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FINITE ELEMENT APPROXIMATION OF AN OBSTACLE PROBLEM FOR A

CLASS OF INTEGRO–DIFFERENTIAL OPERATORS

Andrea Bonito1,*, Wenyu Lei1,2 and Abner J. Salgado3

Abstract. We study the regularity of the solution to an obstacle problem for a class of integro–
differential operators. The differential part is a second order elliptic operator, whereas the nonlocal
part is given by the integral fractional Laplacian. The obtained smoothness is then used to design and
analyze a finite element scheme.
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1. Introduction

Let Ω ⊂ R
d, 𝑑 = 1, 2, 3, be an open bounded set with boundary 𝜕Ω. We consider the following obstacle

problem: given 𝑓 : Ω → R, an obstacle 𝜒 : Ω → R such that 𝜒 < 0 on 𝜕Ω, and a drift β : Ω → R
d, we want to

find 𝑢 : R
d → R satisfying

min {b𝐿𝑢+ β · ∇𝑤 + (−𝛥)s𝑢− 𝑓, 𝑢− 𝜒} = 0, in Ω, 𝑢 = 0, in Ωc. (1.1)

Here b ∈ Z2; Ωc denotes the complement of Ω; 𝐿 is a uniformly elliptic, divergence form, and symmetric second
order differential operator

𝐿𝑤 = −∇·(𝐴∇𝑤) + 𝑐𝑤, (1.2)

with sufficiently smooth coefficients (more precise conditions will be imposed later); and (−𝛥)s with 𝑠 ∈ (0, 1)
denotes the integral fractional Laplacian, i.e.

(−𝛥)s𝑤(𝑥) = 𝑐d,sp.v.

∫︁

Rd

𝑤(𝑥) − 𝑤(𝑦)

|𝑥− 𝑦|d+2s
d𝑦, 𝑐d,s =

22s𝑠Γ(𝑠+ d
2 )

𝜋d/2Γ(1 − 𝑠)
, (1.3)

where p.v. stands for principal value.
The main motivation to study problem (1.1) is its relevance in the context of perpetual American options

under Lévy processes (cf. [12]). In one dimensional space (𝑑 = 1), the solution 𝑢 in (1.1) (but defined in R instead
of Ω) is the rational price of a perpetual American option against the log-price of the stock assumed to follow
a Lévy process whose infinitesimal generator is given by b𝐿+ β · ∇ + (−𝛥)s. In this context, the non-negative
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obstacle function 𝜒 is referred to as the payoff function; see ([12], Sect. 6). When 𝑑 > 1, problem (1.1) (again
in R

d instead of Ω) models multiple assets (cf. [14]). For completeness, we point out that the jump process
considered in this paper is a special case of a more general jump processes called tempered stable process. For
the latter, the integral fractional Laplacian in (1.1) is replaced by a convolution in R

d between 𝑢 and the kernel
function

𝐾(𝑥) = 𝐶0

⎧
⎪⎪⎨
⎪⎪⎩

e−C1|x|

|x|d+2s , |𝑥| < 0,

e−C2|x|

|x|d+2s , |𝑥| > 0,

where 𝐶0 > 0 and 𝐶1, 𝐶2 ≥ 0. The process is symmetric if 𝐶1 = 𝐶2 and reduces to the integral fractional
Laplacian when 𝐶1 = 𝐶2 = 0. We also note that to account for the fact that the original American option
pricing problem is defined on the whole space R

d, one should analyze the so-called localization error between
the solution of problem (1.1) and the solution to the corresponding problem in R

d. These considerations are out
of the scope of this work and we refer to [26] for the analysis in the one dimensional case with 𝐶1, 𝐶2 > 0.

The goal of this paper is to obtain a finite element approximation to the solution of problem (1.1) together
with the corresponding a priori error estimates in the energy space. Since these error estimates rely on the
knowledge of the smoothness of the solution, we shall first study the regularity of the variational formulation
of problem (1.1). Moreover, the nature of the operator at hand depends heavily on the particular values of b,
β, and 𝑠 to be used, we address the following three different cases:

A. Purely fractional diffusion: b = 0, β = 0, and 𝑠 ∈ (0, 1). This corresponds to the obstacle problem for the
integral fractional Laplacian.

B. Fractional diffusion with drift : b = 0, β ̸= 0, and 𝑠 ∈ [ 12 , 1). In this case, the fractional power is restricted
to keep the diffusive part dominant; see Proposition 2.3.

C. Integro–differential operator : b = 1 and 𝑠 ∈ (0, 1).

We remark that the regularity of the solution in Case A has been already studied in [15] and [11]. To show the
regularity of the result in the remaining cases, the main technique that we shall employ is based on penalizing
the violation of the obstacle constraint, much in the spirit of the techniques presented in (Sect. IV.2, [24]) and
(Sect. 1.3, [22]). We derive regularity estimates for the unconstrained linear problem, which are instrumental to
obtain a uniform regularity estimate for the solutions to the penalized problems. Passing to the limit when the
penalization parameters tends to zero, we deduce the regularity of the solution to the obstacle problem. Since
this is critical for the analysis of the proposed numerical method, we also show that the solution to the obstacle
problem is continuous and that as a consequence, the so-called complementarity conditions are satisfied.

One of the main issues in the finite element approximation of the obstacle problem (1.1) is the efficient
approximation of the integral fractional Laplacian. We refer to [2, 9, 20], see also the survey [8], for different
approaches. Unlike [11, 15], here we use the method from [7, 9], i.e. we build a numerical scheme based on the
Dunford–Taylor integral representation of the bilinear form associated with the action of the integral fractional
Laplacian operator; see Section 4.1 for a review of this approach. Adapting this technique to our case of interest
induces a consistency error in the discretization of a variational inequality. We handle this via a Strang-type
argument allowing us to derive rates of convergence in the energy error.

The outline of the paper is as follows. In Section 2 we set notation, introduce differential and integral
operators, provide a weak formulation of (1.1), and show some of its immediate properties. In Section 3 we
study the regularity of the solution, the so–called Lagrange multiplier, and the validity of the complementarity
conditions. Section 4 provides the finite element algorithm and its error analysis as well. A detailed numerical
implementation and numerical tests are provided in Section 5.

2. Notation and preliminaries

In this work Ω ⊂ R
d is a bounded domain with Lipschitz boundary 𝜕Ω (we may assume more on Ω if

necessary). Whenever we write 𝑎 ⪯ 𝑏 we mean that 𝑎 ≤ 𝐶𝑏 for a nonessential constant 𝐶 that might change



FINITE ELEMENT APPROXIMATION OF AN OBSTACLE PROBLEM 231

from line to line. As usual, 𝑎 ⪰ 𝑏 means 𝑏 ⪯ 𝑎; 𝑎 ≍ 𝑏 means 𝑎 ⪯ 𝑏 ⪯ 𝑎. Also, for any real number 𝑎, the notation
𝑎− henceforth stands for any real number strictly smaller than 𝑎.

For a normed space 𝑋, we denote by 𝑋 ′ and ‖ · ‖X its dual and norm, respectively. By ⟨·, ·⟩X′,X we denote
the duality pairing. Unless explicitly stated, 𝑋 ′ is always equipped with the operator norm. In the case where
𝑋 is an inner product space, we denote by (·, ·)X its inner product.

2.1. Sobolev spaces on domains

The standard 𝐿2(Ω) and 𝐻m(Ω) function spaces, 𝑚 ∈ N, are normed in the usual way. We recall that 𝐻1
0 (Ω)

is the closure in 𝐻1(Ω) of 𝐶∞
0 (Ω) – the space of compactly supported in Ω and infinitely differentiable functions.

Owing to the Poincaré inequality, we have that

‖𝑤‖H1
0 (Ω) := ‖∇𝑤‖L2(Ω),

is an equivalent norm on 𝐻1
0 (Ω).

Since 𝐻1(Ω) ⊂ 𝐿2(Ω) and 𝐻1
0 (Ω) ⊂ 𝐿2(Ω) are compatible pairs, we define the fractional Sobolev spaces by

interpolation using the real method

𝐻t(Ω) := (𝐻1(Ω), 𝐿2(Ω))1−t,2 and 𝐻̇t(Ω) := (𝐻1
0 (Ω), 𝐿2(Ω))1−t,2, for 𝑡 ∈ (0, 1).

By convention, 𝐻0(Ω) = 𝐻̇0(Ω) = 𝐿2(Ω) and 𝐻̇1(Ω) = 𝐻1
0 (Ω). However, since the definition of the integral

fractional Laplacian (1.3) involves integration over the whole space, we need to introduce yet another family of
function spaces. For 𝑡 ∈ [0, 2] we define

𝐻t(Rd) :=
{︀
𝑤 : R

d → R : ‖𝑤‖Ht(Rd) <∞
}︀
, ‖𝑤‖2

Ht(Rd) :=

∫︁

Rd

(1 + |𝜉|t)|ℱ(𝑤)(𝜉)|2 d𝜉,

where ℱ denotes the Fourier transform. Furthermore, for any bounded domain 𝐷 ⊂ R
d and 𝑤 : 𝐷 → R we

denote by ̃︀𝑤 its extension by zero to 𝐷c. Notice that this operator depends on 𝐷 which may change depending
on the context. However, we decided not to indicate the dependency on 𝐷 whenever no confusion is possible in
order to alleviate the notation. With this we define, for 𝑡 ∈ [0, 2],

̃︀𝐻t(Ω) :=
{︀
𝑤 ∈ 𝐿2(Ω): ̃︀𝑤 ∈ 𝐻t(Rd)

}︀
, ‖𝑤‖ ̃︀Ht(Ω) := ‖ ̃︀𝑤‖Ht(Rd).

We finally set 𝐻−t(Ω) = ( ̃︀𝐻t(Ω))′.

Remark 2.1 (Equivalent norm). A variant of the arguments in the Peetre–Tartar lemma ([21], Lem. A.38)
guarantees that the semi-norm

𝑤 ↦→ |𝑤| ̃︀Ht(Ω) :=

(︂∫︁

Rd

|𝜉|t|ℱ(𝑤)(𝜉)|2 d𝜉

)︂1/2

is an equivalent norm of ̃︀𝐻t(Ω).

Remark 2.2 (Norm equivalence for Lipschitz domains). For 𝑡 ∈ [0, 1], it is known that 𝐻̇t(Ω) and ̃︀𝐻t(Ω) are
both interpolation scales and coincide (cf. [16], Lem. 4.11). We note that these two spaces are also equivalent
when 𝑡 ∈ (1, 3

2 ) and the norm equivalence constants depend on Ω. This is because Ω is Lipschitz so that
̃︀𝐻t(Ω) = 𝐻t(Ω) ∩𝐻1

0 (Ω) = 𝐻̇t(Ω) when 𝑡 ∈ [1, 3
2 ) (cf. [9], Rem. 3.1).
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2.2. Differential and integral operators

We can now give a proper interpretation to the building blocks of problem (1.1).

We begin with the second order operator. We let 𝐴 ∈ 𝐶0,1(Ω,Sd), where S
d is the space of symmetric 𝑑× 𝑑

matrices, be uniformly bounded and positive definite, i.e. there exist constants 𝑎0, 𝑎1 > 0 such that

𝑎0|v|2 ≤ v⊺𝐴(𝑥)v ≤ 𝑎1|v|2, ∀v ∈ R
d, ∀𝑥 ∈ Ω.

In addition, we assume that 𝑐 ∈ 𝐶0,1(Ω) is nonnegative. With these assumptions we have that the operator
𝐿 : 𝐻2(Ω) ∩𝐻1

0 (Ω) → 𝐿2(Ω) generates the bilinear form

ℒ(𝑣, 𝑤) =

∫︁

Ω

(∇𝑤⊺𝐴(𝑥)∇𝑣 + 𝑐(𝑥)𝑣𝑤) d𝑥,

which is bounded and coercive on 𝐻1
0 (Ω).

We now study drift on fractional Sobolev spaces. Let β ∈ 𝐶1(Ω,Rd) be solenoidal, i.e. ∇·β = 0. We define,
for 𝑣, 𝑤 ∈ 𝐶∞

0 (Ω) the bilinear form

𝒟(𝑣, 𝑤) =

∫︁

Ω

β(𝑥) · ∇𝑣𝑤 d𝑥 (2.1)

and study the properties of 𝒟 next.

Proposition 2.3 (Drift). Let β ∈ 𝐶1(Ω,Rd) be solenoidal, i.e. ∇·β = 0. Then, for 𝑣 ∈ ̃︀𝐻t(Ω) with 𝑡 ∈ [ 12 , 1]
we have that

‖β · ∇𝑣‖H−t(Ω) ⪯ ‖β‖L∞(Ω,Rd)‖𝑣‖ ̃︀Ht(Ω).

Moreover, the bilinear form 𝒟, defined in (2.1), extends continuously to ̃︀𝐻t(Ω) × ̃︀𝐻t(Ω). This, in particular,
implies that

𝒟(𝑣, 𝑣) = 0, ∀𝑣 ∈ ̃︀𝐻t(Ω). (2.2)

Proof. The proof follows the argumentations in [36]. We begin by assuming that 𝑣 ∈ 𝐶∞
0 (Ω), then we imme-

diately conclude that β · ∇𝑣 ∈ 𝐿2(Ω) with

‖β · ∇𝑣‖L2(Ω) ≤ ‖β‖L∞(Ω,Rd)‖𝑣‖H1
0 (Ω).

Owing to the fact that β is solenoidal, we also have that

‖β · ∇𝑣‖H−1(Ω) = sup
0 ̸=w∈H1

0 (Ω)

⟨β · ∇𝑣, 𝑤⟩H−1(Ω),H1
0 (Ω)

‖∇𝑤‖L2(Ω)
= sup

0 ̸=w∈H1
0 (Ω)

(𝑣,β · ∇𝑤)L2(Ω)

‖∇𝑤‖L2(Ω)

≤ ‖β‖L∞(Ω,Rd)‖𝑣‖L2(Ω).

Interpolating the previous two inequalities we then obtain that for 𝑡 ∈ [ 12 , 1]

‖β · ∇𝑣‖H−t(Ω) ⪯ ‖β‖L∞(Ω,Rd)‖𝑣‖ ̃︀H1−t(Ω) ⪯ ‖β‖L∞(Ω,Rd)‖𝑣‖ ̃︀Ht(Ω),

as we intended to show. The proof is complete upon noting that 𝐶∞
0 (Ω) is dense in ̃︀𝐻t(Ω). �

We now proceed to define the integral fractional Laplacian given in (1.3). First, we note that for 𝑤 in the
Schwartz space, this operator is defined by

ℱ ((−𝛥)s𝑤) (𝜉) = |𝜉|2sℱ(𝑤)(𝜉),
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Moreover, it induces a bilinear form

𝑎s(𝑣, 𝑤) = ((−𝛥)s/2𝑣, (−𝛥)s/2𝑤)L2(Rd) =

∫︁

Rd

|𝜉|2sℱ(𝑣)(𝜉)ℱ(𝑤)(𝜉) d𝜉

=
𝑐s,d

2

∫︁

Rd

∫︁

Rd

(𝑣(𝑥) − 𝑣(𝑦))(𝑤(𝑥) − 𝑤(𝑦))

|𝑥− 𝑦|d+2s
d𝑦 d𝑥.

Note that the above considerations remain meaningful for 𝑣, 𝑤 ∈ ̃︀𝐻s(Ω), or strictly speaking to ̃︀𝑣, ̃︀𝑤 ∈ 𝐻s(Rd),

their zero extension outside Ω. In addition, Remark 2.1 implies that 𝑎s is bounded and coercive on ̃︀𝐻s(Ω) with
the convention

𝑎s(𝑣, 𝑤) = ((−𝛥)s/2̃︀𝑣, (−𝛥)s/2 ̃︀𝑤)L2(Rd), ∀𝑣, 𝑤 ∈ ̃︀𝐻s(Ω).

2.3. The obstacle problem

Having introduced the necessary notation we can now give a rigorous meaning to problem (1.1) and study
it. To be able to handle all the three cases under consideration (see cases A, B and C in Sect. 1) in a unified
way, we introduce the two–parameter space

𝒱s,b :=

{︃
̃︀𝐻s(Ω), b = 0,

𝐻1
0 (Ω), b = 1,

‖𝑤‖2
𝒱s,b

:= ‖𝑤‖2
̃︀Hs(Ω)

+ b‖𝑤‖2
H1

0 (Ω). (2.3)

From now on we assume the following condition on the obstacle:

Assumption 2.4 (Obstacle). The obstacle 𝜒 ∈ 𝐶2(Ω̄) is such that 𝜒 < 0 on 𝜕Ω.

Under Assumption 2.4 the admissible set

𝒦 := {𝑤 ∈ 𝒱s,b : 𝑤 ≥ 𝜒 𝑎.𝑒. Ω} ⊂ 𝒱s,b (2.4)

is nonempty, closed and convex. On 𝒱s,b we define the bilinear form

𝒜(𝑣, 𝑤) := bℒ(𝑣, 𝑤) + 𝒟(𝑣, 𝑤) + 𝑎s(𝑣, 𝑤), ∀𝑣, 𝑤 ∈ 𝒱s,b. (2.5)

Owing to Proposition 2.3, it follows that 𝒜 is bounded and coercive on 𝒱s,b for all cases considered.
The weak formulation of problem (1.1) is defined as follows: given 𝑓 ∈ 𝒱s,b

′ find 𝑢 ∈ 𝒦 such that

𝒜(𝑢, 𝑢− 𝑣) ≤ ⟨𝑓, 𝑢− 𝑣⟩𝒱s,b
′,𝒱s,b

, ∀𝑣 ∈ 𝒦. (2.6)

Since 𝒜 is coercive, existence and uniqueness of a solution is an immediate consequence of the Lions–Stampacchia
theorem ([24], Thm. II.2.1).

The next theorem guarantees the validity of the complementarity conditions (1.1). Before proceeding, we
introduce the Lagrange multiplier

Λ := b𝐿𝑢+ β · ∇𝑢+ (−𝛥)s̃︀𝑢− 𝑓 ∈ 𝒱s,b
′. (2.7)

Theorem 2.5 (Complementarity conditions). The solution 𝑢 ∈ 𝒱s,b of (2.6) satisfies

Λ ≥ 0

in 𝒱s,b
′. In addition, if 𝑢 ∈ 𝒱s,b ∩ 𝐶(Ω) then the complementarity conditions hold, i.e.

Λ ≥ 0, 𝑢 ≥ 𝜒, Λ(𝑢− 𝜒) = 0

in the sense of distributions.
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Proof. Case A is already studied in ([27], Thm. 1.2); see also ([11], Prop. 2.10).

For Cases B and C we write (2.6) as

⟨b𝐿𝑢+ β · ∇𝑢+ (−𝛥)s̃︀𝑢− 𝑓, 𝑢− 𝑣⟩𝒱s,b
′,𝒱s,b

≤ 0, ∀𝑣 ∈ 𝒦.

Let now 0 ≤ 𝜙 ∈ 𝐶∞
0 (Ω) be arbitrary and set 𝑣 = 𝑢+ 𝜙 ∈ 𝒦 to deduce

⟨Λ, 𝜙⟩𝒱s,b
′,𝒱s,b

= ⟨b𝐿𝑢+ β · ∇𝑢+ (−𝛥)s̃︀𝑢− 𝑓, 𝜙⟩𝒱s,b
′,𝒱s,b

≥ 0.

This means Λ ≥ 0 in 𝒱s,b
′ and in the sense of distributions.

In addition, if 𝑢 ∈ 𝐶(Ω), then the non-contact set

𝑁 := {𝑥 ∈ Ω : 𝑢(𝑥) > 𝜒(𝑥)}

is open. Let 𝜑 ∈ 𝐶∞
0 (𝑁) and 𝜀 positive but sufficiently small so that 𝑣 = 𝑢± 𝜀𝜑 ∈ 𝒦. This choice implies that

⟨Λ, 𝜑⟩𝒱s,b
′,𝒱s,b

= 0, ∀𝜑 ∈ 𝐶∞
0 (𝑁),

and the conclusion follows. �

3. Regularity

In this section we study the regularity of the solution to (2.6). To achieve this, we first consider the linear
problem without the obstacle constraint. Then, using a penalization technique, we transfer these regularity
results to the solution 𝑢 of (2.6). In addition, using a Lewy–Stampacchia type argument, we deduce regularity
properties of the Lagrange multiplier Λ as well as the continuity of 𝑢, necessary to apply Theorem 2.5.

3.1. Regularity for the linear problem

Here we are interested in the regularity of the solution to a linear version of (2.6). Namely, given 𝑔 ∈ 𝒱s,b
′,

we let Φg ∈ 𝒱s,b be the (unique) solution of

𝒜(Φg, 𝑣) = ⟨𝑔, 𝑣⟩𝒱s,b
′,𝒱s,b

, ∀𝑣 ∈ 𝒱s,b, (3.1)

where 𝒜 is given by (2.5). We consider the regularity of each case separately. Notice that each case requires
different assumptions on the data.

3.1.1. Case A: Purely fractional diffusion

Assuming Ω is of class 𝐶∞, the regularity of Φg was studied in [23, 34]. The next proposition gathers these
result in our notation.

Proposition 3.1 (Regularity for Case A). Assume that the domain Ω is of class 𝐶∞ and that, for 𝑠 ∈ (0, 1),
we have that 𝑔 ∈ 𝐻t(Ω) with 𝑡 ≥ −𝑠. In this setting we have that Φg, the solution of (3.1) with b = 0 and
β = 0, satisfies

Φg ∈ ̃︀𝐻min{t+2s,(s+ 1
2 )−}(Ω), ‖Φg‖ ̃︀Hmin{t+2s,(s+ 1

2
)−}(Ω)

⪯ ‖𝑔‖Ht(Ω).

We also refer to [1] for regularity results when Ω is Lipschitz and 𝑔 is Hölder continuous.
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3.1.2. Case B: Fractional diffusion with drift

Recall that in this case we restrict the fractional power 𝑠 to [ 12 , 1). We also have b = 0 and β ̸= 0. The
proof is based on the regularity estimates for Case A presented in Proposition 3.1 and techniques developed
in [36].

Proposition 3.2 (Regularity for Case B). Assume that the domain Ω is of class 𝐶∞ and that 𝑔 ∈ 𝐿2(Ω). Let
Φg be the solution of (3.1) with 𝑠 ∈ [ 12 , 1), b = 0 and β ̸= 0.

(a) If 𝑠 > 1
2 , then Φg ∈ ̃︀𝐻(s+ 1

2 )−(Ω) and satisfies

‖Φg‖ ̃︀H(s+ 1
2
)− (Ω)

⪯ ‖𝑔‖L2(Ω).

(b) If 𝑠 = 1
2 , there exists a positive constant 𝐶 1

2
such that when ‖β‖L∞(Ω,Rd) < 𝐶 1

2
, we have that Φg ∈ ̃︀𝐻1−

(Ω)

with the corresponding estimate. Otherwise, that is when ‖β‖L∞(Ω,Rd) ≥ 𝐶 1
2
, then there exists 𝛿 ∈ (0, 1

2 )

such that Φg ∈ ̃︀𝐻 1
2+δ(Ω) with the corresponding estimate.

Proof. We consider each case separately.

We begin the treatment of Case (a) by rewriting the linear problem as follows: find Φg ∈ ̃︀𝐻s(Ω) satisfying

𝑎s(Φg, 𝑣) = (𝑔, 𝑣)L2(Ω) − ⟨β · ∇Φg, 𝑣⟩H−s(Ω), ̃︀Hs(Ω) =: ⟨𝐺, 𝑣⟩H−s(Ω), ̃︀Hs(Ω) , ∀𝑣 ∈ ̃︀𝐻s(Ω).

Now, using a bootstrapping argument, we improve the regularity of Φg. Starting from Φg ∈ ̃︀𝐻s(Ω), we first
notice that, according to Proposition 2.3, 𝐺 ∈ 𝐻s−1(Ω). Thanks to Proposition 3.1 with 𝑡 = 𝑠 − 1 we get

Φg ∈ ̃︀𝐻min{3s−1,(s+ 1
2 )−}(Ω). Invoking Propositions 2.3 and 3.1 again, we deduce that

Φg ∈ ̃︀𝐻min{5s−2,(3s− 1
2 )−,(s+ 1

2 )−}(Ω) = ̃︀𝐻min{5s−2,(s+ 1
2 )−}(Ω).

Repeating the above argument 𝑛 times, we arrive at

Φg ∈ ̃︀𝐻min{(2n+1)s−n,(s+ 1
2 )−}(Ω).

From the assumption 𝑠 > 1
2 , we have (2𝑛+1)𝑠−𝑛→ ∞ as 𝑛→ ∞ so that setting 𝑛 = ⌈ 1

4s−2⌉ yields the desired

result for case (a), i.e. Φg ∈ ̃︀𝐻(s+ 1
2 )−(Ω).

Let us now show Case (b) using a perturbation argument. Denote by 𝑇 : ̃︀𝐻 1
2 (Ω) → 𝐻− 1

2 (Ω) the unbounded
operator satisfying

⟨𝑇𝑔, 𝑣⟩
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

= 𝑐 1
2
𝑎 1

2
(𝑔, 𝑣), ∀𝑣 ∈ ̃︀𝐻 1

2 (Ω),

where 𝑐 1
2

denotes the normalization constant such that

‖𝑤‖2

Ḣ
1
2 (Ω)

= 𝑐 1
2
‖𝑤‖2

̃︀H
1
2 (Ω)

.

As we shall see, the purpose of the normalization by 𝑐1/2 is to relate the functional spaces ̃︀𝐻r(Ω) to the

interpolation spaces 𝐻̇r(Ω) and invoke operator interpolation results. Proposition 3.1 guarantees that the inverse

of 𝑇 is a bounded operator mapping 𝐻t(Ω) to ̃︀𝐻min{t+1,1−}(Ω) with 𝑡 ≥ − 1
2 . Given 𝜂 ∈ (0, 1], we rewrite the

linear problem (3.1) in the form of a perturbation of the identity

⟨(𝐼 −𝐵)Φg, 𝑣⟩
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

=
⟨
𝜂𝑐 1

2
𝑇−1𝑔, 𝑣

⟩
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

, ∀𝑣 ∈ ̃︀𝐻s(Ω),
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where 𝐵 := (1 − 𝜂)𝐼 − 𝜂𝑐 1
2
𝑇−1β · ∇. We next investigate the mapping properties of the operator 𝐵 using the

equivalent interpolation norm 𝐻̇t(Ω) with 𝑡 ∈ [ 12 , 1). For 𝑤 ∈ 𝐻̇1−

(Ω), we have

‖𝐵𝑤‖Ḣ1− (Ω) ≤ (1 − 𝜂)‖𝑤‖Ḣ1− (Ω) + 𝜂‖𝑐 1
2
𝑇−1β · ∇𝑤‖Ḣ1− (Ω)

≤ ((1 − 𝜂) + 𝐶𝜂‖β‖L∞(Ω,Rd))‖𝑤‖Ḣ1− (Ω) =: 𝑀1(𝜂)‖𝑤‖Ḣ1− (Ω).
(3.2)

Here the constant 𝐶 depends on the constants in the estimates of Propositions 2.3, 3.1 and 𝑐 1
2
. Setting 𝐶 1

2
:=

1/𝐶, the condition ‖β‖L∞(Ω,Rd) < 𝐶 1
2

guarantees that 𝑀1(𝜂) < 1 for any 𝜂 ∈ (0, 1]. In turn, this implies that

𝐼 −𝐵 : 𝐻̇1−

(Ω) → 𝐻̇1−

(Ω) is invertible and

‖(𝐼 −𝐵)−1‖ ̃︀H1− (Ω)→ ̃︀H1− (Ω) ⪯ ‖(𝐼 −𝐵)−1‖Ḣ1− (Ω)→Ḣ1− (Ω) ≤
∞∑︁

j=0

‖𝐵‖j

Ḣ1− (Ω)→Ḣ1− (Ω)
≤ 1

1 −𝑀1(𝜂)
·

Hence we deduce that Φg ∈ ̃︀𝐻1−

(Ω) and

‖Φg‖ ̃︀H1− (Ω) ≤ 𝜂‖(𝐼 −𝐵)−1‖ ̃︀H1− (Ω)→ ̃︀H1− (Ω)‖𝑐 1
2
𝑇−1𝑔‖ ̃︀H1− (Ω) ⪯ ‖𝑔‖L2(Ω).

Instead, when ‖β‖L∞(Ω,Rd) ≥ 𝐶 1
2
, we note that for 𝑤 ∈ 𝐻̇

1
2 (Ω),

‖𝐵𝑤‖2

Ḣ
1
2 (Ω)

= 𝑐 1
2
‖𝐵𝑤‖2

̃︀H
1
2 (Ω)

= ⟨𝑇𝐵𝑤,𝐵𝑤⟩
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

= (1 − 𝜂)2 ⟨𝑇𝑤,𝑤⟩
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

− (1 − 𝜂)𝜂𝑐 1
2

[︁⟨︀
𝑇𝑤, 𝑇−1β · ∇𝑤

⟩︀
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

+
⟨︀
𝑇𝑇−1β · ∇𝑤,𝑤

⟩︀
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

]︁

+ 𝜂2𝑐21
2

⟨︀
𝑇𝑇−1β · ∇𝑤, 𝑇−1β · ∇𝑤

⟩︀
H− 1

2 (Ω), ̃︀H
1
2 (Ω)

= (1 − 𝜂)2‖𝑤‖2

Ḣ
1
2 (Ω)

+ 𝜂2|𝑐21
2
‖𝑇−1β · ∇𝑤‖2

Ḣ
1
2 (Ω)

≤ (1 − 𝜂)2‖𝑤‖2

Ḣ
1
2 (Ω)

+ ̃︀𝐶𝜂2‖β‖2
L∞(Ω,Rd)‖𝑤‖2

Ḣ
1
2 (Ω)

,

where in the third equality we used the symmetry of 𝑇 and (2.2). The positive constant ̃︀𝐶 depends on the same

parameters as 𝐶 1
2
. The optimal choice for 𝜂 is 𝜂* := 1/(1 + ̃︀𝐶‖β‖2

L∞(Ω,Rd)) ∈ (0, 1), which leads to

‖𝐵𝑤‖
Ḣ

1
2 (Ω)

≤
√︃

1 − 1

1 + ̃︀𝐶‖β‖2
L∞(Ω,Rd)

‖𝑤‖
Ḣ

1
2 (Ω)

=: 𝑀2‖𝑤‖
Ḣ

1
2 (Ω)

, (3.3)

with 𝑀2 < 1. From (3.2) and (3.3), we obtain by interpolation

‖𝐵𝑤‖
Ḣ( 1

2
+r)− (Ω)

≤𝑀1(𝜂
*)2r𝑀1−2r

2 ‖𝑤‖
Ḣ( 1

2
+r)− (Ω)

, for 𝑟 ∈ (0, 1
2 ),

and upon selecting 𝑟 > 0 sufficiently small so that

𝑀2r
1 (𝜂*)𝑀1−2r

2 < 1,

we obtain that 𝐵 is a bounded operator in 𝐻̇( 1
2+r)−(Ω) and so

Φg ∈ ̃︀𝐻 1
2+δ(Ω)

for some 𝛿 ∈ (0, 1
2 ) as asserted. �
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3.1.3. Case C: Integro–differential operator

We let b = 1 and immediately notice that 𝒱s,1 = 𝐻1
0 (Ω) for all values of 𝑠. Our results rely on the following

regularity assumption for a second order elliptic problem.

Assumption 3.3 (Elliptic regularity). Let 𝑔 ∈ 𝐻−1(Ω), and 𝑤g ∈ 𝐻1
0 (Ω) be the unique solution of

ℒ(𝑤g, 𝑣) = ⟨𝑔, 𝑣⟩H−1(Ω),H1
0 (Ω) , ∀𝑣 ∈ 𝐻1

0 (Ω). (3.4)

There exists 𝑟 ∈ (0, 1] and a constant 𝐶r so that

‖𝑤g‖H1+r(Ω) ≤ 𝐶r‖𝑔‖H−1+r(Ω).

In particular, we have
‖𝑤g‖H1+γ(Ω) ≤ 𝐶r‖𝑔‖H−1+γ(Ω)

for all 𝛾 ∈ (0, 𝑟].

We note that 𝑟 and 𝐶r depend on the smoothness of the domain Ω and the coefficients 𝐴 and 𝑐. For example,
if Ω is a polytope and the bilinear form ℒ is the Dirichlet form, i.e.

ℒ(𝑣, 𝑤) =

∫︁

Ω

∇𝑣 · ∇𝑤 d𝑥, ∀𝑣, 𝑤 ∈ 𝐻1
0 (Ω), (3.5)

then, according to [19], Assumption 3.3 holds for some 1
2 < 𝑟 ≤ 1 that depends on the shape of the domain.

To concisely state the regularity result obtained in this case, we define

𝜇 := 𝜇(𝑠, 𝑟) :=

⎧
⎨
⎩

1 + 𝑟 0 < 𝑠 < 5
4 − r

2 ,

( 7
2 − 2𝑠)−, 5

4 − r
2 ≤ 𝑠 < 1.

(3.6)

Proposition 3.4 (Regularity for Case C). Let Φg be the solution to problem (3.1) with b = 1. Let 𝑟 ∈ (0, 1] be
the regularity index given in Assumption 3.3 and 𝑔 ∈ 𝐿2(Ω). Then we have that

Φg ∈ 𝐻µ(Ω) ∩𝐻1
0 (Ω), ‖Φg‖Hµ(Ω) ⪯ ‖𝑔‖L2(Ω),

where the hidden constant depends on Ω, 𝐶r in Assumption 3.3 and β.

Proof. Notice that the unique solution Φg ∈ 𝐻1
0 (Ω) of problem (3.1) is also the unique solution of

ℒ(Φg, 𝑣) = (𝑔 − β · ∇Φg, 𝑣)L2(Ω) −
⟨
(−𝛥)s̃︀Φg, 𝑣

⟩
H−1(Ω),H1

0 (Ω)
=: ⟨𝐺, 𝑣⟩H−1(Ω),H1

0 (Ω) . (3.7)

We discuss the case 𝑟 ≥ 1
2 and split the proof in several (sub-)cases.

– Case 𝑠 ∈ (0, 2−r
2 ]: According to ([33], Thm. XI.2.5) we have that (−𝛥)s̃︀Φg ∈ 𝐻1−2s(Ω) ⊂ 𝐻−1+r(Ω).

From the elliptic regularity assumption we conclude that Φg ∈ 𝐻1+r(Ω) = 𝐻µ(Ω) with the corresponding
estimate.

– Case 𝑠 ∈ ( 2−r
2 , 3

4 ]: If this is the case, we now have that 𝐺 ∈ 𝐻1−2s(Ω) so that invoking the elliptic regularity
assumption again with 𝛾 = 2 − 2𝑠 < 𝑟 (see Assumption 3.3) and using the norm equivalence property
described in Remark 2.2, we obtain that Φg ∈ 𝐻3−2s(Ω)∩𝐻1

0 (Ω). Because 𝑠 ∈ ( 2−r
2 , 3

4 ], we can only conclude

that Φg ∈ ̃︀𝐻(
3
2 )−(Ω). However, we can repeat the process because in that case (−𝛥)s̃︀Φg ∈ 𝐻( 3

2−2s)−(Ω) and

thus 𝐺 ∈ 𝐻( 3
2−2s)−(Ω). From the elliptic regularity assumption we obtain that Φg ∈ 𝐻min{( 7

2−2s)−,1+r}(Ω) =
𝐻µ(Ω) with the corresponding estimate.
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– Case 𝑠 ∈ ( 3
4 ,

7
8 ]: Proceeding as the previous case, we have that Φg ∈ 𝐻3−2s(Ω) ∩ 𝐻1

0 (Ω) = ̃︀𝐻3−2s(Ω) and
thus 𝐺 ∈ 𝐻3−4s(Ω). The elliptic regularity assumption this time with 𝛾 = min{𝑟, 4 − 2𝑠} yields Φg ∈
𝐻min{5−4s,1+r}(Ω) ∩ 𝐻1

0 (Ω) ⊂ ̃︀𝐻( 3
2 )−(Ω). Continuing further, we have 𝐺 ∈ 𝐻( 3

2−2s)−(Ω), and finally that

Φg ∈ 𝐻min{( 7
2−2s)−,1+r}(Ω) = 𝐻µ(Ω), with the corresponding estimate.

– General case, 𝑠 ∈ ( 4n−1
4n , 4n+3

4n+4 ] for 𝑛 ≥ 2: We proceed as in the previous steps to obtain after a finite number

of iterations that Φg ∈ 𝐻min{( 7
2−2s)−,1+r}(Ω) = 𝐻µ(Ω) with the corresponding estimate.

The proof for the case 𝑟 < 1
2 is omitted for brevity as it follows invoking similar arguments but decomposing

(0, 1) as (0, 2−r
2 ], ( 2−r

2 , 4−r
4 ] and ∪n≥2(

2n−r
2n , 2n+2−r

2n+2 ]. �

Remark 3.5 (Polygonal domains in R
2). Let us consider two special cases in R

2. If Ω is a convex polygon in
R

2, the coefficient matrix 𝐴 and zero order term 𝑐 are smooth enough, then we obtain full elliptic regularity for
problem (3.4), i.e. 𝑟 = 1. In this case, according to Proposition 3.4,

Φg ∈ 𝐻1
0 (Ω) ∩

{︃
𝐻2(Ω) 0 < 𝑠 < 3

4 ,

𝐻(
7
2−2s)−(Ω), 3

4 ≤ 𝑠 < 1.

If, on the other hand, Ω is a L–shaped domain (e.g. (−1, 1)2 ∖ [0, 1]2), β = 0 and ℒ(·, ·) is the Dirichlet form,
then we have that 𝑟 = 2

3 and hence

Φg ∈ 𝐻1
0 (Ω) ∩

⎧
⎨
⎩
𝐻

5
3 (Ω) 0 < 𝑠 < 11

12 ,

𝐻(
7
2−2s)−(Ω), 11

12 ≤ 𝑠 < 1.

Remark 3.6 (Continuity of Φg). If the elliptic regularity index in Assumption 3.3 is above 1
2 , then Φg ∈ 𝐶(Ω)

by Sobolev embedding.

3.2. Regularity of the obstacle problem

The regularity estimates for the linear problem are instrumental to obtain regularity properties of the solution
to the obstacle problem (2.6). To achieve this, we follow the penalization ideas from ([24], Sect. IV.2), see also
[27, 32]. We begin by recalling that Assumption 2.4 guarantees, at least heuristically, that the contact set is
separated from the boundary of the domain 𝜕Ω. Of particular importance below is that, once again owing to
Assumption 2.4, it is possible to extend 𝜒 to a larger domain: we denote by 𝒲 ⊂ R

d a domain with smooth
boundary such that Ω ⋐ 𝒲 and by ℰ𝜒 ∈ 𝐶2

0 (𝒲) an extension of 𝜒 to 𝒲

ℰ𝜒|Ω = 𝜒, ℰ𝜒|Ωc ≤ 0.

The choice of 𝒲 and ℰ𝜒 is arbitrary but irrelevant for the results derived below.
Next, we assume certain regularity and compatibility between the operator and problem data.

Assumption 3.7 (Smoothness and data compatiblity). Let 𝑝 > max{2, 𝑑/(2𝑠)} in Cases A, B, and 𝑝 ≥ 2 in
Case C. We have that 𝑓 ∈ 𝐿p(Ω) and

𝐹 := b𝐿𝜒+ β · ∇𝜒+ (−𝛥)s ̃︁ℰ𝜒− 𝑓 (3.8)

is an absolutely continuous measure with respect to the Lebesgue measure and its Radon–Nikodym derivative
belongs to 𝐿p(Ω).

Furthermore, we gather the assumptions required for the regularity results obtained in Section 3.1 on the
linear problem in the next assumption.
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Assumption 3.8 (Regularity of the linear problem). The regularity results of the linear problem (3.1) obtained
in Section 3.1 are valid, i.e. we assume that

– Case A: The domain Ω is of class 𝐶∞.
– Case B: The domain Ω is of class 𝐶∞. If 𝑠 = 1

2 , the drift magnitude is sufficiently small, i.e. ‖β‖L∞(Ω,Rd) <
𝐶 1

2
, where 𝐶 1

2
is the constant in Proposition 3.2.

– Case C: The elliptic regularity assumption (Assumption 3.3) holds for an index 𝑟 ∈ ( 1
2 , 1].

Remark 3.9 (Case B). To simplify the discussion, we do not discuss the case when ‖β‖L∞(Ω,Rd) ≥ 𝐶 1
2
. How-

ever, the argumentation below extends to this case in view of the regularity property obtained in Proposition 3.2.

We prove below that the solution to the obstacle problem belongs to 𝐻σ(Ω), where

𝜎 := 𝜎(b,β, 𝑠, 𝑟) =

⎧
⎪⎨
⎪⎩

min
{︁

2𝑠,
(︀
𝑠+ 1

2

)︀−}︁
, Case A,

(︀
𝑠+ 1

2

)︀−
, Case B,

𝜇(𝑠, 𝑟), Case C,

(3.9)

where 𝜇(𝑠, 𝑟) is defined by (3.6). The first step is to analyze a penalization problem.

3.2.1. Penalization

Given 𝜀 > 0, let 𝜗ε ∈ 𝐶∞(R) be such that |𝜗ε| ≤ 1, it is non increasing and

𝜗ε(𝑡) :=

{︃
1, 𝑡 ≤ 0,

0, 𝑡 ≥ 𝜀.

Under Assumption 2.4 and for 𝑓 ∈ 𝐿2(Ω), the penalized problem constructs an approximation of 𝑢 by
𝑢ε ∈ 𝒱s,b defined as the solution to

𝒜(𝑢ε, 𝑣) = (max{𝐹, 0}𝜗ε(𝑢ε − 𝜒) + 𝑓, 𝑣)L2(Ω), ∀𝑣 ∈ 𝒱s,b, (3.10)

where 𝒜 is given by (2.5); compare with (1.1). Notice that (3.10) is a variational problem with a strictly coercive
and monotone operator on 𝒱s,b and therefore has a unique solution. The next lemma gathers properties of the
penalized solution.

Lemma 3.10 (Two–sided uniform bounds). Suppose that Assumption 2.4 holds and 𝑓 ∈ 𝐿2(Ω). Let 𝑢, 𝑢ε ∈ 𝒱s,b

be the solutions to (2.6) and (3.10), respectively. Then we have that

𝑢 ≤ 𝑢ε ≤ 𝑢+ 𝜀, 𝑎.𝑒. 𝑖𝑛 Ω.

Proof. We start by noting that for 𝑤 ∈ 𝒱s,b

ℒ(max{𝑤, 0},max{𝑤, 0}) + 𝒟(max{𝑤, 0},max{𝑤, 0}) = ℒ(𝑤,max{𝑤, 0}) + 𝒟(𝑤,max{𝑤, 0}).

Owing to ([27], Lem. 2.1, (iii)), this property also holds for 𝑎s, i.e.

𝑎s(max{𝑤, 0},max{𝑤, 0}) ≤ 𝑎s(𝑤,max{𝑤, 0}).

This together with the coercivity of 𝒜 yield

‖max{𝜒− 𝑢ε, 0}‖2
𝒱s,b

≤ bℒ(𝜒− 𝑢ε,max{𝜒− 𝑢ε, 0}) + 𝑎s(ℰ𝜒− 𝑢ε,max{ℰ𝜒− 𝑢ε, 0})𝒟(𝜒− 𝑢ε,max{𝜒− 𝑢ε, 0}).
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Hence, the definition (3.8) of 𝐹 and the relation (3.10) satisfied by 𝑢ε imply that

‖max{𝜒− 𝑢ε, 0}‖2
𝒱s,b

⪯ (𝐹,max{𝜒− 𝑢ε, 0})L2(Ω) − (max{𝐹, 0}𝜗ε(𝑢ε − 𝜒),max{𝜒− 𝑢ε, 0})L2(Ω)

⪯ (max{𝐹, 0}(1 − 𝜗ε(𝑢ε − 𝜒)),max{𝜒− 𝑢ε, 0})L2(Ω).

Observing that 𝜗ε(𝑢ε −𝜒) = 1 whenever 𝜒−𝑢ε ≥ 0, we deduce that ‖max{𝜒−𝑢ε, 0}‖𝒱s,b
= 0 and in particular

𝑢ε ≥ 𝜒 a.e. in Ω. In other words, we have that 𝑢ε ∈ 𝒦. Since 𝜗ε ≥ 0, max{𝐹, 0}𝜗ε + 𝑓 ≥ 𝑓 and therefore 𝑢ε is
a supersolution to problem (2.6) (cf. [24], Def. 5.6). Following the argumentation in the proof of Theorem 6.4
in [24], we then obtain that 𝑢ε ≥ 𝑢. This proves the first claimed inequality.

For the second inequality, we proceed similarly but invoking part (iii) of Lemma 2.3 in [27] instead of part
(iii) of Lemma 2.1 to write

‖max{𝑢ε − 𝑢− 𝜀, 0}‖2
𝒱s,b

⪯ bℒ(𝑢ε − 𝑢,max{𝑢ε − 𝑢− 𝜀, 0}) + 𝑎s(𝑢ε − 𝑢,max{𝑢ε − 𝑢− 𝜀, 0})
+ 𝒟(𝑢ε − 𝑢,max{𝑢ε − 𝑢− 𝜀, 0})

⪯ bℒ(𝑢ε,max{𝑢ε − 𝑢− 𝜀, 0}) + 𝑎s(𝑢ε,max{𝑢ε − 𝜀, 0})
+ 𝒟(𝑢ε,max{𝑢ε − 𝑢− 𝜀, 0}) − (𝑓,max{𝑢ε − 𝑢− 𝜀, 0})

⪯ (max{𝐹, 0}𝜗ε(𝑢ε − 𝜒),max{𝑢ε − 𝑢− 𝜀, 0})L2(Ω) = 0.

Therefore, we have 𝑢ε ≤ 𝑢+ 𝜀 a.e. in Ω. This completes the proof. �

We are now in position to derive the main result on the regularity of the solution to the obstacle problem.

Theorem 3.11 (Regularity of 𝑢). Suppose that Assumptions 2.4, 3.7, and 3.8 hold. Then the solution 𝑢 ∈ 𝒱s,b

of the obstacle problem (2.6) satisfies 𝑢 ∈ 𝐻σ(Ω), where 𝜎 is given by (3.9). Moreover, we have

‖𝑢‖Hσ(Ω) ⪯ ‖𝑓‖L2(Ω) + ‖max{𝐹, 0}‖L2(Ω).

Proof. It suffices to observe that under Assumptions 2.4, and 3.7, the right–hand side of the penalized problem
(3.10) belongs to 𝐿2(Ω). Whence, the conditions necessary to invoke Assumption 3.8 are fulfilled, and the
regularity results of Section 3.1 imply that 𝑢ε ∈ 𝐻σ(Ω) and that the following estimate holds

‖𝑢ε‖Hσ(Ω) ⪯ ‖𝑓‖L2(Ω) + ‖max{𝐹, 0}‖L2(Ω).

Hence, there exists a sequence {𝑢εj
}j≥0 with 𝜀j → 0 when 𝑗 → ∞ and 𝑢 ∈ 𝐻σ(Ω) such that 𝑢εj converges

weakly to 𝑢 in 𝐻σ(Ω). The compact embedding of 𝐻σ(Ω) into 𝐿2(Ω) guarantees that 𝑢εj
(up to a not relabeled

subsequence) strongly converges to 𝑢 in 𝐿2(Ω). According to Lemma 3.10, we also have that 𝑢εj converges to
𝑢 almost everywhere and so 𝑢 = 𝑢 almost everywhere thanks to the Lebesgue dominated convergence theorem.
This completes the proof. �

Remark 3.12 (Another penalization). Notice that, at least in Case C, we could have used the penalization
technique detailed in ([24], Sect. IV.5). This would allow for the more general differential operator 𝐿 with
suitable monotonicity and coercivity properties.

3.2.2. Regularity of Λ and continuity of 𝑢

The numerical approximation of the obstacle problem proposed bellow requires (i) further regularity of the
Lagrange multiplier Λ, defined in (2.7) and (ii) the validity of the complementary conditions (1.1). In view of
Theorem 2.5, the later requires the continuity of the solution to the obstacle problem. This section is devoted
to these two properties.

Let us begin by showing the regularity of the Lagrange multiplier. We propose a modification of Theorem 4.2.1
in [28] and emphasize that the latter cannot be directly applied. Indeed, the abstract Theorem 4.2.1 in [28]
requires that 𝒜(𝜒, ·) ∈ 𝒱s,b

′, which is not meaningful in our context (we can only apply (−𝛥)s to an extension
ℰ𝜒).
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Lemma 3.13 (Lewy-Stampacchia type estimate). Under Assumptions 2.4, 3.7, and 3.8 then

⟨Λ, 𝜑⟩𝒱s,b
′,𝒱s,b

≤ (max{𝐹, 0}, 𝜑)L2(Ω), ∀𝜑 ∈ 𝐶∞
0 (Ω), 𝜑 ≥ 0.

Proof. As in the proof of Theorem 3.11, we construct a subsequence 𝑢εj
strongly converging in 𝐿2(Ω) to 𝑢.

Hence, for all non-negative 𝜑 ∈ 𝐶∞
0 (Ω), we have

⟨Λ, 𝜑⟩𝒱s,b
′,𝒱s,b

=

∫︁

Ω

[︁
𝑢

(︁
b𝐿𝜑+ (−𝛥)s ̃︀𝜑− β · ∇𝜑

)︁
− 𝑓𝜑

]︁
d𝑥

= lim
j→∞

∫︁

Ω

[︁
𝑢εj

(︁
b𝐿𝜑+ (−𝛥)s ̃︀𝜑− β · ∇𝜑

)︁
− 𝑓𝜑

]︁
d𝑥

= lim
j→∞

∫︁

Ω

max{𝐹, 0}𝜗εj
(𝑢εj

− 𝜒)𝜑 d𝑥 ≤ (max{𝐹, 0}, 𝜑)L2(Ω) ,

as claimed. �

We can now derive the regularity of the Lagrange multiplier. The proof follows from Lemma 3.13 and,
essentially, repeats the arguments given in ([28], Thm. 4.2.4).

Theorem 3.14 (Regularity of Λ). Suppose that Assumptions 2.4, 3.7, and 3.8 hold. Then we have that the
Lagrange multiplier Λ, defined in (2.7), satisfies

Λ ∈ 𝐿p(Ω), ‖Λ‖Lp(Ω) ≤ ‖max{𝐹, 0}‖Lp(Ω).

Proof. Since Λ ∈ 𝒱s,b
′ and Λ ≥ 0 in the sense of distributions (Thm. 2.5), it follows from the Riesz-Schwartz

theorem (see [30], Thm. I.4.V and [35], Thm. 1.7.II) that Λ is a positive Radon measure. The Lewy-Stampacchia
estimate of Lemma 3.13 then implies that this measure is absolutely continuous with respect to the Lebesgue
measure and that its Radon-Nikodym derivative belongs to 𝐿p(Ω) (thanks to Assumption 3.7) with the asserted
estimate. �

From the above result, we deduce the continuity of the solution and, as a consequence, that the assumptions
of Theorem 2.5 are satisfied.

Theorem 3.15 (Continuity of 𝑢). Suppose that Assumptions 2.4, 3.7, and 3.8 hold. Assume in addition that,
for Case B, we have that 𝑠 ∈ (d+1

6 , 1) ∩ ( 1
2 , 1). The solution 𝑢 ∈ 𝒱s,b to the obstacle problem (2.6) has a

continuous representative in its class of equivalence.

Proof. We consider each case separately:

– Case A: Since 𝑓 ∈ 𝐿p(Ω) with 𝑝 > 𝑑/(2𝑠) the continuity follows from ([27], Thm. 1.2).

– Case B: We have that 𝑢 ∈ ̃︀𝐻(s+1/2)−(Ω) and thus

β · ∇𝑢 ∈ 𝐻(s− 1
2 )−(Ω) ⊂ 𝐿q(Ω), 𝑞 :=

2𝑑

(𝑑+ 1 − 2𝑠+ 2𝜖)
,

for every 𝜖 > 0. From Theorem 3.14 we have that Λ ∈ 𝐿p(Ω) and so

(−𝛥)s𝑢̃ = Λ + 𝑓 − β · ∇𝑢 ∈ 𝐿min{p,q}(Ω).

We also use the assumption 𝑠 > d+1
6 to deduce that 𝑞 > 𝑑/(2𝑠) provided 𝜖 is chosen sufficiently small.

Therefore, Proposition 1.4 in [29] guarantees that 𝑢 is continuous.
– Case C: Because 𝑢 ∈ 𝐻µ(Ω), its continuity directly follows by Sobolev embedding, see Remark 3.6.

This ends the proof. �
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4. Finite element approximation

Having studied problem (2.6), its properties and the regularity of its solutions, we can now present a discrete
counterpart along with its analysis. We begin by assuming without loss of generality that Ω is contained in
the unit ball of R

d. Let {𝒯h(Ω)}h>0 be a family of conforming simplicial triangulations of Ω. We assume that
these triangulations are shape-regular and quasi-uniform in the sense of [18,21] and identify ℎ with the maximal
simplex size.

Over 𝒯h(Ω) we construct Vh, the space of piecewise affine functions subordinate to 𝒯h(Ω) that vanish on 𝜕Ω.
An instrumental tool for the analysis that we shall perform is the use of 𝐼h, the positivity preserving interpolant
introduced in ([17], Sect. 3). For convenience we recall some of its basic properties and establish a stability
estimate for it in fractional Sobolev spaces of order 𝛽 ∈ (0, 3

2 ).

Proposition 4.1 (Properties of 𝐼h). Let 𝐼h : 𝐿1(Ω) → Vh be the positivity preserving interpolation operator of
[17]. This operator satisfies:

1. Positivity: If 𝑤 ≥ 0 a.e. in Ω, then 𝐼h𝑤 ≥ 0.
2. 𝐿2(Ω)–approximation: If 𝑤 ∈ 𝐻1

0 (Ω) ∩𝐻β(Ω) with 𝛽 ∈ [1, 2], then

‖𝑤 − 𝐼h𝑤‖L2(Ω) ⪯ ℎβ‖𝑤‖Hβ(Ω).

3. 𝒱s,b–approximation: If 𝑤 ∈ 𝐻1
0 (Ω) ∩𝐻β(Ω) with 𝛽 ∈ [1, 2], then

‖𝑤 − 𝐼h𝑤‖ ̃︀Hs(Ω) ⪯ ℎβ−s‖𝑤‖Hβ(Ω), and ‖𝑤 − 𝐼h𝑤‖H1
0 (Ω) ⪯ ℎβ−1‖𝑤‖Hβ(Ω).

4. Stability: If 𝑤 ∈ ̃︀𝐻β(Ω) with 𝛽 ∈ (0, 3
2 ), then we have

‖𝐼h𝑤‖ ̃︀Hβ(Ω) ⪯ ‖𝑤‖ ̃︀Hβ(Ω).

where, in all estimates, the hidden constants depend only on the shape-regularity of the mesh and the constants
in the last two inequalities also depend on the quasi-uniformity.

Proof. The positivity follows from its definition, see [17].
The 𝐿2(Ω)–approximation property of 𝐼h is derived as follows. From ([17], Lem. 3.2), we have that

‖𝑤 − 𝐼h𝑤‖L2(Ω) ⪯ ℎ‖∇𝑤‖L2(Ω), ∀𝑤 ∈ 𝐻1
0 (Ω),

and that

‖𝑤 − 𝐼h𝑤‖L2(Ω) ⪯ ℎ2‖𝐷2𝑤‖L2(Ω), ∀𝑤 ∈ 𝐻1
0 (Ω) ∩𝐻2(Ω).

Consequently, interpolating these results we obtain that for 𝛽 ∈ [1, 2]

‖𝑤 − 𝐼h𝑤‖L2(Ω) ⪯ ℎβ‖𝑤‖Hβ(Ω), ∀𝑤 ∈ 𝐻1
0 (Ω) ∩𝐻β(Ω).

We now discuss the 𝒱s,b–approximation properties. Since we have already established the 𝐿2(Ω)–
approximation property, it suffices to focus on 𝐻1

0 (Ω). This estimate follows from its stability and the 𝐿2(Ω)–
approximation property. Indeed, let 𝑆h : 𝐻1

0 (Ω) → Vh be the the Scott-Zhang operator [31] and use an inverse
inequality to write

‖∇(𝑤 − 𝐼h𝑤)‖L2(Ω) ⪯ ‖∇(𝑤 − 𝑆h𝑤)‖L2(Ω) + ℎ−1
(︀
‖𝑤 − 𝑆h‖L2(Ω) + ‖𝑤 − 𝐼h𝑤‖L2(Ω)

)︀
.

The 𝐻1
0 (Ω)–approximation property now follows from the approximation properties of 𝑆h in 𝐿2(Ω) and 𝐻1

0 (Ω)
and those of 𝐼h in 𝐿2(Ω).
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To show the, final, stability property we proceed as follows

‖𝐼h𝑤‖ ̃︀Hβ(Ω) ≤ ‖𝑆h𝑤‖ ̃︀Hβ(Ω) + ‖𝐼h𝑤 − 𝑆h𝑤‖ ̃︀Hβ(Ω)

⪯ ‖𝑤‖ ̃︀Hβ(Ω) + ℎ−β‖𝐼h𝑤 − 𝑆h𝑤‖L2(Ω)

⪯ ‖𝑤‖ ̃︀Hβ(Ω) + ℎ−β‖𝑤 − 𝐼h𝑤‖L2(Ω) + ℎ−β‖𝑤 − 𝑆h𝑤‖L2(Ω)

⪯ ‖𝑤‖ ̃︀Hβ(Ω) + ℎ−β‖𝑤 − 𝐼h𝑤‖L2(Ω),

where we used an inverse inequality between ̃︀𝐻β(Ω) and 𝐿2(Ω) and the stability and approximation properties
on fractional Sobolev spaces of 𝑆h ([9], Lem. 7.6). It remains to invoke the already proven 𝐿2(Ω)–approximation
estimate. Notice that the inverse inequality used above holds thanks to the norm equivalence property

‖𝑣h‖ ̃︀Hβ(Ω) ≍ ‖𝑣h‖Ḣβ(Ω) ≍ ‖𝑣h‖Ḣβ
h (Ω), 𝑣h ∈ Vh, 𝛽 ∈ [0, 3

2 ),

discussed in Remark 2.2 and in Proposition 3.10 of [37]; see also [7]. Here

‖𝑣h‖Ḣβ
h (Ω) :=

⎛
⎝

ℳh∑︁

j=1

𝜆β
j,h|(𝑣h, 𝜓j,h)|2

⎞
⎠

1/2

,

ℳh denotes the dimension of Vh and {𝜆j,h, 𝜓j,h} is the set of discrete eigenpairs of the Dirichlet form, i.e.

(∇𝜓j,h,∇𝜑h)L2(Ω) = 𝜆j,h(𝜓j,h, 𝜑h)L2(Ω), ∀𝜑h ∈ Vh.

�

The Chen-Nochetto interpolant 𝐼h allows us to define the discrete admissible set

Kh := {𝑤h ∈ Vh : 𝑤h ≥ 𝐼h𝜒, 𝑎.𝑒. in Ω} ;

compare with (2.4). Observe that

𝑤 ∈ 𝒦 implies 𝐼h𝑤 ∈ Kh. (4.1)

4.1. Numerical approximation of as

The nonlocal operator (−𝛥)s included in 𝒜 involves the integration of a singular kernel over all of R
d. For

its approximation, we proceed with a discrete bilinear form as originally proposed in [9]. The main idea behind
this approach is the equivalent representation of the bilinear form 𝑎s that was shown in ([9], Thm. 4.1)

𝑎s(𝑣, 𝑤) =
2 sin(𝜋𝑠)

𝜋

∫︁ ∞

0

𝑡2−2s(−𝛥(𝐼 − 𝑡2𝛥)−1̃︀𝑣, ̃︀𝑤)L2(Rd)

d𝑡

𝑡
, 𝑣, 𝑤 ∈ ̃︀𝐻s(Ω), (4.2)

where the operators 𝛥 and (𝐼 − 𝑡2𝛥)−1 inside the integrals are acting on functions defined over R
d so that the

inverse is understood in Fourier sense, i.e.

ℱ
(︀
(𝐼 − 𝑡2𝛥)−1𝑤

)︀
=

1

1 + 𝑡2|𝜉|2ℱ(𝑤).
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For 𝑤 ∈ 𝐿2(Rd) let us now denote 𝜂w(𝑡) := −𝑡2𝛥(𝐼− 𝑡2𝛥)−1𝑤. The numerical scheme developed in [9] proceeds
in three steps:

1. Sinc quadrature: We introduce the change of variables 𝑡 = 𝑒−y/2 in (4.2) and apply a truncated equally
spaced quadrature. Let 𝑘 > 0 and set

𝑦j := 𝑗𝑘, 𝑗 ∈ [−𝑁−, 𝑁+] ∩ Z, 𝑁+ :=

⌈︂
𝜋2

2𝑘2(1 − 𝑠)

⌉︂
, 𝑁− :=

⌈︂
𝜋2

4𝑠𝑘2

⌉︂
,

to obtain the approximate bilinear form on ̃︀𝐻s(Ω)

𝑎k
s(𝑣, 𝑤) :=

sin(𝜋𝑠)𝑘

𝜋

N+∑︁

j=−N−

𝑒syj (𝜂v(𝑒−yj/2), ̃︀𝑤)L2(Rd). (4.3)

We refer to [25] for a review of the sinc quadrature and to [10] for their approximations for these specific
integrals.

2. Truncation: The representation (4.3) involves the computation of 𝜂v via a partial differential equation defined
over R

d. We approximate this function by the solution of an associated problem defined on a bounded domain.
Let 𝐵 the unit ball of R

d. Recall that, by assumption Ω ⊂ 𝐵. For a parameter 𝑀 we define the dilated
domains

𝐵M (𝑡) =

⎧
⎨
⎩
{(1 + 𝑡(1 +𝑀))𝑥 : 𝑥 ∈ 𝐵} , 𝑡 ≥ 1,

{(2 +𝑀)𝑥 : 𝑥 ∈ 𝐵} , 𝑡 < 1.
(4.4)

Upon noticing that, for any 𝑤 ∈ 𝐿2(Ω), we can equivalently write 𝜂w(𝑡) = ̃︀𝑤−(𝐼−𝑡2𝛥)−1 ̃︀𝑤, we approximate
𝜂w by 𝜂M

w := ̃︀𝑤 + 𝜉M
w (𝑡), where 𝜉M

w (𝑡) ∈ 𝐻1
0 (𝐵M (𝑡)) solves

∫︁

BM (t)

(︀
𝜉M
w (𝑡)𝜑+ 𝑡2∇𝜉M

w (𝑡)∇𝜑
)︀

d𝑥 = −
∫︁

Ω

𝑤𝜑d𝑥, ∀𝜑 ∈ 𝐻1
0 (𝐵M (𝑡)). (4.5)

These considerations give rise to the following bilinear form on ̃︀𝐻s(Ω):

𝑎k,M
s (𝑣, 𝑤) :=

sin(𝜋𝑠)𝑘

𝜋

N+∑︁

j=−N−

𝑒syj (𝜂M
v (𝑒−yj/2), ̃︀𝑤)

L2(BM (e−yj/2))
. (4.6)

3. Discretization: It remains to discretize problem (4.5) in space. For a fixed 𝑡, we let 𝒯h(𝑡) be a conforming
shape-regular and quasi-uniform triangulation of 𝐵M (𝑡) made of simplices (possibly curved to match the
boundary of 𝐵M (𝑡)). We require that 𝒯h(𝑡) restricted to Ω coincides with 𝒯h(Ω). Over 𝒯h(𝑡) we define V

M
h (𝑡)

to be the space of piecewise affine functions subordinate to 𝒯h(𝑡), that vanish on 𝜕𝐵M (𝑡). Notice that, if
𝑤h ∈ Vh, then ̃︀𝑤h ∈ V

M
h (𝑡). We thus approximate (4.5) by 𝜉M

h,w(𝑡) ∈ V
M
h (𝑡) that solves

∫︁

BM (t)

(︀
𝜉M
h,w(𝑡)𝜑h + 𝑡2∇𝜉M

h,w(𝑡)∇𝜑h

)︀
d𝑥 = −

∫︁

Ω

𝑤𝜑h d𝑥, ∀𝜑h ∈ V
M
h (𝑡). (4.7)

This gives rise to the fully discrete bilinear form on Vh

𝑎k,M
s,h (𝑣h, 𝑤h) :=

sin(𝜋𝑠)𝑘

𝜋

N+∑︁

j=−N−

𝑒syj (𝜂M
h,vh

(𝑒−yj/2), ̃︀𝑤h)L2(BM (t)) (4.8)

with 𝜂M
h,vh

:= ̃︀𝑣h + 𝜉h,vh
.
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We end this section by recalling properties of the bilinear form 𝑎k,M
s,h used in the analysis below. The consis-

tency error incurred in approximating the bilinear form 𝑎s by its fully discrete (and computable) counterpart
𝑎k,M

s,h is analyzed in [9]: for 𝛽 ∈ (𝑠, 3
2 ) we have that

sup
0 ̸=vh,0 ̸=wh∈Vh

⃒⃒
⃒𝑎s(𝑣h, 𝑤h) − 𝑎k,M

s,h (𝑣h, 𝑤h)
⃒⃒
⃒

‖𝑣h‖ ̃︀Hβ(Ω)‖𝑤h‖ ̃︀Hs(Ω)

⪯ 𝑒−c1/k + 𝑒−c2M + ℎβ−s| log ℎ|. (4.9)

It is also possible to show, see ([9], Thm. 7.2), that provided the sinc-quadrature spacing 𝑘 is sufficiently small,

the bilinear form 𝑎k,M
s,h is coercive on Vh ⊂ ̃︀𝐻β(Ω) for all 𝛽 ∈ [0, 3

2 ). More precisely, if 𝐶 denotes the implicit
constant in (4.9) and we assume that

𝐶𝑒c1/kℎs−1 < 1, (4.10)

then we have

‖𝑤h‖2
̃︀Hs(Ω)

⪯ 𝑎k,M
s,h (𝑤h, 𝑤h), ∀𝑤h ∈ Vh, (4.11)

where the implicit constant does not depend on ℎ.

4.2. The numerical scheme and its error analysis

We are now in position to define a computable discrete bilinear form approximating 𝒜. For 𝑣h, 𝑤h ∈ Vh ×Vh

we set

𝒜h(𝑣h, 𝑤h) := bℒ(𝑣h, 𝑤h) + 𝒟(𝑣h, 𝑤h) + 𝑎k,M
s,h (𝑣h, 𝑤h),

where 𝑎k,M
s,h is the bilinear form defined in (4.8). This bilinear form is continuous. It is also coercive, namely

‖𝑤h‖2
𝒱s,b

⪯ 𝒜h(𝑤h, 𝑤h), ∀𝑤h ∈ Vh, (4.12)

with an implicit constant that is independent of ℎ, provided that the quadrature spacing 𝑘 satisfies (4.10) for
the coercivity (4.11) of 𝑎k,M

s,h to hold.
With this notation the discrete obstacle problem reads: find 𝑢h ∈ Kh such that

𝒜h(𝑢h, 𝑢h − 𝑣h) ≤ (𝑓, 𝑢h − 𝑣h)L2(Ω), ∀𝑣h ∈ Kh. (4.13)

Once again, the Lions–Stampacchia theorem ensures the existence and uniqueness of a solution 𝑢h ∈ Kh.
The regularity results developed in Section 3 are now brought into play to derive estimates on the error

‖𝑢− 𝑢h‖𝒱s,b
. Recall that Theorem 3.11 guarantees 𝑢 ∈ 𝐻σ(Ω), where 𝜎 is given by (3.9). Therefore, we expect

from interpolation theory (Part 3 of Prop. 4.1) a rate of convergence when measuring the error in the 𝒱s,b–norm
to be

𝜎* := 𝜎*(b,β, 𝑠, 𝑟) =

⎧
⎨
⎩

min
{︁
𝑠,

(︀
1
2

)︀−}︁
, Cases A and B,

𝜇(𝑠, 𝑟) − 1, Case C,
(4.14)

where 𝜇 is defined in (3.6). However, the convergence of the proposed algorithm is restricted by the consistency
error discussed above. This is the object of the next result.

Theorem 4.2 (Rate of convergence). Suppose that Assumptions 2.4, 3.7, and 3.8 hold. Assume in addition
that, for Case B, we have that 𝑠 ∈ (d+1

6 , 1)∩( 1
2 , 1). Let 𝑢 ∈ 𝒱s,b be the solution to (2.6) and 𝑢h ∈ Vh the solution

to the discrete counterpart (4.13). In addition, assume that 𝑘 ≍ | log(ℎ)| and 𝑀 = | log(ℎ)| are such that (4.10)
holds. In this setting, and with this notation, we have

‖𝑢− 𝑢h‖𝒱s,b ⪯ ℎmin{σ*,( 3
2−s)−}| log ℎ|

(︀
‖𝑓‖L2(Ω) + ‖max{𝐹, 0}‖L2(Ω) + ‖𝜒‖Hσ(Ω)

)︀
.
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Proof. We proceed in several steps.
1 Let 𝑣h ∈ Kh. The discrete coercivity (4.12), the continuity of 𝒜(·, ·) and the discrete obstacle system

(4.13) satisfied by 𝑢h yield

‖𝑣h − 𝑢h‖2
𝒱s,b

⪯ 𝒜h(𝑣h − 𝑢h, 𝑣h − 𝑢h) ⪯ (𝒜−𝒜h)(𝑣h, 𝑢h − 𝑣h) + 𝒜(𝑢− 𝑣h, 𝑢h − 𝑣h)

+ 𝒜h(𝑢h, 𝑢h − 𝑣h) −𝒜(𝑢, 𝑢h − 𝑣h)

⪯ (𝒜−𝒜h)(𝑣h, 𝑢h − 𝑣h) + ‖𝑢− 𝑣h‖𝒱s,b
‖𝑢h − 𝑣h‖𝒱s,b

+ (𝑓, 𝑢h − 𝑣h)L2(Ω) −𝒜(𝑢, 𝑢h − 𝑣h).

Incorporating the definition (2.7) of the Lagrange multiplier Λ as well as the definition of the forms 𝒜 and 𝒜h,
we arrive at

‖𝑢− 𝑢h‖2
𝒱s,b

⪯ ‖𝑢− 𝑣h‖2
𝒱s,b

+ (𝑎s − 𝑎k,M
s,h )(𝑣h, 𝑢h − 𝑣h) + ⟨Λ, 𝑣h − 𝑢h⟩𝒱s,b

′,𝒱s,b
,

for every 𝑣h ∈ Kh. We fix 𝑣h = 𝐼h𝑢 and invoke the interpolation properties of 𝐼h obtained in Proposition 4.1,
in conjunction with the regularity estimates 𝑢 ∈ 𝐻σ(Ω) of Theorem 3.11, to deduce that

‖𝑢− 𝑢h‖2
𝒱s,b

⪯ ℎ2σ*‖𝑢‖2
Hσ(Ω) + (𝑎s − 𝑎k,M

s,h )(𝐼h𝑢, 𝑢h − 𝐼h𝑢) + ⟨Λ, 𝐼h𝑢− 𝑢h⟩𝒱s,b
′,𝒱s,b

, (4.15)

where 𝜎* is given by (4.14).

2 We now estimate the second term on the right and side of (4.15). It directly relates to the consistency

error (4.9) and satisfies for 𝑘 ≍ | log(ℎ)|, 𝑀 ≍ | log(ℎ)| and 𝛽 = min{𝜎,
(︀

3
2

)︀−}

(𝑎s − 𝑎k,M
s,h )(𝐼h𝑢, 𝑢h − 𝐼h𝑢) ⪯ ℎmin{σ,( 3

2 )
−
}−s| log ℎ|‖𝐼h𝑢‖

̃︀H
min{σ,( 3

2 )
−

}
(Ω)

‖𝑢h − 𝐼h𝑢‖ ̃︀Hs(Ω).

Since Proposition 4.1 gives us stability and interpolation error estimates for 𝐼h, and Remark 2.2 gives a norm
equivalence property, we are able to obtain that

(𝑎s − 𝑎k,M
s,h )(𝐼h𝑢, 𝑢h − 𝐼h𝑢) ⪯

(︂
1 +

1

𝜖

)︂
ℎ2(min{σ*,( 3

2−s)−})| log ℎ|2‖𝑢‖2
Hσ(Ω)

+ 𝜖‖𝑢− 𝑢h‖2
̃︀Hs(Ω)

,

for every 𝜖 > 0. Notice that we used the relation 𝜎* ≤ 𝜎 − 𝑠. Returning to (4.15) we obtain

‖𝑢− 𝑢h‖2
𝒱s,b

⪯ ℎ2(min{σ*,( 3
2−s)−})| log ℎ|2‖𝑢‖2

Hσ(Ω) + ⟨Λ, 𝐼h𝑢− 𝑢h⟩𝒱s,b
′,𝒱s,b

. (4.16)

3 It remains to bound last term on the right hand side of (4.16) involving the Lagrange multiplier Λ. We
notice, first of all, that owing to Theorem 3.14, we can replace the duality pairing here with an 𝐿2(Ω)–inner
product. Thus, we write

⟨Λ, 𝐼h𝑢− 𝑢h⟩𝒱s,b
′,𝒱s,b

= (Λ, 𝐼h𝑢− 𝑢h)L2(Ω)

= (Λ, 𝐼h(𝑢− 𝜒) − (𝑢− 𝜒))L2(Ω) + (Λ, 𝑢− 𝜒)L2(Ω)

+ (Λ, 𝐼h𝜒− 𝑢h)L2(Ω) .

In addition, from Theorem 3.15 we conclude that Theorem 2.5 holds, and so we have that the compatibility
conditions are satisfied. This implies that

(Λ, 𝑢− 𝜒)L2(Ω) = 0
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and that Λ ≥ 0 a.e. in Ω. In addition, since 𝑢h ∈ Kh implies 𝐼h𝜒− 𝑢h ≤ 0, this leads to

(Λ, 𝐼h𝜒− 𝑢h)L2(Ω) ≤ 0.

Gathering the above three relations we deduce that

(Λ, 𝐼h𝑢− 𝑢h)L2(Ω) ≤ (Λ, 𝐼h(𝑢− 𝜒) − (𝑢− 𝜒))L2(Ω) .

To conclude, we once again invoke the interpolation estimates to write

(Λ, 𝐼h𝑢− 𝑢h)L2(Ω) ≤ ‖Λ‖L2(Ω)‖𝐼h(𝑢− 𝜒) − (𝑢− 𝜒)‖L2(Ω)

⪯ ℎσ
(︀
‖𝑢‖Hσ(Ω) + ‖𝜒‖Hσ(Ω)

)︀
‖Λ‖L2(Ω).

4 Since 𝜎* ≤ 𝜎/2, substituting the previous inequality in (4.16) yields

‖𝑢− 𝑢h‖𝒱s,b
⪯ ℎmin{σ*,( 3

2−s)−}| log ℎ|
(︀
‖𝑢‖Hσ(Ω) + ‖𝜒‖Hσ(Ω) + ‖max{𝐹, 0}‖L2(Ω)

)︀
.

It remains to use the regularity estimate of Theorems 3.11 and 3.14 to express the right hand side of this
estimate in terms of the data. This concludes the proof. �

5. Numerical illustrations

In this section we carry out a series of numerical examples that illustrate and go beyond our theory.

5.1. Numerical Implementation

We implement the numerical algorithm using the deal.II finite element library [3]. For our one dimensional
examples we use continuous piecewise linear finite elements subordinate to a uniform subdivision in Ω. In two
dimensions, we use bilinear quadrilateral elements subordinate to a regular (in the sense of [18]) subdivision in
Ω.

5.1.1. Mesh generation

We recall that we assume (without loss of generality) that the domain Ω is a subset of the unit ball 𝐵. We
start with a quasi-uniform subdivision 𝒯h of 𝐵 matching 𝜕Ω and where ℎ denotes the largest diameter among
all the elements in 𝒯h. Motivated by the exponential decay of the solution to the elliptic problem (4.5) in the
larger ball 𝐵M (𝑡) ([4], Lem. 2.1), an exponentially graded extension to 𝐵M (𝑡) of the subdivision 𝒯h is advocated
as in ([9], Sect. 8.2). Notice that such subdivisions violate the shape-regularity and quasiuniformity conditions
required in step 3 of Section 4.1. However, the advantage of such non-uniform partitions is to keep the dimension
of V

M (𝑡) approximatively constant in 𝑡.

5.1.2. The discrete problem

Let ℳh,t be the dimension of V
M
h (𝑡) and recall that ℳh is the dimension of Vh. Let Ψ

̃︀
and 𝐹

̃︀
∈ R

ℳh be
the coefficient vectors of 𝐼h𝜒 and the 𝐿2(Ω) projection of 𝑓 onto Vh, respectively. We want to find the discrete
solution 𝑈

̃︀
∈ R

ℳh and the discrete Lagrange multiplier Λ
̃︀
∈ R

ℳh satisfying

𝑆
̃︀
𝑈
̃︀

+ Λ
̃︀

= 𝐹
̃︀
,

𝑈
̃︀

i ≥ Ψ
̃︀

i, Λ
̃︀

i ≥ 0, and Λ
̃︀

i(𝑈
̃︀

i − Ψ
̃︀

i) = 0, for 𝑖 = 1, 2, . . . ,ℳh.

Here 𝑆
̃︀

is the system matrix corresponding to the bilinear form 𝒜h and is given by

𝑆
̃︀

= 𝜎𝐴
̃︀0 +𝐴

̃︀β +
sin (𝜋𝑠)𝑘

𝜋
𝑀
̃︁0𝑅̃︀

N+∑︁

i=−N−

𝑒syi(𝑒yi𝑀
̃︁i +𝐴

̃︀ i)
−1𝐴

̃︀ i𝐸̃︀
,
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where

– 𝐴
̃︀0,𝑀̃︁0, 𝐴̃︀β ∈ R

ℳh×ℳh are the stiffness, mass and advection matrices in the finite element space Vh;

– 𝐴
̃︀ i,𝑀̃︁i ∈ R

ℳh,t×ℳh,t are stiffness and mass matrices in the finite element space V
M
h (𝑡);

– 𝐸
̃︀

: R
ℳh → R

ℳh,t is the zero extension operator and 𝑅
̃︀

: R
ℳh,t → R

ℳh is the restriction operator.

The above discrete problem is solved with the primal-dual active set method ([5], Sect. 5.3) briefly recalled
now. Let (𝑈

̃︀
0,Λ

̃︀
0) ∈ R

ℳh ×R
ℳh and 𝜌 be a positive constant. Compute iteratively (𝑈

̃︀
k+1,Λ

̃︀
k+1), 𝑘 ≥ 0, as the

solution to (︂
𝑆̃︀ (𝐼̃︀

k)
⊺

𝐼̃︀
k 0

)︂ ⎛
⎝
𝑈
̃︀

k+1

Λ
̃︀

k+1

⎞
⎠ =

⎛
⎝
𝐹
̃︀
𝐼
̃︀

kΨ
̃︀

⎞
⎠ , (5.1)

where 𝐼
̃︀

k ∈ R
|A k|×ℳh is defined by

(𝐼
̃︀

k)ij =

{︃
1, if 𝑗 = A

k
i ,

0, otherwise,

and A
k is the vector of ordered current active set of indices given by

A
k
i := argmin

Λ
̃︀j+ρ(U

̃︀
k−Ψ

̃︀
)j<0

A
k
l ̸=j, l<j

𝑗. (5.2)

Given a tolerance 𝜖stop, we stop the iteration process when ‖𝑈
̃︀

k+1 − 𝑈
̃︀

k‖h,b < 𝜖stop, where for 𝑤h ∈ Vh,

‖𝑤h‖h,b :=
(︁
𝑎k,M

s,h (𝑤h, 𝑤h) + b‖∇𝑤h‖2
L2(Ω)

)︁1/2

.

The discrete system (5.1) is solved using a Schur complement method, i.e. we determine Λ
̃︀

k+1 via

[𝐼
̃︀

k𝑆
̃︀
−1(𝐼

̃︀
k)

⊺

]Λk+1 = 𝐼
̃︀

k(𝑆
̃︀
−1𝐹 − Ψ

̃︀
) (5.3)

and then we compute 𝑈
̃︀

k+1 from

𝑈
̃︀

k+1 = 𝑆
̃︀
−1[𝐹

̃︀
− (𝐼

̃︀
k)

⊺

Λ
̃︀

k+1]. (5.4)

The evaluation of 𝑆
̃︀
−1 in (5.3) and (5.4) is approximated using a preconditioned conjugate gradient (when

β ≡ 0) or BI-CGSTAB (when β ̸= 0). Depending on the value of b, different preconditioners are applied. When

b = 0 (Cases A and B), the bilinear form 𝒜(·, ·) is equivalent to the ̃︀𝐻s(Ω) norm squared and we use the inverse
of the discrete spectral fractional Laplacian; see ([6,9], Sect. 8.2) for details. Otherwise, when b = 1 or Case C,
we use the multilevel preconditioner introduced in [13]: Let 𝑗 be the mesh level and 𝜑i for 𝑖 = 1, . . . ,ℳhj

be

the nodal basis for Vhj
. We define a sequence of approximation operators ̃︀𝑄j : 𝐿2(Ω) → Vhj

by

̃︀𝑄j𝑤 :=

ℳhj∑︁

i=1

(𝑤, 𝜑i)L2(Ω)

(1, 𝜑i)L2(Ω)
𝜑i.

If 𝐽 denotes the finest mesh level, the preconditioner is given by

𝐵J :=

J−1∑︁

j=1

(𝐴ℎ−2
j + ℎ−2s

j )−1( ̃︀𝑄j+1 − ̃︀𝑄j)
2,

where 𝐴 is a constant related to the magnitude of the diffusion coefficient matrix 𝐴.
System (5.3) is solved, again, with an iterative scheme. We use conjugate gradients (β ≡ 0) or BI-CGSTAB

(β ̸= 0), but this time without preconditioner.
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Figure 1. Decay rate of the discrete energy error for the finite element approximation to
problem (2.6). Case A (left), Case B (middle), Case C (right). Note that the case 𝑠 = 0.5 for
Case B is not included in the theory developed here.
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Figure 2. Finite element approximations to (2.6) for Case A (left), Case B (middle), and
Case C (right). In each figure, the obstacle is depicted in black (negative part not depicted),
the approximate solutions for 𝑠 = 0.3 is in red, for 𝑠 = 0.5 in blue and for 𝑠 = 0.7 in green.
Notice that we do not report the case 𝑠 = 0.3 when there is a drift, since it falls outside the
scope of this work, see Proposition 2.3. We also note that the case 𝑠 = 0.5 for Case B is not
included in the theory developed here.

5.2. One dimensional convergence tests

Set Ω = (−1, 1), 𝜒(𝑥) = 3 − 6𝑥2 and 𝑓(𝑥) = 1 and the bilinear form ℒ(·, ·) to be the Dirichlet form (3.5).
The initial subdivision consists of two elements of equal sizes so that ℎ0 = 1

2 and ℎj = ℎ0/2
j , 𝑗 = 1, 2, · · · . In

addition, for Cases B and C we will set β = 1
2 .

The computation of 𝑎k,M
s,h (·, ·) is carried out with a spacing 𝑘 = 0.2 and truncation parameter 𝑀 = 5 so that

the finite element approximation dominates the total error.

Since the exact solution is not known to us, as a measure of the error we compute, for 𝑗 = 1, . . . , 4, we use
the discrete energy error

𝑒j := ‖𝑢hj − 𝑢ref‖h,b, (5.5)

where 𝑢ref is a finite element approximation over a very refined mesh. In this case, we set 𝑢ref = 𝑢h9
. Figure 1

illustrates the decay rate in all the situations and for different values of 𝑠. In the pure fractional diffusion case
(left), the observed rates 𝒪(ℎ1/2) matches the prediction of Theorem 4.2 when 𝑠 ≥ 1

2 . However, this rate is
observed as well for 𝑠 = 0.3 although Theorem 4.2 only guarantees 𝒪(ℎ0.3). In the case of fractional diffusion
with drift (middle), the observed rate of convergence is approximately 𝒪(ℎ1/2) for 𝑠 = 0.5, 0.7 as predicted by
Theorem 4.2. The observed rates for the integro–differential case (right) are in accordance with Theorem 4.2.

To appreciate the combined effect of the order of the fractional Laplacian, the drift, and the second order
operator, Figure 2 depicts the solutions in different settings.
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Figure 3. Case A: Pure fractional diffusion case in the unit ball. Plot of 𝑢h6 for 𝑠 = 0.3 (left),
𝑠 = 0.5 (mid), 𝑠 = 0.7 (right).
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Figure 4. Case B: Fractional diffusion case with drift. Plot of 𝑢h6
for 𝑠 = 0.5 (left). Plot of

the solution for 𝑠 = 0.7 (middle). Cut along the 𝑥-axis (right). Note that the case 𝑠 = 0.5 is
not included in the theory developed here.

5.3. Two dimensional qualitative experiments

In all the two dimensional examples presented in this section, we compute 𝑎k,M
s,h (·, ·) with 𝑘 = 0.25 and 𝑀 = 4.

5.3.1. Unit ball domain

We set Ω to be the unit ball, 𝜒(𝑥) = 3 − 6|𝑥|2 and, for each case, we consider the following data:

– Case A, pure fractional diffusion: 𝑓 ≡ 1. The results are shown in Figure 3.
– Case B, fractional diffusion with drift: β = (− 1

2 , 0)⊺, and

𝑓(𝑥, 𝑦) =

⎧
⎨
⎩

2, (𝑥− 1
2 )2 + 𝑦2 < 1

4 ,

0, (𝑥− 1
2 )2 + 𝑦2 ≥ 1

4 .

The approximate solution is shown in Figure 4.
– Case C, integro–differential case: 𝐴 = 0.3ℐ, 𝑐 ≡ 0, β = (− 1

2 , 0)⊺, and 𝑓 ≡ 1. The approximate solution is
shown in Figure 5.

The coarse subdivision of Ω is described in [9] and uniform refinements are performed to create a sequence
of meshes 𝒯hj , 𝑗 ≥ 1.

The errors are computed using an overrefined solution 𝑢ref = 𝑢h6
and we report the observed rate of con-

vergence OROC := log(𝑒2/𝑒3)/ log(2) in Table 1. We note that the pure fractional diffusion case exhibits an
observed the rate of convergence of 𝒪(ℎ0.6), slightly better than predicted while for the other two cases matches
the predictions of Theorem 4.2.
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Figure 5. Case B: Integro–differential case in the unit ball. From left to right: plot of 𝑢h6 for
𝑠 = 0.3, 𝑠 = 0.5, 𝑠 = 0.7. Right: cut of along the 𝑥-axis.

Table 1. OROC for different cases and different values of the fractional power 𝑠.

s = 0.3 s = 0.5 s = 0.7

Case A 0.57 0.60 0.67
Case B N/A 0.59 0.70
Case C 1.00 0.97 0.89

Figure 6. Solution for pure fractional diffusion case in a L–shaped domain. Plot of the solution
for 𝑠 = 0.3 (left), 𝑠 = 0.5 (middle), 𝑠 = 0.7 (right).

5.3.2. L–shaped domain

We now focus our attention to non–smooth domains and consider the standard L–shaped domain, i.e. Ω =
(− 1

2 ,
1
2 )2 ∖ (0, 1

2 )2. We set 𝜒(𝑥, 𝑦) = 162𝑥(𝑥+ 1
2 )𝑦(𝑦 − 1

2 ), and 𝑓 ≡ 1. We consider the following two settings:

– Case A, pure fractional diffusion in a non–smooth domain: Despite the fact that the theory developed in
this work requires smooth domains, we provide numerical observations in Figure 6.

– Case C, integro–differential case: 𝐴 = 0.3ℐ, 𝑐 ≡ 0, and β = 0. The numerical results are gathered in Figure 7.

The coarse subdivision of Ω consists of 12 squares each of diameter
√

2/4. Uniform refinements are performed
to create a sequence of meshes 𝒯hj , 𝑗 ≥ 1.

The errors are computed using as reference solution 𝑢ref = 𝑢h4
. We report the observed rate of convergence

OROC := log(𝑒1/𝑒2)/ log(2) in Table 2. In all cases, the observed rate of convergence is better than the prediction
given by Theorem 4.2. We suppose that this is due to the use of a finer approximate solution to estimate the
error.
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Figure 7. Solution for the integro–differential case in a L–shaped domain. From left to right:
plot of the solution for 𝑠 = 0.3, 𝑠 = 0.5, 𝑠 = 0.7. Right: section of the solution along 𝑥 = −0.25.

Table 2. OROC for different cases and different values of the fractional power 𝑠.

s = 0.3 s = 0.5 s = 0.7

Case A 0.66 1.09 1.29
Case B 1.00 1.01 1.02

Acknowledgements. AB has been supported in part by NSF grant DMS-1817691. WL has been supported in part by
NSF grant DMS-1254618. AJS has been supported in part by NSF grant DMS-1720213.

References

[1] G. Acosta and J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations.
SIAM J. Numer. Anal. 55 (2017) 472–495.

[2] G. Acosta, F.M. Bersetche and J.P. Borthagaray, A short FE implementation for a 2D homogeneous Dirichlet problem of a
fractional Laplacian. Comput. Math. Appl. 74 (2017) 784–816.

[3] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann,
M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin and D. Wells, The deal.II library, version 9.0. J. Numer. Math. 26

(2018) 173–183.

[4] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and P. Tchamitchian, The solution of the Kato square root problem for second
order elliptic operators on Rn. Ann. Math. 156 (2002) 633–654.

[5] S. Bartels, Numerical methods for nonlinear partial differential equations. In: Vol. 47 of Springer Series in Computational
Mathematics. Springer, Cham (2015).

[6] A. Bonito and J.E. Pasciak, Numerical approximation of fractional powers of elliptic operators. Math. Comp. 84 (2015)
2083–2110.

[7] A. Bonito and J.E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer.
Anal. 37 (2017) 1245–1273.
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38 (2004) 37–71.

[27] R. Musina, A.I. Nazarov and K. Sreenadh, Variational inequalities for the fractional Laplacian. Potential Anal. 46 (2017)
485–498.

[28] J.-F. Rodrigues, Obstacle problems in mathematical physics, 114, Notas de Matemática [Mathematical Notes]. In: Vol. 134 of
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Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris (1966).

[31] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.
54 (1990) 483–493.

[32] R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators.
Rev. Mat. Iberoam. 29 (2013) 1091–1126.

[33] M.E. Taylor, Pseudodifferential operators, In: Vol. 34 of Princeton Mathematical Series. Princeton University Press, Princeton,
NJ (1981).
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