
Applied Mathematics Letters 99 (2020) 105933

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

A weighted setting for the stationary Navier Stokes equations under

singular forcing✩

Enrique Otárola a, Abner J. Salgado b,∗

a Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaíso, Chile
b Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA

a r t i c l e i n f o

Article history:
Received 7 May 2019
Received in revised form 5 June 2019
Accepted 5 June 2019
Available online 19 June 2019

Keywords:
Navier Stokes equations
Muckenhoupt weights
Weighted estimates
A priori error estimates
Singular sources

a b s t r a c t

In two dimensions, we show existence of solutions to the stationary Navier Stokes
equations on weighted spaces H1

0
(ω,Ω) × L2(ω,Ω), where the weight belongs to

the Muckenhoupt class A2. We show how this theory can be applied to obtain
a priori error estimates for approximations of the solution to the Navier Stokes
problem with singular sources.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊂ R
2 be an open and bounded domain with Lipschitz boundary ∂Ω . In this work we will be

interested in developing an existence and approximation theory for the Navier Stokes problem

− ν∆u + (u · ∇)u + ∇p = f , in Ω , div u = 0, in Ω , u = 0, on ∂Ω , (1)

in the case where the forcing term f is singular. Here, the unknowns are u and p, the velocity and pressure,

respectively. The data are the forcing term f and the kinematic viscosity ν > 0.

Essentially, by introducing a weight, we can allow for forces such that f /∈ H−1(Ω). In particular, our

theory will allow the following particular examples. For a fixed F ∈ R
d, we can set f = Fδz, where δz

denotes the Dirac delta supported at the interior point z ∈ Ω . Similarly, if Γ denotes a smooth closed curve

contained in Ω , we can allow the components of f to be measures supported in Γ .
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We must remark that the study of (1) in a nonenergy setting is not a new idea. For instance, [1] assumes

that the domain is of class C2, but deals with rough forcings f ∈ W−1,p(Ω) with p ∈ (d/2, 2) (d ∈ ¶2, 3♢

is the space dimension). A nonenergy setting and weights are commonly used in the exterior problem for

(1); see, for instance, [2,3]. Closely related to our work is [4], where an existence and uniqueness theory in

C1,1 domains is developed over weighted spaces, and under the assumption that the data is small. Our main

novelty here is that we only assume the domain to be Lipschitz, and we provide existence for arbitrary data.

In addition, when the domain is a convex polygon, we show convergence of a finite element scheme.

2. Weak formulation

We begin by recalling that, if v is sufficiently smooth and solenoidal, then the term (v · ∇)v can be

rewritten as div(v ⊗ v). This will be used in the weak formulation of (1).

Let ω be a weight, i.e., a locally integrable, nonnegative function defined on R
2. Of particular interest to

us will be the so-called Muckenhoupt Aq weights [5]: We say that a weight ω ∈ Aq, with q ∈ (1, ∞), if

[ω]Aq
:= sup

B

⎤
 

B

ω

⎣ ⎤
 

B

ω1/(1−q)

⎣q−1

< ∞, (2)

where the supremum is taken over all balls B in R
2. We call [ω]Aq the Muckenhoupt characteristic of ω.

For a weight ω, we define X = H1
0(ω,Ω)×L2(ω,Ω)/R and Y = H1

0(ω−1,Ω)×L2(ω−1,Ω)/R. We propose

the following weak formulation of problem (1). Given f ∈ (H1
0(ω−1,Ω))′, find (u, p) ∈ X such that

ˆ

Ω

(ν∇u : ∇v − u ⊗ u : ∇v − p div v) = ⟨f , v⟩ ∀v ∈ H1
0(ω−1,Ω),

ˆ

Ω

div uq = 0 ∀q ∈ L2(ω−1,Ω)/R.

(3)

Here and in what follows, by ⟨·, ·⟩ we denote a duality pairing.

An application of the Cauchy–Schwarz inequality reveals that, for (u, p) ∈ X and (v, q) ∈ Y, the terms

ν
´

Ω
∇u : ∇v,

´

Ω
p div v, and

´

Ω
q div u are bounded. The following result provides suitable assumptions on

the weight, that guarantee the boundedness of the convective term.

Lemma 1 (Boundedness of Convection). If ω ∈ A2, then, for v ∈ H1
0(ω,Ω) and w ∈ H1

0(ω−1,Ω), we have
\

\

\

\

ˆ

Ω

v ⊗ v : ∇w

\

\

\

\

≤ C∥∇v∥2
L2(ω,Ω)∥∇w∥L2(ω−1,Ω).

Proof. According to [6, Theorem 1.3], since we are in two dimensions and ω ∈ A2, we have H1
0 (ω,Ω) ↪→

L4(ω,Ω). We can thus write
\

\

\

\

ˆ

Ω

v ⊗ v : ∇w

\

\

\

\

=

\

\

\

\

ˆ

Ω

(ω
1

4 v) ⊗ (ω
1

4 v) : (ω− 1

2 ∇w)

\

\

\

\

≤ ∥v∥2
L4(ω,Ω)∥∇w∥

L2(ω−1,Ω).

Conclude by using the aforementioned embedding. □

Remark 1 (Two Dimensions). It is in this result that the assumption Ω ⊂ R
2 plays an essential rôle. Indeed,

[6, Theorem 1.3] states that, if D ⊂ R
d and ϖ ∈ A2, then there is δ > 0 such that H1

0 (ϖ, D) ↪→ L2k(ϖ, D)

for k ∈ [1, d/(d − 1) + δ]. In three dimensions then, we only have H1
0 (ϖ, D) ↪→ L3(ϖ, D) and, at least with

this approach, we cannot show boundedness of the convective term.

The next definition, that is inspired by [7, Definition 2.5], will be of importance for the analysis that

follows.
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Definition 1 (Class Aq(D)). Let D ⊂ R
d be a Lipschitz domain. For q ∈ (1, ∞) we say that ω ∈ Aq

belongs to Aq(D) if there are an open set G ⊂ D, and positive constants ε > 0 and ωl > 0, such that:

¶x ∈ Ω : dist(x, ∂D) < ε♢ ⊂ G, ω ∈ C(Ḡ), and ωl ≤ ω(x) for all x ∈ Ḡ.

3. Existence of solutions

Having defined our weak formulation, here we show existence of solutions and, under a smallness
assumption on the data, their uniqueness. To do so, let us define the mappings S : X → Y ′, N L : X → Y ′,
and F ∈ Y ′ by

⟨S(u, p), (v, q)⟩ =

ˆ

Ω

(∇u : ∇v − p div v − div uq) , ⟨N L(u, p), (v, q)⟩ = −

ˆ

Ω

u ⊗ u : ∇v, ⟨F , (v, q)⟩ = ⟨f , v⟩.

Notice that (3) can be equivalently written as the following operator equation in Y ′

S(νu, p) + N L(u, p) = F .

As we have shown above, S is a bounded linear operator. Moreover, [8, Theorem 17] shows that, if Ω is
Lipschitz and ω ∈ A2(Ω), then this operator has a bounded inverse. This allows us to define the operator
T : X → X via

(νu, p) = T (w, r) = S−1 [F − N L(w, r)] .

Therefore, showing existence of a solution amounts to finding a fixed point of the mapping T . We will show
existence and uniqueness for sufficiently small data, and existence for general data.

3.1. Existence and uniqueness for small data

Let us first show, via a contraction argument, that provided the problem data is sufficiently small we
have existence and uniqueness of solutions. Our contraction argument is rather standard, see for instance [9,
Theorem 3.1] and [4, Theorem 5.6]. The main novelty in our approach seems to be the fact that, by restricting
the weight to A2(Ω), we allow the domain to be merely Lipschitz. We begin by defining, for K > 0,

BK =
{

w ∈ H1
0(ω,Ω) : div w = 0, ∥∇w∥

L2(ω,Ω) ≤ K
}

. (4)

In what follows, by ∥S−1∥ we denote the Y ′ → X norm of S−1, and by C4→2 we denote the constant in
the embedding H1

0(ω,Ω) ↪→ L4(ω,Ω) which was used in Lemma 1.

Proposition 1 (Contraction). Let Ω be Lipschitz and ω ∈ A2(Ω). Assume that the forcing term f is

sufficiently small, or the viscosity is sufficiently large, so that

C2
4→2∥S−1∥2∥f∥H−1(ω,Ω)

ν2
<

1

6
. (5)

Define K = ν
3C2

4→2
∥S−1∥

. With these assumptions, the mapping T1 : H1
0(ω,Ω) → H1

0(ω,Ω) defined as

w ↦→ 1
ν Pr T (w, 0), where Pr : X → H1

0(ω,Ω) is the projection onto the velocity component, maps BK to

itself and it is a contraction in it.

Proof. Note, first of all, that the assumptions on the forcing term and viscosity can be summarized as

∥S−1∥ ∥f∥
H−1(ω,Ω)

ν
<

K

2
.

Let us now show that T1 maps BK to itself. Observe that, by definition of the mapping T , we have that,
if v = T1(w), then div v = 0 and

∥∇v∥L2(ω,Ω) ≤
∥S−1∥ ∥f∥H−1(ω,Ω)

ν
+

C2
4→2∥S−1∥ ∥∇w∥2

L2(ω,Ω)

ν
<

K

2
+

K

3
=

5K

6
,

where we used the data assumptions and the fact that w ∈ BK .
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We now show that T1 is a contraction. For that, let w1, w2 ∈ BK and vi = T1(wi), for i = 1, 2, respectively.
Then, we have that

∥∇(v1 − v2)∥
L2(ω,Ω) ≤

C2
4→2∥S−1∥

ν

⎞

∥∇w1∥
L2(ω,Ω) + ∥∇w2∥

L2(ω,Ω)

⎡

∥∇(w1 − w2)∥L2(ω,Ω)

≤
C2

4→2∥S−1∥

ν

2ν

3C2
4→2∥S−1∥

∥∇(w1 − w2)∥L4(ω,Ω) =
2

3
∥∇(w1 − w2)∥L4(ω,Ω).

This concludes the proof. □

From this result we immediately obtain existence and uniqueness for small data.

Corollary 1 (Existence and Uniqueness). Let Ω be Lipschitz and ω ∈ A2(Ω). Assume that the forcing term

f is sufficiently small, or the viscosity is sufficiently large, so that (5) holds. In this setting, there is a unique

solution of (3). Moreover, this solution satisfies the estimate

∥∇u∥
L2(ω,Ω) ≤

3

2

∥S−1∥ ∥f∥
H−1(ω,Ω)

ν
.

Proof. By assumption the mapping T1, defined in Proposition 1 has a unique fixed point u ∈ BK . From this,
by using the existence of a right inverse of the divergence operator over A2-weighted spaces [10, Theorem
3.1], existence and uniqueness of the pressure p follows as well.

To obtain the claimed estimate, we use the fact that u is a fixed point of T1. Indeed, from this it follows
that

∥∇u∥
L2(ω,Ω) ≤

∥S−1∥ ∥f∥
H−1(ω,Ω)

ν
+

C2
4→2∥S−1∥

ν
K∥∇u∥

L2(ω,Ω),

where we used that u ∈ BK . Using the value of K, defined in Proposition 1, we have

C2
4→2∥S−1∥

ν
K =

C2
4→2∥S−1∥

ν

ν

3C2
4→2∥S−1∥

= 1/3,

from which the result follows. □

3.2. Existence for general data

We now show existence of solutions without smallness conditions. As in the energy setting, we do not
say anything about uniqueness of solutions. We begin with a series of preparatory steps. Our first result is
about compact embedding between weighted spaces. To state it, we must assume that the set of singularities

Ssing(ω), as defined in [11, Definition 4.2], is compactly contained in Ω . We remark that, for ω ∈ A2(Ω) the
assumption that Ssing(ω) ⋐ Ω is automatically satisfied.

Proposition 2 (Compact Embedding). Let ω ∈ A2 and Ssing(ω) ⋐ Ω . In this setting, the embedding

H1
0 (ω,Ω) ↪→ L4(ω,Ω) is compact.

Proof. The result follows from [11, Theorem 4.12]. To see this, we set, in the notation of that paper, n = 2,
s1 = 1, p1 = q1 = 2, s2 = 0, p2 = 4, q2 = 2, and A = F , that is, we work in the weighted Triebel–Lizorkin
scale. Notice that the open ended property of A2 implies that rω = inf¶r ≥ 1 : ω ∈ Ar♢ < 2. Thus, we have

δ = s1 −
n

p1
− s2 +

n

p2
=

1

2
, (rω − 1)

⎤

n

p1
−

n

p2

⎣

=
1

2
(rω − 1) <

1

2
.

The conclusion of [11, Theorem 4.12], together with [11, characterization (2.15)], then states that the
embedding H1(ω,Ω) = F 1

2,2(ω,Ω) ↪→ F 0
4,2(ω,Ω) = L4(ω,Ω) is compact. □
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Corollary 2 (N L is Compact). In the setting of Proposition 2, the operator N L is bounded and compact.

Proof. Boundedness of this mapping follows from Lemma 1.
To show compactness, let (wn, rn) ⇀ (w, r) in X , so that wn ⇀ w in H1

0(ω,Ω) and, by the compact
embedding of Proposition 2, wn → w in L4(ω,Ω). Now

♣⟨N L(wn, rn) − N L(w, r), (v, q)⟩♣ =

\

\

\

\

ˆ

Ω

(w ⊗ w − wn ⊗ wn) : ∇v

\

\

\

\

≤

\

\

\

\

ˆ

Ω

w ⊗ (w − wn) : ∇v

\

\

\

\

+

\

\

\

\

ˆ

Ω

(w − wn) ⊗ wn : ∇v

\

\

\

\

≤
⎞

∥w∥L4(ω,Ω) + ∥wn∥L4(ω,Ω)

⎡

∥wn − w∥
L4(ω,Ω)∥∇v∥

L2(ω−1,Ω).

This shows that

∥N L(wn, rn) − N L(w, r)∥Y′ → 0,

and the compactness follows. □

Corollary 3 (T is Compact). Let Ω be Lipschitz and ω ∈ A2(Ω). Then, the mapping T is compact.

Proof. This is immediate upon noting that S−1 is continuous and N L is compact. □

We are now in position to show our existence result.

Theorem 1 (Existence). Let Ω be Lipschitz and ω ∈ A2(Ω). For every ν > 0 and f ∈ (H1
0(ω−1,Ω))′,

problem (3) has at least one solution (u, p) ∈ X , which satisfies

∥(u, p)∥X ≤ C∥F∥Y′ .

Proof. We will show existence by showing that T has a fixed point. Notice, first, that if F = 0 then we
are in the setting of Corollary 1 so that the only solution to the homogeneous problem is (u, p) = (0, 0).

To show existence for general data we will invoke Schaefer’s fixed point theorem [12, Theorem 9.2.4]. Let
λ ∈ (0, 1] and assume that (u, p) ∈ X is such that

(νu, p) = λT (u, p) = λS−1 [F − N L(u, p)] .

Since S−1 is bounded, we have

∥(νu, p)∥X ≤ λ∥S−1F∥X +λ∥S−1N L(u, p)∥X ≤ C∥F∥Y′ +∥N L(u, p)∥Y′ ≤ C
⎞

∥F∥Y′ + ∥u∥2
L4(ω,Ω)

⎡

,

where in the last step we used the boundedness of N L as shown in Lemma 1.
We claim now that

∥(u, p)∥X ≤ C∥F∥Y′ , (6)

for if this is the case, then we can conclude the existence of a fixed point for the compact operator T , which
is equivalent to existence of a solution for (3).

Showing (6) can be carried out by the usual Avron-Douglis–Nirenberg contradiction. If the inequality
is false, there is ¶(un, pn)♢n∈N with ∥(un, pn)∥X = 1 such that Fn = S(νun, pn) + N L(un, pn) satisfies
∥Fn∥Y′ → 0. There is then a (not relabeled) subsequence (un, pn) ⇀ (u, p) in X and un → u in L4(ω,Ω).
Using uniqueness of solutions for the homogeneous problems we obtain that u = 0. However, this implies
that

1 ≤ C1∥Fn∥Y′ + C2∥un∥2
L4(ω,Ω) → 0,

which is a contradiction. □
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4. Discretization

We now propose a finite element scheme to approximate the solution of (3). In what follows we will assume
that Ω is a convex polygon, and that the weight is such that ω ∈ A2(Ω) and either ω or ω−1 belong to A1.
We let Xh × Mh ⊂ X be an admissible pair of finite element spaces, in the sense that they satisfy all the
assumptions of [13]. In this setting the Stokes projection onto Xh × Mh is stable in H1

0(ω,Ω) × L2(ω,Ω);
see [13, Theorem 4.1]. This means that Sh, the discrete version of S, is a bounded linear operator whose
inverse S−1

h is bounded uniformly with respect to h. We will make use of this fact in the error analysis.
We now define the discrete problem as: Find (uh, ph) ∈ Xh × Mh such that

ˆ

Ω

(ν∇uh : ∇vh − uh ⊗ uh : ∇vh − ph div vh) = ⟨f , vh⟩ ∀vh ∈ Xh,

ˆ

Ω

div uhqh = 0 ∀qh ∈ Mh. (7)

4.1. Discretization for small data

We follow [14, Chapter IV.3.1], with suitable modifications to take into account that we are not in an
energy framework anymore, i.e., while setting vh = uh is allowed, it does not lead to suitable estimates. We
begin with the following existence and uniqueness result.

Corollary 4 (Existence and Uniqueness). Assume that either f is sufficiently small or ν sufficiently large so

that (5) with S−1 replaced by S−1
h holds. Then there is a unique (uh, ph) ∈ Xh ×Mh that solves (7). Moreover,

we have an estimate similar to that of Corollary 1.

Proof. We repeat the proofs of Proposition 1 and Corollary 1. The only point worth mentioning is that,
instead of S−1 we use the inverse of the discrete Stokes operator which, as we have previously stated, is
uniformly bounded with respect to h. □

With these results at hand we can obtain an error estimate.

Theorem 2 (Error Estimate). Assume that f is sufficiently small or ν sufficiently large so that (3) and (7)
have a unique solution, with sufficiently small norms. Then we have

∥∇(u − uh)∥
L2(ω,Ω) ≤ C

⎤

inf
wh∈Xh

∥∇(u − wh)∥L2(ω,Ω) + inf
qh∈Mh

∥p − qh∥L2(ω,Ω)

⎣

,

where the constant C may depend on f , ν and u, but is independent of h.

Proof. We split the difference u − uh = (u − Shu) + (Shu − uh), where Shu is the velocity component of
the Stokes projection of (u, p). Owing to [13, Corollary 4.2] we have

∥∇(u − Shu)∥
L2(ω,Ω) ≤ C

⎤

inf
wh∈Xh

∥∇(u − wh)∥
L2(ω,Ω) + inf

qh∈Mh

∥p − qh∥
L2(ω,Ω)

⎣

.

Let eh = Shu − uh and εh = Shp − ph and note that,

∏

⎪

⎪

⨄

⎪

⎪

⋃

ˆ

Ω

(ν∇eh : ∇vh − εh div vh) =

ˆ

Ω

(u ⊗ u − uh ⊗ uh) : vh ∀vh ∈ Xh,
ˆ

Ω

div ehqh = 0 ∀qh ∈ Mh.

The discrete stability of the Stokes projection shown in [13, Theorem 4.1] then implies

∥∇eh∥L2(ω,Ω) + ∥εh∥L2(ω,Ω) ≤ C2
4→2

⎞

∥∇u∥L2(ω,Ω) + ∥∇uh∥L2(ω,Ω)

⎡

∥∇(u − uh)∥L2(ω,Ω).
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We thus collect the derived estimates to arrive at

∥∇(u − uh)∥
L2(ω,Ω) ≤ C

⎤

inf
wh∈Xh

∥∇(u − wh)∥
L2(ω,Ω) + inf

qh∈Mh

∥p − qh∥
L2(ω,Ω)

⎣

+C2
4→2

⎞

∥∇u∥L2(ω,Ω) + ∥∇uh∥L2(ω,Ω)

⎡

∥∇(u − uh)∥L2(ω,Ω).

The assumption that u and uh are sufficiently small allows us to absorb the last term on the right hand side
of this inequality into the left and conclude. □
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