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Ω ⊂ R
n satisfying the exterior ball condition. The weight is a power of the distance to

the boundary ∂Ω of Ω that accounts for the singular boundary behavior of the solution
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1. Introduction

The purpose of this work is, ultimately, the design of an optimally convergent finite

element method for the solution of the obstacle problem for the integral fractional
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Laplacian which, from now on, we shall simply refer to as the fractional obstacle

problem. In addition to the intrinsic interest that the study of unilateral problems

with nonlocal operators may give rise to, the fractional obstacle problem appears

in the study of systems of particles with strong (non Newtonian) repulsion 13, 43

and of optimal stopping times for jump processes (see 39 and 38 ). The latter, in

particular, is used in the modeling of the rational price of a perpetual American

option 16. We also refer the reader to 42, 45 for an account of other applications.

To make matters precise, here we describe the (eventually equivalent) formu-

lations that the fractional obstacle problem may be written as. For n ≥ 1 we let

Ω ⊂ R
n be a bounded domain with Lipschitz boundary ∂Ω that satisfies the exte-

rior ball condition. For two functions f : Ω→ R and χ : Ω→ R, with χ < 0 on ∂Ω,

and s ∈ (0, 1) we seek a function u : Rn → R such that u = 0 in Ωc = R
n \ Ω and

it satisfies the complementarity system

min {λ, u− χ} = 0, a.e. Ω, λ := (−∆)su− f. (1.1)

This problem can also be written as a constrained minimization problem on the

space H̃s(Ω) (see section 2 for notation). Indeed, if we define the set of admissible

functions

K =
{
v ∈ H̃s(Ω) : v ≥ χ a.e. Ω

}
, (1.2)

then the solution to the fractional obstacle problem can also be characterized as

the (unique) minimizer of the functional

J : v 7→ J (v) =
1

2
|v|2

H̃s(Ω)
− 〈f, v〉,

over the convex set K. Equivalently, this minimizer u ∈ K solves the variational

inequality

(u, u− v)s ≤ 〈f, u− v〉, ∀v ∈ K, (1.3)

where by (·, ·)s we denote the inner product on H̃s(Ω) induced by the fractional

Laplacian (see (2.2)), and 〈·, ·〉 is the duality pairing between H̃s(Ω) and its dual

H−s(Ω). We refer the reader to section 2.2 and 31 for a more thorough exploration of

these formulations and their equivalence. Finally we must mention that although in

bounded domains there are many, nonequivalent, definitions of the operator (−∆)s,

motivated by applications, here we choose the so-called integral one; that is, for a

sufficiently smooth function v : Rn → R weh set

(−∆)sv(x) = C(n, s) p.v.

∫

Rn

v(x)− v(y)

|x− y|n+2s
dy, C(n, s) =

22ssΓ(s+ n
2 )

πn/2Γ(1− s)
. (1.4)

Our choice of definition is justified by the fact that, unlike the regional or the

spectral ones, the integral fractional Laplacian of order s is the infinitesimal gen-

erator of a 2s-stable Lévy process. In this context, working on a bounded domain

would correspond to a so-called killed process, that is one that finishes upon exit-

ing the domain. Lévy processes have been widely employed for modeling market
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fluctuations, both for risk management and option pricing purposes. It is in this

context that, as mentioned above, the fractional obstacle problem arises as a pricing

model for American options. More precisely, if u represents the rational price of a

perpetual American option, modeling the assets prices by a Lévy process Xt and

denoting by χ the payoff function, then u solves (1.3). We refer the reader to 16 for

an overview of the use of jump processes in financial modeling.

Taking into account their applications in finance, it is not surprising that numer-

ical schemes for integro-differential inequalities have been proposed and analyzed

in the literature; we refer the reader to 26 for a survey on these methods. These

applications aim to approximate the price of a number of assets; therefore, the

consideration of a logarithmic price leads to problems posed in the whole space

R
n. For the numerical solution, it is usual to perform computations on a sufficiently

large tensor-product domain. Among the schemes based on Galerkin discretizations,

reference 47 utilizes piecewise linear Lagrangian finite elements, while 29 proposes

the use of wavelet bases in space. As for approximations of variational inequalities

involving integral operators on arbitrary bounded domains, an a posteriori error

analysis is performed in 36.

Since the seminal work of Silvestre 45, the fractional obstacle problem started to

draw the attention of the mathematical community. Using potential theoretic meth-

ods, reference 45 shows that if the obstacle is of class C1,s, then the solution to the

fractional obstacle problem is of class C1,α for all α ∈ (0, s); optimal C1,s regularity

of solutions was derived assuming convexity of the contact set. The pursuit of the

optimal regularity of solutions without a convexity hypothesis, in turn, motivated

the celebrated extension by Caffarelli and Silvestre 12 for the fractional Laplacian

in R
n. Using this extension technique, Caffarelli, Salsa and Silvestre proved, in 11,

the optimal regularity of solutions (cf. Proposition 3.1 below). It is important to

notice, however, that this is only an interior regularity result. Nothing is said about

the boundary behavior of the solution to (1.3). This is a highly nontrivial issue,

as it is known that even the solution to a linear problem involving the fractional

Laplacian on a very smooth domain possesses limited regularity near the boundary;

see 24, 25 and section 2.1 below for details. In addition, regularity results in Hölder

spaces are not amenable to the development of an error analysis for a finite element

method.

Using the extension technique, one could in principle follow the lines of 11 to

obtain, via a localization argument, regularity results for the obstacle problem posed

on a bounded domain. This would entail dealing with a degenerate elliptic equation

where the weight belongs to the Muckenhoput class A2. We could then invoke the

results from 20, 30 and the translation invariance in the x-variable of the extension

weight to conclude the desired regularity. While accomplishing this program seems

possible, it would only yield results for the fractional Laplacian, and the techniques

would not extend to more general nonlocal operators, like those studied in 10.

Our regularity approach is entirely nonlocal and based on localization without

invoking the extension. However, we must immediately point out that if 0 ≤ η ≤ 1
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is a smooth cut-off function, then

(−∆)s(ηu) 6= η(−∆)su in {η = 1}

because of the nonlocal structure of (−∆)s. Consequently, we cannot deduce regu-

larity of ηu directly from that of (−∆)su. This is one of the main technical difficulties

we overcome in this work.

In this paper, under certain smoothness and compatibility assumptions on the

forcing f and the obstacle χ (see (3.1) for a precise statement), we combine Hölder

estimates from 11, 45 and 41 to derive interior and boundary Hölder estimates for

(1.3). This is achieved under a nondegeneracy condition: the obstacle needs to be

negative near the boundary. In this case, the solution to (1.3) behaves, essentially,

like the solution to a linear problem near the boundary, for which the Hölder regu-

larity is known 41. We then follow ideas from 2 to derive global regularity results in

weighted Sobolev spaces, which guide us in the design of an optimally convergent

finite element scheme over graded meshes. These meshes compensate for the sin-

gular boundary behavior of the solution of (1.3) regardless of the fractional order

s ∈ (0, 1). We discuss their design and derive a quasi-optimal rate of convergence

in the natural energy norm.

We must comment that a related numerical analysis for the obstacle problem,

corresponding to the spectral fractional Laplacian, was carried out in 33; we refer

the reader to 6 for a comparison between these operators and a survey of numerical

methods for fractional diffusion. The recent work 9 also deals with finite element

approximations to nonlocal obstacle problems, involving both finite and infinite-

horizon kernels. Experiments, carried out for one-dimensional problems with uni-

form meshes, indicate convergence with order h1/2 in the energy norm. However,

9 does not provide an error analysis for the nonlocal obstacle problem. In this pa-

per we show that using suitably graded meshes essentially doubles the convergence

rate in the energy norm. Moreover, a standard argument allows us to extend the

results we obtain in this work to nonlocal operators with finite horizon. Finally,

we comment that 44 provides regularity results of Lewy–Stampacchia type for the

fractional Laplacian. Their use in a numerical setting, however, is not immediate.

The paper is organized as follows. In section 2 we set notation and assumptions

employed in the rest of the work, and review preliminary results about solutions of

the linear Dirichlet problem for the fractional Laplacian on bounded domains and

the fractional obstacle problem. These results are employed in section 3 to derive

weighted Sobolev regularity estimates for solutions of problem (1.3). Then, section 4

applies our regularity estimates to deduce a quasi-optimal convergence rate for a

finite element approximation of the fractional obstacle problem (1.3) over graded

partitions of bounded polytopal domains. This requires the study of a positivity

preserving quasi-interpolation operator in weighted fractional Sobolev spaces; this

novel development is carried out in section 4.1. Finally, numerical examples pre-

sented in section 5 illustrate the sharpness of our theoretical results and reveal

some qualitative properties of the coincidence set.
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2. Notation and preliminaries

In this section we will introduce some notation and the set of assumptions that we

shall operate under. For n ≥ 1 we let Ω ⊂ R
n be a bounded domain with Lipschitz

boundary ∂Ω that satisfies the exterior ball condition. The complement of Ω will be

denoted by Ωc and the fractional order by s ∈ (0, 1). The ball of radius R and center

x ∈ R
n will be denoted by BR(x), and we set BR = BR(0). During the course of

certain estimates we shall denote by ωn−1 the (n−1)-dimensional Hausdorff measure

of the unit sphere ∂B1. As usual, we will denote by C a nonessential constant, and its

specific value might change from line to line. By C(A) we shall mean a nonessential

constant that may depend on A. Finally, by A ≈ B we mean that A ≤ CB and

B ≤ CA.

Unless indicated otherwise, we will follow standard notation regarding function

spaces. In particular, for a bounded domain D ⊂ R
n, k ∈ N ∪ {0}, and γ ∈ [0, 1],

we denote

Ck,γ(D) =

{
w ∈ Ck(D) : sup

x,y∈D,x 6=y

max
β∈(N∪{0})n:|β|=k

|∂βw(x)− ∂βw(y)|

|x− y|γ
<∞

}
.

In addition w ∈ Ck,γ(D) if w ∈ Ck,γ(U) for all U ⋐ D. The Sobolev space of order

s > 0 over Rn is defined as

Hs(Rn) =
{
v ∈ L2(Rn) : ξ 7→ (1 + |ξ|2)s/2F(v)(ξ) ∈ L2(Rn)

}
,

with norm

‖v‖Hs(Rn) =
∥∥∥ξ 7→ (1 + |ξ|2)s/2F(v)(ξ)

∥∥∥
L2(Rn)

.

In these definitions F denotes the Fourier transform. The closure of C∞
0 (Ω) in

Hs(Rn) will be denoted by H̃s(Ω). This space can also be characterized as follows:

H̃s(Ω) :=
{
v|Ω : v ∈ Hs(Rn), supp v ⊂ Ω

}
. (2.1)

We comment that, on H̃s(Ω), the natural inner product is equivalent to

(v, ϕ)s =
C(n, s)

2

∫∫

Rn×Rn

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy,

|v|H̃s(Ω) = (v, v)1/2s .

(2.2)

The duality pairing between H̃s(Ω) and its dual H−s(Ω) is denoted by 〈·, ·〉. In view

of (2.2) we see that, whenever v ∈ H̃s(Ω) then (−∆)sv ∈ H−s(Ω) and that

(v, ϕ)s = 〈(−∆)sv, ϕ〉, ∀ϕ ∈ C∞
0 (Ω). (2.3)

In section 3 it will become necessary to characterize the behavior of the solution

to (1.3) near the boundary. To do so, we must introduce weighted Sobolev spaces,

where the weight is a power of the distance to the boundary. We define

δ(x) = dist(x, ∂Ω), δ(x, y) = min{δ(x), δ(y)}.
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Then, for k ∈ N ∪ {0} and α ∈ R, we consider the norm

‖v‖2Hk
α(Ω) =

∑

0≤|β|≤k

∫

Ω

|∂βv(x)|2δ(x)2α dx. (2.4)

and define Hk
α(Ω) and H̃k

α(Ω) as the closures of C∞(Ω) and C∞
0 (Ω), respectively,

with respect to the norm (2.4). We also need to define weighted Sobolev spaces of

a non-integer differentiation order, and their zero-trace versions.

Definition 2.1 (weighted fractional Sobolev spaces). Let 0 < t ∈ R \ Z and

α ∈ R. Assume that k ∈ N ∪ {0} and σ ∈ (0, 1) are the unique numbers such that

t = k + σ. The weighted fractional Sobolev space is

Ht
α(Ω) =

{
v ∈ Hk

α(Ω): |∂
βv|Hσ

α(Ω) <∞ ∀β ∈ N
n, |β| = k

}
,

where

|v|2Hσ
α(Ω) =

∫∫

Ω×Ω

|v(x)− v(y)|2

|x− y|n+2σ
δ(x, y)2α dx dy.

We endow this space with the norm

‖v‖2Ht
α(Ω) = ‖v‖

2
Hk

α(Ω) +
∑

|β|=k

|∂βv|2Hσ
α(Ω).

Similarly, the zero-trace weighted Sobolev space is

H̃t
α(Ω) =

{
v ∈ H̃k

α(Ω): |∂
βv|Hσ

α(Rn) <∞ ∀β ∈ N
n, |β| = k

}
,

with the norm

‖v‖2
H̃t

α(Ω)
= ‖v‖2Hk

α(Ω) +
∑

|β|=k

|∂βv|2Hσ
α(Rn).

Spaces like the ones defined above have been considered, for example, in 2 in

connection with the study of the regularity properties of the solution to the linear

fractional Poisson problem. However, unlike 2, the spaces Ht
α(Ω) and H̃t

α(Ω) require

functions to belong respectively to Hk
α(Ω) and H̃t

α(Ω), instead of Hk(Ω). This is a

weaker condition and that shall become important below.

We remark also that, during our discussion, we will make use of the norms and

seminorms of Ht
α(ω) and H̃t

α(ω), where ω is a Lipschitz subdomain of Ω. If that is

the case, the weight δ will always refer to the distance to ∂Ω.

As a final preparatory step, we recall an interior regularity result for s–harmonic

functions over balls.

Lemma 2.1 (balayage). Let w ∈ L∞(Rn) be such that (−∆)sw = 0 in BR. Then,

w ∈ C∞(BR/2).

Proof. According to 27 , in the ball BR, any s-harmonic function w can be repre-

sented using a Poisson kernel:

w(x) =

∫

Bc
R

w(y)P (x, y) dy,
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where

P (x, y) = C

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y|n
.

Consequently, whenever x ∈ BR/2, it is legitimate to differentiate to any order the

representation above.

2.1. The linear problem

Here we consider the linear version of (1.3); that is, we formally set χ = −∞ to

arrive at the problem: given g ∈ H−s(Ω) we seek for wg ∈ H̃s(Ω) such that

(−∆)swg = g in Ω, wg = 0 in Ωc. (2.5)

Identity (2.3) yields the existence and uniqueness of a solution to this problem. In

addition, since the kernel is positive, we have a nonlocal maximum principle.

Proposition 2.1 (nonlocal maximum principle). Let g ∈ H−s(Ω) be such that

g ≥ 0 in Ω, then we have that wg ≥ 0 in Ω.

Proof. See 40 .

The investigation of the regularity of the solution to (2.5) has been an active

area of research in recent years. Solutions to this problem are known to possess

limited boundary regularity. Namely, the behavior

wg(x) ≈ dist(x, ∂Ω)s,

is expected independently of the smoothness of the domain Ω and right hand side

g. Assuming Ω is smooth, this behavior can be precisely quantified in terms of

Hörmander regularity 25; for Lipschitz domains satisfying the exterior ball condition

it can also be expressed in terms of the reduced Hölder regularity of solutions 41,

‖wg‖C0,s(Rn) ≤ C‖g‖L∞(Ω).

If the right hand side g happens to be more regular, then finer estimates on the

solution wg can be derived.

Proposition 2.2 (Hölder estimates for the linear problem). Let Ω be a

bounded Lipschitz domain satisfying the exterior ball condition. Let g ∈ C0,1−s(Ω)

and wg be the solution of (2.5). Then, wg satisfies

‖wg‖C0,s(Ω) + sup
x∈Ω

δ(x)1−s|∇wg(x)|

+ sup
x,y∈Ω

δ(x, y)
|∇wg(x)−∇wg(y)|

|x− y|s
≤ C(Ω, s)‖g‖C0,1−s(Ω). (2.6)

Proof. It suffices to set β = 1− s in 41 .
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For one-dimensional or radial domains, these regularity estimates can be further

sharpened by deriving explicit expressions for the map w 7→ (−∆)s [dist(·, ∂Ω)sw] in

terms of expansions in bases consisting of special functions, see 3, 19. Of importance

in the design of optimally convergent finite element schemes is 2, where regularity

in spaces similar to those introduced in Definition 2.1 (weighted fractional Sobolev

spaces) was derived. Below we extend and modify these results to fit the framework

that we are adopting here.

Theorem 2.1 (weighted regularity of wg). Let Ω be a bounded Lipschitz do-

main satisfying the exterior ball condition. Let g ∈ C0,1−s(Ω) and wg be the unique

solution of (2.5). Then, for every ε ∈ (0, s/2), we have that wg ∈ H̃1+s−2ε
1/2−ε (Ω), with

the estimate

‖wg‖H̃1+s−2ε
1/2−ε

(Ω) ≤
C(Ω, s)

ε
‖g‖C0,1−s(Ω).

Proof. We must first notice that, as mentioned before, the spaces of Definition 2.1

(weighted fractional Sobolev spaces) do not require integrability of the derivatives

of functions with respect to Lebesgue measure but with respect to δ2α(x) dx. Since,

in this case, α = 1/2−ε > 0, this is a weaker condition, as it allows certain blow up

of the derivatives near the boundary. Hence, for s ∈ (1/2, 1), the assertion follows

from the stronger estimate 2 . A direct estimate can also be obtained with the same

arguments used to bound the term IO defined below.

In the case s ∈ (0, 1/2], we begin by observing that wg ∈ C(Ω) ⊂ L2
1/2−ε(Ω). In

addition, the middle term in estimate (2.6) implies that

‖wg‖
2
H1

1/2−ε
(Ω) =

∫

Ω

|∇wg(x)|
2δ(x)1−2ε dx

≤ C(Ω, s)2‖g‖2
C0,1−s(Ω)

∫

Ω

δ(x)−1+2(s−ε) dx,

so that, by 2 we obtain wg ∈ H̃1
1/2−ε(Ω), |wg|H̃1

1/2−ε
(Ω) ≤

C(Ω,s)√
ε
‖g‖C0,1−s(Ω).

On the other hand, the last term in (2.6), and similar arguments to those elab-

orated in 2 yield

∫∫

Ω×Ω

|∇wg(x)−∇wg(y)|
2

|x− y|n+2s−4ε
δ(x, y)1−2ε dx dy ≤

C(Ω, s)2

ε2
‖g‖2

C0,1−s(Ω)
.

It remains to treat a term of the form

IO =

∫

Ω

|∇wg(x)|
2

∫

Ωc

1

|x− y|n+2s−4ε
δ(x, y)1−2ε dy dx.

Notice now that, for every x ∈ Ω, integration in polar coordinates gives
∫

Ωc

1

|x− y|n+2s−4ε
dy ≤

∫

B(x,δ(x))c

1

|x− y|n+2s−4ε
dy =

ωn−1

2(s− 2ε)
δ(x)−2s+4ε.
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Therefore, we can bound

IO ≤ C

∫

Ω

|∇wg(x)|
2δ(x)1−2ε

∫

Ωc

1

|x− y|n+2s−4ε
dy

≤ C

∫

Ω

|∇wg(x)|
2δ(x)1−2s+2ε dx,

and because supx∈Ω δ(x)1−s|∇wg(x)| ≤ C‖g‖C0,1−s(Ω), we deduce that

IO ≤ C‖g‖2
C0,1−s(Ω)

∫

Ω

δ(x)−1+2ε dx ≤
C

ε
‖g‖2

C0,1−s(Ω)
,

where we, again, used 2 to bound the last integral.

2.2. The fractional obstacle problem: known results

Let us now review the known results about the solution to the fractional obstacle

problem (1.3). First we remark that existence and uniqueness of a solution immedi-

ately follows from standard arguments, and that this solution is also the minimizer

of the functional J over the set K. Since this will be useful when dealing with

approximation, it is now our intention to explore the equivalence of (1.3) with the

complementarity system (1.1). To do so, we first define the coincidence and non-

coincidence sets, respectively, by

Λ = {x ∈ Ω : u(x) = χ(x)} , N = Ω \ Λ.

Proposition 2.3 ((1.3) =⇒ (1.1)). Let Ω be a bounded and Lipschitz domain

that satisfies the exterior ball condition. Let χ ∈ C(Ω) satisfy χ ≤ 0 on ∂Ω and

f ∈ Lp(Ω) for some p > n/2s. In this setting, the function u ∈ H̃s(Ω) that solves

(1.3) satisfies u ∈ C(Ω) as well as the complementarity conditions (1.1).

Proof. Since u ∈ K, then we have that u−χ ≥ 0 a.e. Ω. Let now 0 ≤ ϕ ∈ C∞
0 (Ω)

and observe that the function v = u+ϕ ∈ K. This particular choice of test function

in (1.3) implies that

(u, ϕ)s ≥ 〈f, ϕ〉

and, using (2.3) we conclude that

〈(−∆)su− f, ϕ〉 ≥ 0, ∀ϕ ∈ C∞
0 (Ω), ϕ ≥ 0.

In other words, λ ≥ 0 in the sense of distributions.

On the other hand, according to 31 , the assumptions imply that u ∈ C(Ω) and,

consequently, N is an open set. Let ϕ ∈ C∞
0 (N) and notice that, for a sufficiently

small ε we have that v = u±εϕ ∈ K. Using these test functions in (1.3) then implies

that

〈λ, ϕ〉 = 0, ∀ϕ ∈ C∞
0 (N),

as we intended to show.
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We will also make use of the following continuous dependence result.

Lemma 2.2 (continuous dependence). Let χ ∈ L∞(Ω), f = 0, and u ∈ H̃s(Ω)

solve (1.3). Then, we have that u ∈ L∞(Ω) with

max{χ, 0} ≤ u ≤ ‖max{χ, 0}‖L∞(Ω) a.e. Ω.

Proof. See 31 .

Below we will introduce further assumptions on the data f and χ that will allow

us to apply the previous results.

3. Regularity

Having established the existence of solution and its equivalent characterization as

the solution of (1.1), we now begin with the study of its regularity. To do so, we

must introduce some notation. For a positive number κ > 0 we let Kκ ∈ C∞(Rn)

be a kernel so that

Kκ(z) =
C(n, s)

|z|n+2s
, |z| ≥ κ,

and is extended smoothly for |z| < κ.

Finally, to concisely quantify the smoothness assumptions on the right hand side

f and obstacle χ we introduce

Fs(Ω) =





C2,1−2s+ǫ(Ω), s ∈

(
0,

1

2

]
,

C1,2−2s+ǫ(Ω), s ∈

(
1

2
, 1

)
,

X (Ω) =
{
χ ∈ C(Ω) : χ|∂Ω < 0

}
∩ C2,1(Ω),

(3.1)

where ǫ > 0 is sufficiently small, so that 1− 2s+ ǫ is not an integer.

3.1. Interior regularity

The interior regularity of the solution to (1.3) will follow from the regularity for the

case Ω = R
n as detailed in 11. Let us first slightly extend the main result in that

work.

Lemma 3.1 (regularity in R
n). Let u ∈ H̃s(Rn) solve (1.3) with Ω = R

n. If

χ ∈ X (Rn), f ∈ Fs(R
n), and f is such that |f(x)| ≤ C|x|−σ for some σ > 2s as

|x| → ∞, then we have u ∈ C1,s(Rn).

Proof. If f = 0, the assertion is the content of 11 . We now reduce the inhomo-

geneous case f 6= 0 to the previous one by invoking the function wf defined, for

Ω = R
n, in (2.5). Indeed, the function U = u−wf solves (1.3) with right hand side
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f = 0 and obstacle χ−wf . Thus, to be able to invoke the reasoning for the homo-

geneous case, we must ensure that χ − wf ∈ X (R
n). Since χ ∈ X (Rn) a sufficient

condition for this, according to 45 , is that f ∈ Fs(R
n) and wf ∈ L∞(Rn). To show

the boundedness of wf we use its explicit representation

wf (x) = C(n,−s)

∫

Rn

f(y)

|x− y|n−2s
dy;

see 27 and 45 . Indeed, using the decay of f we can estimate

|wf (x)| ≤ ‖f‖L∞(BR(x))

∫

BR

1

|y|n−2s
dy + C

∫

Bc
R

|x+ y|−σ

|y|n−2s
dy ≤M.

Since wf ∈ C3,ǫ(Rn) ⊂ C2,1(Rn), we deduce u = U +wf ∈ C1,s(Rn), and conclude

the proof.

With this result at hand we can establish the interior regularity of the solution

to (1.3). The idea is to use a direct localization argument. We point out that,

for the fractional Laplacian a localization argument using the Caffarelli-Silvestre

extension can be carried out, as described in 11 . Since for fractional Laplacians of

order different than one half, the extension problem involves a degenerate elliptic

equation with a weight that belongs to the Muckenhoupt class A2 and depends only

on the extended variable, this argument needs to combine fine estimates from 20, 30

with the translation invariance in the x-variable of the Caffarelli-Silvestre weight.

In this paper, instead, we pursue an entirely nonlocal approach. In that regard,

the localization method we present in Proposition 3.1 below can be applied also to

more general nonlocal operators, such as those considered in 10. Finally, we stress

that if 0 ≤ η ≤ 1 is a smooth cut-off function such that η = 1 in {χ > 0}, then

(−∆)s(ηu) 6= η(−∆)su in {η = 1}

because of the nonlocal structure of (−∆)s. Consequently, we cannot deduce regu-

larity of ηu directly from that of (−∆)su. This is the difficulty we confront now.

Remark 3.1 (Cauchy principal values). At this point we must warn the reader

about a technical aspect of our discussion. Namely, in what follows we will proceed

formally and “evaluate” expressions of the form
∫

Rn

w(y)

|x− y|n+2s
dy,

∫

Rn

w(x)− w(y)

|x− y|n+2s
dy,

for some function w : Rn → R. Evidently, these integrals do not necessarily converge.

We are doing this to avoid unnecessary technicalities, and what we mean in these

cases is to compute the principal value of these integrals which, in the sense of

distributions, is always meaningful. In other words, substitutions of the form
∫

Rn

w(y)

|x− y|n+2s
dy ←→ lim

ε↓0

∫

Rn\Bε(x)

w(y)

|x− y|n+2s
dy

need to be made below.
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As a final preparatory step we show that there is no loss of generality in assuming

that the forcing term f is zero, as the case f 6= 0 can be reduced to this one.

Lemma 3.2 (reduction to f = 0). Let f ∈ Fs(Ω), χ ∈ X (Ω) and u denote the

solution to (1.3). Then we have the representation

u = wf + ũ,

where ũ solves (1.3) with zero forcing (f = 0) and obstacle χ̃ = χ− wf ∈ X (Ω).

Proof. It is well–known that by introducing the Lagrange multiplier λ ∈ H−s(Ω),

we have that

(−∆)su = f + λ,

(see (1.1)) and, therefore, u = wf +wλ Since λ ≥ 0, using Proposition 2.1 (nonlocal

maximum principle) we infer that wλ ≥ 0 and, consequently, u ≥ wf .

Now, since f ∈ Fs(Ω), Proposition 2.2 (Hölder estimates for the linear problem)

gives, in particular, that wf ∈ C0,s(Ω) and thus, since wf = 0 on ∂Ω and χ ∈ X (Ω)

there exists r > 0 such that

x ∈ Ωr =
{
x ∈ Ω : dist(x, ∂Ω) < r

}

implies wf (x) > χ(x). Notice then that, in Ωr, we have u ≥ wf > χ.

Define χ̃ = χ − wf ∈ C(Ω) and note that the previous considerations also give

us that χ̃ < 0 on ∂Ω. Moreover, since f ∈ Fs(Ω), the conclusion of 41 gives that

wf ∈ C2,1(Ω). Thus, χ̃ ∈ X (Ω).

It remains now to realize that if we define ũ = u−wf , then ũ solves the following

version of (1.3)

min {(−∆)sũ, ũ− χ̃} = 0,

and that, ũ ≥ 0 > χ̃ on Ωr.

Note that the usefulness of the previous result lies in the fact that, in our setting,

the regularity of u can be deduced from the regularity of the linear problem, which

was described in Section 2.1, and that of an obstacle problem without forcing and

with an obstacle that has the same regularity of the original obstacle χ.

Owing to the reduction given above, from now on we consider only the case

f = 0.

Proposition 3.1 (interior Hölder regularity). Let Ω be a bounded Lipschitz

domain and χ ∈ X (Ω). Then the solution u ∈ H̃s(Ω) of (1.3) with f = 0 satisfies

u ∈ C1,s(Ω).

Proof. Let D ⋐ Ω be open. Without loss of generality, we assume that {χ > 0} ⋐

D. Let, in addition, η ∈ C∞
0 (Ω) be a smooth cutoff function such that

D ⋐ {η ≡ 1}, supp(η) ⋐ Ω, 0 ≤ η ≤ 1.
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Define U = ηu. The objective is now to show that U solves an obstacle problem

with obstacle χ and a smooth right hand side F with suitable decay at infinity, for

if that is the case we can appeal to Lemma 3.1 (regularity in R
n) to conclude that

U ∈ C1,s(Rn). Since U = u on D, the interior Hölder regularity of u will follow.

We claim that U ≥ χ in R
n. Indeed, if χ > 0 then η = 1 and U = u ≥ χ. On the

other hand, since 0 ≤ η ≤ 1 we can multiply the inequality u ≥ χ by η to conclude

that

U = ηu ≥ ηχ,

which, if χ ≤ 0, implies that U ≥ 0 ≥ χ.

We now want to prove that there exists a smooth function F such that (−∆)sU ≥

F and (−∆)sU = F if U > χ. To accomplish this, we choose τ > 0 sufficiently small

so that

dist (supp(η), ∂Ω) > 3τ, dist (D, ∂{η ≡ 1}) > 3τ.

Finally, we let Rn = A1 ∪A2 ∪A3, where

A1 = {x ∈ Ω : dist(x,D) ≤ 2τ} ,

A2 = {x ∈ Ω : dist(x,D) > τ, dist(x, ∂Ω) > τ} ,

A3 = {x ∈ Ω : dist(x, ∂Ω) ≤ 2τ} ∪ Ωc.

We point out that this is not a partition, as the intersections A1 ∩A2 and A2 ∩A3

are not empty. However, since every point in R
n is in the interior of at least one of

the sets defined above, it suffices to show that the corresponding forcing is smooth

on each of these sets separately.

• Let x ∈ A1. Then, η(y) = 1 for all y ∈ Bτ (x) and we can write

(−∆)sU(x) = (−∆)su(x) + C(n, s)

∫

Rn

(1− η(y))u(y)

|x− y|n+2s
dy

= (−∆)su(x) +

∫

Rn

[
1− η(x− z)

]
u(x− z)Kτ (z) dz,

where we use a fixed smooth kernel Kτ as described in the beginning of this

section. Using that (−∆)su(x) = λ(x) ≥ 0, we deduce that

(−∆)sU(x) ≥ (Kτ ⋆ (1− η)u) (x).

Moreover, if x belongs to the non-coincidence set N , it follows that λ(x) = 0 and

therefore

(−∆)sU(x) = (Kτ ⋆ (1− η)u) (x).

• Given x ∈ A3, we proceed essentially as before, except that now η(y) = 0 for all

y ∈ Bτ (x), whence

(−∆)sU(x) = C(n, s)

∫

Rn

−η(y)u(y)

|x− y|n+2s
dy = − (Kτ ⋆ ηu) (x).
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• Let x ∈ A2. Since dist(x, ∂Ω) > τ and dist(x, {χ > 0}) > τ , we deduce that χ < 0

in Bτ (x) and, using Lemma 2.2 (continuous dependence), that u ∈ L∞(Bτ (x))

and

χ < 0 ≤ u a.e. Bτ (x).

From the complementarity conditions (1.1) it then follows that u is s-harmonic

in Bτ (x). Lemma 2.1 (balayage) implies that u ∈ C∞(Bτ/2(x)), whence U =

ηu ∈ C∞(Bτ/2(x)). Since this holds for every point in A2, we deduce that U ∈

C∞(A2 +Bτ/2(0)), where A2 +Bτ/2(0) is the Minkowski sum

A2 +Bτ/2(0) = {x ∈ R
n : x = y + z, y ∈ A2, z ∈ Bτ/2(0)}.

Let EU ∈ C∞
0 (Rn) be a smooth extension of U outside A2 + Bτ/2(0). Then, for

x ∈ A2 we can write

(−∆)sU(x) = C(n, s)

∫

Rn

EU(x)− U(y)

|x− y|n+2s
dy

= (−∆)sEU(x) + C(n, s)

∫

Rn

EU(y)− U(y)

|x− y|n+2s
dy.

Since EU(y) = U(y) for every y ∈ Bτ/2(x), we thus conclude

(−∆)sU(x) = (−∆)sEU(x) +
(
Kτ/2 ⋆ (EU − U)

)
(x).

In order to gather the three cases considered above, we let

F (x) =





(Kτ ⋆ (1− η)u) (x), x ∈ A1,

(−∆)sE(ηu)(x) +
(
Kτ/2 ⋆ (E(ηu)− ηu)

)
(x), x ∈ A2,

− (Kτ ⋆ ηu) (x), x ∈ A3.

(3.2)

Observe that this expression is well defined. Indeed, on A2 ∩ A3 both expressions

coincide with (−∆)sU , while the fact that A1 ∩ A2 ⊂ N implies λ = 0 and thus

equality in this case. Therefore, we have defined a function F : Rn → R, which is

smooth in R
n because so are the kernels Kτ ,Kτ/2 and the function E(ηu).

From the considerations above, we deduce that U solves an obstacle problem

posed in R
n, with obstacle χ and right hand side F . In addition, u is bounded

according to Lemma 2.2. We can thus derive for x ∈ A3

|(Kτ ⋆ ηu)(x)| ≤ C

∫

Ω

1

|x− y|n+2s
dy ≤ C dist(x,Ω)−n−2s as |x| → ∞,

which gives the decay required in Lemma 3.1 (regularity on R
n). As a consequence,

we can then invoke Lemma 3.1 to conclude that U ∈ C1,s(Rn). This in turn implies

u ∈ C1,s(D) as asserted and concludes the proof.

Remark 3.2 (interior regularity estimate). Notice that, from (3.2), one can

establish an estimate of |u|C1,s(D) in terms of f , χ and, more importantly τ , which,

essentially, measures how close the set {χ > 0} is to the boundary ∂Ω.



October 4, 2019 13:23 WSPC/INSTRUCTION FILE paper

Fractional obstacle problem 15

An immediate consequence of the interior Hölder regularity is an interior Sobolev

regularity estimate.

Corollary 3.1 (interior Sobolev regularity). In the setting of Proposition 3.1

we have that, for every ε > 0, the solution u to (1.3) satisfies u ∈ H1+s−ε
loc (Ω) with

the estimate

|u|H1+s−ε(D) ≤
C(n)|D|1/2 diam(D)ε

ε1/2
|u|C1,s(D),

where D ⋐ Ω is any open set and diam(D) denotes the diameter of D.

Proof. For x, y ∈ D ⋐ Ω Proposition 3.1 (interior Hölder regularity) implies the

bound

|∇u(x)−∇u(y)| ≤ |u|C1,s(D)|x− y|s.

This bound, together with integration in polar coordinates, allow us to estimate

directly the requisite seminorm as follows:

|u|2H1+s−ε(D) =

∫∫

D×D

|∇u(x)−∇u(y)|2

|x− y|n+2s−2ε
dy dx ≤ |u|2

C1,s(D)

∫∫

D×D

1

|x− y|n−2ε
dy dx

≤ |u|2
C1,s(D)

ωn−1|D|

∫ diam(D)

0

ζ−1+2ε dζ = |u|2
C1,s(D)

ωn−1|D|
diam(D)2ε

2ε
.

This is the asserted estimate.

3.2. Boundary regularity

Let us now study the behavior of the solution to (1.3) near the boundary of the

domain ∂Ω. It is here that the weighted Sobolev spaces introduced in Definition 2.1

(weighted fractional Sobolev spaces) shall become important. We begin by recall-

ing that we assume the obstacle χ to be a smooth function that is negative in a

neighborhood of the boundary ∂Ω. In other words, we have

̺ = dist ({χ > 0}, ∂Ω) > 0. (3.3)

In the spirit to Remark 3.2 (interior regularity estimate), the regularity estimates

near the boundary will depend on ̺. We now choose τ ∈ (0, ̺/5) and define a

boundary layer Bτ of width τ , i.e.

Bτ =
{
x ∈ Ω : dist(x, ∂Ω) < τ

}
. (3.4)

Let η ∈ C∞(Rn) be a smooth cutoff function such that

0 ≤ η ≤ 1, η(x) = 1 ∀x ∈ B4τ , dist(supp(η), {χ > 0}) > τ.

We finally set Nη = {η > 0}.
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Having introduced all the necessary notation, we proceed to establish the bound-

ary regularity of u.

Proposition 3.2 (boundary Hölder regularity of (−∆)s(ηu)). Let χ ∈ X (Ω)

and f = 0. With the notation introduced above, the function (−∆)s(ηu) is smooth

in Nη. In particular, it holds that

‖(−∆)s(ηu)‖C0,1−s(Nη)
≤ C(‖u‖C1,s(Ω\Bτ )

, χ, s, n,Ω, ̺). (3.5)

Proof. We proceed as in the proof of Proposition 3.1 (interior Hölder regularity):

we define U = ηu, consider separately two overlapping sets B3τ and Nη \ B2τ and

argue on each of these.

• Let x ∈ B3τ . Since Bτ (x) ∩ Ω ⊂ B4τ , we have η(y) = 1 for all y ∈ Bτ (x) ∩ Ω and

we can write

(−∆)sU(x) = (−∆)su(x) + C(n, s)

∫

Rn

(1− η(y))u(y)

|x− y|n+2s
dy.

We resort to Lemma 2.2 (continuous dependence) once again to see that u ≥

0 > χ in B3τ , whence the complementarity conditions (1.1) imply that λ(x) =

(−∆)su(x) = 0. We deduce that

(−∆)sU(x) = (Kτ ⋆ (1− η)u) (x) ∀ x ∈ B3τ ,

and therefore

‖(−∆)sU‖C0,1−s(B3τ )
≤ ‖Kτ‖C0,1−s(Rn)‖(1− η)u‖L1(Rn) ≤ C(̺, χ, u).

• Given x ∈ Nη \ B2τ , we still have that λ = (−∆)su = 0 in Bτ (x). Consequently,

we can proceed as in the case x ∈ A2 in the proof of Proposition 3.1 (interior

Hölder regularity) to deduce that (−∆)sU is smooth in (Nη \ B2τ ) + Bτ/2(0).

In fact, we construct a smooth extension EU outside (Nη \ B2τ ) + Bτ/2(0) that

vanishes in [(Nη \ B2τ ) +Bτ (0)]
c to get

(−∆)sU(x) = (−∆)sEU(x) +
(
Kτ/2 ⋆ (EU − U)

)
(x) ∀ x ∈ Nη \ B2τ ,

whence

‖(−∆)sU‖
C0,1−s(Nη\B2τ )

≤ ‖(−∆)sEU‖
C0,1−s(Nη\B2τ )

+ ‖Kτ/2 ⋆ (EU − U)‖
C0,1−s(Nη\B2τ )

.

We next exploit that the extension satisfies EU ≡ 0 in [(Nη \ B2τ ) +Bτ (0)]
c, and

so vanishes in Bτ ∪ Ωc, to realize that

‖(−∆)sEU‖
C0,1−s(Nη\Bτ )

≤ C(s)‖EU‖C1,s(Rn) ≤ C(s)‖u‖C1,s(Ω\Bτ )
.

Moreover, since

‖Kτ/2 ⋆ (EU − U)‖
C0,1−s(Nη\B2τ )

≤ C(τ, χ, u),
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we deduce

‖(−∆)sU‖
C0,1−s(Nη\Bτ )

≤ C(‖u‖C1,s(Ω\Bτ )
, ̺, χ).

Combining the above Hölder estimates with the fact that B3τ and Nη \B2τ overlap,

(3.5) follows.

The following simple argument reveals that the boundary behavior of u coincides

with that of linear equations. Let g = (−∆)s(ηu) and notice that, inNη, the function

ηu coincides with the solution wg of

(−∆)swg = g, in Nη, wg = 0, in N c
η .

We employ this relation to derive first a Hölder estimate and next a Sobolev esti-

mate. We recall that ̺ is defined in (3.3) and Bτ in (3.4).

Corollary 3.2 (boundary Hölder regularity). Let Ω be a bounded Lipschitz

domain satisfying the exterior ball condition, and let u ∈ H̃s(Ω) solve (1.3) with

χ ∈ X (Ω) and f = 0. Then

‖u‖C0,s(Nη)
+ sup

x∈Bτ

δ(x)1−s|∇u(x)| ≤ C(‖u‖C1,s(Ω\Bτ )
, χ, s, n,Ω, ̺). (3.6)

Proof. Since g ∈ C0,1−s(Nη) according to Proposition 3.2 (boundary Hölder reg-

ularity), we can apply Proposition 2.2 (Hölder estimates for the linear problem) to

deduce (3.6).

Corollary 3.3 (boundary weighted Sobolev regularity). Let Ω be a bounded

Lipschitz domain satisfying the exterior ball condition, and let χ ∈ X (Ω), f = 0, and

u ∈ H̃s(Ω) solve (1.3). Then, for every ε ∈ (0, s/2), we have that u ∈ H1+s−2ε
1/2−ε (Bτ )

with the estimate

|u|H1+s−2ε
1/2−ε

(Bτ )
≤

C(‖u‖C1,s(Ω\Bτ )
, χ, s, n,Ω, ̺)

ε
, (3.7)

where the weight δ refers to dist(·, ∂Ω). Moreover, we have the estimate
∫∫

Bτ×Ωc

|∇u(x)|2

|x− y|n+2s−4ε
δ(x, y)1−2ε dy dx ≤

C(‖u‖C1,s(Ω\Bτ )
, χ, s, n,Ω, ̺)

ε2
. (3.8)

Proof. We apply Theorem 2.1 (weighted regularity of wg) to infer that ηu = wg ∈

H̃1+s−2ε
1/2−ε (Nη) with

‖ηu‖H̃1+s−2ε
1/2−ε

(Nη)
≤

C(Ω, s)

ε
‖g‖C0,1−s(Nη)

≤
C(‖u‖C1,s(Ω\Bτ )

, χ, s, n,Ω, ̺)

ε
.

Notice that, in this estimate, the weight used to define the norm is the distance

to ∂Nη. However, owing to the definition of Bτ , we have that for all x ∈ Bτ this

coincides with dist(x, ∂Ω). In addition, since η ≡ 1 on Bτ we can conclude that u ∈

H1+s−2ε
1/2−ε (Bτ ), with the corresponding estimate (3.7). Finally, recalling the definition

of H̃1+s−2ε
1/2−ε (Nη) and restricting the integration to Bτ ×Ωc instead of Rn ×R

n, the

previous inequality yields (3.8) because u = 0 on Ωc.
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3.3. Global regularity

We are now in position to prove the global regularity of solutions of the fractional

obstacle problem.

Theorem 3.1 (global weighted Sobolev regularity for f = 0). Let Ω be a

bounded Lipschitz domain satisfying the exterior ball condition, χ ∈ X (Ω) satisfy

(3.3), and f = 0. Then, the solution u ∈ H̃s(Ω) of (1.3) satisfies u ∈ H̃1+s−2ε
1/2−ε (Ω)

for all ε ∈ (0, s/2) with the estimate

|u|H̃1+s−2ε
1/2−ε

(Ω) ≤
C(χ, s, n,Ω, ̺)

ε
,

where the constant in this estimate is independent of ε.

Proof. We split

|u|2
H̃1+s−2ε

1/2−ε
(Ω)

= |u|2
H1+s−2ε

1/2−ε
(Ω)

+ 2

∫∫

Ω×Ωc

|∇u(x)|2

|x− y|n+2s−4ε
δ(x, y)1−2ε dy dx, (3.9)

and treat the two terms on the right hand side separately. We bound the integral

over Ω× Ω as follows:

|u|2
H1+s−2ε

1/2−ε
(Ω)
≤ |u|2

H1+s−2ε
1/2−ε

(Bτ )
+ |u|2

H1+s−2ε
1/2−ε

(Ω\Bτ/2)

+ 2

∫∫

Bτ/2×(Ω\Bτ )

|∇u(x)−∇u(y)|2

|x− y|n+2s−4ε
δ(x, y)1−2ε dy dx.

Theorem 3.3 (boundary weighted Sobolev regularity) and Corollary 3.1 (interior

Sobolev regularity), respectively, give upper bounds for the first two terms on the

right hand side. For the last term, we write

∫∫

Bτ/2×(Ω\Bτ )

|∇u(x)−∇u(y)|2

|x− y|n+2s−4ε
δ(x, y)1−2ε dy dx ≤

2

∫

Bτ/2

|∇u(x)|2δ(x)1−2ε

(∫

Ω\Bτ

1

|x− y|n+2s−4ε
dy

)
dx

+ 2

∫

Ω\Bτ

|∇u(y)|2

(∫

Bτ/2

δ(x)1−2ε

|x− y|n+2s−4ε
dx

)
dy.

Since for every (x, y) ∈ Bτ/2 × (Ω \ Bτ ) we have |x− y| ≥ τ/2, using the pointwise

bound (3.6) and that owing to Remark 3.2 (interior regularity estimate) we have

|∇u(y)| ≤ C(f, χ, τ), y ∈ Ω \ Bτ ,

we conclude that the previous integral is independent of ε and

|u|2
H1+s−2ε

1/2−ε
(Ω)
≤

C(χ, s, n,Ω, ̺)

ε
.
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We now consider the integral over Ω×Ωc in (3.9). In order to bound the integral

over Bτ × Ωc, we resort to estimate (3.8). On the other hand, if x ∈ Ω \ Bτ and

y ∈ Ωc, then |x− y| > τ yields
∫

Ωc

1

|x− y|n+2s−4ε
dy ≤ ωn−1

∫ ∞

τ

t−1−2s+2ε dt ≤
ωn−1τ

−2s+4ε

2(s− 2ε)
,

whereas δ(x, y) ≤ δ(x) ≤ diam(Ω) implies

∫∫

(Ω\Bτ )×Ωc

|∇u(x)|2

|x− y|n+2s−4ε
δ(x, y)1−2ε dy dx

≤ C

∫

Ω\Bτ

|∇u(x)|2 dx ≤ C‖u‖C1,s(Ω\Bτ )
,

where

C ≤
ωn−1τ

−2s+4ε

s(2− 2ε)
diam(Ω)1−2ε,

which can be bounded above independently of ε ∈ (0, s/2). Adding this estimate

with (3.8) finishes the proof.

We conclude the discussion about the regularity of u by treating the nonhomo-

geneous case f 6= 0.

Corollary 3.4 (global weighted Sobolev regularity for f 6= 0). Let Ω be a

bounded Lipschitz domain satisfying the exterior ball condition, χ ∈ X (Ω) satisfy

(3.3). Moreover, let f ∈ Fs(Ω) and u ∈ H̃s(Ω) be the solution to (1.3). For every

ε ∈ (0, s/2) we have that u ∈ H̃1+s−2ε
1/2−ε (Ω) with the estimate

|u|H̃1+s−2ε
1/2−ε

(Ω) ≤
C(χ, s, n,Ω, ̺, ‖f‖Fs(Ω))

ε
.

Proof. Recall that, from Lemma 3.2 (reduction to f = 0) we have the representa-

tion

u = wf + ũ.

Apply Theorem 2.1 (weighted regularity of wg) for wf , and Theorem 3.1 (global

weighted Sobolev regularity for f = 0) to ũ to prove the asserted estimate.

We conclude this section with a regularity result for λ that will be useful in the

sequel.

Theorem 3.2 (Hölder regularity of λ). Let λ be defined in (1.1). In the setting

of Corollary 3.4 we have that λ ∈ C0,1−s(Ω).

Proof. We begin by observing that ̺ > 0 according to (3.3) and the coincidence

set Λ ⋐ Ω. Consequently λ ≡ 0 in the non-coincidence set N and we need to prove

the asserted regularity of λ in Λ.
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The arguments below mimic ideas used to prove Proposition 3.1 (interior Hölder

regularity). We introduce a smooth cutoff function η such that η ≡ 1 on Λ and, for

some τ > 0,

dist(supp(η), ∂Ω) > 2τ, dist(Λ, ∂{η = 1}) > 2τ.

Define now

Λτ = {x ∈ Ω : dist(x,Λ) ≤ τ}

and let x ∈ Λτ . Since η ≡ 1 on Bτ (z), we are now in a similar situation to the case

z ∈ A1 in the proof of Proposition 3.1. Then we have for all x ∈ Bτ (z)

(−∆)su(x) = (−∆)s(ηu)(x)− C(n, s)

∫

Rn

(1− η(y))u(y)

|x− y|n+2s
dy

= (−∆)s(ηu)(x)−
(
Kτ/2 ⋆ (1− η)u

)
(x),

where the last identity holds because η(y) = 1 for |z − x|, |x − y| ≤ τ/2. Since

u ∈ C1,s(Ω) and η is smooth, we deduce that the first term ηu ∈ C1,s(Rn) and

(−∆)s(ηu) ∈ C0,1−s(Rn). On the other hand, the second term Kτ/2 ⋆ (1 − η)u is

smooth in Bτ (z) which in turn is arbitrary. This implies (−∆)su ∈ C0,1−s(Λτ ).

Finally, since f ∈ Fs(Ω) ⊂ C0,1−s(Ω) we conclude that λ = (−∆)su − f ∈

C0,1−s(Λτ ).

4. Finite element approximation

In this section we will apply regularity estimates in weighted Sobolev spaces shown

in Section 3 to derive near optimal rates of convergence for a finite element method

(FEM) for (1.3) over graded meshes. The latter compensate for the singular bound-

ary behavior of solutions regardless of domain smoothness, which is a distinctive

feature of fractional diffusion problems for any fractional order s ∈ (0, 1).

Let us then begin by describing the discrete framework that we will adopt. First,

to avoid technicalities we shall assume, from now on, that Ω is a polytope and so

convex owing to the exterior ball condition. Next, we introduce a family {Th}h>0 of

conforming and simplicial triangulations of Ω which we assume shape regular, i.e.

we have that

σ = sup
h>0

sup
T∈Th

hT

ρT
<∞,

where hT = diam(T ) and ρT is the diameter of the largest ball contained in T .

The vertices of Th will be denoted by {xi}. We comment that we assume that the

elements T ∈ Th are closed. In this case the star, patch, or first ring of T ∈ Th is

defined as

S1
T =

⋃
{T ′ ∈ Th : T ∩ T ′ 6= ∅} .

We also introduce the star of S1
T (or second ring of T ),

S2
T =

⋃{
T ′ ∈ Th : S1

T ∩ T ′ 6= ∅
}
.
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Below, when discussing positivity preserving interpolation over fractional order

smoothness spaces we partition Th into two classes, interior and boundary elements,

as follows:

T ◦
h =

{
T ∈ Th : S1

T ∩ ∂Ω = ∅
}
, T ∂

h =
{
T ∈ Th : S1

T ∩ ∂Ω 6= ∅
}
. (4.1)

On the basis of the triangulation Th we define Vh as the space of continuous,

piecewise affine functions on Th that vanish on ∂Ω. The Lagrange nodal basis of Vh

will be denoted by {ϕi} and

Si = supp(ϕi).

We will denote by Bi the maximal ball, centered at xi, and contained in Si. If ρi is

the radius of Bi, and hi = diam(Si) by shape regularity of the mesh we have the

equivalences ρi ≈ hi ≈ hT , for all T ⊂ Si.

4.1. Positivity preserving interpolation over fractional order

spaces

Below it will become necessary to introduce a discrete version of the admissible

set K defined in (1.2). In addition, when performing the analysis of the FEM it

will become necessary that an interpolator of the exact solution belongs to this

discrete admissible set. Since we assume that χ ∈ X (Ω) and f ∈ Fs(Ω), we have

that u ∈ C(Ω) as a consequence of Proposition 2.3 ((1.3) =⇒ (1.1)). Therefore one

could, in principle, use the Lagrange interpolation operator. It turns out, however,

that this operator does not possess suitable stability and approximation properties

with respect to fractional order Sobolev spaces. For this reason, we will use instead

the operator Ih introduced in 14 which we now describe.

Definition 4.1 (positivity preserving interpolation operator). Let Ih :

L1(Ω)→ Vh be defined by

Ihv =
∑

i : xi∈Ω

(
1

|Bi|

∫

Bi

v(x) dx

)
ϕi.

Notice that, since the sum is only over interior vertices of Th, we indeed have that

Ihv vanishes on ∂Ω, whence Ihv ∈ Vh. In addition, by construction, this operator

is positivity preserving: we have that Ihv ≥ 0 whenever v ≥ 0. Moreover, since for

every xi ∈ Ω the ball Bi is symmetric with respect to xi we have the following

exactness property for Ih

Ihv(xi) = v(xi), ∀v ∈ P1(Bi), (4.2)

where by P1(E) we denote the space of polynomials of degree one over the set E.

Notice however, that this operator is not a projection. In general, if vh ∈ Vh then

Ihvh 6= vh; see 37 for details. The following result summarizes the local stability

and approximation properties of Ih.

Proposition 4.1 (properties of Ih). Let p ∈ [1,∞], Ih be the operator introduced

in Definition 4.1 (positivity preserving interpolation operator), and T ∈ Th. Then,
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there are constants independent of T and h such that

‖Ihv‖Lp(T ) ≤ C‖v‖Lp(S1
T ), ∀v ∈ Lp(Ω),

and

‖∇Ihv‖Lp(T ) ≤ C‖∇v‖Lp(S1
T ), ∀v ∈W 1,p

0 (Ω).

Moreover, for t ∈ [1, 2], we also have the error estimate

‖v − Ihv‖Lp(T ) ≤ Cht
T |v|W t,p(S1

T ), ∀v ∈W t,p(Ω) ∩W 1,p
0 (Ω).

Proof. See 14 . The fractional error estimates follows from interpolation between

the cases t = 1 and t = 2 in 14 .

We need to obtain similar properties in fractional order Sobolev spaces, and for

that we will follow the ideas of 15. We begin with a local stability estimate over the

set T × S1
T , which exhibits the least amount of overlap for every T ∈ Th to control

the nonlocal fractional Sobolev norms 21, 22.

Proposition 4.2 (local stability of Ih). Let s ∈ (0, 1) and T ∈ Th. There is

a constant C(n, σ), depending only on the dimension n and the shape regularity

parameter σ of the mesh, such that the estimate

∫∫

T×S1
T

|Ihv(x)− Ihv(y)|
2

|x− y|n+2s
dy dx ≤

C(n, σ)

1− s
hn−2s
T

∑

i:xi∈S1
T

(
1

|Bi|

∫

Bi

v(z) dz

)2

holds for all v ∈ L1(Ω).

Proof. From Definition 4.1 (positivity preserving interpolation operator) it follows

that, if x ∈ T and y ∈ S1
T , then

Ihv(x)− Ihv(y) =
∑

i:xi∈S1
T

(
1

|Bi|

∫

Bi

v(z) dz

)
(ϕi(x)− ϕi(y)).

In addition we observe that, by shape regularity the number of terms in this sum

is uniformly bounded by a constant that depends only on σ. Thus, by Hölder’s

inequality we have that

∫∫

T×S1
T

|Ihv(x)− Ihv(y)|
2

|x− y|n+2s
dy dx ≤

C(σ)
∑

i:xi∈S1
T

(
1

|Bi|

∫

Bi

v(z) dz

)2 ∫∫

T×S1
T

|ϕi(x)− ϕi(y)|
2

|x− y|n+2s
dy dx.

From mesh regularity it follows that |ϕi|C0,1(Ω) ≤ C(σ)h−1
T uniformly in i and that

α(x) = max
z∈S1

T

|x− z| ≤ C(σ)hT .
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These two observations and integration in polar coordinates then imply that
∫∫

T×S1
T

|ϕi(x)− ϕi(y)|
2

|x− y|n+2s
dy dx ≤

C(σ)

h2
T

∫∫

T×S1
T

|x− y|2−n−2s dy dx

≤
C(n, σ)

h2
T

∫

T

∫ α(x)

0

ρ1−2s dρ dx.

From this the asserted estimate immediately follows.

Let now S ⊂ R
n. It is well-known that for every v ∈ W k,1(S) there is a unique

polynomial Pkv of degree k that satisfies
∫

S

∂α(v − Pkv) dx = 0, ∀α ∈ N
n, |α| ≤ k. (4.3)

We shall also need the following fractional Poincaré inequality.

Proposition 4.3 (fractional Poincaré inequality). Let s ∈ (0, 1), α ∈ [0, s)

and S be a domain which is a finite union of overlapping star-shaped domains Si

with respect to balls Bi, i = 1, . . . , I. Then, there exists a constant C > 0, depending

on the chunkiness of Si and the amount of overlap between the subdomains Si, such

that, for any i ∈ {1, . . . , I}, we have

‖v − vi‖L2(S) ≤ C diam(S)s−α|v|Hs
α(S), ∀v ∈ Hs

α(S), (4.4)

where vi =
1

|Si|
∫
Si

v(x) dx.

Proof. We must first observe that when S is itself star-shaped, the result is proved

in 2 .

In the general case, the result is an easy modification of the arguments used to

show 17 ; see also 35 and 34 . For brevity we skip the details.

Notice that, as a consequence of the fractional Poincaré inequality (4.4), we have

that, whenever t ∈ (1, 2) and α ∈ [0, t − 1), there are constants that depend only

on σ such that, for every v ∈ Ht
α(S

2
T ), the polynomial P1v, defined by (4.3) with

S = S2
T , satisfies

‖v − P1v‖L2(S2
T ) ≤ Cht−α

T |v|Ht
α(S2

T ),

‖∇(v − P1v)‖L2(S2
T ) ≤ Cht−α−1

T |v|Ht
α
(S2

T ).

We use 46 to interpolate these two inequalities and obtain that, whenever s ∈ [0, 1],

t ∈ (1, 2), and α ∈ [0, t− 1), there is a constant C that depends only on σ for which

|v − P1v|Hs(S2
T ) ≤ Cht−α−s

T |v|Ht
α(S2

T ). (4.5)

With these estimates at hand, we now proceed to obtain local interpolation error

estimates for Ih of Definition 4.1 (positivity preserving interpolation operator). We
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must do this separately for interior and boundary elements, as defined in (4.1). We

first give the interior estimate and next the boundary estimate.

Proposition 4.4 (interior interpolation estimate). Let T ◦
h be defined in (4.1)

and T ∈ T ◦
h . Assume, in addition, that s ∈ (0, 1), t ∈ (1, 2), and that Ih is the pos-

itivity preserving interpolator of Definition 4.1. Then, there is a constant C(n, σ, t)

that depends only on the dimension n, the shape regularity parameter σ, and t such

that
∫∫

T×S1
T

|(v − Ihv)(x)− (v − Ihv)(y)|
2

|x− y|n+2s
dy dx ≤

C(n, σ, t)

1− s
h
2(t−s)
T |v|2Ht(S2

T ),

where the constant C(n, σ, t) is non-decreasing in t.

Proof. We begin by writing v − Ihv = (v − P1v) + (P1v − Ihv), where P1v ∈ P1 is

the polynomial defined by (4.3) over S2
T . We estimate the two terms on the right

hand side separately.

Using (4.5) with α = 0 the first term can be estimated as follows:

∫∫

T×S1
T

|(v − P1v)(x)− (v − P1v)(y)|
2

|x− y|n+2s
dy dx ≤ |v−P1v|

2
Hs(S1

T ) ≤ Ch
2(t−s)
T |v|2Ht(S2

T ).

On the other hand, since P1v ∈ P1(S
2
T ) it follows, from (4.2), that IhP1v|S1

T
=

P1v|S1
T
and to control the second term we only need to invoke Proposition 4.2 (local

stability of Ih) to arrive at

∫∫

T×S1
T

|(P1v − Ihv)(x)− (P1v − Ihv)(y)|
2

|x− y|n+2s
dy dx ≤

C(n, σ)

1− s
hn−2s
T

∑

i : xi∈S1
T

1

|Bi|
‖v − P1v‖

2
L2(Bi)

≤
C(n, σ)

1− s
h−2s
T ‖v − P1v‖

2
L2(S2

T ).

Setting s = α = 0 in (4.5) yields the desired estimate.

As a final preparatory step we obtain local interpolation error estimates for

elements in T ∂
h

Proposition 4.5 (boundary interpolation estimate). Let T ∂
h be defined in

(4.1) and T ∈ T ∂
h . Assume, in addition, that s ∈ (0, 1), t ∈ (1, 2), α ∈ [0, 1/2),

and that Ih is the positivity preserving interpolation operator of Definition 4.1.

Then, there is a constant C(n, σ, t) that depends only on the dimension n, the shape

regularity parameter σ, and t such that, for all v ∈ H̃t
α(Ω), we have

∫∫

T×S1
T

|(v − Ihv)(x)− (v − Ihv)(y)|
2

|x− y|n+2s
dy dx ≤

C(n, σ, t)

1− s
h
2(t−s−α)
T |v|2Ht

α(S2
T ),

where the constant C(n, σ, t) is non-decreasing in t.
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Proof. As in the proof of Proposition 4.4 (interior interpolation estimate) we de-

compose v − Ihv = (v − P1v) + (P1v − Ihv) and estimate each term separately. For

the first term, we use (4.5) to obtain

∫∫

T×S1
T

|(v − P1v)(x)− (v − P1v)(y)|
2

|x− y|n+2s
dy dx ≤ Ch

2(t−s−α)
T |v|2Ht

α(S2
T ).

The estimate of the second term P1v − Ihv is now more delicate, as we cannot

exploit the symmetries that T ∈ T ◦
h afforded us in Proposition 4.4 (interior inter-

polation estimate). Instead, we will follow the ideas used to obtain 14 , where a

similar difficulty is handled by further decomposing this term into

P1v − Ihv = Ih(P1v − v) + (P1v − IhP1v).

Proposition 4.2 (local stability of Ih) and estimate (4.5) for s = 0 allow us to bound

the first term:
∫∫

T×S1
T

|Ih(P1v − v)(x)− Ih(P1v − v)(y)|2

|x− y|n+2s
dy dx ≤

C(n, σ, t)

1− s
h
2(t−s−α)
T |v|2Ht

α(S2
T ).

Next, we notice that the difference P1v − IhP1v can be written, for x ∈ S1
T , as

(P1v − IhP1v)(x) =
∑

j : xj∈S1
T

(P1v(xj)− IhP1v(xj))ϕj(x);

where now the summation must include the vertices xj ∈ S1
T ∩ ∂Ω, where

IhP1v(xj) = 0 but P1v(xj) 6= 0 in general. Since, by shape regularity, the num-

ber of indices in this sum is uniformly bounded and 0 ≤ ϕj ≤ 1, we can proceed as

in Proposition 4.2 to obtain

∫∫

T×S1
T

|(P1v − IhP1v)(x)− (P1v − IhP1v)(y)|
2

|x− y|n+2s
dy dx ≤

C(n, σ)

1− s
hn−2s
T

∑

j : xj∈S1
T

((P1v − IhP1v)(xj))
2
.

The objective is now to show that, for all indices in the indicated range,

((P1v − IhP1v)(xj))
2 ≤ Ch

−n+2(t−α)
T |v|2Ht

α(S2
T ),

as this will imply the desired estimate. If xj ∈ Ω then we get

(P1v − IhP1v)(xj) = 0,

in view of (4.2). On the other hand if xj ∈ ∂Ω, then IhP1v(xj) = 0. Let xj ∈ ej ⊂

∂Ω ∩ S1
T be a face and recall the scaled trace inequality

‖w‖L2(e) ≤ C
(
h−1/2
e ‖w‖L2(T ) + h1/2

e ‖∇w‖L2(T )

)
∀w ∈ H1(T ).
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This, for w = v−P1v, together with an inverse inequality and the fact that v|ej = 0,

yields

|P1v(xj)| ≤ Ch
(1−n)/2
T ‖P1v‖L2(ej) = Ch

(1−n)/2
T ‖P1v − v‖L2(ej)

≤ Ch
(1−n)/2
T

(
h
−1/2
T ‖v − P1v‖L2(T ) + h

1/2
T ‖∇(v − P1v)‖L2(T )

)
.

Property v|ej = 0 is a consequence of 32 , because v ∈ H̃t
α(Ω) ⊂ H̃1

α(Ω). An

application of (4.5) for s = 0 and s = 1 allows us to conclude the proof.

Remark 4.1 (case s = 0). We briefly comment that Proposition 4.5 (boundary

interpolation estimate) can be extended to s = 0. In fact, if T ∈ T ∂
h , and t and α

are as in Proposition 4.5, then we have

‖v − Ihv‖L2(T ) ≤ Cht−α
T |v|Ht

α(S2
T ),

for every v ∈ H̃t
α(Ω). The proof is a slight modification of the arguments needed for

s > 0 and, for brevity, we skip the details.

We are now finally in position to prove global interpolation error estimates.

While Propositions 4.4 (interior interpolation estimate) and 4.5 (boundary interpo-

lation estimate) may allow us to obtain error estimates over quasi-uniform meshes

for functions in Ht(Ω), t ∈ (1, 2), the regularity results of Section 3 show that

these may be of little use for the approximation of problem (1.3). We will, instead,

exploit the regularity estimates in weighted Sobolev spaces Ht
α(Ω) of Section 3 in

conjunction with mesh grading towards the boundary to compensate for the singular

behavior of the solution.

The preceding discussion motivates the use of graded meshes. In addition, these

meshes must be shape regular for Propositions 4.4 and 4.5 to hold. For these rea-

sons the meshes Th that we consider will be constructed as follows. Given a mesh

parameter h > 0 and µ ∈ [1, 2] every element T ∈ Th satisfies
{
hT ≈ C(σ)hµ, T ∈ T ∂

h

hT ≈ C(σ)h dist(T, ∂Ω)(µ−1)/µ, T ∈ T ◦
h .

(4.6)

Remark 4.2 (dimension of Vh). Following 4 it is not difficult to see that the

space Vh constructed over the mesh Th that satisfies (4.6) will satisfy

dimVh ≈





h(1−n)µ, µ >
n

n− 1
,

h−n| log h|, µ =
n

n− 1
,

h−n, µ <
n

n− 1
.

Indeed, since the mesh is assumed shape regular, we have that

dimVh ≤ (n+ 1)
∑

T∈Th

1 ≤ C(σ)



∑

T∈T ◦

h

h−n
T

∫

T

dx+
∑

T∈T ∂
h

h−n
T

∫

T

dx


 .
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Over T ∂
h , because ∪T∈T ∂

h
T defines a layer around the boundary of thickness about

hµ, we have

∑

T∈T ∂
h

h−n
T

∫

T

dx ≤ Ch−nµ
∑

T∈T ∂
h

∫

T

dx ≤ Ch(1−n)µ.

On the other hand, for T ◦
h we have

∑

T∈T ◦

h

h−n
T

∫

T

dx ≤ Ch−n

∫ diam(Ω)

hµ

ρ−n(µ−1)/µ dρ =





h(1−n)µ, µ >
n

n− 1
,

h−n| log h|, µ =
n

n− 1
,

h−n, µ <
n

n− 1
.

In other words, if we wish that the dimension of Vh scaled like (up to logarithmic

factors) h−n we must set the grading to be µ ≤ n/(n− 1).

For future reference we record that, if we insist on setting µ = 2, then we obtain

dimVh =

{
h−2| log h|, n = 2,

h−4, n = 3.

In three dimensions µ = 2 does not yield an optimal number of degrees of freedom.

Before we proceed further, we present the following inequality regarding the

localization of fractional order Sobolev seminorms, and refer the reader to 22, 21

for a proof:

|v|2Hs(Ω) ≤
∑

T∈Th

[∫∫

T×S1
T

|v(x)− v(y)|2

|x− y|n+2s
dy dx+

2ωn−1

sh2s
T

‖v‖2L2(T )

]
. (4.7)

Let us now show a global interpolation estimate for functions in H̃1+s−2ε
1/2−ε (Ω), in

two dimensions, over graded meshes that satisfy (4.6).

Theorem 4.1 (global interpolation estimate). Let Th be shape regular and

satisfy the mesh grading condition (4.6) with µ ∈ [1, 2]. Assume, in addition, that

t ∈ (1, 2) and ε ∈ (0, 1/4). Define

α =





(
µ−1
µ

)
(t− s), s 6=

1

2
,

(
µ−1
µ

)(
t−

1

2
− ε

)
, s =

1

2
.

Then, there is a constant C that depends only on s, Ω and σ such that,

|v − Ihv|H̃s(Ω) ≤ Cht−s|v|H̃t
α(Ω) (s 6= 1/2),

|v − Ihv|H̃1/2(Ω) ≤
C

ε
ht−1/2−ε|v|H̃t

α(Ω) (s = 1/2),
(4.8)

for all v ∈ H̃t
α(Ω).
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Proof. From the localization estimate (4.7) we obtain

|v − Ihv|
2
Hs(Ω) ≤

∑

T∈Th

[∫∫

T×S1
T

|(v − Ihv)(x)− (v − Ihv)(y)|
2

|x− y|n+2s
dy dx

+
2ωn−1

sh2s
T

‖v − Ihv‖
2
L2(T )

]
.

To shorten notation, for T ∈ Th, we set

IT =

∫∫

T×S1
T

|(v − Ihv)(x)− (v − Ihv)(y)|
2

|x− y|n+2s
dy dx, LT =

1

h2s
T

‖v − Ihv‖
2
L2(T ).

To control the term IT , we recall the notation (4.1) and consider two cases:

• T ∈ T ◦
h : In this case we apply Proposition 4.4 (interior interpolation estimate)

and use the mesh grading condition (4.6) to obtain that

IT ≤
C(n, σ, t)

1− s
h2(t−s) dist(T, ∂Ω)2(t−s)µ−1

µ |v|2Ht(S2
T ).

In addition since, for all x, y ∈ S2
T , we have that dist(T, ∂Ω) ≈ δ(x, y), the right

hand side of the previous expression can be modified so that the final estimate

reads

IT ≤
C(n, σ, t)

1− s
h2(t−s)|v|2Ht

α(S2
T ),

where we used the prescribed value for α.

• T ∈ T ∂
h : We now use Proposition 4.5 (boundary interpolation estimate) to arrive

at

IT ≤
C(n, σ, t)

1− s
h
2(t−s−α)
T |v|2Ht

α(S2
T ) ≤

C(n, σ, t)

1− s
h2(t−s)|v|2Ht

α(S2
T )

as a consequence of the grading condition (4.6) and the prescribed value of α.

Gathering the two previous estimates, and using that the constants are non-

decreasing in t, we deduce
∑

T∈Th

IT ≤ Ch2(t−s)|v|2
H̃t

α(Ω)
. (4.9)

It remains to control the local L2-interpolation errors LT . We again consider

two cases:

• T ∈ T ◦
h : Employing the error estimate of Proposition 4.1 (properties of Ih) for

p = 2 we have

LT ≤ Ch
2(t−s)
T |v|2Ht(S1

T ).

Then, as in the first case for IT , we can use the mesh grading condition (4.6) and

the fact that, for all x, y ∈ S1
T , δ(x, y) ≈ dist(T, ∂Ω) to obtain

LT ≤ C(σ, s)h2(t−s)|v|2Ht
α(S1

T ),
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where we also use the prescribed value for α.

• T ∈ T ∂
h : Owing to Remark 4.1 (case s = 0) we have

LT ≤ C(σ)h
2(t−α)
T |v|2Ht

α(S1
T ).

Using the mesh grading condition (4.6), the prescribed value of α, and the fact that

µ ∈ [1, 2] we see that

∑

T∈Th

LT ≤ Ch2(t−s)|v|2
H̃t

α(Ω)
. (4.10)

Adding (4.9) and (4.10) allows us to conclude that

|v − Ihv|Hs(Ω) ≤ Cht−s|v|H̃t
α(Ω),

where α = (t− s)(µ− 1)/µ and µ ∈ [1, 2].

Finally, to bound the full H̃s(Ω)-seminorm we need to provide a bound for the

term

IO =

∫

Ω

|(v − Ihv)(x)|
2

∫

Ωc

1

|x− y|n+2s
dy dx ≤ C(s)

∫

Ω

|(v − Ihv)(x)|
2

δ(x)2s
dx.

To do so, if s 6= 1/2 we employ the inequality

IO ≤ C(s)





‖v‖2Hs(Ω), s ∈

(
0,

1

2

)
,

|v|2Hs(Ω), s ∈

(
1

2
, 1

)
,

whose proof is implicit in the proof of 2 and uses the fractional Hardy-type in-

equality of 18 in the case s > 1/2

∫

Ω

|w(x)|2

δ(x)2s
dx ≤ C(s)

∫

Ω

∫

Ω

|w(x)− w(y)|2

|x− y|n+2s
dx dy ∀ w ∈ H̃s(Ω),

and is the content of 23 for s < 1/2. We point out that, as shown in 28, in case Ω is a

convex domain, the constant C(s) in the Hardy-type inequality for s > 1/2 behaves

like C(s) ≈ (s − 1/2)−2 for s ↓ 1/2. On the other hand, if s = 1/2, an argument

similar to the one provided in the proof of Theorem 2.1(weighted regularity of wg)

yields for any ε ∈ (0, 1/4)

IO ≤ C

∫

Ω

|(v − Ihv)(x)|
2

δ(x)
dx ≤ C diam(Ω)2ε

∫

Ω

|(v − Ihv)(x)|
2

δ(x)1+2ε
dx,

where, in the last step, we used that, since Ω is bounded, δ(x) ≤ diam(Ω). It

remains to apply, once again, the above fractional Hardy-type inequality 18 . Since

this inequality involves the H1/2+ε-seminorm, the constant behaves as ε−2.
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4.2. The numerical scheme and its analysis

Having studied the interpolation operator Ih, introduced in Definition 4.1 (positivity

preserving interpolation operator), we can finally proceed to present and analyze

the numerical scheme we use to approximate the solution of (1.3). In essence, this

is a direct discretization inspired by the approximation of classical obstacle-type

problems and their analyses; see 8, 33.

We begin by introducing a discrete version of the admissible set as follows:

Kh = {vh ∈ Vh : vh ≥ Ihχ} . (4.11)

Note that, in general, Kh 6⊂ K and so our approximation scheme is nonconforming.

The discrete problem reads: find uh ∈ Kh such that

(uh, uh − vh)s ≤ 〈f, uh − vh〉, ∀vh ∈ Kh. (4.12)

The existence and uniqueness of a solution to (4.12) is standard. The approximation

properties of this scheme are presented below.

Theorem 4.2 (error estimate). Let u be the solution to (1.3) and uh be the

solution to (4.12), respectively. Assume that χ ∈ X (Ω) satisfies (3.3) and that

f ∈ Fs(Ω). If n ≥ 2, Ω is a convex polytope, and the mesh Th satisfies the grading

hypothesis (4.6) with µ = 2 then, for ε ∈ (0, s/2), we have that

|u− uh|H̃s(Ω) ≤
C

ε
h1−2ε (s 6= 1/2),

|u− uh|H̃1/2(Ω) ≤
C

ε2
h1−3ε (s = 1/2),

where C > 0 depends on χ, s, n, Ω, ̺ and ‖f‖Fs(Ω). In particular, setting ε ≈

| log h|−1 we obtain

|u− uh|H̃s(Ω) ≤ Ch| log h| (s 6= 1/2),

|u− uh|H̃1/2(Ω) ≤ Ch| log h|2 (s = 1/2).

Proof. After all the discussion about regularity of Section 3 and preparatory steps,

the proof of this result follows more or less standard arguments; see 8 . However, it

requires a combination of Sobolev and Hölder regularity results on the solution as

it was first exploited in 33 .

We begin by writing

|u− uh|
2
H̃s(Ω)

= (u− uh, u− Ihu)s + (u− uh, Ihu− uh)s

≤
1

2
|u− uh|

2
H̃s(Ω)

+
1

2
|u− Ihu|

2
H̃s(Ω)

+ (u− uh, Ihu− uh)s

so that

|u− uh|
2
H̃s(Ω)

≤ |u− Ihu|
2
H̃s(Ω)

+ 2(u− uh, Ihu− uh)s.

For the first term on the right hand side Corollary 3.4 (global weighted Sobolev

regularity for f 6= 0) shows that we must apply Theorem 4.1 (global interpolation
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estimate) with t = 1 + s− 2ε and α = 1
2 − ε to deduce, first of all, that this forces

us to set µ = 2 and that, in addition, we have

|u− Ihu|H̃s(Ω) ≤ Ch1−2ε|u|H̃1+s−2ε
1/2−ε

(Ω) ≤ C
h1−2ε

ε
(s 6= 1/2),

|u− Ihu|H̃1/2(Ω) ≤
C

ε
h1−3ε|u|

H̃
3/2−2ε

1/2−ε
(Ω)
≤ C

h1−3ε

ε2
(s = 1/2).

It remains to bound the second term. To do this we use (2.3) to obtain

(u, Ihu− uh)s = 〈(−∆)su, Ihu− uh〉.

In addition, since Ih is positivity preserving, we have that Ihu ∈ Kh and so it is

a legitimate test function for (4.12). Adding (4.12) to the previous equality then

yields

(u− uh, Ihu− uh)s ≤ 〈λ, Ihu− uh〉 =

∫

Ω

λ(Ihu− uh) dx

=

∫

Ω

λ(u− χ) dx+

∫

Ω

λ(Ihχ− uh) dx

+

∫

Ω

λ[Ih(u− χ)− (u− χ)] dx,

where we have used the regularity Theorem 3.2 (Hölder regularity of λ) to transform

the pairing into an integral. Next, we apply the complementarity conditions (1.1)

to conclude that λ(u − χ) = 0. Finally, we use, once again, the complementarity

conditions to see that λ ≥ 0 and, since uh ∈ Kh, then the middle term is non-positive

and can be dropped. Consequently,

(u− uh, Ihu− uh)s ≤

∫

Ω

λ[Ih(u− χ)− (u− χ)] dx

=
∑

T∈Th

∫

T

λ[Ih(u− χ)− (u− χ)] dx =
∑

T∈Th

JT .

We continue by partitioning the terms in the previous sum into three cases:

• T ⊂ N : The complementarity condition (1.1) then implies that λ = 0, whence

JT = 0.

• T is such that S1
T ⊂ Λ: In this case u = χ and, again, JT = 0.

• T is such that S1
T ∩N 6= ∅ and T∩Λ 6= ∅: The first condition yields the existence of

xN ∈ S1
T∩N for which λ(xN ) = 0. Since λ ∈ C0,1−s(Ω), according to Theorem 3.2

(Hölder regularity of λ), we infer that

|λ(x)| ≤ C(σ)h1−s
T ∀x ∈ T.

The second condition gives rise to the existence of a point xΛ ∈ T where

u(xΛ) = χ(xΛ). Using the facts that u − χ ∈ C1,s(Ω), which can be deduced

from Remark 3.2 (interior regularity estimate), and T is uniformly away from ∂Ω

because ̺ > 0 in (3.3), we obtain

|(u− χ)(x)| ≤ C(σ)h1+s
T ∀x ∈ T.
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The local stability estimate of Proposition 4.1 (properties of Ih) with p =∞ then

implies

|Ih(u− χ)(x)− (u− χ)(x)| ≤ C(σ)h1+s
T .

In conclusion, in this case we have

JT ≤ C(σ)h2
T |T |.

The previous considerations then lead to

(u− uh, Ihu− uh)s ≤ C(σ)
∑

T∈Th

h2
T |T |.

Since the mesh grading condition (4.6) yields hT ≤ Ch for all T ∈ Th, this completes

the proof.

Remark 4.3 (complexity). Let us take another look at the estimates shown in

Theorem 4.2 (error estimate). We will consider two separate cases.

In two dimensions (n = 2), since the mesh is assumed to verify the grading

condition (4.6) with µ = 2 = n/(n− 1), we have that dimVh ≈ h−2| log h|, accord-

ing to Remark 4.2 (dimension of Vh). This allows us to interpret the assertion of

Theorem 4.2 (error estimate) in terms of degrees of freedom as follows

|u− uh|H̃s(Ω) ≤ C(dimVh)
−1/2(log dimVh)

3/2 (s 6= 1/2),

|u− uh|H̃1/2(Ω) ≤ C(dimVh)
−1/2(log dimVh)

5/2 (s = 1/2),

which shows that in this case our method is near optimal.

On the other hand, in three dimensions (n = 3) we have that

dimVh ≈ h−4,

see Remark 4.2 (dimension of Vh). Therefore, the estimate will read

|u− uh|H̃s(Ω) ≤ C(dimVh)
−1/4 log dimVh (s 6= 1/2),

|u− uh|H̃1/2(Ω) ≤ C(dimVh)
−1/4(log dimVh)

2 (s = 1/2),

which is not near optimal anymore. One could, in principle, repeat the proof of

Theorem 4.2 (error estimate) with µ = 3/2 so that dimVh and h have the correct

scaling. In this case, however, we need to revisit the weighted regularity estimate

for the linear problem and the interpolation error estimate (4.5). For the former,

instead of Theorem 2.1 (weighted regularity of wg), we use that wg ∈ H̃t
α(Ω) for

t < 1 + s and α > t− s− 1/2 (cf. 7 ). For the latter, we resort to 46 to interpolate

the error estimates

‖v−P1v‖L2(S2
T ) ≤ Cht−α1

T |v|Ht
α1

(S2
T ), ‖∇(v−P1v)‖L2(S2

T ) ≤ Cht−α2−1
T |v|Ht

α2
(S2

T ),

with α1 ∈ [0, 1] and α2 ∈ [0, t− 1) to obtain (4.5) with α ∈ [0, 1− 2s+ ts)

|v − P1v|Hs(S2
T ) ≤ Cht−α−s

T |v|Ht
α(S2

T ).
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This gives a range for α ∈ (t−s−1/2, 1−2s+ ts) which turns out to be non-empty

for all s ∈ (0, 1). To enforce the condition for α of Theorem 4.1 (global interpolation

estimate) with µ = 3/2, i.e.

α =

(
µ− 1

µ

)
(t− s) > t− s−

1

2
,

which also satisfies α < 1 − 2s + ts for all t ∈ (1, 2), we are thus forced to restrict

t < 3
4 + s. In other words, the full regularity of the solution cannot be exploited,

and this would lead to suboptimal error estimates in terms of h. In conclusion, in

either case we obtain a suboptimal convergence rate (dimVh)
−1/4 (up to logarithmic

factors) for dimension n = 3.

5. Numerical illustrations

In this section we assess the sharpness of Theorem 4.2 (error estimate) by displaying

the results of numerical experiments performed in two-dimensional domains, and

we illustrate the qualitative differences between fractional Laplacians of different

orders with an example.

The experiments were carried out with the aid of the code documented in 1; we

refer to that work for details on the implementation and a discussion on the chal-

lenges that arise when computing the stiffness matrices. The discrete minimization

problems were solved by performing semismooth Newton iterations, as described in

5 . A brief explanation on how to construct graded meshes satisfying (4.6) can be

found in 2.

5.1. Explicit solution

We first describe how to construct a non-trivial solution to (1.3) in the unit ball of

R
n. For this domain, reference 19 explicitly expresses eigenfunctions of an operator

closely related to the fractional Laplacian in terms of Jacobi polynomials and an s-

dependent weight. For example, in dimension n = 2 and using the Jacobi polynomial

P
(s,0)
2 of degree two

P
(s,0)
2 (z) =

4(s+ 1)(s+ 2) + 4(s+ 2)(s+ 3)(z − 1) + (s+ 3)(s+ 4)(z − 1)2

8
,

define

p(s)(x) = P
(s,0)
2 (2|x|2 − 1),

u(x) =
(
1− |x|2

)s
+
p(s)(x),

f̃(x) = 22(s−1)Γ(3− s)2 p(s)(x).

Then, it holds that

(−∆)su(x) = f̃(x), x ∈ B1.
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We now consider a smooth obstacle χ that coincides with u in Λ = B1/5 and modify

f̃ in B1/5 so that within this contact set the strict inequality (−∆)su > f holds.

More precisely, we extend χ to N = B1 \ B1/5 by using the Taylor polynomial of

order two of u on ∂B1/5 and set

f(x) = f̃(x)− 100

(
1

5
− |x|

)

+

.

Note that, as written, f /∈ Fs(Ω). However, at the mesh level, it makes no

difference if we smooth out the vertex of the cone
(
1
5 − |x|

)
+

so that we have

f ∈ Fs(Ω).

log(dim(V
h
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9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

lo
g
(|

u
-u

h
| H

s
(R

n
))

-4.8

-4.75

-4.7

-4.65

-4.6

-4.55

-4.5

-4.45

-4.4

-4.35

-4.3

s=0.1

dim(V
h
)
-1/2

log(dim(V
h
))

9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

lo
g
(|

u
-u

h
| H

s
(R

n
))

-4.05

-4

-3.95

-3.9

-3.85

-3.8

-3.75

-3.7

-3.65

-3.6

-3.55

s=0.9

dim(V
h
)
-1/2

Fig. 1. Computational rate of convergence for the discrete solutions to the fractional obstacle
problems described in section 5.1 over meshes satisfying the grading condition (4.6) with µ = 2.

The left panel shows the errors for s = 0.1 and the right one for s = 0.9. The rate observed in
both cases is ≈ dim(Vh)

−1/2, in agreement with the theory.

We carried out computations for s ∈ {0.1, 0.9} using meshes satisfying the grad-

ing condition (4.6) with µ = 2 and different mesh size parameters h. Figure 1 shows

that the observed convergence rates are in good agreement with either Theorem 4.2

(error estimate) or Remark 4.3 (complexity).

5.2. Qualitative behavior

Finally, we consider problem (1.3), posed in the unit ball B1 ⊂ R
2, with f = 0 and

the obstacle

χ(x) =
1

2
− |x− x0|, with x0 = (1/4, 1/4).

Figure 2 shows computed solutions for s ∈ {0.1, 0.5, 0.9} over meshes graded accord-

ing to (4.6) with µ = 2 and 24353 degrees of freedom (this corresponds to h ≈ 0.025).

Figure 2 also displays the discrete coincidence set, which contains a neighborhood
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of the singular point x0. After a suitable smoothing of the cone |x − x0|, both

the obstacle χ and solution u are globally Lipschitz and of class H1+s(Ω) for all

s ∈ (0, 1). We point out that away from x0 but still within the coincidence set Λ,

the obstacle χ is smooth, say of class C2,1, and the regularity and approximation

theories developed above apply. In particular, we observe that Theorem 4.2 (error

estimate) is valid because the only critical point in its proof is the case S1
T ⊂ Λ, for

which u = χ regardless of smoothness.

Fig. 2. Discrete solutions to the fractional obstacle problem for s = 0.1 (left), s = 0.5 (center) and
s = 0.9 (right), computed over meshes with 24353 degrees of freedom, and graded according to

(4.6) with µ = 2. Top: lateral view. Bottom: top view, with the discrete contact set highlighted.

Qualitative differences between solutions for different choices of s are apparent.

While for s = 0.9 the discrete solution resembles what is expected for the classical

obstacle problem, the solution for s = 0.1 is much flatter in the non-coincidence

set N . Moreover, taking into account that the solution of the fractional obstacle

problem is non-negative in Ω and that u = χ+ in the formal limit s = 0, it is

apparent that the coincidence set Λ decreases with s but always contains x0 in its

interior. This fact is verified by the experiments presented in Figure 2. We observe

that in the diffusion limit s = 1, the solution is expected to detach immediately for

the obstacle away from x0 for a vanishing forcing f , whence Λ = {x0}.

Finally, Figure 3 exhibits the convergence rates for these numerical experiments,

which are in good agreement with the theoretical predictions. Because we lack an

explicit expression for the solution of the obstacle problem in this case, we have

used the discrete solutions displayed in Figure 2 as surrogates.
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log(dim(V
h
))

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

lo
g
(|

u
-u

h
| H

s
(R

n
))

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

s=0.1
s=0.5
s=0.9

dim(V
h
)
-1/2

Fig. 3. Convergence rates for the experiment described in section 5.2 with s = 0.1 (red), s = 0.5
(blue) and s = 0.9 (black). A linear fitting of these data yields estimated convergence rates 0.52,
0.51 and 0.47, respectively.
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19. B. Dyda, A. Kuznetsov and M. Kwaśnicki, Fractional Laplace operator and Meijer

G-function, Constr. Approx. 45 (2017) 427–448.
20. E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate

elliptic equations, Comm. Partial Differential Equations 7 (1982) 77–116.
21. B. Faermann, Localization of the Aronszajn-Slobodeckij norm and application to

adaptive boundary element methods. I. The two-dimensional case, IMA J. Numer.

Anal. 20 (2000) 203–234.
22. B. Faermann, Localization of the Aronszajn-Slobodeckij norm and application to

adaptive boundary element methods. II. The three-dimensional case, Numer. Math.

92 (2002) 467–499.
23. P. Grisvard, Elliptic problems in nonsmooth domains, volume 24 of Monographs and

Studies in Mathematics (Pitman (Advanced Publishing Program), Boston, MA, 1985).
24. G. Grubb, Local and nonlocal boundary conditions for µ-transmission and fractional

elliptic pseudodifferential operators, Anal. PDE 7 (2014) 1649–1682.
25. G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory
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