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problem for the integral fractional Laplacian (—A)® in a Lipschitz bounded domain
Q) C R™ satisfying the exterior ball condition. The weight is a power of the distance to
the boundary 92 of 2 that accounts for the singular boundary behavior of the solution
for any 0 < s < 1. These bounds then serve us as a guide in the design and analysis of
a finite element scheme over graded meshes for any dimension n, which is optimal for
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1. Introduction
The purpose of this work is, ultimately, the design of an optimally convergent finite

element method for the solution of the obstacle problem for the integral fractional
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Laplacian which, from now on, we shall simply refer to as the fractional obstacle
problem. In addition to the intrinsic interest that the study of unilateral problems
with nonlocal operators may give rise to, the fractional obstacle problem appears
in the study of systems of particles with strong (non Newtonian) repulsion 13, 43
and of optimal stopping times for jump processes (see 39 and 38 ). The latter, in
particular, is used in the modeling of the rational price of a perpetual American
option 16. We also refer the reader to 42, 45 for an account of other applications.

To make matters precise, here we describe the (eventually equivalent) formu-
lations that the fractional obstacle problem may be written as. For n > 1 we let
Q C R™ be a bounded domain with Lipschitz boundary 02 that satisfies the exte-
rior ball condition. For two functions f: Q2 — R and x : Q@ — R, with x < 0 on 99,
and s € (0,1) we seek a function w : R” — R such that v = 0 in Q° = R"™ \ Q and
it satisfies the complementarity system

min {\,u — x} =0, a.e. Q, A= (—A)u— f. (1.1)

This problem can also be written as a constrained minimization problem on the
space H*(£2) (see section 2 for notation). Indeed, if we define the set of admissible
functions

K = {veﬁS(Q);uzxa.e. Q} (1.2)

then the solution to the fractional obstacle problem can also be characterized as
the (unique) minimizer of the functional

1
J v~ j(v) = §|’U|2~6(Q) - <fav>a

over the convex set K. Equivalently, this minimizer u € K solves the variational
inequality

(uyu—v)s <{(fyu—v), Yvek, (1.3)

where by (-,+)s we denote the inner product on H*(£2) induced by the fractional
Laplacian (see (2.2)), and (-,-) is the duality pairing between H*(£) and its dual
H~°(Q2). We refer the reader to section 2.2 and 31 for a more thorough exploration of
these formulations and their equivalence. Finally we must mention that although in
bounded domains there are many, nonequivalent, definitions of the operator (—A)?,
motivated by applications, here we choose the so-called integral one; that is, for a
sufficiently smooth function v : R” — R weh set

225D(s + %)

—rra sy (1

(=A)*v(x) = C(n,s) p.v. /n W dy, C(n,s) =
Our choice of definition is justified by the fact that, unlike the regional or the
spectral ones, the integral fractional Laplacian of order s is the infinitesimal gen-
erator of a 2s-stable Lévy process. In this context, working on a bounded domain
would correspond to a so-called killed process, that is one that finishes upon exit-
ing the domain. Lévy processes have been widely employed for modeling market
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fluctuations, both for risk management and option pricing purposes. It is in this
context that, as mentioned above, the fractional obstacle problem arises as a pricing
model for American options. More precisely, if u represents the rational price of a
perpetual American option, modeling the assets prices by a Lévy process X; and
denoting by x the payoff function, then wu solves (1.3). We refer the reader to 16 for
an overview of the use of jump processes in financial modeling.

Taking into account their applications in finance, it is not surprising that numer-
ical schemes for integro-differential inequalities have been proposed and analyzed
in the literature; we refer the reader to 26 for a survey on these methods. These
applications aim to approximate the price of a number of assets; therefore, the
consideration of a logarithmic price leads to problems posed in the whole space
R™. For the numerical solution, it is usual to perform computations on a sufficiently
large tensor-product domain. Among the schemes based on Galerkin discretizations,
reference 47 utilizes piecewise linear Lagrangian finite elements, while 29 proposes
the use of wavelet bases in space. As for approximations of variational inequalities
involving integral operators on arbitrary bounded domains, an a posteriori error
analysis is performed in 36.

Since the seminal work of Silvestre 45, the fractional obstacle problem started to
draw the attention of the mathematical community. Using potential theoretic meth-
ods, reference 45 shows that if the obstacle is of class C'1*, then the solution to the
fractional obstacle problem is of class Ot for all a € (0, s); optimal C* regularity
of solutions was derived assuming convexity of the contact set. The pursuit of the
optimal regularity of solutions without a convexity hypothesis, in turn, motivated
the celebrated extension by Caffarelli and Silvestre 12 for the fractional Laplacian
in R™. Using this extension technique, Caffarelli, Salsa and Silvestre proved, in 11,
the optimal regularity of solutions (cf. Proposition 3.1 below). It is important to
notice, however, that this is only an interior regularity result. Nothing is said about
the boundary behavior of the solution to (1.3). This is a highly nontrivial issue,
as it is known that even the solution to a linear problem involving the fractional
Laplacian on a very smooth domain possesses limited regularity near the boundary;
see 24, 25 and section 2.1 below for details. In addition, regularity results in Hélder
spaces are not amenable to the development of an error analysis for a finite element
method.

Using the extension technique, one could in principle follow the lines of 11 to
obtain, via a localization argument, regularity results for the obstacle problem posed
on a bounded domain. This would entail dealing with a degenerate elliptic equation
where the weight belongs to the Muckenhoput class As. We could then invoke the
results from 20, 30 and the translation invariance in the z-variable of the extension
weight to conclude the desired regularity. While accomplishing this program seems
possible, it would only yield results for the fractional Laplacian, and the techniques
would not extend to more general nonlocal operators, like those studied in 10.

Our regularity approach is entirely nonlocal and based on localization without
invoking the extension. However, we must immediately point out that if 0 <n <1
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is a smooth cut-off function, then

(=A)*(nu) # n(=A)"u in{n=1}

because of the nonlocal structure of (—A)®. Consequently, we cannot deduce regu-
larity of nu directly from that of (—A)®u. This is one of the main technical difficulties
we overcome in this work.

In this paper, under certain smoothness and compatibility assumptions on the
forcing f and the obstacle x (see (3.1) for a precise statement), we combine Holder
estimates from 11, 45 and 41 to derive interior and boundary Hélder estimates for
(1.3). This is achieved under a nondegeneracy condition: the obstacle needs to be
negative near the boundary. In this case, the solution to (1.3) behaves, essentially,
like the solution to a linear problem near the boundary, for which the Holder regu-
larity is known 41. We then follow ideas from 2 to derive global regularity results in
weighted Sobolev spaces, which guide us in the design of an optimally convergent
finite element scheme over graded meshes. These meshes compensate for the sin-
gular boundary behavior of the solution of (1.3) regardless of the fractional order

€ (0,1). We discuss their design and derive a quasi-optimal rate of convergence
in the natural energy norm.

We must comment that a related numerical analysis for the obstacle problem,
corresponding to the spectral fractional Laplacian, was carried out in 33; we refer
the reader to 6 for a comparison between these operators and a survey of numerical
methods for fractional diffusion. The recent work 9 also deals with finite element
approximations to nonlocal obstacle problems, involving both finite and infinite-
horizon kernels. Experiments, carried out for one-dimensional problems with uni-
form meshes, indicate convergence with order h'/? in the energy norm. However,
9 does not provide an error analysis for the nonlocal obstacle problem. In this pa-
per we show that using suitably graded meshes essentially doubles the convergence
rate in the energy norm. Moreover, a standard argument allows us to extend the
results we obtain in this work to nonlocal operators with finite horizon. Finally,
we comment that 44 provides regularity results of Lewy—Stampacchia type for the
fractional Laplacian. Their use in a numerical setting, however, is not immediate.

The paper is organized as follows. In section 2 we set notation and assumptions
employed in the rest of the work, and review preliminary results about solutions of
the linear Dirichlet problem for the fractional Laplacian on bounded domains and
the fractional obstacle problem. These results are employed in section 3 to derive
weighted Sobolev regularity estimates for solutions of problem (1.3). Then, section 4
applies our regularity estimates to deduce a quasi-optimal convergence rate for a
finite element approximation of the fractional obstacle problem (1.3) over graded
partitions of bounded polytopal domains. This requires the study of a positivity
preserving quasi-interpolation operator in weighted fractional Sobolev spaces; this
novel development is carried out in section 4.1. Finally, numerical examples pre-
sented in section 5 illustrate the sharpness of our theoretical results and reveal
some qualitative properties of the coincidence set.
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2. Notation and preliminaries

In this section we will introduce some notation and the set of assumptions that we
shall operate under. For n > 1 we let 2 C R™ be a bounded domain with Lipschitz
boundary 0f2 that satisfies the exterior ball condition. The complement of Q will be
denoted by Q€ and the fractional order by s € (0,1). The ball of radius R and center
x € R™ will be denoted by Bg(z), and we set B = Bg(0). During the course of
certain estimates we shall denote by w,,—1 the (n—1)-dimensional Hausdorff measure
of the unit sphere dB;. As usual, we will denote by C' a nonessential constant, and its
specific value might change from line to line. By C'(A) we shall mean a nonessential
constant that may depend on A. Finally, by A = B we mean that A < C'B and
B < CA.

Unless indicated otherwise, we will follow standard notation regarding function
spaces. In particular, for a bounded domain D C R", k € NU {0}, and v € [0, 1],
we denote

(D) = {w cCHD): e [20(@) = 0] OO}.

p
.y D aty BENU{O})™:|B|=k |z —y|7

In addition w € C*7(D) if w € C*7(U) for all U € D. The Sobolev space of order
5 > 0 over R" is defined as

H*R") = {v e L2R") : € > (1+ €2 F(0)(6) € L*R™) },
with norm

[l = || = 1+ )72 F@)E)|

L2R")
In these definitions F denotes the Fourier transform. The closure of C§°(€2) in
H*(R"™) will be denoted by H*(2). This space can also be characterized as follows:

H*( Q) := {vjq : v € H*(R"), suppv C Q}. (2.1)

We comment that, on H® (Q), the natural inner product is equivalent to

_C(n,s —v®))(e(@) = ey) 4
(0, 9)e = //]R”an |z —y|nt2s drdy (2.2)

‘"U|H s(Q) — = (v, v)

The duality pairing between H*(£2) and its dual H~*(Q2) is denoted by (-, -). In view
of (2.2) we see that, whenever v € H*(2) then (—A)%v € H*(Q2) and that
(v,0)s = ((=A)°v, ), Vo € C57(Q). (2.3)

In section 3 it will become necessary to characterize the behavior of the solution
to (1.3) near the boundary. To do so, we must introduce weighted Sobolev spaces,
where the weight is a power of the distance to the boundary. We define

0(z) = dist(z, 09), 0(z,y) = min{d(x),s(y)}.
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Then, for k € NU {0} and a € R, we consider the norm

ooy = > [ 10wt ap (2.4)

0<|8|<k

and define HE(Q) and H¥(Q) as the closures of C°°(Q) and C§°(Q2), respectively,
with respect to the norm (2.4). We also need to define weighted Sobolev spaces of
a non-integer differentiation order, and their zero-trace versions.

Definition 2.1 (weighted fractional Sobolev spaces). Let 0 <t € R\ Z and
a € R. Assume that k € NU {0} and ¢ € (0,1) are the unique numbers such that
t = k + 0. The weighted fractional Sobolev space is

HL(Q) = {v e HEQ): |0°0] o (q) < o0 VB EN", |B] =k},

where

2 )|2 2a
V|40 0(x,y)** dz dy.
LT [ =

We endow this space with the norm

||U||§13(Q) = ||’UH%I§(Q) + Z |55U|§Jg(ﬂ)'
|B|=Fk

Similarly, the zero-trace weighted Sobolev space is
Q) = {v € HE(Q): [00] g an) < 00 VB € N, || = k}
with the norm

||U||%é(9) = H’UH%{@(Q) + Z |6ﬂv|12qg(]R")'
1Bl=k

Spaces like the ones defined above have been considered, for example, in 2 in
connection with the study of the regularity properties of the solution to the linear
fractional Poisson problem. However, unlike 2, the spaces H'. (Q2) and H, () require
functions to belong respectively to H¥(€2) and H' (), instead of H*(). This is a
weaker condition and that shall become important below.

We remark also that, during our discussion, we will make use of the norms and
seminorms of H! (w) and H! (w), where w is a Lipschitz subdomain of Q. If that is
the case, the weight ¢ will always refer to the distance to 0f2.

As a final preparatory step, we recall an interior regularity result for s—harmonic
functions over balls.

Lemma 2.1 (balayage). Let w € L*™(R"™) be such that (—A)*w = 0 in Bg. Then,
w e COO(BR/Q)

Proof. According to 27 , in the ball Bg, any s-harmonic function w can be repre-
sented using a Poisson kernel:

w(e) = [ wl)Ple.g)d

R
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where
R? —|z2\" 1
P(z,y)=C ( .
yl>—R*) Jx—y
Consequently, whenever z € Bp/,, it is legitimate to differentiate to any order the
representation above. O

2.1. The linear problem

Here we consider the linear version of (1.3); that is, we formally set x = —oo to
arrive at the problem: given g € H™*(Q2) we seek for wy, € H*(Q2) such that

(—A)Y’wy, =g in Q, wg = 0 in Q°. (2.5)

Identity (2.3) yields the existence and uniqueness of a solution to this problem. In
addition, since the kernel is positive, we have a nonlocal maximum principle.

Proposition 2.1 (nonlocal maximum principle). Let g € H™*(2) be such that
g >0 in Q, then we have that wy > 0 in Q.

Proof. See 40 . O

The investigation of the regularity of the solution to (2.5) has been an active
area of research in recent years. Solutions to this problem are known to possess
limited boundary regularity. Namely, the behavior

wg(x) ~ dist(x, 0Q)°,

is expected independently of the smoothness of the domain €2 and right hand side
g. Assuming 2 is smooth, this behavior can be precisely quantified in terms of
Hormander regularity 25; for Lipschitz domains satisfying the exterior ball condition
it can also be expressed in terms of the reduced Holder regularity of solutions 41,

llwgllco.smny < Cllgll Lo (-

If the right hand side g happens to be more regular, then finer estimates on the
solution wy can be derived.

Proposition 2.2 (Holder estimates for the linear problem). Let Q be a
bounded Lipschitz domain satisfying the exterior ball condition. Let g € C%'=3 ()
and wy be the solution of (2.5). Then, wy satisfies

||wg||0015(§) + Slelg 3(x)' 75 Vg ()]

+ sup 5(337 y) |vw9($) — ng(y)|
z,ye |l’ - y|s

< @ 9)gllonmrmy (26)

Proof. It sufficestoset §=1—sin 41 . O
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For one-dimensional or radial domains, these regularity estimates can be further
sharpened by deriving explicit expressions for the map w — (—A)® [dist(-, 9Q)*w] in
terms of expansions in bases consisting of special functions, see 3, 19. Of importance
in the design of optimally convergent finite element schemes is 2, where regularity
in spaces similar to those introduced in Definition 2.1 (weighted fractional Sobolev
spaces) was derived. Below we extend and modify these results to fit the framework
that we are adopting here.

Theorem 2.1 (weighted regularity of w,). Let Q be a bounded Lipschitz do-
main satisfying the exterior ball condition. Let g € C%1=%(Q) and wy be the unique
solution of (2.5). Then, for every e € (0,s/2), we have that w, € Hllf; 825( ), with
the estimate

< C(Q s)

gl 7152+ T

Proof. We must first notice that, as mentioned before, the spaces of Definition 2.1
(weighted fractional Sobolev spaces) do not require integrability of the derivatives
of functions with respect to Lebesgue measure but with respect to 62%(z) dz. Since,
in this case, « = 1/2—¢ > 0, this is a weaker condition, as it allows certain blow up
of the derivatives near the boundary. Hence, for s € (1/2,1), the assertion follows
from the stronger estimate 2 . A direct estimate can also be obtained with the same
arguments used to bound the term Zp defined below.

In the case s € (0,1/2], we begin by observing that w, € C(Q) C L1/2 .(Q). In
addition, the middle term in estimate (2.6) implies that

2 _ 2 1—2¢
laaliy , oy = [ V(a5 do

< CO ol .y [ 5@

. 77 C(Q,s)
so that, by 2 we obtain w, € H%/Q_E(Q), |wg|ﬁ11/2_s(m < ( 219l o -
On the other hand, the last term in (2.6), and similar arguments to those elab-
orated in 2 yield

V’w VU} 2 o2 C Q
//QXQ | |xg_ |n+2s g4(s )| (5({E,y)1 2 d(Edy < g”.g”c@l Q)

It remains to treat a term of the form

1
— 2 1-2¢
Io = /Q |vwg(x)| /C |.’E _y|n+28_455(x7y) dydl?

Notice now that, for every = € 2, integration in polar coordinates gives

1 1 Wn—1 _ 4
s dy < / dy _ n S 25+ €
A g WS [ Ty T g g 0
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Therefore, we can bound

1
T < 25 1725/ |
o <C [ IVu@)Pot@)* [ oy

<C [ |9uy () Pa(a)' 2 da,
Q

and because sup,cq 6(z)' ¢ |Vwy(z)| < Cllgllco.i-+ ), we deduce that

_ C
Io < C||g||2co,1fs(§)‘/95($) 428 qg < 2”9”200,175(5)7

where we, again, used 2 to bound the last integral. O

2.2. The fractional obstacle problem: known results

Let us now review the known results about the solution to the fractional obstacle
problem (1.3). First we remark that existence and uniqueness of a solution immedi-
ately follows from standard arguments, and that this solution is also the minimizer
of the functional J over the set K. Since this will be useful when dealing with
approximation, it is now our intention to explore the equivalence of (1.3) with the
complementarity system (1.1). To do so, we first define the coincidence and non-
coincidence sets, respectively, by

A={z e Q:ulx)=x)}, N =0\ A.

Proposition 2.3 ((1.3) = (1.1)). Let Q be a bounded and Lipschitz domain
that satisfies the exterior ball condition. Let x € C(Q) satisfy x < 0 on 09 and
f € LP(Q) for some p > n/2s. In this setting, the function u € H*(Q) that solves
(1.3) satisfies u € C(Q) as well as the complementarity conditions (1.1).

Proof. Since u € K, then we have that u —x > 0 a.e. Q. Let now 0 < ¢ € C§°(Q)
and observe that the function v = u+ ¢ € K. This particular choice of test function
in (1.3) implies that

(U, 90)8 2 <f, SO>
and, using (2.3) we conclude that
(ZA)'u—f,0) 20, VYpeC5F(Q), ¢ =0.

In other words, A > 0 in the sense of distributions.

On the other hand, according to 31 , the assumptions imply that v € C(2) and,
consequently, N is an open set. Let ¢ € C§°(N) and notice that, for a sufficiently
small € we have that v = utep € K. Using these test functions in (1.3) then implies
that

(A p) =0, VeeCN),

as we intended to show. O
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We will also make use of the following continuous dependence result.

Lemma 2.2 (continuous dependence). Let y € L®(Q), f =0, and u € H5()
solve (1.3). Then, we have that u € L () with

max{x,0} <u < |[max{x,0}|z~@) ae. Q.
Proof. See 31 . D

Below we will introduce further assumptions on the data f and x that will allow
us to apply the previous results.

3. Regularity

Having established the existence of solution and its equivalent characterization as
the solution of (1.1), we now begin with the study of its regularity. To do so, we
must introduce some notation. For a positive number x > 0 we let K,, € C°(R"™)
be a kernel so that

C(n,s)
Ki(2) = J|rres” 2| = &,

and is extended smoothly for |z| < &.
Finally, to concisely quantify the smoothness assumptions on the right hand side
f and obstacle x we introduce

= 1
CHI#HQ), se (0, 2} :

L2257t se (;7 1) 7 (3.1)

X(@) = {x € C(@Q) : o0 <0} N C>H(),

]:s(ﬁ) =

where € > 0 is sufficiently small, so that 1 — 2s + € is not an integer.

3.1. Interior regularity

The interior regularity of the solution to (1.3) will follow from the regularity for the
case () = R"™ as detailed in 11. Let us first slightly extend the main result in that
work.

Lemma 3.1 (regularity in R"). Let u € H*(R") solve (1.3) with Q = R". If
x € XR"), f € Fs(R™), and f is such that |f(z)| < Clz|~7 for some o > 2s as
|z| — oo, then we have u € C15(R™).

Proof. If f = 0, the assertion is the content of 11 . We now reduce the inhomo-
geneous case f # 0 to the previous one by invoking the function wy defined, for
Q =R", in (2.5). Indeed, the function U = u —wy solves (1.3) with right hand side
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f =0 and obstacle x —wy. Thus, to be able to invoke the reasoning for the homo-
geneous case, we must ensure that x —wy; € X(R™). Since x € X(R") a sufficient
condition for this, according to 45 , is that f € F4(R™) and w; € L>°(R"). To show
the boundedness of wy we use its explicit representation
fy)
wy(z) = C(n, *8)/ - dy;
f e |7 — y|"2s

see 27 and 45 . Indeed, using the decay of f we can estimate

1 |z +y|~°
lwg(z)] < ||f||L°°(BR(JD))/ ﬂdy""c TIQdeSM'
Br Yl Bs, 1Yl
Since wy € C*¢(R") C C*'(R™), we deduce u = U +wy € CH¥(R™), and conclude
the proof. 0

With this result at hand we can establish the interior regularity of the solution
to (1.3). The idea is to use a direct localization argument. We point out that,
for the fractional Laplacian a localization argument using the Caffarelli-Silvestre
extension can be carried out, as described in 11 . Since for fractional Laplacians of
order different than one half, the extension problem involves a degenerate elliptic
equation with a weight that belongs to the Muckenhoupt class As and depends only
on the extended variable, this argument needs to combine fine estimates from 20, 30
with the translation invariance in the xz-variable of the Caffarelli-Silvestre weight.

In this paper, instead, we pursue an entirely nonlocal approach. In that regard,
the localization method we present in Proposition 3.1 below can be applied also to
more general nonlocal operators, such as those considered in 10. Finally, we stress
that if 0 <7 < 1is a smooth cut-off function such that n = 1 in {) > 0}, then

(=A)° () # n(=A)"u in {n=1}

because of the nonlocal structure of (—A)®. Consequently, we cannot deduce regu-
larity of nu directly from that of (—A)®u. This is the difficulty we confront now.

Remark 3.1 (Cauchy principal values). At this point we must warn the reader
about a technical aspect of our discussion. Namely, in what follows we will proceed
formally and “evaluate” expressions of the form

w(y) / w(z) —w(y)
-y, —————=dy,
/R" |z — y[rt2s n |z =yl

for some function w : R® — R. Evidently, these integrals do not necessarily converge.
We are doing this to avoid unnecessary technicalities, and what we mean in these
cases is to compute the principal value of these integrals which, in the sense of
distributions, is always meaningful. In other words, substitutions of the form

w(y) : w(y)
— —dy +— lim _—
/n |z — y|m+2e Y el0 Jpr\ B, (a) [T — y["T2e Y

need to be made below. [ ]



October 4, 2019 13:23 WSPC/INSTRUCTION FILE paper

12 J.P. Borthagaray and R.H. Nochetto and A.J. Salgado

As a final preparatory step we show that there is no loss of generality in assuming
that the forcing term f is zero, as the case f # 0 can be reduced to this one.

Lemma 3.2 (reduction to f =0). Let f € Fs(Q), x € X(Q) and u denote the
solution to (1.3). Then we have the representation

u=wys+u,

where @ solves (1.3) with zero forcing (f = 0) and obstacle X = x —wy € X ().

Proof. It is well-known that by introducing the Lagrange multiplier A € H~*(Q),
we have that

(_A)Su = f + )‘7

(see (1.1)) and, therefore, u = wy +wy Since A > 0, using Proposition 2.1 (nonlocal
maximum principle) we infer that wy > 0 and, consequently, u > wy.

Now, since f € F,(Q), Proposition 2.2 (Holder estimates for the linear problem)
gives, in particular, that w; € C%*(Q) and thus, since w; = 0 on 9 and y € X(Q)
there exists r > 0 such that

z € Q= {zeQ:dist(z,00) <r}

implies wy(x) > x(x). Notice then that, in Q,, we have u > wy > x.

Define Y = x — wy € C(Q) and note that the previous considerations also give
us that ¥ < 0 on dQ. Moreover, since f € F,(Q), the conclusion of 41 gives that
wy € C?1(Q). Thus, Y € X(Q).

It remains now to realize that if we define & = u—wy, then u solves the following
version of (1.3)

min {(-A)*w, u — X} =0,

and that, w > 0 > X on (.. O

Note that the usefulness of the previous result lies in the fact that, in our setting,
the regularity of u can be deduced from the regularity of the linear problem, which
was described in Section 2.1, and that of an obstacle problem without forcing and
with an obstacle that has the same regularity of the original obstacle x.

Owing to the reduction given above, from now on we consider only the case

f=0.

Proposition 3.1 (interior Holder regularigy). Let Q be a bounded Lipschitz
domain and x € X(Q). Then the solution u € H*(Q) of (1.3) with f = 0 satisfies
u € CH3(Q).

Proof. Let D € Q be open. Without loss of generality, we assume that {x > 0} €
D. Let, in addition, nn € C§°(€2) be a smooth cutoff function such that

D e {n=1}, supp(n) € €, 0<n<1.



October 4, 2019 13:23 WSPC/INSTRUCTION FILE paper

Fractional obstacle problem 13

Define U = nu. The objective is now to show that U solves an obstacle problem
with obstacle x and a smooth right hand side F' with suitable decay at infinity, for
if that is the case we can appeal to Lemma 3.1 (regularity in R™) to conclude that
U € CH*(R™). Since U = u on D, the interior Holder regularity of u will follow.

We claim that U > x in R”. Indeed, if x > 0 then n =1 and U = u > x. On the
other hand, since 0 < 7 < 1 we can multiply the inequality v > x by 7 to conclude
that

U=nuz=nyx,

which, if x <0, implies that U > 0 > .

We now want to prove that there exists a smooth function F' such that (—A)°U >
F and (—A)*U = F if U > x. To accomplish this, we choose 7 > 0 sufficiently small
so that

dist (supp(n), 092) > 37, dist (D,0{n =1}) > 37.
Finally, we let R™ = A; U Ay U A3, where
Ay ={z e Q: dist(z,D) < 27},
Ag ={x € Q: dist(z, D) > 7, dist(z,0Q) > 7},
Az ={z € Q: dist(z,00) < 27} UQC.
We point out that this is not a partition, as the intersections A; N Ay and A N Aj
are not empty. However, since every point in R” is in the interior of at least one of

the sets defined above, it suffices to show that the corresponding forcing is smooth
on each of these sets separately.

o Let x € Ay. Then, n(y) =1 for all y € B;(x) and we can write

(~8)°U() = (-A)u(o) + C(ns) [ B0 g,

n

= (=A)%u(zx) + / [1—n(z - 2)|u(z — 2)K.(2)dz,

n

where we use a fixed smooth kernel K, as described in the beginning of this
section. Using that (—A)*u(z) = A(x) > 0, we deduce that

(A)°U(z) > (K7 * (1 —n)u) (z).

Moreover, if « belongs to the non-coincidence set N, it follows that A(z) = 0 and
therefore

(=A)°U(z) = (K7 % (1 = n)u) (2).

e Given z € As, we proceed essentially as before, except that now n(y) = 0 for all
y € B(x), whence

(-8)°U) = Cns) [ I g = - (5 ) (o)
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e Let x € A,. Since dist(z,0Q) > 7 and dist(z, {x > 0}) > 7, we deduce that y <0
in B;(z) and, using Lemma 2.2 (continuous dependence), that v € L>(B,(x))
and

X <0<u ae B:(z).

From the complementarity conditions (1.1) it then follows that u is s-harmonic
in B;(z). Lemma 2.1 (balayage) implies that u € C°°(B; 5(z)), whence U =
nu € C*°(B,/3(x)). Since this holds for every point in As, we deduce that U €
C>(A2 + B;/2(0)), where Ay 4 B, /2(0) is the Minkowski sum

Ap+ By pp(0) ={r cR": o =y+2z, yc Ay z€ B;0)}

Let EU € Cg°(R™) be a smooth extension of U outside As + B;/5(0). Then, for
r € Ay we can write

(—A)*U(z) = C(n, S)/ M

|z —y|nt2s W

EU(y) —Uly)
|z —y|nt2e

n

— (“A)YEU() + C(n, 5) /

n

Since EU(y) = U(y) for every y € B;5(x), we thus conclude
(CA) U (@) = (“AYEU() + (Krj % (EU — U)) ().

In order to gather the three cases considered above, we let

(K7 (1 =n)u) (), x € A,
F(z) = q (=A) E(u)(z) + (Kp 2 * (E(nu) —nu)) (x), x € Ao, (3.2)
— (K7 *nu) (), x € As.

Observe that this expression is well defined. Indeed, on A; N As both expressions
coincide with (—A)®U, while the fact that Ay N Ay C N implies A = 0 and thus
equality in this case. Therefore, we have defined a function F: R™ — R, which is
smooth in R™ because so are the kernels K., K./, and the function E(nu).

From the considerations above, we deduce that U solves an obstacle problem
posed in R™, with obstacle x and right hand side F. In addition, u is bounded
according to Lemma 2.2. We can thus derive for x € Ag

1
|(Kr*nu)(z)] < C/Q mdy < Cdist(z, Q)™ as |z| — oo,

which gives the decay required in Lemma 3.1 (regularity on R™). As a consequence,
we can then invoke Lemma 3.1 to conclude that U € C''»*(R™). This in turn implies
u € C1*(D) as asserted and concludes the proof. D

Remark 3.2 (interior regularity estimate). Notice that, from (3.2), one can
establish an estimate of \u|cl,s(5) in terms of f, x and, more importantly 7, which,
essentially, measures how close the set {x > 0} is to the boundary 99. [ |
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An immediate consequence of the interior Holder regularity is an interior Sobolev
regularity estimate.

Corollary 3.1 (interior Sobolev regularity). In the setting of Proposition 3.1
we have that, for every e > 0, the solution u to (1.3) satisfies u € H}:T575(Q) with

loc
the estimate

C(n)|D|'/? diam(D)®
[ul gri+s-=(py < 172 ul s ()

where D € Q) is any open set and diam(D) denotes the diameter of D.

Proof. For z,y € D & 2 Proposition 3.1 (interior Holder regularity) implies the
bound

V(@) = Vuy)] < [ulgr.p) |z — yI°

This bound, together with integration in polar coordinates, allow us to estimate
directly the requisite seminorm as follows:

[Vu(z) — Vu(y)|? 1
e = [, eyt s < ey [, e v

diam(D) diam(D)?®
< IU|201»*<5)‘*’7L71|D|/0 ¢TEAC= |U\201=s(5)wn71\D\4-

2e

This is the asserted estimate. O

3.2. Boundary regularity

Let us now study the behavior of the solution to (1.3) near the boundary of the
domain 0f). It is here that the weighted Sobolev spaces introduced in Definition 2.1
(weighted fractional Sobolev spaces) shall become important. We begin by recall-
ing that we assume the obstacle x to be a smooth function that is negative in a
neighborhood of the boundary 9€). In other words, we have

o = dist ({x > 0},9Q) > 0. (3.3)

In the spirit to Remark 3.2 (interior regularity estimate), the regularity estimates
near the boundary will depend on p. We now choose 7 € (0, 0/5) and define a
boundary layer B, of width 7, i.e.

B, = {z €Q:dist(z,00) < 7}. (3.4)
Let n € C*°(R™) be a smooth cutoff function such that
0<n<1, n(x)=1Vz€By, dist(supp(n),{x>0})>r

We finally set N,, = {n > 0}.
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Having introduced all the necessary notation, we proceed to establish the bound-
ary regularity of w.

Proposition 3.2 (boundary Hélder regularity of (—A)*(nu)). Let x € X(2)
and f = 0. With the notation introduced above, the function (—A)*(nu) is smooth
in Ny. In particular, it holds that

1(=A) )l oy < Cllullon.e oy Xo 51, s 0). (3.5)

Proof. We proceed as in the proof of Proposition 3.1 (interior Holder regularity):
we define U = nu, consider separately two overlapping sets Bs, and N,, \ Bz, and
argue on each of these.

o Let z € Bs,. Since B, (x) NQ C Bar, we have n(y) =1 for all y € B, (x) N and
we can write

(-AYUE) = (A u(a) + Clus) [ L1 g,

oyl

n

We resort to Lemma 2.2 (continuous dependence) once again to see that u >
0 > x in Bs;, whence the complementarity conditions (1.1) imply that A(z) =
(=A)*u(x) = 0. We deduce that

(_A)QU(J") = (K‘r*(l —77)’11,) (-’17) Ve 837,
and therefore
[(=A)°Ul|con-s @57y < 1Krllcoa—s@n I(1 = n)ullzrwn) < Clo, x,u).

e Given € N, \ Ba,, we still have that A = (—A)®*u = 0 in B, (z). Consequently,
we can proceed as in the case x € As in the proof of Proposition 3.1 (interior
Hélder regularity) to deduce that (—A)*U is smooth in (N, \ Bar) + B, /2(0).
In fact, we construct a smooth extension U outside (N, \ Ba;) + B;/2(0) that
vanishes in [(N,, \ Ba;) + B-(0)]¢ to get

(=A)*U(z) = (—A)*EU(2) + (K, )2 % (EU —U)) (z) Vz € N, \ Bor,
whence

1A Ullgos-e vy < A€ o vy

+ ||KT/2 * (5U — U)HCOJ_S(W)'

We next exploit that the extension satisfies EU = 0 in [(N,, \ Ba-) + B-(0)]°, and
so vanishes in B U ¢, to realize that

[(=A)*EUllcon-mgr) < COIEUcre@ny < C5)llullors 7y
Moreover, since

1K j2 % (EU = U)o (v < O X, 0),
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we deduce

H(_A)SU”co,l—s(W) < C(”u”cl,s(g\gf)a 0,X)-

Combining the above Hélder estimates with the fact that Bz, and N, \ Ba. overlap,
(3.5) follows. O

The following simple argument reveals that the boundary behavior of u coincides
with that of linear equations. Let g = (—A)*(nu) and notice that, in N, the function
nu coincides with the solution w, of

(—A)*wy =g, in Ny, wy =0, in Ny.

We employ this relation to derive first a Holder estimate and next a Sobolev esti-
mate. We recall that ¢ is defined in (3.3) and B; in (3.4).

Corollary 3.2 (boundary Hélder regularity). Let Q {)Ve a bounded Lipschitz
domain satisfying the exterior ball condition, and let u € H*(Q) solve (1.3) with

x € X(Q) and f =0. Then
lull go.e 377y + sup 8(2)' ~*|Vu(@)] < Clllull o157y Xo 551 2, 0)- (3.6)
" zeB \Br)

Proof. Since g € C%17*(N,)) according to Proposition 3.2 (boundary Holder reg-
ularity), we can apply Proposition 2.2 (Holder estimates for the linear problem) to
deduce (3.6). |

Corollary 3.3 (boundary weighted Sobolev regularity). Let 2 be a bounded
Lipschitz domain satisfying the exterior ball condition, and let x € X(Q2), f =0, and
u e H*(Q) solve (1.3). Then, for every e € (0,s/2), we have that u € Hll/?:EQE(BT)
with the estimate
C|u|lp1,s (oriy s X5 S, Ty €24
|“|H11jr;jjf(zsf) < (lull e, (Q\B;) X Q)) (3.7)
where the weight § refers to dist(-,00). Moreover, we have the estimate

Vu(zx 2 _ C(”u”Clb Q\B, 7X,S,7’L,Q,Q)
//B . :C|W(1+)2L455(93>y>1 dy do < ( \52) . (3.8)
7'>< ¢

f:roof. We apply Theorem 2.1 (weighted regularity of wg) to infer that nu = w, €
H11/+2:25(Nn) with
< C(Q,S) < C(H“‘”CLS(Q\E))X?&naQ7Q)

||77U||f111/+;:€25(1vn) = - ||9||00,1—-6(NT,) > - :

Notice that, in this estimate, the weight used to define the norm is the distance
to ON,,. However, owing to the definition of B,, we have that for all x € B, this

coincides with dist(z, 992). In addition, since n = 1 on B, we can conclude that u €
H 11Z25‘:€25 (B7), with the corresponding estimate (3.7). Finally, recalling the definition
of H%;FZS:EQE(NW) and restricting the integration to B, x Q¢ instead of R"™ x R", the
previous inequality yields (3.8) because u = 0 on Q€. |
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3.3. Global regularity

We are now in position to prove the global regularity of solutions of the fractional
obstacle problem.

Theorem 3.1 (global weighted Sobolev regularity for f = 0). Let  be a
bounded Lipschitz domain satisfying the exterior ball condition, x € X (ﬁ) satisfy
(3.3), and f = 0. Then, the solution u € H*(Q) of (1.3) satisfies u € Hllfzs Q)
for all e € (0,5/2) with the estimate

C(x,s,n,9,0)

[l grgp2e(y € —A

where the constant in this estimate is independent of €.

Proof. We split

[Vu(z)? 1-2c
| |H1+< 25 |u|HH—g QE(Q +2/LXQC ‘Z‘—y‘7l+28 455(x7y) dyd:L‘, (39)

and treat the two terms on the right hand side separately. We bound the integral
over {2 x € as follows:

2 2
|“‘Hi7;:ﬁf<n> = ‘“'Hi/*;:f(s ) T |“|H17;’ “2(O\B /2)

o 2
+2// [Vu(@) Zu_@i)‘ 5($,y)1725 dy dzx.
B, px(Q\By) @ —y|rt2eie

Theorem 3.3 (boundary weighted Sobolev regularity) and Corollary 3.1 (interior
Sobolev regularity), respectively, give upper bounds for the first two terms on the
right hand side. For the last term, we write

. 2
L ax(\By) 1T = c

1
2/ Vu(z)|?6(x)t =2 / ———dy | dx
| @rs@ ([ e
5(m>1—28
+2/ Vu(y)|? / —————dx | dy.
Q\E| ( )l 7/2 ‘:E* ‘TL+28 4e

Since for every (z,y) € By /2 x (\ B;) we have |z —y| > 7/2, using the pointwise
bound (3.6) and that owing to Remark 3.2 (interior regularity estimate) we have

[Vu(y)l < C(f,x,7), y€Q\Br,
we conclude that the previous integral is independent of ¢ and

2 75) ) Y
u < _—
| | 1/2.75 ( ) g
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We now consider the integral over 2 x Q° in (3.9). In order to bound the integral
over B; x 0° we resort to estimate (3.8). On the other hand, if x € Q\ B, and
y € Q°, then |z — y| > 7 yields

1 e o] L w _17_—25-&-45
—— TR e t12s+25dt<n7
/cx—y\nﬂﬂf y=v / = To(s —2e)
whereas §(z,y) < §(z) < diam(Q) implies
2
// ‘vu(‘f—l' — 6(x7y)1—25 dyd(E
(Q\B,)xqe |z —y[rF2s—de
<C [Vu(z)[* de < CHUHCLS(Q\Z’?)v
Q\B-
where
—2s+4e
Wn—1T : 1—2¢
c<2— —_d Q
S @ o2 dam)
which can be bounded above independently of ¢ € (0,s/2). Adding this estimate
with (3.8) finishes the proof. m|

We conclude the discussion about the regularity of u by treating the nonhomo-
geneous case f # 0.

Corollary 3.4 (global weighted Sobolev regularity for f # 0). Let Q be a

bounded Lipschitz domain satisfying the exterior ball condition, x € X(Q) satisfy
(3.3). Moreover, let f € Fs(Q) and u € H*(Q) be the solution to (1.3). For every

e € (0,5/2) we have that u € ﬁ11725_—825(9) with the estimate
C(Xa s, N, Q7 0, ||f‘ ]-‘g(ﬁ))

|u\g117;:625 Q) = - .

Proof. Recall that, from Lemma 3.2 (reduction to f = 0) we have the representa-
tion

u=wys+u.
Apply Theorem 2.1 (weighted regularity of wy) for wy, and Theorem 3.1 (global
weighted Sobolev regularity for f = 0) to @ to prove the asserted estimate. O

We conclude this section with a regularity result for A that will be useful in the
sequel.

Theorem 3.2 (Holder regularity of \). Let A be defined in (1.1). In the setting
of Corollary 3.4 we have that A € C%1=5(Q).

Proof. We begin by observing that ¢ > 0 according to (3.3) and the coincidence
set A € Q). Consequently A = 0 in the non-coincidence set N and we need to prove
the asserted regularity of A in A.
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The arguments below mimic ideas used to prove Proposition 3.1 (interior Hélder
regularity). We introduce a smooth cutoff function n such that n = 1 on A and, for
some 7 > 0,

dist(supp(n), 02) > 2, dist(A, 0{n = 1}) > 27.
Define now
A ={z e Q:dist(z,A) <7}

and let z € A,. Since n = 1 on B,(z), we are now in a similar situation to the case
z € A; in the proof of Proposition 3.1. Then we have for all z € B, (z)

(A u(r) = (~A) (m)a) — C(n,s) [ L=

|z —y[nF2s
= (=8)*(nu)(z) — (Krp2 % (1 =nu) (2),

where the last identity holds because n(y) = 1 for |z — z|,|x — y| < 7/2. Since
u € C*(Q) and n is smooth, we deduce that the first term nu € C1*(R") and
(=A)*(nu) € C%'75(R™). On the other hand, the second term K. o * (1 — n)u is
smooth in B, (z) which in turn is arbitrary. This implies (—A)%u € C%1=5(A,).

Finally, since f € F5(Q) € C%'7%(Q) we conclude that A = (=A)*u — f €
CO1=3(A,). O

4. Finite element approximation

In this section we will apply regularity estimates in weighted Sobolev spaces shown
in Section 3 to derive near optimal rates of convergence for a finite element method
(FEM) for (1.3) over graded meshes. The latter compensate for the singular bound-
ary behavior of solutions regardless of domain smoothness, which is a distinctive
feature of fractional diffusion problems for any fractional order s € (0, 1).

Let us then begin by describing the discrete framework that we will adopt. First,
to avoid technicalities we shall assume, from now on, that 2 is a polytope and so
convex owing to the exterior ball condition. Next, we introduce a family {7, }n~0 of
conforming and simplicial triangulations of € which we assume shape regular, i.e.
we have that

0 = sup sup —T<oo,
h>0T€eT, PT
where hy = diam(7T) and pr is the diameter of the largest ball contained in T.
The vertices of T, will be denoted by {x;}. We comment that we assume that the
elements T' € T;, are closed. In this case the star, patch, or first ring of T' € T}, is
defined as

Sp=J{T"eTh:TnT #0}.
We also introduce the star of Sk (or second ring of T'),

St =\ {7 eTn:SpnT" #0}.
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Below, when discussing positivity preserving interpolation over fractional order
smoothness spaces we partition 7 into two classes, interior and boundary elements,
as follows:

Tw={T €T :Spnor=0}, T2={TeTh:5:n0Q#0}.  (41)

On the basis of the triangulation 7, we define V}, as the space of continuous,
piecewise affine functions on 7}, that vanish on 9. The Lagrange nodal basis of V},
will be denoted by {y;} and

S = supp(p;).
We will denote by B; the maximal ball, centered at x;, and contained in S;. If p; is

the radius of B;, and h; = diam(S;) by shape regularity of the mesh we have the
equivalences p; ~ h; = hp, for all T C S;.

4.1. Positivity preserving interpolation over fractional order
spaces

Below it will become necessary to introduce a discrete version of the admissible
set K defined in (1.2). In addition, when performing the analysis of the FEM it
will become necessary that an interpolator of the exact solution belongs to this

discrete admissible set. Since we assume that x € X(2) and f € F,(2), we have
that u € C(Q) as a consequence of Proposition 2.3 ((1.3) = (1.1)). Therefore one
could, in principle, use the Lagrange interpolation operator. It turns out, however,
that this operator does not possess suitable stability and approximation properties
with respect to fractional order Sobolev spaces. For this reason, we will use instead
the operator I, introduced in 14 which we now describe.

Definition 4.1 (positivity preserving interpolation operator). Let I,
LY(Q) — Vi, be defined by

L= > (|B}i|/Biv(x)dx> @i

i X, €EQ

Notice that, since the sum is only over interior vertices of 7, we indeed have that
Ipv vanishes on 0f2, whence I,v € Vj. In addition, by construction, this operator
is positivity preserving: we have that Ipv > 0 whenever v > 0. Moreover, since for
every x; € () the ball B; is symmetric with respect to x; we have the following
exactness property for Iy

IhU(Xi) = U(Xi), Yv € Pl(Bz), (42)
where by P;(E) we denote the space of polynomials of degree one over the set E.
Notice however, that this operator is not a projection. In general, if v, € V}, then

Ihvp # vp; see 37 for details. The following result summarizes the local stability
and approximation properties of Ij,.

Proposition 4.1 (properties of ;). Letp € [1,00], Ij, be the operator introduced
in Definition 4.1 (positivity preserving interpolation operator), and T € Ty,. Then,
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there are constants independent of T and h such that
[nvllLe(ry < Cllvllzecsyy, Vv € LP(Q),
and
[VIvlzo(r) < ClIVVl|Lr(s1), Vv € Wy P (Q).
Moreover, for t € [1,2], we also have the error estimate

[v = Invllecry < Chylvlwenisy), Yo € WHP(Q) NP (Q).

Proof. See 14 . The fractional error estimates follows from interpolation between
the casest=1and t =2 in 14 . O

We need to obtain similar properties in fractional order Sobolev spaces, and for
that we will follow the ideas of 15. We begin with a local stability estimate over the
set T x St which exhibits the least amount of overlap for every T € Ty, to control
the nonlocal fractional Sobolev norms 21, 22.

Proposition 4.2 (local stability of I;). Let s € (0,1) and T € Ty,. There is
a constant C'(n,o), depending only on the dimension n and the shape regularity
parameter o of the mesh, such that the estimate

[Ty (z) — Ty (y)[? C(n,0), s (1 / )
dy dx < 7hn 8 e v(z) dz
//szl |x—y|n+2s s > izl ),

iz €S

holds for all v € L'(€2).

Proof. From Definition 4.1 (positivity preserving interpolation operator) it follows
that, if z € T and y € S+, then

o)~ 1ot = 5 (57 [ 064 (eto) - i)

i:xiES%

In addition we observe that, by shape regularity the number of terms in this sum
is uniformly bounded by a constant that depends only on o. Thus, by Holder’s
inequality we have that

I — 1 2
// | Thv(z ff;( ol dydz <
TxSh ‘z_ |n s

o0 % (), 0n) [, B ae

zmiGS%

From mesh regularity it follows that [;]co.1 g < C(o)hy! uniformly in i and that

a(z) = max [z — z[ < C(o)hr.
z€S8%
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These two observations and integration in polar coordinates then imply that

// |SDZ fi(29)| d dz y|2—n—23 dydl’
T xS% |z —y T T xS
a(z)
< C(”Q? 0) / / p172s dpd.T
h TJo
From this the asserted estimate immediately follows. O

Let now S C R™. It is well-known that for every v € W*1(S) there is a unique
polynomial Pyv of degree k that satisfies

/ 0% — Pyv)dz =0, VaeN" |of <k. (4.3)
S

We shall also need the following fractional Poincaré inequality.

Proposition 4.3 (fractional Poincaré inequality). Let s € (0,1), a € [0,s)
and S be a domain which is a finite union of overlapping star-shaped domains S;
with respect to balls B;, i = 1,...,1. Then, there exists a constant C > 0, depending
on the chunkiness of S; and the amount of overlap between the subdomains S;, such
that, for any i € {1,...,I}, we have

[v=ill2(s) < Cdiam(S)*"*|v|ms(s), Vv € HZ(S5), (4.4)

where v; = ﬁ Js, v(x) dr.

Proof. We must first observe that when S is itself star-shaped, the result is proved

in 2.
In the general case, the result is an easy modification of the arguments used to
show 17 ; see also 35 and 34 . For brevity we skip the details. O

Notice that, as a consequence of the fractional Poincaré inequality (4.4), we have
that, whenever ¢ € (1,2) and o € [0,¢ — 1), there are constants that depend only
on o such that, for every v € H!(S%), the polynomial Pjv, defined by (4.3) with
S = 52 satisfies

v = Proll2gszy < Chi “[vlge sz,
V(v = Pro)g2(sz2y < Ch ol (S7).-
We use 46 to interpolate these two inequalities and obtain that, whenever s € [0, 1],
€(1,2), and a € [0,t — 1), there is a constant C' that depends only on o for which

|’U—P1U‘Hs(s%) S Chéﬂ_a_s‘U|Hé(S%). (45)

With these estimates at hand, we now proceed to obtain local interpolation error
estimates for I, of Definition 4.1 (positivity preserving interpolation operator). We
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must do this separately for interior and boundary elements, as defined in (4.1). We
first give the interior estimate and next the boundary estimate.

Proposition 4.4 (interior interpolation estimate). Let 7,° be defined in (4.1)
and T € T . Assume, in addition, that s € (0,1), t € (1,2), and that I}, is the pos-
itiwity preserving interpolator of Definition 4.1. Then, there is a constant C(n,o,t)
that depends only on the dimension n, the shape reqularity parameter o, and t such
that

// (v = I)(z) — (v — Inv)(y) dy de < C(n,mt)hz(t—s)|v|2 .
Tx S}, e i -~ 1-s T H1(S7)

where the constant C'(n,o,t) is non-decreasing in t.

Proof. We begin by writing v — Iyv = (v — Pyv) + (Pyv — Iv), where Piv € Py is
the polynomial defined by (4.3) over SZ. We estimate the two terms on the right
hand side separately.

Using (4.5) with a = 0 the first term can be estimated as follows:

(0= Pu)(@) — (0= Pro)(e)P : a(ima)y 12
//szl z — g2 dyde < Jv=Profg.(spy < Chy "ol sy
T

On the other hand, since Pyv € P1(S2) it follows, from (4.2), that InPiojgy =
Py, sl and to control the second term we only need to invoke Proposition 4.2 (local
stability of Ij) to arrive at

_ _ _ 2
[ W= hoe) = (o= P,
Tx Sk |z — y| >

C(n,0), n_as 1 2 C(n,0), _ss 2
T 2 gl Pl < TR - Pl
i: xiES}
Setting s = a = 0 in (4.5) yields the desired estimate. O

As a final preparatory step we obtain local interpolation error estimates for
elements in 7,2

Proposition 4.5 (boundary interpolation estimate). Let 7,7 be defined in
(4.1) and T € T?. Assume, in addition, that s € (0,1), t € (1,2), a € [0,1/2),
and that Iy, is the positivity preserving interpolation operator of Definition 4.1.
Then, there is a constant C(n,o,t) that depends only on the dimension n, the shape
reqularity parameter o, and t such that, for all v € ﬁg(Q), we have

[[ Moo =B gy o €O
TxSk h

)12
& — y[nT2s s N7 [0l (s2):

where the constant C(n,o,t) is non-decreasing in t.
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Proof. As in the proof of Proposition 4.4 (interior interpolation estimate) we de-
compose v — Ipv = (v — Pyv) + (Piv — Ipv) and estimate each term separately. For
the first term, we use (4.5) to obtain

|(v = Pro)(z) — (v — Pro)(y)[? 2t—s—a)| 12
dydzx < Ch V| % .
//sz; |z —y|t2e ’ i st)

The estimate of the second term Pyv — Iv is now more delicate, as we cannot
exploit the symmetries that T € 7, afforded us in Proposition 4.4 (interior inter-
polation estimate). Instead, we will follow the ideas used to obtain 14 , where a
similar difficulty is handled by further decomposing this term into

Pﬂ] — Ihv = Ih(Pﬂ} — U) + (P11) — IhPlv).

Proposition 4.2 (local stability of Ij,) and estimate (4.5) for s = 0 allow us to bound
the first term:

// |Ih(P1'U—U)({E) _Ih(Plv_U)(y)P C(n’avt)hQ(t—s—a)
T xSk

2
|.’L‘ _ y|n+2s dy d(E S 1—s T |U|Hé(5%)

Next, we notice that the difference Piv — I}, Piv can be written, for z € Sk, as
(Pro—InPo)(z) = Y (Po(x;) — InPro(x))) @;(2);
7 x]-ES,}

where now the summation must include the vertices x; € Sk N 95, where
InPiv(x;) = 0 but Piv(x;) # 0 in general. Since, by shape regularity, the num-
ber of indices in this sum is uniformly bounded and 0 < ¢; < 1, we can proceed as
in Proposition 4.2 to obtain

P~ 1P — (Prv— Iy P 2
LK/ |(Prv — InPro)(2) pﬁf nPRWE ) g <
TxSL |z —y|mt2s
C(TL,O’) n—2s 2
kT Y (P = InPw)(x))”
j:x;eSh

The objective is now to show that, for all indices in the indicated range,
2 —n+2(t—a
(Prv = InPro)(x;))* < Ch " P2l o
as this will imply the desired estimate. If x; € {2 then we get
(Plv — IhPlv)(xj) = 0,

in view of (4.2). On the other hand if x; € 09, then I, Piv(x;) = 0. Let x; € e; C
00N Sk be a face and recall the scaled trace inequality

holl ey < € (02wl gy + B3IV wl ey Vo € HAT).



October 4, 2019 13:23 WSPC/INSTRUCTION FILE paper

26 J.P. Borthagaray and R.H. Nochetto and A.J. Salgado

This, for w = v— Pyv, together with an inverse inequality and the fact that v|., = 0,
yields

|Pro(xy)| < ChE | Pro o,y = OB | Pro — vl 2
< oplim/? (h;1/2\|v — Pyl ey + BV (0 — Plv)||L2(T)> .

Property v|,; = 0 is a consequence of 32 , because v € HL(Q) ¢ HY(Q). An
application of (4.5) for s = 0 and s = 1 allows us to conclude the proof. D

Remark 4.1 (case s = 0). We briefly comment that Proposition 4.5 (boundary
interpolation estimate) can be extended to s = 0. In fact, if T' € 7;?, and ¢t and «
are as in Proposition 4.5, then we have

[ = Invll L2y < Chi [0l g (s2.,

for every v € H £ (Q). The proof is a slight modification of the arguments needed for
s > 0 and, for brevity, we skip the details. [ |

We are now finally in position to prove global interpolation error estimates.
While Propositions 4.4 (interior interpolation estimate) and 4.5 (boundary interpo-
lation estimate) may allow us to obtain error estimates over quasi-uniform meshes
for functions in H'(Q2), ¢t € (1,2), the regularity results of Section 3 show that
these may be of little use for the approximation of problem (1.3). We will, instead,
exploit the regularity estimates in weighted Sobolev spaces H! () of Section 3 in
conjunction with mesh grading towards the boundary to compensate for the singular
behavior of the solution.

The preceding discussion motivates the use of graded meshes. In addition, these
meshes must be shape regular for Propositions 4.4 and 4.5 to hold. For these rea-
sons the meshes 7, that we consider will be constructed as follows. Given a mesh
parameter h > 0 and p € [1,2] every element T € Ty, satisfies

hy ~ C(0)h*, TeT?
hy = C(o)hdist(T,0Q)H=D/n T c TP,

Remark 4.2 (dimension of V},). Following 4 it is not difficult to see that the
space V}, constructed over the mesh 7, that satisfies (4.6) will satisfy

(4.6)

pA=n)p o> n

b n — 17

dimVj, = { h™"|logh|, p=—
n

h™", < .

K n—1

Indeed, since the mesh is assumed shape regular, we have that

dimV, <(n+1) Y 1<Clo) | Y h;"/ dr+ ) h;”/ da
T T

TETh TET? TeT?
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Over 7,2, because UTeTh@T defines a layer around the boundary of thickness about
h*, we have

Z h /dx<Ch i Z / de < CR—™k,
TeT? TeT?

On the other hand, for 7;> we have

pA=n)p n
) /’L > n — 1’
diam(Q) n
> by / da < Ch_"/ p VI dp = hT"|loghl, p=
TET? h# n
h", u< .
n—1

In other words, if we wish that the dimension of V}, scaled like (up to logarithmic
factors) h~™ we must set the grading to be u < n/(n —1).
For future reference we record that, if we insist on setting g = 2, then we obtain

. h2|loghl, n=2,
dimVj, = 4
h™=, n = 3.
In three dimensions p = 2 does not yield an optimal number of degrees of freedom.

Before we proceed further, we present the following inequality regarding the
localization of fractional order Sobolev seminorms, and refer the reader to 22, 21
for a proof:

s g, 2
s S dy dz 2 . 4.
IARED [ JL e vt s St el | 4)

TETh

Let us now show a global interpolation estimate for functions in H 117;__625 (Q), in

two dimensions, over graded meshes that satisfy (4.6).

Theorem 4.1 (global interpolation estimate). Let 7, be shape regular and
satisfy the mesh grading condition (4.6) with p € [1,2]. Assume, in addition, that
te (1,2) and € € (0,1/4). Define

(=) -5, s#s,
1

T E) () e

Then, there is a constant C' that depends only on s, Q and o such that,

|v—Ihv|ﬁS(Q) < C’ht_s|v|fji,,(Q (s #1/2),
c ) (4.8)
[0 = Inv| o < ht Vol gy (s =1/2),

for all v e HL(Q).
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Proof. From the localization estimate (4.7) we obtain

— ) (@) — (v — I)(y)?
v — |, < // IG h dy dx
| Wolirsio) < D2 [ Txsh |z — y[t2s Yy

TeTh

2wn—1

+ S
Sh3:

[0 = Invl|72(ry | -

To shorten notation, for T' € Tj, we set

v — v)xr) —(v— v 2
IT//M; 0= 1)) = @0 = L)@

|z —y[n+2e

ﬁ”” *IhUHQB(T)-
T

To control the term Zr, we recall the notation (4.1) and consider two cases:

e T € 72: In this case we apply Proposition 4.4 (interior interpolation estimate)
and use the mesh grading condition (4.6) to obtain that

Iy < C(n,o,t)

1-s
In addition since, for all z,y € SZ, we have that dist(T, Q) ~ §(z,y), the right
hand side of the previous expression can be modified so that the final estimate

B2 dist (T, 092 5 ol g2

reads

C(n,o,t)
1-s
where we used the prescribed value for a.

e T € T2: We now use Proposition 4.5 (boundary interpolation estimate) to arrive
at

Ir < W2l (83)°

IT S C(n7a? t) C(n? 0-7 t)
1—s 1—s

as a consequence of the grading condition (4.6) and the prescribed value of a.

2(t—s—a —s
B ol 2 < Ul

Gathering the two previous estimates, and using that the constants are non-
decreasing in t, we deduce

> Ir <R o) (4.9)
TeTh
It remains to control the local L?-interpolation errors L. We again consider

two cases:

e T € 77°: Employing the error estimate of Proposition 4.1 (properties of Ij,) for
p = 2 we have

£ < OBl

Then, as in the first case for Zr, we can use the mesh grading condition (4.6) and
the fact that, for all z,y € St d(x,y) ~ dist(T, Q) to obtain

L1 < Co,s)R* w3, (SL)



October 4, 2019 13:23 WSPC/INSTRUCTION FILE paper

Fractional obstacle problem 29

where we also use the prescribed value for a.
e T € 7,2: Owing to Remark 4.1 (case s = 0) we have

Ly < Clo)hy" ™ v vl (s1y-

Using the mesh grading condition (4.6), the prescribed value of «, and the fact that
w € [1,2] we see that

> Lr < CRT) (4.10)

TETh

H(9)

Adding (4.9) and (4.10) allows us to conclude that
|’U — Ih'U|Hs(Q) < Cht_s|v|ﬁ£(ﬂ),

where a = (¢t — s)(u — 1)/p and p € [1,2].
Finally, to bound the full H*(£2)-seminorm we need to provide a bound for the
term

1 ‘ lhv)( )|2
To = — 1 2 ———dydx < —d .
0= / (v n) ()| /C |z — gyt Y C(s / 5y T

To do so, if s # 1/2 we employ the inequality

9 1
vl () s € 0.5 )

1
0l f ), S € (271) )

whose proof is implicit in the proof of 2 and uses the fractional Hardy-type in-
equality of 18 in the case s > 1/2

/|w(m)2 deC(s)/ dedy Y w e H5(),
Q Jo

(@) o -y

and is the content of 23 for s < 1/2. We point out that, as shown in 28, in case  is a
convex domain, the constant C(s) in the Hardy-type inequality for s > 1/2 behaves
like C(s) ~ (s —1/2)72 for s | 1/2. On the other hand, if s = 1/2, an argument
similar to the one provided in the proof of Theorem 2.1(weighted regularity of w,)
yields for any ¢ € (0,1/4)

_ 2 _
IOSC/wdeCdiam /|v Ino)(@)? dz,
Q ()

1+2€

where, in the last step, we used that, since € is bounded, d(z) < diam(Q). It
remains to apply, once again, the above fractional Hardy-type inequality 18 . Since
this inequality involves the H'/2*4-seminorm, the constant behaves as 2. O
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4.2. The numerical scheme and its analysis

Having studied the interpolation operator I, introduced in Definition 4.1 (positivity
preserving interpolation operator), we can finally proceed to present and analyze
the numerical scheme we use to approximate the solution of (1.3). In essence, this
is a direct discretization inspired by the approximation of classical obstacle-type
problems and their analyses; see 8, 33.

We begin by introducing a discrete version of the admissible set as follows:

Ky ={vn € Vi s op > Inx}. (4.11)

Note that, in general, K, ¢ K and so our approximation scheme is nonconforming.
The discrete problem reads: find uy € Kp such that

(up,up, —vp)s < (fyup —vp), Vop € Kp. (4.12)

The existence and uniqueness of a solution to (4.12) is standard. The approximation
properties of this scheme are presented below.

Theorem 4.2 (error estimate). Let u be the solution to (1.3) and wup be the
solution to (4.12), respectively. Assume that x € X(Q) satisfies (3.3) and that
feF(Q). If n > 2, Qis a convex polytope, and the mesh Ty, satisfies the grading

hypothesis (4.6) with p = 2 then, for € € (0,s/2), we have that

Coiia
—hTE L (s #1/2),

C —3e
‘u - uh|]f]1/2(Q) < ?hl 3 (S = 1/2),

|u = unlj. gy <

where C' > 0 depends on x, s, n, Q, o and ||f||}-s(§). In particular, setting € ~
|log h|~t we obtain

|u7uh|f[s(g) < Ch|10gh| (S# 1/2)7
lu — uh|171/2(9) < Ch|logh|? (s=1/2).

Proof. After all the discussion about regularity of Section 3 and preparatory steps,
the proof of this result follows more or less standard arguments; see 8 . However, it
requires a combination of Sobolev and Hélder regularity results on the solution as
it was first exploited in 33 .

We begin by writing

lu — uh%s(ﬂ) = (u—up,u— Ipu)s + (u — up, Inu — up)s
1 1
< i\u - uh|2ﬁs(ﬂ) + §|u - Ihu'%[s(ﬂ) + (u—up, Inu — up)s
so that
|lu — Uhﬁ;s(g) <l|u-— Ihu|2ﬁs(ﬂ) + 2(u — up, Inu — up)s.

For the first term on the right hand side Corollary 3.4 (global weighted Sobolev
regularity for f # 0) shows that we must apply Theorem 4.1 (global interpolation
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estimate) with t =1+ s — 2¢ and o = % — ¢ to deduce, first of all, that this forces
us to set 4 = 2 and that, in addition, we have
pl—2e
lu — Ihu|ﬁs(m < Ch1726|u\ﬁ11/+;:525(m < CT (s #1/2),
C

1-3
|quhu|H1/2(Q) < ;h €|u|ﬁ13;§:35(

h1735

It remains to bound the second term. To do this we use (2.3) to obtain
(u, Ipu — up)s = ((=A) u, Inu — up).

In addition, since I}, is positivity preserving, we have that Ipu € Kp and so it is
a legitimate test function for (4.12). Adding (4.12) to the previous equality then
yields

(w—up, Ipu —up)s < N Tpu —up) = / AIpu — up) da
Q
:/)\(ufx)der//\(Ithuh)dm
Q Q

" /Q AT — x) — (u — )] da,

where we have used the regularity Theorem 3.2 (Holder regularity of A) to transform
the pairing into an integral. Next, we apply the complementarity conditions (1.1)
to conclude that A(u — x) = 0. Finally, we use, once again, the complementarity
conditions to see that A > 0 and, since u;, € Kj,, then the middle term is non-positive
and can be dropped. Consequently,

(u—uh,Ihu—uh)sS/)\[Ih(u—x)—(u—x)}dx

_ /TA[Ihm—x)—(u—x)]dw: 3 Tr.

TETh T€Th

We continue by partitioning the terms in the previous sum into three cases:

e T C N: The complementarity condition (1.1) then implies that A = 0, whence
Jr = 0.

e T is such that S C A: In this case u = x and, again, Jr = 0.

e T issuch that SLNN # () and TNA # (: The first condition yields the existence of
zy € SENN for which A(zx) = 0. Since A € C%175(Q), according to Theorem 3.2
(Holder regularity of A), we infer that

M=) < C(o)hy® VreT.

The second condition gives rise to the existence of a point xp € T where
u(xpa) = x(wp). Using the facts that u — x € CH*(Q), which can be deduced
from Remark 3.2 (interior regularity estimate), and T is uniformly away from 92
because ¢ > 0 in (3.3), we obtain

(u—)(@)| < Clo)hk™ Va €.
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The local stability estimate of Proposition 4.1 (properties of I;) with p = co then
implies

[In(u = x)(z) = (u = x)(2)] < Clo)hy"™.
In conclusion, in this case we have

Jr < C(o)hz|T|.
The previous considerations then lead to
(u—up, Ipu —up)s < C(o) Z hZ|T).
TeTh

Since the mesh grading condition (4.6) yields hy < Ch for all T' € T}, this completes
the proof. O

Remark 4.3 (complexity). Let us take another look at the estimates shown in
Theorem 4.2 (error estimate). We will consider two separate cases.

In two dimensions (n = 2), since the mesh is assumed to verify the grading
condition (4.6) with u =2 =n/(n — 1), we have that dim V}, ~ h=2|log h|, accord-
ing to Remark 4.2 (dimension of V},). This allows us to interpret the assertion of
Theorem 4.2 (error estimate) in terms of degrees of freedom as follows

|u — uh|f~15(ﬂ) < O(dim Vi)~ Y2(log dim V;,)%/% (s # 1/2),
| — un g1y < C(dimV3) "V (log dim V,)>? (s = 1/2),
which shows that in this case our method is near optimal.

On the other hand, in three dimensions (n = 3) we have that

dim Vj, = h™4,
see Remark 4.2 (dimension of V3,). Therefore, the estimate will read
|u—uh|ﬁs(m < C(dim V3,) "4 1og dim V}, (s #£1/2),
[u = unlgi/2g) < C(dim V3,)~Y*(log dim V3,)? (s = 1/2),

which is not near optimal anymore. One could, in principle, repeat the proof of
Theorem 4.2 (error estimate) with p = 3/2 so that dimVj, and h have the correct
scaling. In this case, however, we need to revisit the weighted regularity estimate
for the linear problem and the interpolation error estimate (4.5). For the former,
instead of Theorem 2.1 (weighted regularity of wg), we use that wy € HL(Q) for
t<l+4+sanda>t—s—1/2(cf. 7). For the latter, we resort to 46 to interpolate
the error estimates

[v—Prollz(s2) < Chi ™ \U|H;1(s%)7 V(v —Pro)|z2es2y < Chéﬂ_a2_1|”|H;2(sg)v
with a; € [0,1] and as € [0, — 1) to obtain (4.5) with o € [0,1 — 2s + ts)

v = Prolge(sg) < Chip ol s2)-
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This gives a range for « € (t —s—1/2,1—2s+ts) which turns out to be non-empty
for all s € (0,1). To enforce the condition for « of Theorem 4.1 (global interpolation
estimate) with p = 3/2, i.e.

n—1 1
o ( )( s) > S5

which also satisfies a < 1 — 2s + ts for all ¢ € (1,2), we are thus forced to restrict
t < % + s. In other words, the full regularity of the solution cannot be exploited,
and this would lead to suboptimal error estimates in terms of h. In conclusion, in
either case we obtain a suboptimal convergence rate (dim V;,)~'/* (up to logarithmic
factors) for dimension n = 3. ]

5. Numerical illustrations

In this section we assess the sharpness of Theorem 4.2 (error estimate) by displaying
the results of numerical experiments performed in two-dimensional domains, and
we illustrate the qualitative differences between fractional Laplacians of different
orders with an example.

The experiments were carried out with the aid of the code documented in 1; we
refer to that work for details on the implementation and a discussion on the chal-
lenges that arise when computing the stiffness matrices. The discrete minimization
problems were solved by performing semismooth Newton iterations, as described in
5 . A brief explanation on how to construct graded meshes satisfying (4.6) can be
found in 2.

5.1. Explicit solution

We first describe how to construct a non-trivial solution to (1.3) in the unit ball of
R™. For this domain, reference 19 explicitly expresses eigenfunctions of an operator
closely related to the fractional Laplacian in terms of Jacobi polynomials and an s-
dependent weight. For example, in dimension n = 2 and using the Jacobi polynomial

P of degree two
pie sy — A+ D5 +2) (s + 25 +3) = 1) + (5 3o + e = 1
8 )
define

p®(x) = PO 2Jz[? - 1),
u(z) = (1— |2?)] p (),
f(x) = 22(‘9_1)F(3 — s)2p(s) (x).

Then, it holds that

(=A)*u(z) = f(z), =€ By.
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We now consider a smooth obstacle x that coincides with u in A = ?/5 and modify
[ in By/5 so that within this contact set the strict inequality (—A)®*u > f holds.
More precisely, we extend x to N = By \ By;5 by using the Taylor polynomial of
order two of u on 9B /5 and set

o) = )~ 100 5 - |x|)+.

Note that, as written, f ¢ F,(Q). However, at the mesh level, it makes no
difference if we smooth out the vertex of the cone (% — |z|) . so that we have

f € F(Q).

—o—s=0.1 ——s-09
—— dim(v,)"? 36l —— dim(v,) "2

-y 9.5 9.6 9. 9.9 10 10.1 10.2 9.4 9.5 9.6 9.9 10 10.1 10.2

7 98 97 98
log(dim(V,)) log(dim(V,))

Fig. 1. Computational rate of convergence for the discrete solutions to the fractional obstacle
problems described in section 5.1 over meshes satisfying the grading condition (4.6) with u = 2.
The left panel shows the errors for s = 0.1 and the right one for s = 0.9. The rate observed in
both cases is ~ dim(Vh)’l/Q, in agreement with the theory.

We carried out computations for s € {0.1,0.9} using meshes satisfying the grad-
ing condition (4.6) with p = 2 and different mesh size parameters h. Figure 1 shows
that the observed convergence rates are in good agreement with either Theorem 4.2
(error estimate) or Remark 4.3 (complexity).

5.2. Qualitative behavior

Finally, we consider problem (1.3), posed in the unit ball By C R?, with f = 0 and
the obstacle
1

x(x) = 3~ | — x|, with zg = (1/4,1/4).

Figure 2 shows computed solutions for s € {0.1,0.5,0.9} over meshes graded accord-
ing to (4.6) with ¢ = 2 and 24353 degrees of freedom (this corresponds to h ~ 0.025).
Figure 2 also displays the discrete coincidence set, which contains a neighborhood
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of the singular point xg. After a suitable smoothing of the cone |z — x|, both
the obstacle y and solution u are globally Lipschitz and of class H'**(2) for all
s € (0,1). We point out that away from zy but still within the coincidence set A,
the obstacle y is smooth, say of class C%!, and the regularity and approximation
theories developed above apply. In particular, we observe that Theorem 4.2 (error
estimate) is valid because the only critical point in its proof is the case St C A, for
which u = x regardless of smoothness.

Fig. 2. Discrete solutions to the fractional obstacle problem for s = 0.1 (left), s = 0.5 (center) and
s = 0.9 (right), computed over meshes with 24353 degrees of freedom, and graded according to
(4.6) with p = 2. Top: lateral view. Bottom: top view, with the discrete contact set highlighted.

Qualitative differences between solutions for different choices of s are apparent.
While for s = 0.9 the discrete solution resembles what is expected for the classical
obstacle problem, the solution for s = 0.1 is much flatter in the non-coincidence
set N. Moreover, taking into account that the solution of the fractional obstacle
problem is non-negative in  and that v = x4 in the formal limit s = 0, it is
apparent that the coincidence set A decreases with s but always contains xg in its
interior. This fact is verified by the experiments presented in Figure 2. We observe
that in the diffusion limit s = 1, the solution is expected to detach immediately for
the obstacle away from xq for a vanishing forcing f, whence A = {z¢}.

Finally, Figure 3 exhibits the convergence rates for these numerical experiments,
which are in good agreement with the theoretical predictions. Because we lack an
explicit expression for the solution of the obstacle problem in this case, we have
used the discrete solutions displayed in Figure 2 as surrogates.



October 4, 2019 13:23 WSPC/INSTRUCTION FILE paper

36 J.P. Borthagaray and R.H. Nochetto and A.J. Salgado

2.4 :
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Fig. 3. Convergence rates for the experiment described in section 5.2 with s = 0.1 (red), s = 0.5
(blue) and s = 0.9 (black). A linear fitting of these data yields estimated convergence rates 0.52,
0.51 and 0.47, respectively.
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