—WHY DO WE MONITOR?

Environmental degradation and loss of ecosystem services due to anthropogenic activities are an
issue of global concern (Cardinale et al., 2012). Lakes act as effective sentinels of environmental
change as they respond to atmospheric, terrestrial, and hydrological processes (Williamson et al.,
2008). Understanding lake dynamics can help determine the scale and frequency of occurring
changes, establish control measures and maintain ecosystem integrity. Thus, monitoring is
necessary, but it is rendered impossible since there are over 117 million lakes globally (Verpoorter
etal., 2014).

Monitoring strategies that range from long-term time-series on individual lakes to short-term
snapshot surveys of up to thousands of lakes from disparate locations serve different purposes and
cover different temporal- and spatial-scales of ecological phenomena. For example, phytoplankton
dynamics can be driven by long-term environmental change (Monchamp et al., 2016), inter-annual
variability (Anneville et al., 2004), seasonal succession (Sommer et al., 2012), and diel changes
(Ibelings et al., 1991). To efliciently capture their temporal and spatial variability, the appropriate
monitoring strategy needs to be chosen (Supplementary Table 1).

Implementation of long-term monitoring strategies face many challenges. Water quality
monitoring programs are usually restricted to priority ecosystems (e.g., socio-economically
important or “easier to reach”), creating geographical biases in observations which may not be
representative of broader regions or even nearby waterbodies (Ruiz-Jaen and Aide, 2005). Thus,
long term monitoring alone is insufficient. To develop a global understanding of environmental
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response, we need to consider both the sampling frequency
and efficiency of monitoring. Combining different monitoring
strategies such as automated high frequency and multi-lake
snapshot surveys, may allow studying numerous lakes over many
years and at the continental or even global scale.

Here, we explore the advantages and disadvantages of widely
used sampling strategies. We focus on multi-lake snapshot
surveys and discuss the limitations of the approach. This strategy
allows broad spatial coverage, while remaining affordable. We use
mostly phytoplankton examples, because of its rapid response to
environmental change (Carpenter et al., 2006).

DIFFERENT MONITORING STRATEGIES

Long-Term Monitoring From Routine
(Discrete) Sampling

Long-term monitoring from routine (discrete) sampling—
typically bi-weekly to monthly—addresses ecosystem change
under environmental pressure over time by measuring both
coarse and fine-resolution responses (e.g., phytoplankton
taxonomy) and environmental drivers (e.g., nutrients) that
cannot be sampled with automated or remote sensing
approaches. The resulting datasets can elucidate long-term
impacts on lakes such as eutrophication (North et al., 2014).
Such datasets contributed to developing and validating ecological
theories, e.g., the alternative stable state theory (Scheffer and
van Nes, 2007), which was successfully implemented in lake
restoration programs (Ibelings et al., 2007). Long-term sampling
may, however, introduce data inconsistencies over time, due
to changes in the sampling protocols, analysis methods and
staff employed (Straile et al., 2013). Also, the frequency of
routine sampling associated with long-term monitoring does not
necessarily assure correct capture of lake processes.

Long-Term Monitoring From Automated
High-Frequency Sampling

Long-term monitoring from automated high-frequency
sampling allows characterization of fine-scale temporal
dynamics. High-frequency sampling can reveal the build-
up and break-down of episodic phytoplankton blooms that
cannot be captured with routine sampling (Pomati et al,
2011). Grassroots initiatives like GLEON, support the use of
automated high-frequency lake stations worldwide (Weathers
etal., 2013). In most cases the characterization of phytoplankton
dynamics remains limited to chlorophyll-a measurements from
fluorescence sensors. Methods like flowcytometry (Pomati et al.,
2011) or image analysis (Sosik and Olson, 2007) are expensive,
while data handling requires qualified personnel. Affordable
fluorescence probes (e.g., Fluoroprobe-Moldaenke, Germany)
that measure pigments of different phytoplankton classes could
be an alternative but offer limited taxonomic information to
determine community dynamics.

Abbreviations: MLSS, Multi-Lake Snapshot Surveys; SfTS, Space for time
substitution.

Remote Sensing

Remote sensing provides broad spatial coverage and relatively
frequent images. The Landsat satellites have operated since
1972, with a 16-day location-specific revisiting time and spatial
resolution of 30-79 m. The newly launched Sentinel satellites
have a 5-day revisiting time and spatial resolution of 10-60 m
(Toming et al., 2016). The advanced radiometric resolution of
Sentinel satellites along with published band ratio algorithms
that estimate chlorophyll-a, colored dissolved organic matter
and dissolved organic carbon, make them highly suitable
for monitoring lakes (Toming et al., 2016). Remote sensing
can, however, be limited by cloud cover (Ibelings et al,
2003), and thus needs to be integrated in a multiplatform
monitoring approach (Vos et al., 2003) with airborne based
remote sensing and good quality in-situ data for ground
truthing.

Disparate Data

The assembly of multi-lake datasets from disparate sources is
flourishing. Disparate data provide a broader representation
of environmental change at larger spatial-scales and
complementary temporal coverages. International collaborations
support such efforts and promote open science to achieve
deeper understanding of lake ecosystems globally (Soranno
and Schimel, 2014). LAGOS-NE comprises thousands of lakes
with diverse geographic conditions and land use histories
(Soranno et al., 2017). Disparate data have resulted in important
insights into lake functioning (e.g., O’Reilly et al, 2015).
Integrating disparate data, however, is a great challenge. Lack
of standardization in data protocols and heterogeneity in data
formats and units necessitates manual integration (Soranno
et al., 2017). Such data inconsistencies should be resolved
to successfully attribute environmental change to regional
characteristics and not to protocol differences (Moe et al.,
2008). Trustworthy databases of disparate data require time and
qualified specialists, making it a laborious and costly project
(Soranno et al., 2017).

Multi-Lake Snapshot Surveys (MLSS)

Multi-lake Snapshot Surveys (MLSS) sample many lakes across
large geographic distances, only once, within a predefined
period. We define snapshot sampling as the acquisition of
biological, chemical, and physical parameters at intervals that
violate the Nyquist-Shannon sampling theorem. According to
this theorem, in order to fully capture a phenomenon, we
need to sample at a Nyquist rate which exceeds twice the
maximum component frequency (i.e., Nyquist frequency) of
the sampled function (Marcé et al., 2016). If for example we
study diel re-positioning of algal communities in the water
column—which is the outcome of processes that operate on
short time-scales—we should sample at hourly intervals (Ibelings
et al,, 1991). Inadequate sampling rate may result in a loss but
also a distortion of sampled information (i.e., aliasing—Jerri,
1977).
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ADVANTAGES OF THE MLSS

Status Assessment of Freshwater Systems

Across Large Geographical Areas

MLSS mostly use standard protocols that minimize sampling
effort per lake without sacrificing data quality (Mantzouki and
Ibelings, 2018; Pollard et al., 2018). Hence, numerous lakes
can be sampled across large geographical areas to frequently
assess ecological status (e.g., EU Water Framework Directive,
Nordic freshwater inventory—Skjelkvale et al., 2001) and provide
ecological understanding. For example, the South American Lake
Gradient Analysis (SALGA) investigated the role of temperature
on cyanobacterial occurrence in shallow lakes along a latitudinal
gradient (Kosten et al., 2012). The National Lake Assessment
(NLA) of the US Environmental Protection Agency (US-EPA),
sampled over 1,000 lakes in 2007 and 2012 (Pollard et al., 2018) to
study water quality (Rigosi et al., 2014), food web issues (Doubek
and Carey, 2017) and changes over time (Leech et al., 2018).
The European Multi-Lake Survey (EMLS) sampled 400 lakes to
investigate how temperature and nutrients determine variation
in algal and cyanobacterial biomass and toxins (Mantzouki et al.,
2018).

Standardized Data Across Large

Geographical Areas

MLSS can produce highly comparable datasets, with
uniform, synchronic data. Data curators can more easily
manipulate the collected data (e.g., outliers’ identification)
and perform better quality assurance and control. Thus,
data integration can be performed with high fidelity. For
complete data integration, data collectors should strictly
follow standardized procedures. In the EMLS, representatives
from 27 European countries jointly defined the research
questions and developed the protocols, during a 3-day training
school. The trainees obtained hands-on experience in the
agreed protocols and then disseminated the information at
the national level. Centralization of key analyses (done by
one person on one machine) was also a significant step to
assure successful data integration (Mantzouki and Ibelings,
2018).

Selection of MLSS lakes is based on sound scientific
criteria. The NLA uses a Generalized Random Tessellation
Stratified Survey Design (GRTS) which is a spatially-
balanced probabilistic design that avoids clumping of
sampling locations (Kincaid et al, 2013). MLSS typically
engage numerous data collectors that sample many lakes
simultaneously. Confounding effects of seasonality can thus
be avoided. For example, the EMLS sampled during the locally
warmest 2-week period to focus on cyanobacterial blooms—a
distinct feature of summer phytoplankton (Sommer et al,
2012).

Cost and Time Efficiency

Cost and time efficiency is an important advantage of MLSS that
can enable global participation and thus investigate landscape-
related variation in lakes at large spatial-scale (Sadro et al., 2012).
The one-time sampling in a MLSS reduces costs and permits

the sampling of numerous lakes. MLSS are particularly suited
to grassroots approaches that typically have limited financial
means and rely on the motivation and dedication of many
scientists from different countries. This low-cost approach allows
the participation of researchers and institutes with different
levels of funding and equipment, since it does not rely on
expensive instrumentation. Because the individual sampling
effort in MLSS is not particularly time demanding, numerous
environmental parameters can be sampled and analyzed at a
higher analytical resolution. Thus, MLSS can provide a deeper
insight into specific ecological relationships (NLA- and EMLS-
related references) which cannot be achieved by high-frequency
monitoring strategies.

Space-for-Time Substitution (SfTS)

Frequently, MLSS aim to capture environmental differences
at geographical gradients to provide insight into impacts
of future environmental change. MLSS may use space-
for-time substitution (SfTS) (Blois et al, 2013) to study
present-day  spatial phenomena instead of long-term
records that often are unavailable (Pickett, 1989). Sampling
numerous lakes is needed for an adequate SfTS. The
statistical power generated by sampling many different

lakes can overcome the risk of gaining idiosyncratic
results from long-term monitoring of only a few
lakes.

To develop reliable SfTS we need to consider that drivers
of temporal change are not necessarily constant across various
time-scales. Drivers of large-scale spatial variation rather than of
shorter-term temporal variation may be better predictors of long-
term climatic change in ecosystems. For example, in grassland
communities, geographic rather than temporal variation in
annual precipitation and plant community structure better
predicted climate-driven changes in precipitation (Adler and
Levine, 2007). See also Taranu et al. (2012) on the importance
of scale on temporal change.

Temporal drivers of lake change may also differ from
spatial drivers, at a short temporal-scale (<20 years) probably
because the time-scale (rate and persistence) of change differs
in space and time (Weyhenmeyer, 2009). Spatial data may
capture the lake’s history over time, ie., the long-term
impact of an environmental predictor but not its short-
term impact. For instance, dissolved organic carbon (DOC)
and partial pressure of CO, (pCO,) are related at the
spatial-scale (Lapierre and Giorgio, 2012) but fast processes
such as flushing-rate can result in a decoupling of the
two parameters on a temporal-scale (Nydahl et al, 2017).
However, long-term and spatial-scale ice breakup data showed
similar patterns of temperature effects on ice-off timing
(Weyhenmeyer et al., 2004). Similarly, in 1,041 boreal lakes the
correlation of chemical variability with increased temperature
was consistent across space and time (Weyhenmeyer, 2009).
Climate change is emerging as a major driver of both spatial
and temporal variation in lake dynamics (Weyhenmeyer,
2009), thus a SfTS may be a suitable solution to predict
change.
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CONCLUSIONS

There are obvious trade-offs between monitoring strategies
and no single strategy can provide answers to all research
questions, lake management, or water governance requirements.
An ideal approach might be to organize a yearly MLSS,
with both previous and new lakes sampled every year and
revisited at a certain time-interval to assess changes in the
lake status at a broad spatial-scale. Additionally, time-series
from key lakes could be obtained to develop tailor-made
SfTS predictive models. We argue that MLSS, if properly
designed and executed, comprise a promising solution
for assessing lakes globally, ensuring data integration and
engaging researchers, managers, policy makers, and citizens
(Weyhenmeyer et al., 2017). For a successful MLSS, sampled
environmental parameters should be carefully chosen to ensure
a reliable SfTS. Numerous lakes, well-spread geographically,
should be sampled to cover wide environmental gradients. If the
right pre-conditions are met and a standardized sampling plan
is established, then MLSS can be an accurate and cost-efficient
solution. International, grassroots efforts are increasingly
establishing automated high-frequency monitoring stations
worldwide. These efforts, along with more MLSS initiatives,
could eventually contribute toward a better understanding
of both spatial and temporal environmental patterns in
lakes.
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