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Abstract
We review recent advances in the numerical analysis of the Monge–Ampère equation.

Various computational techniques are discussed including wide stencil finite difference

schemes, two-scaled methods, finite element methods, and methods based on geometric
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considerations. Particular focus is the development of appropriate stability and consis-

tency estimates which lead to rates of convergence of the discrete approximations.

Finally we present numerical experiments which highlight each method for a variety

of test problem with different levels of regularity.

Keywords: Monge–Ampère, Convergence analysis, Error estimates, Comparison prin-

ciple, Fully nonlinear equations
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1 Introduction

All exact science is dominated by the idea of approximation. When a man tells

you that he knows the exact truth about anything, you are safe in inferring that

he is an inexact man.

Russell (1931)

In this chapter we review recent progress in the numerical treatment of

Monge–Ampère type equations. In its simplest form, and assuming Dirichlet

boundary conditions, the problem we consider is to seek a scalar function u

satisfying the partial differential equation (PDE)

detD2uðxÞ¼ f ðxÞ x2Ω, (1a)

uðxÞ¼ gðxÞ x2 ∂Ω: (1b)

Here, D2u denotes the Hessian matrix of u, f � 0, and g are given functions,

and Ω�d is a bounded, convex domain. Problem (1) is a prototypical second

order, fully nonlinear PDE, and it arises in several broad applications in differ-

ential geometry, meteorology, cosmology, economics, and optimal mass trans-

portation problems. Some of these applications are briefly described below.

Despite its growing list of applications, and in contrast to its extensive and

mature PDE theory, the construction and analysis of computational methods

for (1) is still a relatively new and emerging field in numerical analysis.

Numerical algorithms, based on geometric considerations, for the two-

dimensional problem (d ¼ 2) first appeared in 1988 in Oliker and Prussner

(1988), and the extension to practical three-dimensional schemes were not

introduced until some 20 years later (Brenner and Neilan, 2012; Feng and

Neilan, 2009; Froese and Oberman, 2011a,b). Other early attempts that

deserve mention are the least squares and augmented Lagrangian approaches

of Dean and Glowinski (2003, 2004, 2005, 2006a,b), and we refer the reader

to Feng et al. (2013) for more details on these schemes.

The reasons for this delayed development in numerical methods are plen-

tiful. The most evident obstacle is the full nonlinearity of the problem. How-

ever, this is arguably a secondary difficulty, as black-box nonlinear solvers

can, at least heuristically, be applied to algebraic systems resulting from
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discretizations of (1). A rather fundamental difficulty to construct, and espe-

cially to analyze, computational methods for Monge–Ampère type equations

is the variety of solution concepts and, correspondingly, the low regularity

solutions generically possess. As we explain below, weak solutions are not

based on variational principles, but rather on either geometric considerations

or by monotonicity conditions of test functions that touch the graph of the

solution from above or below. These solution concepts are difficult to mimic

at the discrete level, and as a result, the construction of convergent schemes is

an arduous task. Finally, as if these complications were not enough, the

Monge–Ampère equation (1) is usually supplemented by the constraint that

the solution u is convex. This is not only because of geometric applications,

but in many cases a necessary condition for uniqueness, and for the existence

of a well-developed PDE theory. As convexity is a global constraint, it is very

difficult to enforce it in a discrete setting.

Nonetheless, an explosion of results and new techniques to develop them in

computational methods for (1) have occurred during the last 10 years. These

include the construction of monotone, wide stencil finite difference schemes,

semi-Lagrangian methods, and finite element methods. Within only the past

few years, significant progress has been made in the convergence analysis with

an emphasis on the rates of convergence for various discretization schemes.

The main goal of this chapter is to highlight these recent advances in the

numerical analysis of the Monge–Ampère problem (1). To this end, we

organize the chapter as follows. After stating some geometric applications

and a brief PDE theory of the Monge–Ampère problem in this section, we

discuss wide stencil finite difference schemes in Section 2. There we intro-

duce the monotone finite difference schemes (Froese and Oberman, 2011a,b;

Oberman, 2008b) and the corresponding filtered schemes (Froese and

Oberman, 2013), lattice reduction schemes (Benamou et al., 2016), methods

based on power diagrams (Mirebeau, 2015), and the so-called two scale

methods (Nochetto and Ntogkas, 2018; Nochetto et al., 2019a,b). Of partic-

ular focus will be the rates of convergence of these schemes if available.

Next, in Section 3, we review the original method of Oliker and Prussner

(1988), which in honour of its proponents henceforth we shall call the Oli-

ker–Prussner scheme. This method is based on geometric interpretations of

the Monge–Ampère operator and the notion of Alexandrov solutions. Again,

the emphasis of the discussion is on consistency error and pointwise rates of

convergence recently established in Nochetto and Zhang (2019). Section 4

discusses finite element methods for both smooth and singular solutions.

Finally in Section 5 we perform some numerical experiments using some

of the methods we discuss in this review for a variety of test problems with

different levels of regularity.

We remark that, by design, this review has several major omissions. We

intend to minimize the overlap between two other existing, and rather recent,

reviews on fully nonlinear problems in general and the Monge–Ampère
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equation in particular. Namely, the overview of Feng et al. (2013), which is

dedicated to the Monge–Ampère equation exclusively, and Neilan et al.

(2017) which contains a chapter on the Monge–Ampère equation, and where

the reader can find much more details, for instance, on the semi-Lagrangian

schemes described in Section 2.8.1.

1.1 Geometric applications

To draw connections with the theme of the current volume in the Handbook of

Numerical Analysis, and to further emphasize the prevalence of the Monge–

Ampère problem, in this section we briefly summarize some applications

with a geometric flavour where the Monge–Ampère problem plays an

essential role.

1.1.1 Gauss curvature problem

The classic Gauss curvature problem (cf. Bakelman, 1994; Guan and Spruck,

1993; Oliker, 1984) seeks a manifold M�n+ 1 with prescribed boundary

and Gauss curvature K. We recall that Gauss curvature is the product of the

principal curvatures, which themselves are the eigenvalues of the shape oper-

ator (or Weingarten map). One may reduce this problem to a PDE problem of

Monge–Ampère type if one assumes that the manifold is the graph of a

function, i.e.,

M¼fðx,uðxÞÞ : u :Ω!g:
The shape operator is given by s ¼ I�1 II, where I and II denote, respectively,

the first and second fundamental forms. In the case thatM is the graph of the

function u, we have I ¼ I + ru �ru and II¼ D2u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + jruj2
p , where I denotes the

d � d identity matrix. Therefore the Gauss curvature is given by

K¼ detðsÞ¼ detðIIÞ
detðIÞ ¼

detD2u

ð1 + jruj2Þðd + 2Þ=2
:

Thus, the problem is to find a scalar function u : �Ω! satisfying

detD2uðxÞ¼KðxÞð1 + jruðxÞj2Þðd + 2Þ=2 inΩ, (2a)

uðxÞ¼ gðxÞ on ∂Ω: (2b)

In conclusion the Gauss curvature problem, in this setting, seeks solutions of a

Monge–Ampère type problem with lower-order terms.

1.1.2 Reflector design problem

The reflector design problem (Norris and Westcott, 1976; Oliker, 1987; Oliker

and Waltman, 1987; Wang, 1996) can be posed as follows: Let S2 be the unit
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sphere in 3 centred at the origin, and let Ω,O be two disjoint domains on S2.

Let f be a positive function defined on O, and suppose that rays originate from

the origin with density ρ. We then seek a surface, called Γ, whose radial pro-

jection onto S2 equals Ω, such that the directions of the reflected rays cover O
with distributed density equal to f.

To formulate a PDE model for this problem, we set Γ ¼ {xm(x) : x 2 Ω},

so that if a ray radiates from the origin with direction x, then it is reflected at

the point xm(x). This will create a reflected ray in the direction TðxÞ 2O. Now
if we denote by n the unit normal of Γ at xm (x), then we have T(x) � x ¼ �2
(x � n)n, and calculations show that n¼ðrm�mxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 + jrmj2
q

. Here,

r ¼ eij∂ix∂j, where x is a smooth parametrization of S2, e ¼ eijdt
idtj is the first

fundamental form of S2, eij ¼ (eij)
�1, and ∂j ¼ ∂/∂tj. Combining these two

identities we find that the direction T is related to m via

TðxÞ¼ 2mrm + ðjrmj2�m2Þx
m2 + jrmj2

: (3)

Next, if the directions of the reflected light do not overlap and if no loss of

energy occurs in the reflection, then we have the energy conservation property

Z

E

ρðxÞdx¼
Z

TðEÞ
f ðyÞdy¼

Z

E

f ðTðxÞÞ j∂1TðxÞ�∂2TðxÞj
detðeijÞ

dx

for all Borel sets E�Ω. Thus we have, at least formally,

j∂1TðxÞ�∂2TðxÞj
detðeijÞ

¼ ρðxÞ
f ðTðxÞÞ :

Finally, we set u(x) ¼ 1/m(x), and substitute (3) into this last equation to get

the following problem of Monge–Ampère type (see Oliker and Newman,

1993; Wang, 1996 for details)

detðD2u+ ðu�ηÞeijÞ
η2 detðeijÞ

¼ ρðxÞ
f ðTðxÞÞ x2Ω,

where T is given by (3) and η ¼ (jruj2 + u2)/(2u).

1.1.3 Affine plateau problem

Following Trudinger and Wang (2005, 2008) and Calabi (1990), we con-

sider the following problem. Let M0�d + 1 be a bounded and connected

hypersurface with smooth boundary that is locally uniformly convex We

denote by S½M0� the set of locally uniformly convex hypersurfaces that

can be smoothly deformed fromM0 within the family of locally uniformly

convex hypersurfaces and whose Gauss map images lie in that ofM0. As in

Section 1.1.1, for a manifold M we denote by II its second fundamental
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form and by K its Gauss curvature. Associated with M is the Berwald–

Blaschke metric

g¼K�1=ðd + 2ÞII,
which is an affine invariant Riemannian metric on the surface. The affine Pla-

teau problem is then to determine the maximizer of the affine area functional

AðMÞ¼
Z

M
K1=ðd + 2ÞdM

over S½M0�.
Recall that ifM¼Mu is the graph of a function u :Ω!, with Ω�n,

then the Gauss curvature is K¼ detðD2uÞ=ð1 + jruj2Þðd + 2Þ=2, and so, we have

by a change of variables,

AðMuÞ¼
Z

Ω

ðdetD2uðxÞÞ1=ðd + 2Þdx:

Thus if M0 is the graph of a locally uniformly convex g, then in the graph

case, S½M0� consists of the graphs of locally uniformly convex functions v2
C2ðΩÞ\C0ð�ΩÞ satisfying v ¼ g on ∂Ω and rvðΩÞ�rgðΩÞ. In this setting

the affine Plateau problem seeks u such that

AðMuÞ¼ supfAðMvÞ : Mv 2 S½M0�g:
Formally taking the Euler–Lagrange equation yields the affine maximal sur-

face equation

cof D2u :D2w¼ 0, w¼ detD2uð Þ�ðd + 1Þ=ðd + 2Þ:

1.1.4 Optimal mass transport problem

This problem appeared as a generalization of an earlier considered practical

problem of assigning production locations on a railway network to consumption

locations with minimum total transportation expenses.

Kantorovich (2004)

The optimal mass transport problem was originally proposed by G. Monge in

the 18th century to find the optimal way to move oil to an excavation with

minimal transportation cost. In general, the mass transport problem seeks,

for two given sets and densities, the optimal mass-preserving mapping

between them.

In further detail, given bounded Ω,O�d and measures ρΩ :Ω!,

ρO :O!, the optimal transport problem with quadratic cost seeks a map T :

Ω!O such that T#ρΩ¼ ρO that minimizes the functional

1

2

Z

Ω

jx�TðxÞj2dρΩðxÞ (4)
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over all mass-preserving maps. Here, we assume that the measures are abso-

lutely continuous with respect to Lebesgue measure, with dρΩ ¼ fΩdx and

dρO¼ fOdx, and that the measures satisfy the mass balance condition
Z

Ω

fΩðxÞdx¼
Z

O
fOðxÞdx:

Above, we denoted by T#ρΩ the pushforward of the measure ρΩ under the

mapping T, i.e., under the given assumptions, we have
Z

E

fOðxÞdx¼
Z

T�1ðEÞ
fΩðxÞdx:

Thus, by a change of variables, we have, at least formally,

detðrTðxÞÞfOðTðxÞÞ¼ fΩðxÞ x2Ω, (5)

with TðΩÞ�O. Thus in summary, we seek a mapping T that minimizes (4)

with the constraint (5). One of the fundamental results in the theory of optimal

transport (Brenier, 1991; Cuesta and Matrán, 1989; R€uschendorf and Rachev,

1990a,b) is that there exists a unique solution to this problem and that this

optimal mapping is characterized as the gradient of some convex function u:

TðxÞ¼ruðxÞ:
Hence, by substituting this relation into (5), we see that the problem reduces

to a Monge–Ampère type PDE

fOðruðxÞÞdetD2uðxÞ¼ fΩðxÞ x2Ω (6)

with the constraint ruð�ΩÞ� �O. Thus we find that, with quadratic cost, the

optimal mass transport problem reduces to a Monge–Ampère equation with

transport boundary conditions.

1.2 Solution concepts for the Monge–Ampère equation

It is impossible to understand an unmotivated definition […]

Arnol’d (1998)

In order to properly analyze the numerical schemes that we present below, it

is important to understand in which sense a function u : �Ω! must satisfy

the equation and boundary conditions in (1) to be a solution. It is not our

intention here to give a survey of the PDE theory regarding the Monge–

Ampère equation, and we refer the reader to Guti�errez (2001), Figalli

(2017), and Bakelman (1994) for an in-depth presentation.

1.2.1 Classical solutions

The first definition of a solution to (1) is that of a classical solution. Essen-

tially we require that (1) holds at every point of �Ω.
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Definition 1 (classical solution).

A function u2C2ðΩÞ\Cð�ΩÞ is called a classical solution of (1) if these iden-

tities hold for every x2 �Ω.

Notice that this necessarily implies that the right-hand side f :Ω! is

continuous. Regarding the existence of classical solutions we have the follow-

ing result; see Figalli (2017, Section 3.1) for a detailed presentation.

Theorem 1 (existence of classical solutions).

Let α 2 (0, 1). Assume that Ω is a bounded and uniformly convex domain,

whose boundary is of class C3, f 2Cαð�ΩÞ with f � f0 > 0, and g 2 C3(∂Ω).

Then problem (1) has a unique solution u2C2,αð�ΩÞ.

It is important to notice that classical solutions may not always exist, see

for instance the counterexample given in Figalli (2017, Section 3.2). This

motivates us to introduce weaker notions of solutions.

1.2.2 Viscosity solutions

The Monge–Ampère operator w 7!detD2w is a fully nonlinear second order

operator, that is it depends nonlinearly on the highest (in this case second) order

derivatives that appear in the expression. For this reason, the theory regarding

fully nonlinear operators can guide us to develop a notion of solution (viscosity

solution) that is weaker than classical. We refer the reader to Gilbarg and

Trudinger (2001, Chapter 17), Caffarelli and Cabr�e (1995), Crandall et al.

(1992), and Neilan et al. (2017, Section 2) for additional details.

We begin with a definition that encodes the type of admissible nonlineari-

ties that will allow for the development of the theory of viscosity solutions.

Here and in what follows we denote by d the collection of symmetric

d � d matrices. The set d is endowed with a partial order: if M,N 2 d then

we say that M 	 N if v � Mv 	v � Nv for every v2d.

Definition 2 (elliptic operator).

Let F : �Ω��d! be locally bounded. We say that F is elliptic if it satis-

fies the following monotonicity condition: For all x2 �Ω, r,s2 and M,N 2d
with r � s and M 	 N then

Fðx,r,MÞ	Fðx,s,NÞ:

Moreover, we say F is uniformly elliptic if for all r,s2 and M2 d with
r � s we have

Fðx,r,MÞ	Fðx,s,MÞ,

and, in addition, there are constants 0 < λ 	 Λ such that for all M2 d
we have

λ kNk2	Fðx,r,M +NÞ�Fðx,s,MÞ	Λ kNk2, 8N� 0:
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Letting F : �Ω��d! be an elliptic operator as defined above, we

consider the fully nonlinear elliptic problem

Fðx,uðxÞ,D2uðxÞÞ¼ 0 in �Ω: (7)

To be able to properly describe the notion of viscosity solutions we need to

recall the following.

Definition 3 (upper and lower semicontinuous envelopes).

Let w : �Ω!. By w? 2USCð�ΩÞ and w? 2 LSCð�ΩÞ, we denote the upper

and lower semicontinuous envelopes, respectively, of the function w. In

other words

w?ðxÞ¼ lim sup
y!x

wðxÞ, w?ðxÞ¼ lim inf
y!x

wðxÞ:

Finally, by USCð�ΩÞ and LSCð�ΩÞ we denote, respectively, the sets of upper
and lower semicontinuous functions.

We are now ready to introduce the notion of viscosity solution.

Definition 4 (viscosity solution).

Let F be elliptic in the sense of Definition 2. We say that the locally bounded

function u : �Ω! is:

1. A viscosity subsolution of (7) if whenever x0 2 �Ω, φ2C2ð�ΩÞ and u? � φ

has a local maximum at x0 we have that

F?ðx0,φðx0Þ,D2φðx0ÞÞ� 0:

2. A viscosity supersolution of (7) if whenever x0 2 �Ω, φ2C2ð�ΩÞ and u? � φ

has a local minimum at x0 we have that

F?ðx0,φðx0Þ,D2φðx0ÞÞ	 0:

3. A viscosity solution if it is a sub- and supersolution.

The condition “u? � φ has a local maximum at x0” is usually phrased as

“φ touches the graph of u from above at x0”. The reader is encouraged to

draw a picture to see why these two have the same meaning. Similarly,

“u? � φ has a local minimum at x0” is: “φ touches the graph of u from

below at x0”.

One of the main technical tools in asserting existence and uniqueness of

viscosity solutions is a comparison principle.

Definition 5 (comparison principle).

We say that problem (7) satisfies a comparison principle if whenever

w 2USCð�ΩÞ and w 2 LSCð�ΩÞ are sub- and supersolutions, respectively, then

we must have

w	w :
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Notice now that if we define

FMAðx,r,MÞ¼
detM� f ðxÞ, x2Ω,
gðxÞ� r, x2 ∂Ω,

�

(8)

this operator satisfies the monotonicity conditions given in Definition 2 only if

we restrict the third argument to the set of positive semidefinite matrices

which we denote by d+. Consequently, we need to restrict the class of admis-

sible functions, that define a viscosity solution to (1) to the set of convex

functions.

Definition 6 (viscosity solution).

Let u2Cð�ΩÞ be a convex function. We say that u is:

1. A viscosity subsolution of (1) on the set of convex functions if u 	 g on

∂Ω and, whenever x0 2Ω, φ 2 C2(Ω), and u � φ has a local maximum

at x0 we have that

detD2φðx0Þ� f ðx0Þ:
2. A viscosity supersolution of (1) on the set of convex functions if u � g on

∂Ω and, whenever x0 2Ω, φ 2 C2(Ω) is convex, and u � φ has a local min-

imum at x0 we have that

detD2φðx0Þ	 f ðx0Þ:
3. A viscosity solution if it is a sub- and supersolution on the set of convex

functions.

The reader may wonder why these definitions are asymmetric. The con-

cept of supersolution requires convexity of the test functions, whereas subso-

lutions do not. This is due to the fact that, as noted in Guti�errez (2001,

Remark 1.3.2), if u is convex and u � φ has a local maximum at x0, then φ

is (locally) convex.

The existence and uniqueness of viscosity solutions will be a consequence

of Theorems 2 and 3. Here we mention a remarkable property of viscosity

solutions, namely their stability. The following result can be found, for

instance, in Nochetto et al. (2019a, Lemma 5.3).

Proposition 1 (continuous dependence).

Let f1, f2 2Cð�ΩÞ with f1, f2 � 0 and g1, g2 2 C(∂Ω) and denote by

u1,u2 2Cð�ΩÞ the corresponding convex viscosity solutions to (1). Then

we have

k u1�u2kL∞ðΩÞ	C k f1� f2 k1=dL∞ðΩÞ + k g1�g2kL∞ð∂ΩÞ:

In addition, if f1 � f2 � 0 and g1 	 g2 we have that u1 	 u2.

Finally we comment that viscosity solutions can be approximated by classical

ones over larger, but smooth, domains; see Nochetto et al. (2019a, Lemma 5.4).
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Proposition 2 (smooth approximation).

Let Ω be uniformly convex, f ,g2Cð�ΩÞ with f � 0, and u the convex viscosity

solution to (1). There exists:

1. A decreasing (in the sense of inclusion) sequence of uniformly convex

smooth domains Ωn such that

distHðΩn,ΩÞ! 0, n!∞,

where by distH(A, B) we mean the d-dimensional Hausdorff distance

between the sets A and B.

2. A decreasing sequence of smooth functions fn : �Ωn! with fn > 0 such that

k fn� fkL∞ðΩÞ! 0, n!∞:

3. A sequence of smooth functions gn : �Ωn! such that

k gn�gkL∞ðΩÞ! 0, n!∞:

Moreover, if un 2Cð�ΩnÞ denotes the convex viscosity solution to (1) over the

domain Ωn and with data fn and gn, then

k un�ukL∞ðΩÞ! 0, n!∞:

1.2.3 Alexandrov solutions

Besides the concept of solution in the viscosity sense, another type of weak

solution to the Monge–Ampère equation is the Alexandrov solution, which

is based on a geometric interpretation. To motivate it, let w 2 C2(Ω) be con-

vex so that the gradient map rw :Ω!d is well defined and monotone. In

this case, an interesting observation is that detD2w is actually the determinant

of the Jacobian of the gradient map. Therefore, for any open (or Borel) subset

E�Ω, we have
Z

E

detD2wðxÞdx¼
Z

rwðEÞ
dy¼ jrwðEÞj,

where j�j denotes the d-dimensional Lebesgue measure.

What is remarkable about this simple observation is that to make sense of

detD2u, we only require rw(E) to be well defined for any Borel set E. This

enables us to make sense of the previous identity even if w 62 C2(Ω). To define

the weak (Alexandrov) solution, we first introduce the subdifferential of a

convex function.

Definition 7 (subdifferential).

Let Ω be convex and w :Ω! be a convex function. The subdifferential of

w at point x 2Ω is the set

∂wðxÞ :¼fp2d,wðxÞ+ p � ðy� xÞ	wðyÞ 8y2Ωg:
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For any Borel set E�Ω, we define

∂wðEÞ¼[x2E∂wðxÞ:

In other words, the subdifferential is the collection of slopes of all affine

functions that touch the graph of w at (x, w(x)) and bound the graph from

below. From this observation, it is easy to see that if w is strictly convex

and smooth, then ∂w(x) ¼ {rw(x)}. Here we give an example of subdifferen-

tial of a convex (but not strictly convex) function.

Example 1 (subdifferential).

Let Ω¼B1ð0Þ�2 and

wðxÞ¼ jxj:
Then at the origin x ¼ 0, we note that

wð0Þ + p � y	wðyÞ 8y2Ω
provided that the norm of the vector jpj	 1. Hence, by definition, the subdif-

ferential of w at x ¼ 0 is the closed unit ball centred at 0, i.e.

∂wð0Þ¼B1ð0Þ:
At any other point x 2Ω, since the function w is differentiable, we note

that the inequality

wðxÞ+ p � ðy� xÞ	wðyÞ 8y2Ω

holds if and only if p ¼ rw(x). Hence, for all x 2Ωn{0},

∂wðxÞ¼ frwðxÞg:

With this motivation at hand we can introduce the so-called Monge–

Ampère measure, which will be essential in defining Alexandrov solutions.

Definition 8 (Monge–Ampère measure).

Let Ω�d be convex and w :Ω! be a convex function. The Monge–

Ampère measure associated to w is

μwðEÞ¼ ∂wðEÞj j:

It can be shown, see Figalli (2017, Theorem 2.3) that this is indeed a locally

finite Borel measure onΩ. With this, we are ready to define Alexandrov solutions.

Definition 9 (Alexandrov solution).

Let f be a Borel measure defined in Ω. A convex function u2Cð�ΩÞ is an

Alexandrov solution to the Monge–Ampère equation (1) if u ¼ g on ∂Ω and

μu ¼ f, that is,
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j∂uðEÞj ¼ f ðEÞ: (9)

for all Borel sets E�Ω.

To illustrate the definition of the Alexandrov solution, we consider

Example 1. Let E�Ω be Borel, if the set contains the origin, we have the

subdifferential

∂uðEÞ¼[x2E∂uðxÞ¼B1ð0Þ,
which yields

j∂uðEÞj ¼ jB1ð0Þj ¼ π if x2E:
On the other hand, if the set does not contain the origin, then the subdifferential

∂uðEÞ¼[x2EfruðxÞg� ∂B1ð0Þ
Hence, we get j∂u(E)j ¼ 0 if 0 62 E. Finally, we conclude that u is an Alexan-

drov solution of Monge–Ampère equation

detD2uðxÞ¼ πδfx¼0g,

where δ{x¼0} is the Dirac measure at the origin. It is worth mentioning that u

is not a viscosity solution because the right-hand side is not a (continuous)

function. Also note that the continuity of the source term f is no longer

required for (9) to be well defined.

The existence and uniqueness of Alexandrov solutions is summarized in

the next theorem, see Guti�errez (2001, Theorem 1.6.2) and Figalli (2017, The-

orem 2.14).

Theorem 2 (existence and uniqueness).

Let Ω�d be a strictly convex domain, let g 2 C(∂Ω) and f be a nonnegative

Borel measure on Ω with f ðΩÞ<∞. Then there exists a unique convex func-

tion u2Cð�ΩÞ that is a solution of (1) in the sense of Definition 9.

An important property of Alexandrov solutions is their stability with

respect to weak convergence. We refer the reader to Guti�errez (2001, Lemma

1.2.3) for a proof of the following result.

Lemma 1 (weak convergence).

Let fwkg∞k¼1,w be convex functions on Ω and assume that, as k!∞, we have

wk ! w uniformly over compact subsets of Ω. Then, the associated Monge–

Ampère measures μwk
tend to μw weakly, that is,

Z

Ω

ϕðxÞdμwk
ðxÞ!

Z

Ω

ϕðxÞdμwðxÞ,

for every ϕ continuous with compact support in Ω.
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The relation between viscosity and Alexandrov solutions is given in the

following result (Guti�errez, 2001, Propositions 1.3.4 and 1.7.1). Notice that

this result not only shows, as we have already pointed out, that the notion

of Alexandrov solution is strictly weaker than that of viscosity solutions

but, on the basis of Theorem 2, shows existence and uniqueness of viscosity

solutions.

Theorem 3 (equivalence).

Let u2Cð�ΩÞ be an Alexandrov solution of (1). If f 2 C(Ω), then u is also a

viscosity solution in the sense of Definition 6. Conversely, if u is a viscosity

solution of (1) and f 2Cð�ΩÞ with f > 0, then u is an Alexandrov solution.

Since it will be useful in the sequel, we introduce here the convex

envelope of a function, which is the largest convex function that is bounded

above by the given one.

Definition 10 (convex envelope).

Let Ω�d be convex and w : �Ω!. The convex envelope of w, denoted by

Γw, is the largest convex function whose graph lies below the graph of w.

It can be computed by

ΓwðxÞ¼ sup LðxÞ : L affine function and LðyÞ	wðyÞ 8y2 �Ωf g:

To conclude our preliminary discussion we recall the Brunn–Minkowski

inequality, a celebrated result in convex geometry. Given two compact sets

A, B of d, we define their Minkowski sum

A +B :¼fv+w2d
: v2A andw2Bg: (10)

The Brunn–Minkowski inequality relates the Lebesgue measures of compact

subsets A, B of Euclidean space d with that of their Minkowski sum A + B.

Lemma 2 (Brunn–Minkowski inequality).

Let A and B be two nonempty compact subsets of d for d � 1. Then the

following inequality holds:

jA+Bj1=d � jAj1=d + jBj1=d:

2 Wide stencil finite differences

Problems involving the classical linear partial differential equations of mathemat-

ical physics can be reduced to algebraic ones of a very much simpler structure by

replacing the differentials by difference quotients on some (say rectilinear) mesh.

Courant et al. (1967)

In this section we will study finite difference schemes that aim to approximate

the viscosity solution, in the sense of Definition 6, of (1).
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2.1 A general framework for approximation schemes

Let us describe a general framework under which convergence of approxima-

tion schemes can be shown. Let F : �Ω��d! be elliptic in the sense of

Definition 2 and assume we wish to approximate the viscosity solution to (7).

To do so, we introduce a family of approximation schemes, which are

described by the collection of maps {Fε}ε>0, where Fε :
�Ω��Bð�ΩÞ!,

and Bð�ΩÞ denotes the space of bounded functions on �Ω. The parameter ε

can be understood as a discretization parameter. With this family at hand,

we seek for uε 2Bð�ΩÞ such that

Fεðx,uεðxÞ,uεÞ¼ 0, in �Ω: (11)

We assume that the approximation schemes satisfy the following assumptions:

1. Monotonicity: For all ε > 0, x2 �Ω, t2, and u,v2Bð�ΩÞ such that u � v

we have that

Fεðx, t,uÞ�Fεðx, t,vÞ: (12)

2. Stability: There is ε0 > 0 such that if ε < ε0, the scheme (11) has a unique

solution and there is a constant, independent of ε, such that

k uεkL∞ðΩÞ	C: (13)

3. Consistency: For all x0 2 �Ω and φ2C2ð�ΩÞ we have

lim sup
ε#0,y!x0,ξ!0

Fεðy,φðyÞ + ξ,φ + ξÞ	F?ðx0,φðx0Þ,D2φðx0ÞÞ (14a)

lim inf
ε#0,y!x0,ξ!0

Fεðy,φðyÞ+ ξ,φ+ ξÞ�F?ðx0,φðx0Þ,D2φðx0ÞÞ: (14b)

The main convergence result in this framework is the following; see Barles

and Souganidis (1991, Theorem 2.1).

Theorem 4 (Barles–Souganidis).

Assume that the family of approximation schemes (11) is monotone, stable and

consistent, in the sense of (12), (13), and (14), respectively. Assume, in addi-

tion, that problem (7) has a comparison principle in the sense of Definition 5.

Then, as ε # 0, the functions uε, solution of (11) converge locally uniformly to

u, solution of (7).

Proof. Define u,u 2Bð�ΩÞ by

uðxÞ¼ lim sup
y!x,ε#0

uεðyÞ, uðxÞ¼ lim inf
y!x,ε#0

uεðyÞ:

Notice that, by stability, we obtain that these functions are well defined and

bounded. In addition, we have that u,u are upper and lower semicontinuous,

respectively.
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The idea now is to show that u is a subsolution and u is a supersolution of

(7), for if that is the case we can invoke the comparison principle to see that

u	 u, and so that these must coincide with the viscosity solution of (7). This,

in turn, implies the local uniform convergence of uε to u.

Let us then show that u is a subsolution. Let φ2C2ð�ΩÞ and assume that u�φ

has a local maximum at x0 2 �Ω with uðx0Þ¼φðx0Þ. It can be shown then that

there are sequences fεng∞n¼1� + and fyng∞n¼1� �Ω such that εn # 0, yn ! x0,

uεnðynÞ! uðx0Þ and the sequence of functions uεn �φ attains its maximum at yn.

Notice now that, upon denoting ξn¼ uεnðynÞ�φðynÞ, we get that ξn! 0 and

uεnðxÞ�φðxÞ	 ξn locally. Monotonicity then implies that

0¼Fεnðyn,uεnðynÞ,uεnÞ¼Fεnðyn,φðynÞ+ ξn,φ+ ðuεn �φÞÞ
	Fεnðyn,φðynÞ+ ξn,φ+ ξnÞ,

which by the consistency condition (14a) yields

F?ðx0,φðx0Þ,D2φðx0ÞÞ� 0,

so that u is a subsolution. □

Remark 1 (limitations).

We must remark that, although Theorem 4 seems sufficiently general:

1. It only provides sufficient conditions for convergence. There is no guideline

towards the construction of monotone, consistent and stable finite difference

schemes.

2. This result, as is, cannot be applied to approximate viscosity solutions of

the Monge–Ampère equation (1) directly. This is because, as pointed out

in Section 1.2.2, the Monge–Ampère operator is only elliptic over
�Ω��d+.

3. The existence of a comparison principle in the sense of Definition 5

is assumed. Notice that, in Jensen and Smears (2018, Proposition 2.1) it

is shown that, for a reformulation of the Monge–Ampère problem as a

Hamilton Jacobi Bellman equation (which will be discussed in

Section 2.8.1), if f 
 0, there cannot be a comparison principle for this

problem. In other words, this is a highly nontrivial assumption.
■

Although not applicable to the Monge–Ampère equation (1), one of

the messages of Theorem 4 is that monotonicity of a numerical scheme is a

highly desirable property. Thus, it is necessary to explore how to construct

monotone approximation schemes. In the context of finite difference schemes

it was realized as early as in Motzkin and Wasow (1953) that, even for linear

problems, monotonicity of a numerical scheme requires the use of wide sten-

cils, which is rather problematic at points near the boundary. We refer the

reader to Neilan et al. (2017, Section 3.2) for more details, and to Mirebeau

(2016) for the construction of minimal stencils in two dimensions. For this

reason, in the remaining of this section, we will consider wide stencil finite

difference schemes to approximate the viscosity solution of (1).
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2.2 A variational characterization of the determinant

Let us provide a variational characterization of the determinant that will moti-

vate most of the constructions which will come below. This was originally

shown in Froese and Oberman (2011a, Lemma 2).

Lemma 3 (characterization of the determinant).

Let A be a symmetric positive definite d � d matrix and let

V ¼ fwigdi¼1�d
:wi �wj¼ δi, j

n o

,

be the set of all orthonormal bases of d. Then we have that

detA¼ min
fwigdi¼12V

Y

d

i¼1
wi �Awi:

Proof. To shorten notation, let M¼ minfwigdi¼12V
Qd

i¼1wi �Awi. Then let fvjgdj¼1
be an orthonormal set of eigenvectors of A so that

detA¼
Y

d

i¼1
vi �Avi�M:

On the other hand, for fwigdi¼1 2V, we can represent them in the basis of

eigenvectors wi¼
Pd

k¼1ðwi � vkÞvk. We have

� log
Y

d

i¼1
wi �Awi¼�

X

d

i¼1
logðwi �AwiÞ

¼�
X

d

i¼1
log

X

d

m¼1
ðwi � vmÞvm �

X

d

k¼1
ðwi � vkÞAvk

 !

¼�
X

d

i¼1
log

X

d

k¼1
λkðwi � vkÞ2

 !

,

where σðAÞ¼ fλkgdk¼1 is the spectrum of A. Since jwij ¼ 1 the term
Pd

k¼1λkðwi � vkÞ2 is a convex combination of the elements of σ(A). Owing to

the convexity of t 7!� log t we can apply Jensen’s inequality to obtain that

� log
Y

d

i¼1
wi �Awi	�

X

d

k¼1
logλk

X

d

i¼1
ðwi � vkÞ2¼�

X

d

k¼1
logλk ¼� log

Y

d

i¼1
λi:

As the function t 7!� log t is decreasing, we conclude that

detA	
Y

d

i¼1
wi �Awi,

which since fwigdi¼1 2V was arbitrary implies detA	M and this concludes

the proof. □
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The previous result allows us to conclude that, if φ 2 C2(Ω) is convex, we

can express the determinant of its Hessian at a point in terms of second direc-

tional derivatives, that is, if x0 2 Ω we have

detD2φðx0Þ¼ min
fwigdi¼12V

Y

d

i¼1
wi �D2φðx0Þwi¼ min

fwigdi¼12V

Y

d

i¼1

∂
2φ

∂w2
i

ðx0Þ:

Recall, in addition, that a solution to (1) must be convex. To enforce convex-

ity we then introduce the following operator

MA½φ�ðx0Þ¼ min
fwigdi¼12V

Y

d

i¼1

∂
2φ

∂w2
i

ðx0Þ
� � +

�
X

d

i¼1

∂
2φ

∂w2
i

ðx0Þ
� ��" #

, (15)

where x+¼ maxfx,0g and x� ¼ (�x)+ denote the positive and negative parts

of x, respectively. Notice that, if φ2C2ð�ΩÞ is convex, MA½φ� ¼ detD2φ.

The idea behind (15) is that, if D2φ(x0) has a negative eigenvalue, then there

is V 2V and w 2 V for which w � D2φ(x0)w < 0. Thus,

MA½φ�ðx0Þ	 0�ðw �D2φðx0ÞwÞ�< 0:

Consequently, φ cannot be a solution to (1) since, at x0 we have

detD2φðx0Þ¼ f ðx0Þ� 0:

These ideas are made rigorous in Nochetto et al. (2019a, Lemma 5.6).

Proposition 3 (equivalence of operators).

Let f 2 C(Ω) with f � 0. The function u2Cð�ΩÞ is a convex viscosity solution

of (1) in the sense of Definition 6 if and only if it is a viscosity solution, in the

sense of Definition 4, of the following problem

FvMAðx,uðxÞ,D2uðxÞÞ¼ 0 (16)

with

FvMAðx,uðxÞ,D2uðxÞÞ¼ MA½u�ðxÞ� f ðxÞ, x2Ω,
gðxÞ�uðxÞ, x2 ∂Ω:

�

One of the advantages of formulation (16) is that it has a comparison

principle.

Proposition 4 (comparison principle for the FvMA operator).

The operator FvMA, defined in (16) has a comparison principle in the sense of

Definition 5.

Proof. It follows from the fact that the operator FvMA satisfies the structural

assumptions given, for instance, in Crandall et al. (1992, Theorem 3.3). □

The characterization of the determinant given in Lemma 3 will be the

basis of many of the wide stencil schemes we will describe below.
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2.3 Wide stencil finite difference schemes

Let us describe the first class of methods that exploit the characterization

described in Lemma 3 via the operator introduced in (15) as originally pro-

posed in Froese and Oberman (2011a). Let h > 0 be a (spatial) discretization

parameter and assume that, up to a linear change of variables, our domain Ω is

discretized on a Cartesian grid. In other words, we let

�Ωh¼ �Ω\d
h, d

h ¼ he : e2d
� �

, ∂Ωh¼ ∂Ω\d
h, Ωh¼ �Ωhn∂Ωh:

We set Xh as the space of grid functions, that is the collection of functions

wh :
�Ωh!.

Given e2d we call the point xh 2 Ωh interior with respect to e if

xh�he2 �Ωh. We will also say that a point is interior with respect to a subset

of S�d if it is interior with respect to all elements of S.

Given e2d and an interior point xh, we define the second difference in

the direction e to be the operator

ΔewhðxhÞ¼
1

jej2h2
whðxh + heÞ�2whðxhÞ+whðxh�heÞð Þ: (17)

When xh is not interior with respect to e, it essentially means that xh is close to

∂Ω. Owing to the convexity of Ω, there are unique ρ�2 (0, 1] such that xh �
ρ�he 2 ∂Ω. Thus, we can use the boundary condition (1b) to extend this defi-

nition as

ΔewhðxhÞ¼
2

ðρ+ + ρ�Þjej2h2
~gðxh + ρ +heÞ�whðxhÞ

ρ+

�

�whðxhÞ� ~gðxh + ρ�heÞ
ρ�

�

,

(18)

where ~g is either the boundary condition, or an interpolant of wh based on

neighbouring nodes. With these notions at hand, we would like to define the

discretization of the operator MA [�], introduced in (15), as

MAWS
h ½wh�ðxhÞ¼ min

fwigdi¼12V

Y

d

i¼1
Δwi

whðxhÞð Þ+:

Notice, however, that the given expressions may not be defined for all V, as
the points xh � hwi may not belong to �Ωh. Even if they did, it may be very

computationally expensive to compute these directional differences at all the

nodes. For these reasons, we also need to introduce a discretization of V.
To this end we introduce a finite subset Gθ �ðdÞd such that, if fνigdi¼1 2Gθ
then the vectors νi are pairwise orthogonal. We call this the directional discre-

tization of the Monge–Ampère operator and parametrize it by θ > 0. Thus we

define the operator
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MAWS
h,θ ½wh�ðxhÞ¼ min

fνigdi¼12Gθ

Y

d

i¼1
ΔνiwhðxhÞð Þ+: (19)

With this notation at hand, we define the wide stencil finite difference

approximation scheme of (1) as: Find uh 2 Xh such that

MAWS
h,θ ½uh�ðxhÞ¼ f ðxhÞ, 8xh 2Ωh, (20a)

uhðxhÞ¼ gðxhÞ, 8xh 2 ∂Ωh: (20b)

Remark 2 (variant).

We could have also introduced another wide stencil operator via

MAWS
h,θ ½wh�ðxhÞ¼ min

fνigdi¼12Gθ

Y

d

i¼1
ΔνiwhðxhÞð Þ+�

X

d

i¼1
ΔνiwhðxhÞð Þ�

" #

,

see (15). ■

Remark 3 (a regularized version).

Notice that, owing to the presence of the min and max operator in the defi-

nition of (19), this operator is not differentiable. This may make it difficult

to efficiently solve the ensuing nonlinear systems, since Newton methods

are not directly applicable. One could, instead, use semismooth Newton meth-

ods (Hinterm€uller et al., 2002) since these operators are slant differentiable;

see Hinterm€uller et al. (2002, Lemma 3.1). However, if we insist in dealing

with smooth operators, Froese and Oberman (2011a, Section 3.5) introduces

a regularized version of MAWS
h,θ ½ � � given by

MAWS
h,θ,δ½wh�ðxhÞ¼ min δ

fνigdi¼12Gθ

Y

d

i¼1
ΔνiwhðxhÞð Þ +,δ,

where

max δfx,yg¼ 1

2
x+ y +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� yÞ2 + δ2
q

� �

,

min δfx,yg¼ 1

2
x+ y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� yÞ2 + δ2
q

� �

,

min δfx1,…,xng¼ min δfmin δfx1,…,xn�1g,xng,

and x +,δ¼ max δfx,0g. The properties of this operator are similar to those of

MAWS
h,θ ½ � �. ■

Remark 4 (two dimensions).

Given A2 d we have the classical Rayleigh–Ritz relations
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λmðAÞ¼ min
w2d

w �Aw
jwj2

¼ minσðAÞ, λMðAÞ¼ max
w2d

w �Aw
jwj2

¼ maxσðAÞ,

so that, if d ¼ 2, we have that

detA¼ min
w22

w �Aw
jwj2

max
w22

w �Aw
jwj2

:

This relation was used in Oberman (2008b) to introduce a two-

dimensional scheme via

MA
WS;2d
h,θ ½wh�ðxhÞ¼ min

νi2fνjgdj¼12Gθ
ΔνiwhðxhÞð Þ + max

νi2fνjgdj¼12Gθ
ΔνiwhðxhÞð Þ +:

Note that, although similar to (20), these operators are different. This was

illustrated in Froese and Oberman (2011a, Section 3.4) with the following

example: Let

wðx1,x2Þ¼ x21 + x
2
2 + x

2
1x

2
2,

which is convex in a neighbourhood of the origin, and

Gθ¼ 1

0

� �

,
0

1

� �� �

,
1

1

� �

,
�1
1

� �� �� �

:

Computing each of the operators over these directions yields

MA
WS;2d
h,θ ½w�ð0,0Þ¼ 4 + 2h2, MAWS

h,θ ½w�ð0,0Þ¼ 4:

Notice however, that since both operators are consistent with order Oðh2Þ
we have that, for a convex function v,

MA
WS;2d
h,θ ½v�ðxhÞ�MAWS

h,θ ½v�ðxhÞ
	

	

	

	

	

	¼Oðh2Þ, 8xh:
■

The analysis of method (20) will be a particular case of the methods and

analyses presented in Section 2.7. We just comment that, even for smooth

solutions, wide stencils are required in this scheme to assert consistency. Let

us illustrate this in a simple case where there is no boundary conditions and

in two dimensions (d ¼ 2). In other words, given x0 2 Ω we assume that it is

an interior point for any e22. Let now φðxÞ¼ 1
2
x �Mx be a convex quadratic,

so that

Δeφðx0Þ¼
1

jej2
e �Me,

and therefore

MAWS
h,θ ½φ�ðx0Þ¼ min

fν1,ν2g2Gθ

1

jν1j2jν2j2
ν1 �Mν1ð Þ ν1 �Mν2ð Þ,
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independently of x0 and the mesh size. At this point we need to recall that

there is fw1,w2g2V, namely the normalized eigenvectors of M, for which

detD2φ¼ detM¼ w1 �Mw1ð Þ w2 �Mw2ð Þ:

Notice finally, that once w1 is determined, w2¼w?1 is obtained by a rotation.

In conclusion, to assert consistency, given a w22 in the unit sphere, for

every δ > 0 we must be able to find e�2 such that

w� 1

jeje
	

	

	

	

	

	

	

	

< δ: (21)

Indeed, if we denote by e1 the vector that satisfies this property with respect

to w1, then e2¼ e?1 does so for w2. Let now νi¼ 1
jeijei for i ¼ 1, 2. Then we

have that

detM� ν1 �Mν1ð Þ ν2 �Mν2ð Þj j 	CðΛÞδ,

where C(Λ) is a constant that depends polynomially on Λ, the maximal eigen-

value of M.

Notice that, since ei 22, then νi 22, so finding points that satisfy (21)

is the problem of rational approximation in the sphere. While how to actu-

ally find such points is beyond our discussion here, what we are interested

in is the size of jej, which would serve as an estimate of the stencil size that

guarantees convergence. The following result is a specialization of Schmutz

(2008, Lemma 2.1) to the two-dimensional case; we refer the reader to this

reference a proof, its generalization to d > 2, and to the case of rational

approximation orthogonal matrices which is of interest when finding

elements of Gθ.
Proposition 5 (rational approximation).

Let w22 be such that jwj ¼ 1. Then, for every δ > 0, there exists ν22

such that jνj ¼ 1 and

jw�νj< δ:

Moreover, if ν¼ðp1=q1,p2=q2ÞТ with p1,p2 2 and q1,q2 2 then we

have that

0< qi	
64

δ2
:

Now, for a given w22, let ν be as in Proposition 5. This means that

e¼ hcfðq1,q2Þν22 is the smallest vector parallel to ν that satisfies (21)

(here, hcf(q1, q2) denotes the highest common factor of q1 and q2). Consequently,

we have that, generically
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jej 	C hcfðq1,q2Þ	Cmaxfq1,q2g	
C

δ2
:

In conclusion, the size of the stencil must grow unboundedly if we restrict

ourselves to Cartesian meshes.

2.4 Filtered schemes

The estimates on the stencil size of the previous section are rather pessimistic.

This is because they are not assuming anything but convexity of the solution.

On the other hand, say in the two-dimensional case (d ¼ 2), a standard nine

point stencil finite difference approximation can be proposed

MAFD
h ½wh�ðxhÞ¼Δð1,0ÞwhðxhÞΔð0,1ÞwhðxhÞ� Δ

°

ð1,1ÞwhðxhÞ

 �2

, (22)

where, if zh¼ðx1,x2ÞТ, then

Δ
°

ð1,1ÞwhðzhÞ¼
1

2h

whðx1 + h,x2 + hÞ�whðx1�h,x2 + hÞ
2h

�

�whðx1 + h,x2�hÞ�whðx1�h,x2�hÞ
2h

�

:

This formula easily extends to higher dimensions.

It is not difficult to see that MAFD
h ½ � � has second-order consistency, even

for nonconvex functions. However, it is not monotone, even if one forgets

about boundary conditions. Thus, it does not perform well when used to dis-

cretize problems that have singular solutions.

Froese and Oberman (2011b) takes advantage of the simplicity of (22) and

the robustness of a wide stencil scheme by proposing a hybrid scheme. Locally,

it is a convex combination of each one of these schemes, where the weighting is

chosen depending on the expected behaviour of the solution. At points where the

solution should be smooth the simple scheme (22) is used, whereas if the solu-

tion is expected to be singular the robustness of (19) is better suited to capture

this behaviour. Summing up, the following discretization is used

MAH
h ½wh�ðxhÞ¼ωðxhÞMAFD

h ½wh�ðxhÞ

+ ð1�ωðxhÞÞMAWS
h,θ ½wh�ðxhÞ:

(23)

Here ω2Cð�Ω, ½0,1�Þ is a weighting function defined a priori from the data as

follows: For E > 0 we let Ω
E
be a neighbourhood of the set where the solution

u may be singular, that is,

ΩE¼ x2Ω : 0	 f ðxÞ< Ef g[ x2 ∂Ω : g 62C2,αðUxÞ, orUx\∂Ω is flat
� �

,

where Ux is a neighbourhood of the point x. We then set ω 
 0 in Ω
E
and one

away from it. This scheme was tested in Froese and Oberman (2011b) for a
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series of cases, ranging from smooth to singular solutions, and computational

experiments suggested that this method is robust and accurate.

This method, however, has a major drawback. The tunable function ω

must be described by the user, and its values depend on the behaviour of

the problem data. For this reason in Froese and Oberman (2013) it was pro-

posed that instead the difference

MAWS
h,θ ½wh�ðxhÞ�MAFD

h ½wh�ðxhÞ
	

	

	

	,

be used as an a posteriori indicator of accuracy. In regions where this differ-

ence is small, it is expected that the solution is smooth, whereas when this is

large one expects singularities. On the basis of this, we can choose which

scheme to apply. The way to measure this difference is by introducing a filter.

Definition 11 (filter).

A filter is a function S2C0ðÞ such that S(t) ¼ t in a neighbourhood of the

origin.

For instance, the function

SðtÞ¼
x, jxj 	 1

0, jxj � 2,

2� x, 1< x< 2,

�x�2, �2< x<�1

8

>

>

<

>

>

:

(24)

depicted in Fig. 1 is a possible filter, see Froese and Oberman (2013, Fig. 1.1

and (1.3)). With this at hand, a filtered operator can be defined via

MAF
h ½wh�ðxhÞ¼MAWS

h,θ ½wh�ðxhÞ

+ hαS
MAFD

h ½wh�ðxhÞ�MAWS
h,θ ½wh�ðxhÞ

hα

 !

,
(25)

where α 2 (0, 2] is to be chosen by the user. A filtered scheme seeks uh 2 Xh

such that

MAF
h ½uh�ðxhÞ¼ f ðxhÞ, 8xh 2Ωh, (26a)

uhðxhÞ¼ gðxhÞ, 8xh 2 ∂Ωh: (26b)

Remark 5 (consistency).

Recall that (Kossaczký et al., 2016; Oberman, 2006) a monotone scheme can-

not be more than second-order accurate. Notice, in addition, that by construc-

tion we have

MAF
h ½wh�ðxhÞ�MAWS

h,θ ½wh�ðxhÞ
	

	

	

		 hα,

so that a filtered scheme is also consistent, up to second order. Moreover, if

the parameter α is chosen smaller than the consistency order of both the
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wide stencil, and the finite difference scheme, and the mesh size h is suffi-

ciently small, it can be shown that

MAF
h ½φ�ðxÞ¼MAFD

h ½φ�ðxÞ,

whenever φ is sufficiently smooth. These two observations serve as a guide-

line for the choice of α. ■

Remark 6 (motivation).

The construction of a filtered scheme seems to be motivated by similar con-

structions for conservation laws and first order Hamilton Jacobi equations.

For instance, Lions and Souganidis (1995) shows the convergence of filtered

finite difference schemes (constructed in a similar way), for Hamilton Jacobi

equations. In the realm of hyperbolic conservation laws, several types of limit-

ers or artificial viscosity methods (Bonito et al., 2014; Guermond and Pasquetti,

2011; Guermond et al., 2011, 2018) have been derived from these ideas. ■

As a step towards the analysis of schemes like (26), Froese and Oberman

(2013) introduced a class of schemes called nearly monotone, and showed that

the theory of Section 2.1 also applies to them. To show this, we begin with a

definition.

Definition 12 (nearly monotone).

The family of approximation schemes {Fε}ε>0 where Fε :
�Ω��Bð�ΩÞ is

called nearly monotone, if every Fε can be written as

Fε¼FM
ε +FP

ε ,

where FM
ε is monotone in the sense of (12), and the function FP

ε , called a per-

turbation, satisfies

FIG. 1 The function S defined in (24) is a filter.
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lim
ε#0
jFP

ε ðx, t,vÞj ¼ 0,

uniformly on bounded subsets of �Ω��Bð�ΩÞ.

The convergence of nearly monotone schemes closely follows that of

monotone schemes.

Corollary 1 (convergence).

Let {Fε}ε be a family of approximation schemes, that is nearly monotone, in

the sense of Definition 12; consistent, in the sense of (14); and stable in the

sense of (11). Assume, in addition, that problem (7) has a strong comparison

principle. In this setting we have that, as ε # 0, the functions uε, solutions of

Fε(x, uε(x), uε) ¼ 0 converge locally uniformly to u, solution of (7).

Proof. The proof is a small variation on the proof of Theorem 4. Indeed, with

the notation of this proof, we have

0 ¼Fεnðyn,uεnðynÞ,uεnÞ
¼FM

εn
ðyn,φðynÞ + ξn,φ+ ðuεn �φÞÞ +FP

εn
ðyn,uεnðynÞ,uεnÞ

	FM
εn
ðyn,φðynÞ + ξn,φ+ ξnÞ+FP

εn
ðyn,uεnðynÞ,uεnÞ:

The stability of the scheme allows us to invoke the fact that the perturbation

vanishes in the limit. Consequently, we still have that u is a subsolution. □

Notice that the same considerations made in Remark 1 apply in this

setting.

2.5 Lattice basis reduction scheme

Let us now discuss a two-dimensional method, which was introduced in

Benamou et al. (2016) and is termed the lattice basis reduction scheme.

The aim of this scheme is, for a given stencil, to obtain a different way to

compute the determinant, so that the scheme is more accurate. We begin with

a definition.

Definition 13 (superbasis).

We will say that a basis of 2 is a pair of vectors ðe1,e2Þ 2 ð2Þ2 that satisfy

detðe1,e2Þj j ¼ 1. A superbasis of 2 is a triple ðe0,e1,e2Þ 2 ð2Þ3 such that

(e1, e2) is a basis and e0 + e1 + e2 ¼ 0.

We will call a stencil a finite subset of 2nf0g that is symmetric around

the origin. To a stencil S we associate the set of superbases

YðSÞ¼ ðe0,e1,e2Þ 2 S3 : detðe1,e2Þj j ¼ 1, e0 + e1 + e2¼ 0
� �

:

With these notations at hand, we define the lattice basis reduction Monge–

Ampère operator

130 Handbook of Numerical Analysis



MALBR
h,S ½wh�ðxhÞ
¼ min
ðe0,e1,e2Þ2YðSÞ

γ Δe0whðxhÞð Þ +, Δe1whðxhÞð Þ +, Δe2whðxhÞð Þ +
� 


, (27)

where

γðδ0,δ1,δ2Þ¼
δi+ 1δi + 2, δi� δi + 1 + δi+ 2,
1

2
ðδ0δ1 + δ1δ2 + δ0δ2Þ�

1

4
ðδ20 + δ21 + δ22Þ, otherwise:

(

This allows us to introduce the following scheme: Find uh 2 Xh such that

MALBR
h,S ½uh�ðxhÞ¼ f ðxhÞ, 8xh 2Ωh, (28a)

uhðxhÞ¼ gðxhÞ, 8xh 2 ∂Ωh: (28b)

The motivation for this, at first glance obscure, definition of the operator

MALBR
h,S ½ � � is given in Benamou et al. (2016, Remark 1.10). Let Y ¼ (e0, e1, e2)

2 Y (S) and notice that for any point xh that is interior with respect to Y, we

have that the convex hull of fxh�heig2i¼0 is a hexagon. Given a function

wh 2 Xh we can associate to it its local convex envelope, that is the maximal

convex function Γxh,Ywh that is bounded from above by wh at the points

fxh�heig2i¼0. It is then possible to show that Γxh,Ywh is a piecewise linear

function over a particular triangulation of the aforementioned hexagon. Then

we have that

γ Δe0whðxhÞð Þ+, Δe1whðxhÞð Þ+, Δe2whðxhÞð Þ+
� 


¼ ∂Γxh,YwhðxhÞj j, (29)

which is consistent with the definition of the Monge–Ampère operator in the

sense of Alexandrov given in Definition 9 and hints at the consistency of this

scheme.

The consistency analysis of the operator (27) hinges on the following

definition.

Definition 14 (M–obtuseness).

Let M2 2+. We say that the superbasis (e0, e1, e2) of 2 is M–obtuse if

and only if

ej �Mei	 0, 80	 i< j	 2:

From this definition, a necessary and sufficient condition for consistency

follows (Benamou et al., 2016, Theorem 1.9).

Theorem 5 (consistency).

Let φ¼ 1
2
x �Mx be a convex quadratic polynomial. We have that

MALBR
h,S ½φ�ðxÞ¼ detM, 8x

if and only if Y (S) contains an M-obtuse superbais.
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Proof. We will follow Benamou et al. (2016, Section 2.1). To simplify the dis-

cussion, we set

D¼ ða0,a1,a2Þ 23
: ai	 ai+ 1 + ai+ 2, i¼ 0,1,2, mod 3

� �

,

γ1ða0,a1,a2Þ¼
1

2
ða0a1 + a1a2 + a0a2Þ�

1

4
ða20 + a21 + a22Þ:

Notice that γ(a0, a1, a2) ¼ γ1(a0, a1, a2) if and only if ða0,a1,a2Þ 2D,
and that if that is not the case, then γða0,a1,a2Þ� γ1ða0,a1,a2Þ¼
1
4
ða0�a1�a2Þ2 > 0. In conclusion, we have that

γða0,a1,a2Þ� γ1ða0,a1,a2Þ,
γða0,a1,a2Þ¼ γ1ða0,a1,a2Þ, ða0,a1,a2Þ 2D:

�

(30)

Given a superbasis (e0, e1, e2) define δi¼ ei �Mei¼ðΔeiφðxhÞÞ+. For a per-
mutation (i, j, k) of (0, 1, 2) we have

δi�δj�δk ¼ðej + ekÞ �Mðej + ekÞ� ej �Mej� ekMek¼ 2ej �Mek:

Consequently, ðδ0,δ1,δ2Þ 2D if and only if the superbasis (e0, e1, e2) is

M–obtuse.

Let A be the linear transformation that maps e1 and e2 to f 1¼ð1,0ÞТ and

f 2¼ð0,1ÞТ, respectively. Then we must have that f 0¼Ae0¼ð�1, �1ÞТ.
Thus, δi ¼ei � Mei ¼ A�1fi � MA�1fi, and so

γ1ðμ0,μ1,μ2Þ¼ detðA�ТMA�1Þ:
However, detA¼ jdetðe1,e2Þ=detðf 1, f 2Þj ¼ 1. Combining this with (30)

we obtain the claim. □

Essentially, the previous result shows that the operator MALBR
h,S ½ � � system-

atically overestimates the determinant of the Hessian for quadratic functions,

and that we have equality if and only if the stencil S contains a M-obtuse

superbasis. For this reason, it is of interest to obtain conditions on the size

of the stencil that guarantee that such a superbasis can be found. The follow-

ing result is a restatement of Benamou et al. (2016, Proposition 1.12).

Proposition 6 (stencil size estimate).

The stencil

S¼ e22
: gcdðeÞ¼ 1, jej 	 2κ

� �

,

contains a M–obtuse superbasis for every matrix M2 2+ that satisfies

kMk2 kM�1k2	 κ2:

Notice that the cardinality of the stencil stated in Proposition 6 is quite

large, approximately κ2, and that if the solution degenerates, that is
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detD2uðx0Þ¼ 0 at some point, then the stencil size must again grow unbound-

edly to maintain consistency.

Remark 7. The recent paper (Benamou and Duval, 2018) shows convergence

of the lattice basis reduction scheme (28) applied to the optimal transport

problem.

2.6 Discretization based on power diagrams

In Mirebeau (2015) the following discretization of the Monge–Ampère oper-

ator is proposed and analyzed. Let S be a stencil such that span S¼d and

such that its elements have coprime coordinates, that is, if

e¼ðe1,…,edÞТ 2 S, then gcdðeÞ¼ gcdðe1,…,edÞ¼ 1. We define

MAPD
h,S½wh�ðxhÞ¼ g2d

: 8e2 S : 2g � e	 jej2ΔewhðxhÞ
n o	

	

	

	

	

	: (31)

Here, we denote the Lebesgue measure by j�j. With this operator at hand, we

define the problem: find uh 2 Xh such that

MAPD
h,S½uh�ðxhÞ¼ f ðxhÞ, 8xh 2Ωh, (32a)

uhðxhÞ¼ gðxhÞ, 8xh 2 ∂Ωh: (32b)

Notice that the set entering the definition (31) is a polytope. Efficient ways

to compute the volume of a polytope are available. For instance, if the dimen-

sion is not too high (and recall that we are mostly interested in the cases d ¼ 2

or d ¼ 3), one can first triangulate this polytope to then easily compute its

volume.

Let us study the consistency of this scheme. To do so, we must introduce a

definition.

Definition 15 (Voronoi cells and facets).

Let M2 d+. The Voronoi cell and facet are

VorðMÞ¼ g2d
: 8e2d, g �Mg	ðg� eÞ �Mðg� eÞ

� �

,

VorðM,eÞ¼ g2VorðMÞ : g �Mg¼ðg� eÞ �Mðg� eÞf g:

A M-Voronoi vector is an element e2dnf0g such that Vor(M, e) 6¼∅. It

is a strict M-Voronoi vector if the facet Vor(M, e) is (d � 1)-dimensional.

Now, the consistency of the operator defined in (31) is as follows.

Proposition 7 (consistency).

Let φðxÞ¼ 1
2
x �Mx be a convex quadratic. Then we have that

MAPD
h,S½φ�ðxÞ¼ detM, 8x

if and only if the stencil S contains all the strict M-Voronoi vectors.
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Proof. Let κ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kMk2 kM�1k2
p

. We divide the proof in several steps.

1. Any point g 2Vor(M) must satisfy jgj 	 1
2
κ
ffiffiffi

d
p

. Any M-Voronoi vector

e satisfies jej 	 κ
ffiffiffi

d
p

and has coprime coordinates:

Indeed, if g 2Vor(M), then let eg 2d be obtained by rounding its

coordinates to the nearest integer, so that jg� egj 	 1
2

ffiffiffi

d
p

. The estimate

1

kM�1k2
jgj2	 g �Mg	 ðg� egÞ �Mðg� egÞ	kMk2jg� egj2	

d

4
kMk2

yields the desired estimate. In addition, if e is a M-Voronoi vector, there

is g 2Vor(M) for which jgj ¼ je � gj so that

jej 	 2jgj 	 κ
ffiffiffi

d
p

:

Finally, to show that the coordinates must be coprime consider ke2d

with k � 2 and notice that, for every g2d we have

ðke�gÞ �Mðke�gÞ+ ðk�1Þg �Mg¼ kðe�gÞ �Mðe�gÞ+ ðk2� kÞe �Me:

Consequently,

ðe�gÞ �Mðe�gÞ< max ðke�gÞ �Mðke�gÞ,g �Mgf g,

and ke cannot be a M-Voronoi vector.

2. Let E be the set of strict M-Voronoi vectors, then

VorðMÞ� g2d
: 8e2 S : 2g �Me	 e �Me

� �

,

with equality if and only if E� S:

Notice that g � Mg 	 (g � e) � M(g � e) is equivalent to saying that

2g � Me 	e � Me. This shows that Vor(M) is a convex polytope, defined

by inequalities of this type where e runs over the set of strict M-Voronoi

vectors. The bound established in the previous step shows that there can

only be a finite number of them.

3. jVor(M)j ¼ 1:

It follows from the observation that Vor(M) collects all elements g2d

that are closer to the origin (in the metric induced by the matrix M) than to

any other point e2dnf0g.
4. Consistency:

Recall that, for any e 2 S we have that jej2Δeφ(x) ¼ e � Me.

Consequently,

MAPD
h,S½φ�ðxÞ¼ g2d

: 8e2 S : 2g � e	 e �Me
� �	

	

	

	

¼ M g2d
: 8e2 S : 2g �Me	 e �Me

� �	

	

	

	:

A combination of the second and third steps then yields
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MAPD
h,S½φ�ðxÞ� detMjVorðMÞj¼ detM,

with equality if VorðMÞ¼ fg2d
: 8e2 S : 2g � e	 e �Meg with equality if

Vor(M) contains all strict M-Voronoi vectors.

This concludes the proof. □

Since the consistency of the operator MAPD
h,S½ � � requires the stencil to con-

tain all strict Voronoi vectors, it is necessary to provide sufficient conditions

for this to happen.

Corollary 2 (stencil size estimate).

Let κ > 0 and define

S¼ e2d
: jej 	

ffiffiffi

d
p

κ, gcdðeÞ¼ 1
� �

:

Let φðxÞ¼ 1
2
x �M � x, then we have that

MAPD
h,S½φ�ðxÞ¼ detM, 8x

provided kMk2kM�1k2 	 κ2.

Proof. It immediately follows from the norm estimates given in Step 1 in the

proof of Proposition 7. □

Let us now provide a convergence analysis of scheme (32), which will fol-

low from the framework provided in Section 2.1. To do so, we introduce the

operator Fh,S :
�Ωh��Xh! via

Fh,Sðxh, t,wÞ¼ MAPD
h,S½w�ðxhÞ� f ðxhÞ, xh 2Ωh,

gðxhÞ� t, xh 2 ∂Ωh,

�

(33)

and notice that (32) can be compactly written as

Fh,Sðxh,uhðxhÞ,uhÞ¼ 0, 8xh 2 �Ωh:

Let us also define the operator FS :
�Ω��d+!

FSðx, t,MÞ¼
jKðMÞj� f ðxÞ, x2Ω,
gðxÞ� t, x2 ∂Ω,

�

(34)

where

KðMÞ¼ fv2d
:8e2 S, 2v � e	 e �Meg:

Notice that, if D2u(x0) exists for all x0 2Ω and its eigenvalues are properly

bounded, see Corollary 2, we have that

detD2uðx0Þ� f ðx0Þ¼FSðx0,uðx0Þ,D2uðx0ÞÞ:

For this reason, we will consider the problem: find u that is a viscosity

solution of
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FSðx,uðxÞ,D2uðxÞÞ¼ 0, x2 �Ω: (35)

Following Mirebeau (2015, Section 2.3) we will now show the conver-

gence of scheme (32) via Theorem 4. To do so, we must show that scheme

(32) is monotone, consistent, and stable in the sense of (12), (14), and (13),

respectively. We have shown consistency in Proposition 7. For stability, we

refer the reader to Mirebeau (2015, Section 2.2), where stability is shown

by proving global convergence of a damped Newton algorithm. We will focus

then on the monotonicity of the scheme.

Proposition 8 (monotonicity).

The operator Fh, S, defined in (33) is monotone in the sense of (12).

Proof. Notice that, if xh 2 ∂Ωh, then there is nothing to show. On the other

hand, if xh 2 Ωh, then MAPD
h,S½w�ðxhÞ is an increasing function of the second

differences Δewh(xh). Indeed, increasing this difference makes the polytope

larger. Notice also that Δewh(xh) is a linear combination, with positive coeffi-

cients, of wh(xh + eh) � wh(xh) and wh(xh + eh) � wh(xh), with the obvious

modification for points that are not interior with respect to e. Thus, we can

invoke (Neilan et al., 2017, Lemma 3.11) to conclude the monotonicity. □

Next to be able to apply Theorem 4 we must make sure that the operator

FS satisfies a comparison principle. To establish this we begin with an auxil-

iary result.

Lemma 4 (polytope comparison).

Let M1,M2 2 d+ and x 2 Ω. If M1 	 M2 then, for every t2 we have that

FS(x, t, M1) 	 FS(x, t, M2). In addition,

FSðx, t,M1 +M2Þ+ f ðxÞð Þ1=d � FSðx, t,M1Þ+ f ðxÞð Þ1=d

+ FSðx, t,M2Þ+ f ðxÞð Þ1=d:

Proof. Notice that, since x 2 Ω we have, independently of t,

Fðx, t,MÞ+ f ðxÞ¼ KðMÞj j, KðMÞ¼ v2d
: 8e2 S, 2v � e	 e �Me

� �

:

Notice, in addition, that M1 	 M2 implies that e � M1e 	e � M2e for every

e2d. Consequently, M1 	 M2 implies KðM1Þ�KðM2Þ from which the first

statement follows.

Now, since e � (M1 + M2)e ¼ e � M1e + e � M2e we have that K(M1 + M2)

contains K(M1) + K(M2). The Brunn–Minkowski inequality given in Lemma 2

allows us to conclude. □

Now we can establish a comparison principle for FS.

Proposition 9 (comparison).

Let u 2USCð�ΩÞ and u 2LSCð�ΩÞ be a sub- and supersolution, respectively,

of (35). Then we have that u	 u.
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Proof. We begin by noticing that, since FS,?(x, t, M) 	 FS(x, t, M) for all x2 �Ω

we obtain that, if x0 2 ∂Ω we must have that

0	FS,?ðx0,φðx0Þ,D2φðx0ÞÞ	FSðx0,φðx0Þ,D2φðx0ÞÞ¼ gðx0Þ�φðx0Þ,

for every φ sufficiently smooth that satisfies the conditions given in

Definition 4. As a consequence, In this case, the condition defining a viscosity

subsolution at boundary points reduces to u	 g on ∂Ω. Similarly we can show

that for a supersolution we must have g	 u on ∂Ω. In conclusion, at the

boundary ∂Ω we have u	 u.

By the semicontinuity assumption we can also define δ¼ sup�Ωðu�uÞ 2.
Additionally, since Ω is bounded, there is R > 0 such that Ω�BR. Assume

now, for the sake of contradiction, that δ > 0.

Let us define, for ε > 0, the operator FS,ε :
�Ω��d! by

FS,εðx, t,MÞ¼ FSðx, t,MÞ� εðt�uðxÞÞ, x2Ω,
gðxÞ� t, x2 ∂Ω,

�

and notice that this operator satisfies all the conditions of the comparison prin-

ciple given in Crandall et al. (1992, Theorem 3.3). Moreover, since for all x2
�Ω we have that FS,εðx,uðxÞ,D2uðxÞÞ¼FSðx,uðxÞ,D2uðxÞÞ we conclude that u

is a supersolution for the operator FS,ε.

We now construct a subsolution. Define

vðxÞ¼ ðεδÞ
1=d

2
jxj2�R2

 �

, uεðxÞ¼ uðxÞ+ vðxÞ

and notice that uε 2USCð�ΩÞ and, moreover, uε	 u	 g	 u on ∂Ω. In addi-

tion, we have that, for x 2 Ω

D2vðxÞ¼ ðεδÞ1=dI, FSðx, t,D2vðxÞÞ + f ðxÞ¼ εδ,

see the proof of Proposition 7. Let now x 2 Ω and, to shorten notation, denote

FS½w� ¼FSðx,wðxÞ,D2wðxÞÞ + f ðxÞ:
If this is the case we have that, in the viscosity sense

FS,εðx,uεðxÞ,D2uεðxÞÞ¼FS½u + v�� f ðxÞ� εðuðxÞ�uðxÞÞ� εvðxÞ

� FS½u�1=d +FS½v�1=d

 �d

� f ðxÞ� εðuðxÞ�uðxÞÞ

� f ðxÞ1=d +FS½v�1=d

 �d

� f ðxÞ� εðuðxÞ�uðxÞÞ
�FS½v�� εðuðxÞ�uðxÞÞ
¼ ε δ�ðuðxÞ�uðxÞÞð Þ� 0:

where we used Lemma 4, the fact that v(x) 	 0 for all x2 �Ω, that u is a sub-

solution for the operator FS, the elementary identity
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x+ yð Þθ 	 xθ + yθ, 8x,y2+, 8θ2 ð0,1�,
and the definition of δ. In conclusion, uε is a subsolution for the operator FS,ε.

The comparison principle of Crandall et al. (1992, Theorem 3.3) then

yields that

uεðxÞ¼ uðxÞ+ vðxÞ	 uðxÞ, 8x2 �Ω

or that

u ðxÞ�uðxÞ��ðεδÞ
1=d

2
R2, 8x2 �Ω:

Letting ε # 0 we obtain uðxÞ	 uðxÞ, contradicting that δ > 0. □

As a consequence, we have convergence.

Corollary 3 (convergence).

Let fuhgh>0�Xh be the solutions to (32). Then, as h # 0, we have that uh! u

locally uniformly, where u is the (unique) viscosity solution of (35).

Proof. Apply Theorem 4. It is only relevant to mention that owing to the com-

parison principle showed in Proposition 9, u must necessarily be unique. □

2.7 Two scale methods

We will now present and analyze the so-called two scale method, which can

be understood as a generalization of the wide stencil schemes presented in

Section 2.3 to unstructured meshes (see also Froese (2018)). Here and in

what follows we will implicitly assume that Ω is uniformly convex. Addi-

tional assumptions will be explicitly stated. Next, for h > 0, we introduce a

quasiuniform (in the sense of Ciarlet (2002)) simplicial triangulation T h of

our domain Ω. We denote by Ω
i
h and Ω

b
h the set of interior and boundary

nodes, respectively, of T h. We define Xh to be the set of piecewise linear

and continuous functions subject to this triangulation. The mesh size h will

constitute the fine scale of discretization. The large scale, denoted by δ,

will be the one at which second-order differences will be evaluated. Notice

that, since now we are dealing with continuous functions, these can be eval-

uated at any point. Indeed, given xh 2Ωi
h and w2d with jwj ¼ 1 we define,

for wh 2 Xh

r2
δwwhðxhÞ¼

whðxh + ρδwÞ�2whðxhÞ+whðxh�ρδwÞ
ρ2δ2

, (36)

where ρ 2 (0, 1] is the largest number so that xh�ρδw2 �Ω; compare with (17)

and (18). As a final discretization ingredient, as in the case of the wide stencil

schemes of Section 2.3, we need a directional discretization. That is if, as
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before, V denotes the set of all orthonormal bases of d we must construct, for

θ > 0, a set Vθ of collections of d unit vectors such that if fwigdi¼1 2V, then
there is fwθ

i g
d
i¼1 2Vθ such that

max
i¼1,…,d

jwi�wθ
i j 	 θ: (37)

It is important to notice that the elements of Vθ are not required to be ortho-

normal collections of vectors.

Having defined all the discretization ingredients, which are parametrized

by the triple ε ¼ (h, δ, θ), following Nochetto et al. (2019a) we introduce

the two scale discrete Monge–Ampère operator by defining, for wh 2 Xh,

and xh 2Ωi
h,

MA2S
h,δ,θ½wh�ðxhÞ¼ min

fwigdi¼12Vθ

Y

d

i¼1
r2

δwi
whðxhÞ


 �+

"

�
X

d

i¼1
r2

δwi
whðxhÞ


 ��
#

,

(38)

compare with the scheme discussed in Remark 2. With these ingredients at

hand, the two scale method seeks a function uεh 2Xh such that

MA2S
h,δ,θ½uεh�ðxhÞ¼ f ðxhÞ, 8xh 2Ωi

h, (39a)

uεhðxhÞ¼ gðxhÞ, 8xh 2Ωb
h: (39b)

Remark 8 (generalization).

Starting from the Cartesian mesh Ωh used to define the wide stencil schemes

(20) it is possible to construct a simplicial triangulation of Ω without introdu-

cing new vertices: in two dimensions this is accomplished by subdividing

each square by its diagonal, and a similar construction is possible in three

dimensions. Once this is done, it can be seen that scheme (39) is, after little

modifications, a generalization of the wide stencil scheme (20). ■

Remark 9 (domain approximation).

Notice that, since the domain Ω is assumed to be uniformly convex, it is not

possible to triangulate it exactly. If we denote �ΩT h
¼[T2T h

T , then we have
�ΩT h

⊊ �Ω. In our discussion we will ignore this fact. This is because we can

either replace Ω by ΩT h
in all the statements that we shall make, or we can

consider all functions in Xh as defined in Ω by extending them to ΩnΩT h
by

a constant in the normal direction to faces. This is a standard construction

and we shall not delve into it further. ■

Let us now provide, following Li and Nochetto (2018a); Nochetto et al.

(2019a,b), an analysis of (39). We will first introduce a discrete notion of

convexity, based on the positivity of the second differences defined in (36).
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The operator (38) turns out to have a comparison principle, and acts in a

particular way on discretely convex functions. This will allow us to estab-

lish existence, uniqueness, and stability of solutions to (39). In addition,

since the size large scale δ is reduced near the boundary, the consistency

can only hold sufficiently far away from it. For this reason, appropriate bar-

rier functions need to be constructed. All these ingredients will allow us to

assert convergence of the method. Finally, using the comparison principle

and suitable barriers, we will establish rates of convergence for classical

solutions.

2.7.1 Discrete convexity

The second-order differences defined in (36) and the set of directions Vθ give
a discrete notion of convexity.

Definition 16 (discrete convexity).

We say that the function wh 2 Xh is discretely convex if

r2
δwj

whðxhÞ� 0, 8xh 2Ωi
h, 8wj 2fwigdi¼1 2Vθ:

It is well known that if a function is convex, then its second-order differ-

ences are nonnegative. On the other hand, discrete convexity does not imply

convexity. This is due, for instance, to the fact that convexity and interpola-

tion are not easily compatible. In other words, if w2Cð�ΩÞ is convex, then

its Lagrange interpolant Ihw2Xh satisfies I hw�w so that it is discretely

convex, but Ihw is not necessarily convex.

On the other hand, discrete convexity implies nonnegativity of the two scale

discrete Monge–Ampère operator; see Nochetto et al. (2019a, Lemma 2.2).

Lemma 5 (discrete convexity).

A function wh 2 Xh is discretely convex if and only if

MA2S
h,δ,θ½wh�ðxhÞ� 0, 8xh 2Ωi

h:

Moreover, for a discretely convex function we have that

MA2S
h,δ,θ½wh�ðxhÞ¼ min

fwigdi¼12Vθ

Y

d

i¼1
r2

δwi
whðxhÞ:

2.7.2 A comparison principle

Let us now show that the operator defined in (38) is monotone and has a com-

parison principle. From this we will obtain uniqueness of solutions to (39).

Lemma 6 (monotonicity).

Let vh, wh 2 Xh be such that vh � wh attains its maximum at the interior node

xh 2Ωi
h. Then we have
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MA2S
h,δ,θ½wh�ðxhÞ�MA2S

h,δ,θ½vh�ðxhÞ:

Proof. Since xh is the maximum, for suitable ρ > 0 and any unit vector

w we have

vhðxhÞ�whðxhÞ� vhðxh�ρδwÞ�whðxh�ρδwÞ,
which implies that

r2
δwvhðxhÞ	r2

δwwhðxhÞ:
multiplying this inequality as w runs over all elements of Vθ allows us to

conclude. □

The previous result gives us a comparison principle for the operator (38).

Proposition 10 (comparison).

Let vh, wh 2 Xh be such that vh 	 wh on ∂Ω, and

MA2S
h,δ,θ½vh�ðxhÞ�MA2S

h,δ,θ½wh�ðxhÞ, 8xh 2Ωi
h,

then we must have that vh 	 wh in �Ω.

Proof. We consider two cases for the inequality between the operators:

1. The inequality is strict. Let us assume, for the sake of contradiction, vh � wh

attains a maximum at an interior node. Lemma 6 then gives a contradiction.

2. The inequality is not strict. Since Ω is bounded, there is R > 0 such that

the convex quadratic qðxÞ¼ 1
2
ðjxj2�RÞ is nonpositive on �Ω. Let

qh¼I hq2Xh. This function is strictly convex and satisfies

r2
δwqhðxhÞ�r2

δwqðxhÞ¼
∂
2qðxhÞ
∂w2

¼ 1:

We claim now that, for all α > 0 and xh 2Ωi
h, we have that

MA2S
h,δ,θ½vh + αqh�ðxhÞ�MA2S

h,δ,θ½vh�ðxhÞ+ min
αd

2d
+
α

2

� �

: (40)

Indeed, fix fwig2Vθ and assume first that r2
δwi
ðvhðxhÞ + α

2
qhðxhÞÞ� 0

for all i. In this case

Y

d

i¼1
r2

δwi
vhðxhÞ+ αqhðxhÞ


 �

�
Y

d

i¼1
r2

δwi
ðvhðxhÞ +

α

2
qhðxhÞÞ +

α

2


 �

� min
fwig2Vθ

Y

d

i¼1
r2

δwi
ðvhðxhÞ+

α

2
qhðxhÞÞ


 �

+
αd

2d

�
Y

d

i¼1
r2

δwi
vhðxhÞ


 � +

�
X

d

i¼1
r2

δwi
vhðxhÞ


 ��
 !

+
αd

2d
:
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On the other hand, if there is i 2{1, …, d} for which

r2
δwi
ðvhðxhÞ+ αqhðxhÞÞ< 0, then this implies that r2

δwi
vhðxhÞ< 0. Thus,

Y

d

i¼1
r2

δwi
vhðxhÞ


 �+

¼ 0,

and

�
X

d

i¼1
r2

δwi
ðvhðxhÞ+ αqhðxhÞÞ


 ��
��

X

d

i¼1
r2

δwi
vhðxhÞ


 ��
+
α

2

¼
Y

d

i¼1
r2

δwi
vhðxhÞ


 �+

�
X

d

i¼1
r2

δwi
vhðxhÞ


 ��
 !

+
α

2
:

A combination of these two cases, since fwigdi¼1 2Vθ was arbitrary,

implies (40).

Finally, since, vh + αqh 	 vh 	 wh on ∂Ω and, on the basis of (40),

we have

MA2S
h,δ,θ½vh + αqh�ðxhÞ>MA2S

h,δ,θ½vh�ðxhÞ�MA2S
h,δ,θ½wh�ðxhÞ, 8xh 2Ωi

h,

the previous step then implies that vh + αqh 	 wh. Letting α # 0 we can

conclude. □

Remark 10 (discrete interior barrier).

Notice, that, in the course of the second case of the proof of this result we

effectively constructed a discrete interior barrier. If qðxÞ¼ 1
2
ðjxj2�RÞ with

R > 0 sufficiently large, then we have that

I hq	 0, on ∂Ω, MA2S
h,δ,θ½I hqh�ðxhÞ� 1, 8xh 2Ωi

h:
■

As an immediate consequence, we also have uniqueness of solutions to (39).

Corollary 4 (uniqueness).

Scheme (39) cannot have more than one solution.

As a final application of the comparison principle, let us now show exis-

tence and uniform bounds on the solution to (39).

Theorem 6 (existence and stability).

For all ε ¼ (h, δ, θ) > 0 scheme (39) has a solution uεh 2Xh. Moreover, this

solution is stable in the sense that k uεhkL∞ðΩÞ is bounded independently of ε.

Proof. The existence proceeds via Perron’s method. For this reason, we will

only indicate how to construct a discrete subsolution, that is a function

u0h 2Xh such that u0h¼I hg on ∂Ω and
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MA2S
h,δ,θ½u0h�ðxhÞ� f ðxhÞ, 8xh 2Ωi

h:

To construct this function, we define

sðxÞ¼
X

xh2Ωi
h

sxhðxÞ, sxhðxÞ¼
δρxh
2

f ðxhÞ1=djx� xhj,

where ρxh 2 ð0,1� is the largest number such that, for all w2d with jwj ¼ 1

we have xh�ρxhw2 �Ω. Notice that r2
δwsxhðyhÞ� 0 for all yh 2Ωi

h, and that

r2
δwsxhðxhÞ¼ f ðxhÞ1=d, 8w2d, jwj ¼ 1:

Consequently, for yh 2Ωi
h

r2
δwI hsðyhÞ�r2

δwsðyhÞ� f ðyhÞ1=d � 0,

which, by Lemma 5 implies

MA2S
h,δ,θ½I hs�ðxhÞ¼ min

fwigdi¼12Vθ

Y

d

i¼1
r2

δwi
I hsðxhÞ� f ðxhÞ, 8xh 2Ωi

h:

Let now w2Cð�ΩÞ be the convex envelope of ðIhðg� sÞÞj
∂Ω
, and set

wh¼I hw. By convexity of w we have that

MA2S
h,δ,θ½wh�ðxhÞ� 0, 8xh 2Ωi

h:

Thus, we define

u0h¼wh + I hs:

This function, by construction, is discretely convex and u0h¼Ihg on ∂Ω.

Since the second differences of wh are nonnegative, then we have that

MA2S
h,δ,θ½u0h�ðxhÞ¼ min

fwigdi¼12Vθ

Y

d

i¼1
r2

δwi
whðxhÞ+r2

δwi
I hsðxhÞ

h i

� min
fwigdi¼12Vθ

Y

d

i¼1
r2

δwi
I hsðxhÞ� f ðxhÞ,

and so u0h is a discrete subsolution.

It remains to show the uniform boundedness. To achieve this we will show

that every discrete subsolution is uniformly bounded. Let then wh 2 Xh be a

discrete subsolution and bh¼ max x2∂ΩgðxÞ 2Xh. We have then that

MA2S
h,δ,θ½bh�ðxhÞ¼ 0	 f ðxhÞ	MA2S

h,δ,θ½wh�ðxhÞ, 8xh 2Ωi
h:
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Since, in addition, we have that bh � wh on ∂Ω, the comparison principle

of Proposition 10 implies that

wh	 bh:

This is enough since Perron’s method shows existence of a solution by

constructing an increasing sequence of subsolutions. Thus, u0h is a lower

bound for the solution and, evidently, ku0hkL∞ðΩÞ is independent of ε. □

2.7.3 Consistency and discrete barriers

Let us now examine the consistency of the operator (38). As we have stated

above, the operator can only be consistent at points sufficiently far away from

the boundary. For this reason, we define the δ-interior and δ-boundary layer of

Ω via

Ωδ¼
[

T2T h:distðT,∂ΩÞ>δ

T, ð∂ΩÞδ¼ �ΩnΩδ:

For an interior node xh 2Ωi
h its interior patch is

ωxh ¼
[

T2T h:distðxh,TÞ<ρδ

T ,

where, as before, ρ 2 (0, 1] is the largest number such that, for any w2d

with jwj ¼ 1 we have xh�ρδw2 �Ω.

The following result follows, essentially, by a Taylor expansion argument.

Lemma 7 (consistency of second differences).

Let xh 2Ωi
h and assume that φ2C1,1ðωxhÞ, then for all w2d with jwj ¼ 1

we have

jr2
δwIhφðxhÞj 	CjφjC1,1ðωxh

Þ:

If, in addition, we have that xh 2 Ωδ and φ2Ck + 2,αðωxhÞ for k ¼ 0,1, and

α 2 ð0,1� then we also have that

r2
δwI hφðxhÞ�

∂
2φðxhÞ
∂w2

	

	

	

	

	

	

	

	

	C jφjCk + 2,αðωxh
Þδ

k + α +
h2

δ2
jφjC1,1ðωxh

Þ

� �

:

Finally, if φ is, in addition, convex then we have

∂
2φðxhÞ
∂w2

�r2
δwI hφðxhÞ	CjφjCk + 2,αðωxh

Þδ
k + α:

The previous result can be applied to obtain interior consistency of (38).

The following result was first obtained in Nochetto et al. (2019a, Lemma

4.2) under the assumption that Vθ �V. This assumption was later removed

in Li and Nochetto (2018a, Lemma 2.4).
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Theorem 7 (interior consistency).

Let xh 2Ωi
h and φ2Ck + 2,αðωxhÞ with k ¼ 0,1 and α 2 ð0,1� be convex. In this

setting the following estimates are valid:

1. If θ	 1
4d

then, for any fwigdi¼1 2Vθ, we have

detD2φðxhÞ	
Y

d

i¼1

∂
2φðxhÞ
∂w2

i

1 + 16θ2ðd�1Þ2

 �

:

2. If fvigdi¼1 2V realizes the minimum in the variational characterization of

the determinant given in Lemma 3, then for any fvθi g
d
i¼1 2Vθ that satisfies

(37) we have

∂
2φðxhÞ
∂v2i

�∂
2φðxhÞ
∂vθi

2

	

	

	

	

	

	

	

	

	CjφjC1,1ðωxh
Þθ

2:

3. Finally, if xh 2Ωi
h\Ωδ, then

detD2φðxhÞ�MA2S
h,δ,θ½I hφ�ðxhÞ

	

	

	

		C1δ
k +α +C2

h2

δ2
+ θ2

� �

,

where the constants C1 and C2 depend only on the smoothness of φ, the

domain Ω, and the dimension d.

Proof. We prove each statement separately.

1. Let Wθ ¼ (w1, …, wd). We have

detðWТ

θWθÞdetD2φðxhÞ¼ detðWТ

θD
2φðxhÞWθÞ	

Y

d

i¼1

∂
2φðxhÞ
∂w2

i

,

where, in the last step, we used that WТ

θD
2φðxhÞWθ is positive semidefinite

and Hadamard’s inequality. We now need to estimate the determinant of

W¼WТ

θWθ from below. Write

W¼ W0 w

wТ 1

� �

¼ I 0

wТW�10 1

� �

W0 w

0 1�w �W0w

� �

implying that detW¼ð1�w �W0wÞdetW0, which holds if the submatrix

W0 is nonsingular. Notice, however, that Wi, i ¼ 1 and jWi, jj	 2θ as

the columns of Wθ form an element of Vθ. This implies, for θ	 1
4d
, that

W0� 1
2
I and jwj 	 2θ

ffiffiffiffiffiffiffiffiffiffi

d�1
p

. Thus, W�10 � 2I and

jw �W0wj 	 8θ2ðd�1Þ detW�ð1�8θ2ðd�1ÞÞdetW0,

which by repeating this process yields

detW�ð1�8θ2ðd�1ÞÞd�1� 1�8θ2ðd�1Þ2,
and using, again the bound on θ

1

detW
	 1 + 16θ2ðd�1Þ2:
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2. We begin by noticing that, given the minimization assumption, fvigdi¼1
must be the normalized eigenvectors of D2φ(xh). Set v

θ
i ¼ vi +wi and write

∂
2φðxhÞ
∂vθi

2
¼ vθi �D2φðxhÞvθi ¼

∂
2φðxhÞ
∂v2i

+ 2wi �D2φðxhÞvi +wi �D2φðxhÞwi:

Since fvigdi¼1 are eigenvectors, jwij	 θ, and jvi �wij 	 1
2
θ2 we then have

∂
2φðxhÞ
∂vθi

2
� ∂

2φðxhÞ
∂v2i

	

	

	

	

	

	

	

	

	Cθ2:

3. By Lemma 5, since I hφ is discretely convex, we have that

MA2S
h,δ,θ½I hφ�ðxhÞ¼ min

fwigdi¼12Vθ

Y

d

i¼1
r2

δwi
IhφðxhÞ:

Let fwigdi¼1 2Vθ be the set that realizes the minimum in this expres-

sion. Using Lemma 3 we can write that

detD2φðxhÞ�MA2S
h,δ,θ½I hφ�ðxhÞ 	

Y

d

i¼1

∂
2φðxhÞ
∂w2

i

�
Y

d

i¼1
r2

δwi
IhφðxhÞ

	Cδk +α,

where, in the last step, we used repeatedly Lemma 7.

Let now fvigdi¼1 2V be the normalized eigenpairs of D2φ(xh), and

fvθi g
d
i¼1 2Vθ the collection that realizes (37). Then we have

MA2S
h,δ,θ½I hφ�ðxhÞ� detD2φðxhÞ

	
Y

d

i¼1
r2

δvθ
i
IhφðxhÞ�

Y

d

i¼1

∂
2φðxhÞ
∂vθi

2

 !

+
Y

d

i¼1

∂
2φðxhÞ
∂vθi

2
�
Y

d

i¼1

∂
2φðxhÞ
∂vi2

 !

:

The first term can be handled by repeatedly applying Lemma 7, while

the second by applying the previous step.

All the estimates have been proved and the interior consistency is thus

obtained. □

As mentioned before, the operator is not consistent near the boundary. For

this reason we will, instead, construct discrete barriers which will allow us to

control the behaviour of the solution near the boundary.

Proposition 11 (discrete barrier I).

Let E > 0 be arbitrary and xh 2Ωi
h be such that dist(xh, ∂Ω) 	 δ. Then, there

is ph 2 Xh such that

ph	 0, on ∂Ω, MA2S
h,δ,θ½ph�ðyhÞ�E, 8yh 2Ωi

h, jphðxhÞj 	CE1=dδ,

where the constant C depends only on the domain Ω.
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Proof. Without loss of generality, we can assume that xh¼ð0,…,0,zÞТ with

z > 0 so that 0 2 ∂Ω and z ¼ dist(xh, ∂Ω). The uniform convexity of Ω shows

that there is R > 0 such that, in this system of coordinates,

Ω� x2d
:

X

d�1

i¼1
x2i �ðxd�RÞ2	R2

( )

:

Let

pðxÞ¼E1=d

2

X

d�1

i¼1
x2i �ðxd�RÞ2�R2

 !

:

We claim that ph¼I hp is the desired barrier. Indeed, by construction

ph 	 0 on the boundary ∂Ω and, since z 	 δ we have that jph(xh)j	 CE1/dδ.

Finally, since ph is discretely convex, for any interior node yh we have

MA2S
h,δ,θ½ph�ðyhÞ�MA2S

h,δ,θ½p�ðyhÞ¼
Y

d

i¼1
E1=d ¼E,

as claimed. □

To obtain rates of convergence we shall also require another discrete bar-

rier that was originally introduced in Nochetto and Zhang (2018, Section 6.2).

We define

ζ : ½0,∞Þ! ð�∞,0�, ζðtÞ¼ ðt�2δÞ2�ð2δÞ2, t2 ½0,2δ�,
�ð2δÞ2, t2 ð2δ,∞Þ:

�

The graph of this function is illustrated in Fig. 2. With this function at hand,

we define

bðxÞ¼ ζðdistðx,∂ΩÞÞ,

and bh¼Ihb. The properties of this barrier are as follows.

Proposition 12 (discrete barrier II).

For θ	 1

2
ffiffi

d
p the barrier function bh satisfies:

1. For all xh 2Ωi
h and any w2d with jwj ¼ 1,

r2
δwbhðxhÞ� 0:

2. For all xh 2Ωi
hnΩδ and fwθ

i g
d
i¼1 2Vθ,

max
i¼1,…,d

r2
δwθ

i
bhðxhÞ�

1

2d
:

3. For all x2 �Ω

�4δ2	 bhðxÞ	 0:
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Proof. We consider each property separately.

1. Let x+, x�2Ω with x+ 6¼ x�. The convexity of Ω ensures that

x0¼ 1
2
ðx + + x�Þ 2Ω. Denote by y 2 ∂Ω the closest point to x0. Since Ω is

convex, there is a supporting hyperplane P at y, whose normal is

n¼ 1
jx0�yjðx0� yÞ. Let now v ¼ �(x+ � x�), where the sign is chosen so

that n � v � 0. Consequently, see Fig. 3,

distðx�,∂ΩÞ	 distðx�,PÞ¼ distðx0,∂ΩÞ�n � v:
With this estimate, and using that ζ is nonincreasing, we can compute

bðx+Þ+ bðx�Þ� ζ distðx0,∂ΩÞ+ v � nð Þ+ ζ distðx0,∂ΩÞ� v � nð Þ
� 2ζ distðx0,∂ΩÞð Þ¼ 2bðx0Þ,

where the second inequality follows directly from the definition of ζ. We

then conclude (cf. Krasnosel’skiı̆ and Rutickiı̆, 1961, Pages 1–2) that the

function b is convex and the stated property of bh follows.

2. With the notation of the previous step, if we take a node xh 2Ωi
hnΩδ, and

v2d with jvj ¼ 1, then dist(xh, ∂Ω) � ρδw � n 2 [0, 2δ]. Since ζ is non-

increasing and quadratic on that interval

r2
δvbhðxhÞ�r2

δvbðxhÞ� 2
ρ2δ2jv � nj2

ρ2δ2
¼ 2jv � nj2:

Now, if we let v run over fwθ
i g

d
i¼1 2Vθ we have obtained that

max
i¼1,…,d

r2
δwθ

i
bhðxhÞ� 2 max

i¼1,…,d
jwθ

i � nj
2:

Let now fwigdi¼1 2V be such that it satisfies (37). Since jnj ¼ 1 we

must have that

FIG. 2 The function ζ used to define the discrete barrier of Proposition 12.
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X

d

i¼1
jn �wij2¼ 1, ¼) max

i¼1,…,d
jn �wij �

1
ffiffiffi

d
p :

Therefore,

jwθ
i � nj � jwi � nj� jðwi�wθ

i Þ � nj � jwi � nj�θ� 1

2
ffiffiffi

d
p ,

where we used that θ	 1

2
ffiffi

d
p . This implies the estimate.

3. The last property follows directly from the definition of the function ζ. □

2.7.4 Convergence

Let us now show convergence. We will do so by adapting the arguments

developed in Section 2.1 to take into account that test functions must be con-

vex. We will rely on Proposition 3.

Theorem 8 (convergence).

Let Ω be uniformly convex, f 2Cð�ΩÞ such that f � 0, and g 2 C(∂Ω).

As ε ¼ (h, δ, θ)! 0 with hδ�1! 0 we have that the family fuεhgε of solutions
of (39) converges uniformly to u2Cð�ΩÞ, the solution of (1).

Proof. In a similar way to Theorem 7 we have that, for all x0 2 Ω, xh 2Ωi
h\

Ωδ and all φ2C2,αðωxhÞ, it holds that

jMA½φ�ðx0Þ�MA2S
h,δ,θ½I hφ�ðxhÞj 	C1ðδα + jx0� xhjαÞ

+ C2

h2

δ2
+ θ2

� �

:
(41)

Indeed, we only need to use that the operations t7!t� are Lipschitz and

with Lipschitz constant equal one.

FIG. 3 The construction Proposition 12 that shows that the function b is convex. The distance

between x+ and the supporting hyperplane P equals the sum of the distance from x0 to the bound-

ary ∂Ω and the inner product between n and v.
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We now extend the ideas of Theorem 4. As there we define

uðxÞ¼ lim sup
ε!0,h

δ
!0,y!x

uεhðyÞ, uðxÞ¼ lim inf
ε!0,h

δ
!0,y!x

uεhðyÞ

and we will show that u is a subsolution. For that we assume that u�φ, with

φ2C2,αð�ΩÞ attains a maximum at x0 2 Ω. Let {xh} be the sequence of nodes

such that xh! x0 and uεh�I hφ attains a maximum at xh. By the monotonicity

result of Lemma 6 we obtain then that

MA2S
h,δ,θ½I hφ�ðxhÞ�MA2S

h,δ,θ½uεh�ðxhÞ� f ðxhÞ,

the consistency, as expressed in (41), implies by passing to the limit that

MA½φ�ðx0Þ� f ðx0Þ:

It remains to understand the boundary behaviour of u. We will show that

the boundary condition is attained in a classical sense, that is u¼ g. Let x 2
∂Ω and pk be the continuous quadratic constructed during the proof of

existence of the boundary barrier function in Proposition 11 with constant

E ¼ k. As k can be taken arbitrarily large, the sequence of points where

g � pk attains a maximum (minimum) over ∂Ω, converges to x.

We now observe that the monotonicity of Lemma 6 implies that if vh 2 Xh

is such that MA2S
h,δ,θ½vh�ðxhÞ> 0 for all xh 2Ωi

h, then vh attains its maximum on

∂Ω. Since

MA2S
h,δ,θ½uεh + Ihpk�ðxhÞ> 0, 8xh 2Ωi

h,

we can apply this observation to uεh + I hpk to obtain that, for x 2 ∂Ω,

uðxÞ	 lim sup
ε!0,h

δ
!0,y!x

uεhðyÞ+ IhpkðyÞ
� 


� lim inf
ε!0,h

δ
!0,y!x

I hpkðyÞ

	 lim sup
ε!0,h

δ
!0,y!x

max
z2∂Ω
I hðgðzÞ+ pkðzÞÞ�pkðxÞ	 gðxkÞ+ pkðxkÞ�pkðxÞ,

where xk is the point where g + pk attains its maximum over ∂Ω. Letting k!
∞ we conclude u	 g. Similarly u� g.

Finally we invoke the comparison principle of Proposition 4 to conclude. □

Remark 11 (convergence by regularization).

It is interesting to note that by invoking the continuous dependence result

given in Proposition 1, and the approximation result of Proposition 2, another

proof of convergence can be developed. See Nochetto et al. (2019a,

Section 5.3) for details. ■

2.7.5 Rates of convergence

The ingredients used to assert the convergence of the two scale method (39)

were employed in Nochetto et al. (2019b) to obtain rates of convergence.
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The techniques used in this reference were very similar to those that we will

describe in Section 3 and so, to avoid repetition, we shall not elaborate on

them here. This is further justified by that fact that, although Nochetto et al.

(2019b) was the first work to provide rates of convergence for wide stencil-

type methods, the rates of convergence obtained in this work were

suboptimal.

Let us here, instead, present the results obtained in Li and Nochetto

(2018a), where optimal rates of convergence have been obtained. The main

tools in this are the comparison principle of Proposition 10 and the discrete

barriers constructed in Section 2.7.3.

We begin by noticing that we shall only assume

f � 0,

so that the Monge–Ampère equation (1) may be degenerate. The main result

about rates of convergence for classical solutions is the following.

Theorem 9 (error estimate).

Let u2C2,αð�ΩÞ, with α 2 ð0,1�, solve (1) and uεh 2Xh solve (39). If θ	 1
4d
then

we have

ku�uεhkL∞ðΩÞ	C h2 1 + δ�2
� 


jujC1,1ð�ΩÞ + δ
αjujC2,αð�ΩÞ

h i

,

where the constant C depends on the domain Ω, the dimension d, and the

shape regularity of the mesh T h, but is independent of h, and the solution u.

Proof. Recall that a standard interpolation estimate yields

k u�IhukL∞ðΩÞ	Ch2jujC1,1ð�ΩÞ,

so that we only need to bound the difference uh�Ihu. To do so, we will con-

struct a suitable discrete subsolution u�h and supersolution u+
h and use the

comparison principle of Proposition 10.

Let u�h ¼Ihu+K1qh 2Xh, where qh is the interior barrier of Remark 10

and K1 > 0 is to be chosen later. Notice that, by construction

u�h 	I hu¼Ihg, on ∂Ω:

Thus, to guarantee that this is a subsolution we must show that

MA2S
h,δ,θ½u�h �ðxhÞ� f ðxhÞ¼ detD2uðxhÞ, 8xh 2Ωi

h:

However, since u�h is discretely convex, showing this inequality reduces to

showing that, for all fwigdi¼1 2Vθ we have

Y

d

i¼1
r2

δwi
u�h ðxhÞ� detD2uðxhÞ, 8xh 2Ωi

h,

The Monge–Ampère equation Chapter 2 151



see Lemma 5. Using the convexity of u, we have, according to Lemma 7, that

r2
δwi
IhuðxhÞ�

∂
2uðxhÞ
∂w2

i

�CjujC2,αð�ΩÞδ
α,

so that, upon choosing

K1¼C δαjujC2,αð�ΩÞ +
h2

δ2
+ θ2

� �

jujC1,1ð�ΩÞ

� �

,

where C is sufficiently large, we have

r2
δwi

u�h ðxhÞ�
∂
2uðxhÞ
∂w2

i

�CjujC2,αð�ΩÞδ
α +K1�

∂
2uðxhÞ
∂w2

i

+Cθ2jujC1,1ð�ΩÞ

� 1 + 16θ2ðd�1Þ2

 �

∂
2uðxhÞ
∂w2

i

� 1 + 16θ2ðd�1Þ2

 �1=d ∂

2uðxhÞ
∂w2

i

:

Finally, since θ	 1
4d
, we multiply this inequality over i ¼ 1, …, d and

invoke Theorem 7 item 1 to conclude that u�h is a subsolution. The compari-

son principle of Proposition 10 then yields that

uεh� u�h ¼Ihu +C δαjujC1,1ð�ΩÞ +
h2

δ2
+ θ2

� �

jujC1,1ð�ΩÞ

� �

qh

�Ihu�C δαjujC1,1ð�ΩÞ + θ
2jujC1,1ð�ΩÞ


 �

:

We now define

u +
h ¼Ihu�K1qh�K2bh,

where qh and K1 are as before, bh is the barrier of Proposition 12 and K2 > 0 is

to be chosen. We show that u+
h is a supersolution. First of all, because of the

choice of signs

u +
h �Ihu¼I hg, on ∂Ω:

Now, to show the inequality between operators we must consider in Ωδ

and outside of it separately. Let xh 2Ωi
h\ Ωδ and fvigdi¼1 2V such that

f ðxhÞ¼ detD2uðxhÞ¼
Y

d

i¼1

∂
2uðxhÞ
∂v2i

:

Let now fvθi g
d
i¼1 2Vθ satisfy (37). The interior consistency of second differ-

ences of Lemma 7, together with the estimate of Theorem 7 item 2 gives us that

r2
δvθ

i

I huðxhÞ�
∂
2uðxhÞ
∂v2i

	

	

	

	

	

	

	

	

	C δαjujC1,1ð�ΩÞ +
h2

δ2
+ θ2

� �

jujC1,1ð�ΩÞ

� �

,
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which, using that r2
δvθ

i

qhðxhÞ� 1, r2
δvθ

i

bhðxhÞ� 0, and the definition of K1

immediately implies that

r2
δvθ

i

u +
h ðxhÞ	

∂
2uðxhÞ
∂v2i

:

Notice now that u +
h might not be discretely convex, so that r2

δvθ
i

u+
h ðxhÞ

might be negative. To deal with this we define the function

G :d!, GðzÞ¼
Y

d

i¼1
ðz � eiÞ+�

X

d

i¼1
ðz � eiÞ�,

where feigdi¼1 is the canonical basis of d . Notice that this function is mono-

tone in each coordinate of z. Moreover if, for fwigdi¼1 2Vθ and wh 2 Xh, we

define the vectors

χ ðwh,fwigÞ¼ r2
δw1

whðxhÞ,…,r2
δwd

whðxhÞ

 �Т

,

γ¼ ∂
2uðxhÞ
∂v21

,…,
∂
2uðxhÞ
∂v2d

� �Т

:

Then we have that

MA2S
h,δ,θ½wh�ðxhÞ¼ min

fwigdi¼12Vθ
Gðχ ðwh,fwigÞÞ:

Therefore

MA2S
h,δ,θ½u +

h �ðxhÞ	Gðχ ðu +
h ,fvθi gÞÞ	GðγÞ¼

Y

d

i¼1

∂
2uðxhÞ
∂v2i

¼ f ðxhÞ:

Consider now a node close to the boundary, that is xh 2Ωi
hnΩδ, and let

fwθ
i g

d
i¼1 2Vθ. Using Proposition 12 item 2 we have that

max
i¼1,…,d

r2
δwθ

i
bhðxhÞ�

1

2d
:

Assume that this maximum is attained for index k. Using Lemma 7 we can

conclude that

r2
δwθ

k

u+
h ðxhÞ	r2

δwθ
k

IhuðxhÞ�K2r2
δwθ

k

bhðxhÞ

	r2
δwθ

k

IhuðxhÞ�
1

2d
K2	CjujC1,1ð�ΩÞ�

1

2d
K2	 0,
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where the last step holds upon choosing K2 sufficiently large. This shows that

min
i¼1,…,d

r2
δwθ

i
u +
h ðxhÞ¼ 0 ¼) MA2S

h,δ,θ½u+
h �ðxhÞ¼ 0	 f ðxhÞ:

We have shown that, for all xh 2Ωi
h, we have MA2S

h,δ,θ½u +
h �ðxhÞ	 f ðxhÞ, so

that u+
h is a supersolution. The discrete comparison principle of Proposition 10

then allows us to conclude that

uh	 u+
h ¼Ihu�K1qh�K2bh	I hu +C1K1 +C2δ

2K2,

where we used the lower bounds on qh and bh. Recalling the choices of K1

and K2 allows us to conclude. □

Choosing relations between the discretization parameters h, δ, and θ we

can obtain explicit rates of convergence.

Corollary 5 (rates of convergence).

In the setting of Theorem 9, if δ¼C1h
2

2 + α and θ¼C2h
2

2 +α, we have

ku�uεhkL∞ðΩÞ	Ch
2α
2 + α:

On the other hand, choosing δ ¼ h2/3 and θ ¼ h1/3, then we have

ku�uεhkL∞ðΩÞ	Ch
2α
3 :

In both estimates the hidden constant is independent of h.

Notice that both choices of relations between the coarse parameters

and the mesh size h in Corollary 5 have its benefits and drawbacks. While

the first choice yields a faster rate of convergence, it requires knowledge

of the regularity of u. On the other hand, the second choice yields a

slower convergence rate, but does not require a priori knowledge of the

smoothness of u.

Remark 12 (error estimates under different assumptions).

The results of Theorem 9 have been extended in Li and Nochetto (2018a) in

several directions:

1. Smoother solutions: If u2C3,αð�ΩÞmutatis mutandis the proof of Theorem

9 it follows a rate of convergence. The discretization parameters can be

related to each other in such a way that the error is OðhÞ, and numerical

experiments indicate that this is sharp.

2. Estimates for solutions with Sobolev regularity: Assuming that u 2 Ws,

p(Ω) with s 	 3 and s � d/p > 2, and that D2u(x) � λI, it has been shown

(Li and Nochetto, 2018a, Theorem 5.7) that we have
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ku�uεhkL∞ðΩÞ	C
h2

δ2
+ θ2 + δ2 +

δs�2

λ

� �

,

where the constant depends on the smoothness of u. Once again, the dis-

cretization parameters can be optimized to obtain a rate Oðh2�4=sÞ.
■

2.8 Extensions, generalizations, and applications

We conclude the discussion on finite difference schemes and its variants by

briefly describing some connections, extensions, generalizations, and applica-

tions of the schemes discussed here.

2.8.1 Hamilton Jacobi Bellman formulation and semi-Lagrangian
schemes

Let

Λ¼ λ2d
: λi� 0, i¼ 1,…,d,

X

d

i¼1
λi¼ 1

( )

:

Define the function h : d� +! by

hðM, tÞ¼ sup
fwigdi¼12ν

λ2Λ

�1

d

X

d

i¼1
λiwi �Mwi + t

1=d
Y

d

i¼1
λi

 !1=d
2

4

3

5:

The following result is from Krylov (1987), see also Neilan et al. (2017, Prop-

osition 6.13).

Proposition 13 (determinant).

For M2 d and δ2 + we have that

hðM,δÞ¼ 0,

if and only if M2 d+ and detM¼ δ.

This motivates to define the function FHJB :
�Ω��d! by

FHJBðx,r,MÞ¼
hðM, f ðxÞÞ, x2Ω,
gðxÞ� r, x2 ∂Ω,

�

and consider the problem: find u2Cð�ΩÞ that is a viscosity solution of

FHJBðx,uðxÞ,D2uðxÞÞ¼ 0, x2 �Ω: (42)
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It turns out that this problem has an intimate connection with (1), as shown in

Feng and Jensen (2017, Theorems 3.3 and 3.5).

Theorem 10 (equivalence).

Let f 2 C(Ω) be nonnegative. The function u2CðΩÞ\Bð�ΩÞ is a viscosity

solution of (42), in the sense of Definition 4, if and only if it is a viscosity solu-

tion on the set of convex functions of (1), in the sense of Definition 6.

It is remarkable that the convexity assumption on the solution is not

enforced in (42), it is rather a consequence of the formulation. This motivated

Feng and Jensen (2017) to use (42) for numerical purposes. They proposed a

so-called semi-Lagrangian scheme which we now describe. Over a triangula-

tion T h we introduce Xh as the space of piecewise linear and continuous func-

tions. On the basis of (42) we introduce over Xh the operator

MASL
h,k½wh�ðxhÞ¼ sup

fwigdi¼12ν
λ2Λ

�1

d

X

d

i¼1
λir2

kwi
whðxhÞ+ f ðxhÞ1=d

Y

d

i¼1
λi

 !1=d
2

4

3

5,

where xh 2Ωi
h and k > 0 is a discretization parameter. The semi-Lagrangian

scheme then seeks for uh 2 Xh such that

MASL
h,k½uh�ðxhÞ ¼ 0, 8xh 2Ωi

h, (43a)

uhðxhÞ ¼ gðxhÞ, 8xh 2Ωb
h: (43b)

Feng and Jensen (2017) showed existence and uniqueness of solutions to (43)

as well as, provided (h, k)! 0 with h
k
! 0, convergence to the viscosity solu-

tion of (42) and, as a consequence of Theorem 10, to the viscosity solution of

(1) over the set of convex functions. Rates of convergence, however, were not

provided.

Although rates of convergence for general semi-Lagrangian schemes were

given in Debrabant and Jakobsen (2013, Corollary 7.3) let us here explore a

connection between the solutions of the scheme (43) and the two scale method

of Section 2.7 as described in Li and Nochetto (2018a, Section 6). For that one

needs to notice, first, that the scheme given in (43) is not fully practical. This

is because in the operator MASL
h,k½ � � the supremum runs over all of V. We need

to introduce a directional discretization by, as before, using Vθ whose ele-

ments satisfy (37). With this we introduce the new operator

MASL
h,k,θ½wh�ðxhÞ¼ sup

fwigdi¼12νθ
λ2Λ

�1

d

X

d

i¼1
λir2

kwi
whðxhÞ+ f ðxhÞ1=d

Y

d

i¼1
λi

 !1=d
2

4

3

5,
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and denote by u
ðk,θÞ
h 2Xh the solution to (43) but with this new operator. The

following is a rather surprising fact. For a proof see Li and Nochetto (2018a,

Proposition 6.2).

Proposition 14 (equivalence).

Let uεh 2Xh denote the solution to the two scale method (39) and u
ðk,θÞ
h 2Xh the

solution to the modified semi-Lagrangian scheme with the operator

MASL
h,k,θ½ � �. In this case, we have uεh¼ u

ðk,θÞ
h .

From Proposition 14 and the results of Section 2.7.5, rates of convergence

for (43) can be deduced.

Remark 13 (nonconvex domains).

Notice that convexity of the solution is not a constraint in (42) but rather a

consequence of it. This has motivated (Jensen, 2018) to explore the possibility

of using (42) as an extension of the Monge–Ampère equation to nonconvex

domains, or cases with nonconvex data. ■

2.8.2 Filtered two scale schemes

In Nochetto and Ntogkas (2018) the ideas of two scale methods of Section 2.7

and those of filtered schemes of Section 2.4 were extended to construct a fil-

tered two scale scheme. Let T 2
2h be a quasiuniform triangulation of �Ω of size

2h > 0. The superscript in this triangulation indicates that we are doing a qua-

dratic approximation of the boundary. This can be accomplished, for instance,

by the use of isoparametric approximation of the boundary; see Brenner and

Scott (2008, Section 10.4) and Ciarlet (2002, Section 4.3). Over this mesh

we construct X2
2h, the space of piecewise quadratic and continuous functions.

For w2h 2X2
2h and x2h 2Ωi

2h we define

MA
2Sq

2h, ~δ, ~θ
½w2h�ðx2hÞ¼ min

fwigdi¼12V~θ

Y

d

i¼1

~r~δwi
2 w2hðx2hÞ

� 
 +

"

�
X

d

i¼1

~r~δwi
2 w2hðx2hÞ

� 
�
#

, (44)

where Ω
i
2h denotes the set of internal degrees of freedom of X2

2h, which

includes now the vertices and edge midpoints of T 2
2h, and

~r2
~δw is a more accu-

rate, say using five points, discretization of the second derivative in direction

w at scale ~δ.

Following the ideas presented in Theorem 7 we can show that operator

(44) is consistent with order Oð~δk + α + h3

~δ2
+ ~θ2Þ; see (Nochetto and Ntogkas,

2018, Lemma 5.8). However, this scheme is not monotone. It will, instead

serve as the two scale analogue of the accurate scheme (22).
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By refining in a conforming way once T 2
2h we obtain T h, over which we

can apply the two scale scheme of Section 2.7. Notice that there is a bijection

between Ω
i
2h and Ω

i
h so that the elements of X2

2h and Xh can be compared by

looking at their nodal values. In light of this observation we alleviate the nota-

tion and carry out the rest of the discussion using the scale h.

We combine (44) and (38) into a filtered two scale operator: for wh 2 Xh

and xh 2Ωi
h

MAF

h,δ,θ, ~δ, ~θ
½wh�ðxhÞ¼MA2S

h,δ,θ½wh�ðxhÞ

+ τ~S
MA

2Sq

2h, ~δ, ~θ
½wh�ðxhÞ�MA2S

h,δ,θ½wh�ðxhÞ
τ

 !

,

where ~SðtÞ¼ minfSðtÞ,0g and the function S is defined in (24). As explained

in Nochetto and Ntogkas (2018, Section 2) the choice of filter function

ensures discrete convexity in the case that the right-hand side degenerates,

that is if f(xh) ¼ 0, for some xh 2Ωi
h.

With these ingredients the filtered two scale scheme seeks for uFh 2Xh

such that

MAF

h,δ,θ, ~δ, ~θ
½uFh �ðxhÞ¼ f ðxhÞ, 8xh 2Ωi

h, (45a)

uFh ðxhÞ¼ gðxhÞ, 8xh 2Ωb
h: (45b)

The theory of almost monotone schemes of Corollary 1 was combined with

the convergence results of Section 2.7.4 in Nochetto and Ntogkas (2018,

Section 6) to assert the convergence of any solution to (45).

2.8.3 Approximation of convex envelopes

Let us describe the results obtained in Li and Nochetto (2018b) regarding the

approximation of the convex envelope of a function, which was introduced in

Definition 10. Let f 2Cð�ΩÞ. As shown in Oberman and Ruan (2017) the con-

vex envelope u ¼ Γf of f can be characterized as the viscosity solution of the

problem

CE½u�ðxÞ¼ 0, x2Ω, (46a)

uðxÞ¼ f ðxÞ, x2 ∂Ω, (46b)

where the operator CE[�] is given by

CE½w�ðxÞ¼ min f ðxÞ�uðxÞ, minσ D2wðxÞð Þ
� �

: (47)

The intuition behind (46) is clear. First, we have that u(x) 	 f(x) for every

x2 �Ω. In addition, if we define the contact set
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Cðf Þ¼ x2 �Ω : uðxÞ¼ f ðxÞf g,

we obtain, upon denoting λ1ðwÞ¼ minσ D2wðxÞð Þ, that for x2Cðf Þ we must

have λ1(u) � 0. On the other hand, if x 62Cðf Þ, then we must have λ1(u) ¼ 0.

In conclusion, u must be convex.

We remark, however, that problem (46) is very degenerate. Indeed, it can

be shown, see for instance Li and Nochetto (2018b, Lemma 3.1), that if

distðx,Cðf ÞÞ� dδ and p 2 ∂u(x) there is v2d with jvj ¼ 1 such that

x�¼ x�δv, uðx�Þ¼ uðxÞ+ δp � v, r2
δvuðxÞ¼ 0, p2 ∂uðx�Þ:

In other words, if we are sufficiently far away from the contact set Cðf Þ, then
the graph of u is flat in at least one direction. As a consequence, in general,

the convex envelope cannot be arbitrarily smooth, regardless of the smooth-

ness of the domain Ω and data f. Indeed, De Philippis and Figalli (2015)

shows that if Ω is strictly convex with ∂Ω 2 C3,1, and f 2C3,1ð�ΩÞ, then
u2C1,1ð�ΩÞ, and that this is optimal. This very low regularity is one of the

main obstacles in the analysis of numerical schemes for (46).

Formulation (46) was already used for numerical purposes in Oberman

(2008a) via wide stencil schemes like those presented in Section 2.3. Let us

present here, instead, the two scale methods of Li and Nochetto (2018b).

We will follow the notation of Section 2.7. In addition, if S denotes the unit

ball in d we introduce, in full analogy to (37), a discretization Sθ of S such

that, for every w2S there is wθ 2Sθ that satisfies

jw�wθj 	 θ:

Over the space of piecewise linear functions Xh subordinated to the trian-

gulation T h we define

CEh,δ,θ½wh�ðxhÞ¼ min f ðxhÞ�whðxhÞ, min
w2Sθ
r2

δwwhðxhÞ
� �

(48)

where wh 2 Xh and xh 2Ωi
h. With the aid of this operator we define the dis-

crete convex envelope of a function f as the function uεh 2Xh that solves

CEh,δ,θ½uεh�ðxhÞ¼ 0, xh 2Ωi
h, (49a)

uεhðxhÞ¼ f ðxhÞ, xh 2Ωb
h: (49b)

The analysis of scheme (49) to a large extent follows that of two scale

methods presented in Section 2.7. Namely, owing to discrete convexity we

can show that the scheme has a comparison principle, from which uniqueness

of solutions follows. The existence of solutions is obtained via a discrete Per-

ron method, and the stability by noticing that u�h ¼I hu and u +
h ¼I hf are dis-

crete sub- and supersolutions, respectively.
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The considerations given above show that scheme (49) is monotone and

stable. In addition, assuming smoothness of the arguments, one can show its

consistency with similar arguments to those of Section 2.7.3. Upon realizing

that the operator (47) has a comparison principle in the sense of Definition

5, this is enough to appeal to the theory of Section 2.1 and conclude that

the scheme is convergent as ε ¼ (h, δ, θ) ! 0, provided h
δ
! 0.

The derivation of rates of convergence, however, requires special atten-

tion. This is due to the fact that, as stated above, the best regularity we can

expect is u2C1,1ð�ΩÞ, and this is not enough to exploit the consistency esti-

mates that were used for convergence (which are applied to smooth test func-

tions). To overcome this, one must take advantage of the flatness of the

solution outside the contact set. To describe these results we must introduce

some notation. Set, for xh 2Ωi
h,

δxh ¼ minfδ,distðxh,∂ΩÞg, Bxh ¼
[

T2T h:distðxh,TÞ<δxh

T,

and

Wxh ¼ x2 �Ω : jx� xhj 	 dδf g:
The following is Li and Nochetto (2018b, Proposition 3.3).

Proposition 15 (consistency).

Let Ω be strictly convex and u, the solution of (46) satisfy u2Ck,αð�ΩÞ with
k ¼ 0, 1 and α 2 ð0,1�. For xh 2Ωi

h we have:

1. If distðxh,Cðf ÞÞ� dδ, then

min
w2Sθ
r2

δwI huðxhÞ	C
ðδθÞk + α + hk + α

δ2

 !

jujCk,αðBxh
Þ:

2. If distðxh,Cðf ÞÞ< dδ but dist(xh, ∂Ω) � dδ, then we have

f ðxhÞ�uðxhÞ	Ckδ
k + α,

where Ck depends on jujC0,αðWxh
Þ + jf jC0,αðWxh

Þ for k ¼ 0 and on jf jC1,αðWxh
Þ

for k ¼ 1.

3. If 0 < dist(xh, ∂Ω) < dδ, then for all w2S we have

r2
δwI huðxhÞ	Cδk + α�2i jujCk,αðBxh

Þ,

and the previous item also holds provided k ¼ 0.

To take advantage of this result two new discrete barriers were constructed.

One handles the first case, i.e., points sufficiently far away from the contact set.

The other barrier handles points near the boundary, that is the third case in the

previous result. Without going into details, we present here the main error esti-

mate, and refer the reader to Li and Nochetto (2018b, Theorem 3.7).
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Theorem 11 (convergence rate).

Let Ω be strictly convex, u be the viscosity solution of (46), and uεh the solution

of (49). If u2Ck,αð�ΩÞ, with k ¼ 0, 1 and α 2 (0, 1], then

ku�uεhkL∞ðΩÞ¼O h
ðk + αÞ2
k + α+ 2

 !

,

provided, δ¼O h
k + α

k + α+ 2

� �

and θ¼O h
2

k +α + 2

� �

. In particular, if k ¼ α ¼ 1,

i.e., u2C1,1ð�ΩÞ, we obtain

δ¼Oðh1=2Þ, θ¼Oðh1=2Þ ¼) ku�uεhkL∞ðΩÞ¼OðhÞ:

Similarly, if k ¼ 0 and α ¼ 1, i.e., u2C0,1ð�ΩÞ, we get

δ¼Oðh1=3Þ, θ¼Oðh2=3Þ ¼) ku�uεhkL∞ðΩÞ¼Oðh1=3Þ:

2.8.4 The Gauss curvature problem

As an application of the wide stencil finite difference schemes that were pre-

sented in Section 2.3 let us here, following Hamfeldt (2018), describe a dis-

cretization of the prescribed Gaussian curvature problem (2). To do so, we

must begin by defining what is a solution of this problem. In a similar manner

to the notion of Alexandrov solutions to Monge–Ampère problem, introduced

in Definition 9, we have

Definition 17 (generalized solution).

A convex function u : �Ω! is a generalized solution to (2) if the following

two conditions hold:

1. It is a generalized solution of (2a). This means that, for all Borel sets

D�Ω, we have
Z

∂uðDÞ

1

1 + jpj2

 �ðd + 2Þ=2 dp¼

Z

D

KðxÞdx:

2. It satisfies

lim sup
y!x

uðyÞ	 gðxÞ, 8x2 ∂Ω

and, if v is any other generalized solution of (2a), then v 	 u in Ω.

Under the assumptions of uniform convexity of Ω; continuity of g; conti-

nuity, boundedness, and nonnegativity of K; and the compatibility condition
Z

d

1

1 + jpj2

 �ðd + 2Þ=2 dp>

Z

Ω

KðxÞdx;
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it can be shown that problem (2) has a unique generalized solution; see

Bakelman (1994).

It is also possible to extend the notion of viscosity solution presented in

Definition 4, by allowing the operators in Definition 2 to also depend on a

variable p2d. In doing that, we note that the operator FGK,c : �Ω��d�
d! defined by

FGK,cðx,r,p,MÞ¼ detM�KðxÞ 1 + jpj2

 �ðd + 2Þ=2

, x2Ω,
gðxÞ� r, x2 ∂Ω,

(

is, as the Monge–Ampère operator FMA defined in (8), only elliptic when

M2 d+, which implies that to have a reasonable notion of viscosity solution,

we must require sub- and supersolutions to be convex, and restrict the test

functions to be convex, as in Definition 6. As we have seen throughout our

discussion, the convexity constraint is rather difficult to impose explicitly dur-

ing discretization.

Hamfeldt (2018) proposed to consider the following formulation of (2). If

for M2 d we set σ(M) ¼ {λ1(M), …, λd(M)}, where the eigenvalues are

counted with multiplicity and arranged in nondecreasing order, then the

operator

FGKðx,r,p,MÞ¼ Fin
GKðx,p,MÞ, x2Ω,

gðxÞ� r, x2 ∂Ω,

�

with

Fin
GKðx,p,MÞ¼ min λ1ðMÞ,

Y

d

i¼1
λiðMÞ+�KðxÞ 1 + jpj2


 �ðd + 2Þ=2
( )

is elliptic in the sense of Definition 2 and, at least formally, it is clear that if

FGKðx,uðxÞ,ruðxÞ,D2uðxÞÞ¼ 0, x2Ω,
then we must have, that either, λ1(D

2u(x)) > 0, so that u is convex, and

detD2uðxÞ¼KðxÞ 1 + jruðxÞj2

 �ðd + 2Þ=2

,

or λ1(D
2u(x)) ¼ 0 and, thus

0¼ detD2uðxÞ�KðxÞ 1 + jruðxÞj2

 �ðd + 2Þ=2

� 0:

In either case, the convexity of the solution is recovered.

With these constructions we have two options to define viscosity solutions

to (2). The first one is, like in Definition 6, to require that it is a viscosity solu-

tion, in the set of convex functions, of the problem
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FGK,cðx,uðxÞ,ruðxÞ,D2uðxÞÞ¼ 0, 8x2 �Ω: (50)

The second, as in Definition 4, to require that it is a viscosity solution of

FGKðx,uðxÞ,ruðxÞ,D2uðxÞÞ¼ 0, 8x2 �Ω: (51)

In full analogy to Proposition 3 it is shown in Hamfeldt (2018, Section 3)

that viscosity subsolutions to problem (51) are convex and that a function is a

viscosity solution of (50) over the set of convex function if and only if it is a

viscosity solution of (51). In addition it is shown that, under certain assump-

tions on K, this notion of solution, at least in the interior of the domain Ω,

coincides with that of Definition 17.

It is important to note that incorporating the boundary conditions into the

definition of the operator is essential in this problem, as they may not be rea-

lized in a classical sense. The following is Hamfeldt (2018, Example 1).

Example 2 (nonclassical boundary conditions).

Let d ¼ 1, Ω ¼ (0, 1), and K
 1. We set the boundary conditions u(0) ¼ �1
and u(1) ¼ 1. Then it is possible to show that

uðxÞ¼�
ffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

is a viscosity solution of (51). It is a classical solution over [0, 1) so it remains

to understand what happens at x ¼ 1.

Note that u0(x) grows unboundedly as x " 1 so that it is not possible to find

a smooth φ such that u? � φ has a local minimum at x0, in other words, the

graph of u cannot be touched from below at x ¼ 1. This makes u automati-

cally a supersolution.

To show that u is also a subsolution we note that u(1) ¼ 0 < 1 so that, if

φ touches the graph of u from above at x¼ 1, we must have φ(1)¼ u(1)¼ 0, and

FGKð Þ?ð1,uð1Þ,φ0ð1Þ,φ00ð1ÞÞ� 1�uð1Þ¼ 1> 0:

The behaviour of Example 2 was characterized in Hamfeldt (2018,

Corollary 24). Namely, if u is a viscosity solution of (50) then at every x 2
∂Ω we either have that u?(x) ¼ u?(x) ¼ g(x), or u?(x) 	 u?(x) 	 g(x) and

∂u?(x) ¼ ∅. The second option here corresponds to the right endpoint in

Example 2.

Existence of solutions to (51) was shown using a variant of Perron’s

method. The usual argument to show uniqueness is obtained via a comparison

principle of Definition 5. This problem, however, does not have a comparison

principle, as Hamfeldt (2018, Example 3) shows.

Example 3 (lack of comparison).

In the setting of Example 2 we have that uðxÞ¼�
ffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

is a viscosity solu-

tion, so that necessarily it is a supersolution. Let

The Monge–Ampère equation Chapter 2 163



vðxÞ¼ uðxÞ, x2 ½0,1Þ,
1, x¼ 1,

�

we see that v 2 USC([0, 1]) and, as in Example 2, if φ touches from above the

graph of u at x ¼ 1, then φ(1) ¼ v(1) ¼ 1 and

FGKð Þ?ð1,vð1Þ,φ0ð1Þ,φ00ð1ÞÞ� 1� vð1Þ¼ 0,

showing that v is a subsolution. Note, however, that u(1) 	 v(1) and this prob-

lem does not have a comparison principle.

The previous result, combined with the behaviour of solutions at the

boundary shows that, in fact, a comparison principle takes place, but only in

the interior of the domain; see Hamfeldt (2018, Theorem 7).

Theorem 12 (interior comparison).

Let u 2USCð�ΩÞ be a subsolution of (51) and u 2LSCð�ΩÞ a supersolution.

Then we have u	 u in Ω.

This weakened comparison principle is sufficient to guarantee uniqueness.

Having shown the existence and uniqueness of solutions to (51), it is pos-

sible now to construct numerical schemes. This is carried using variants of the

wide stencil finite difference schemes of Section 2.3. With the notation intro-

duced there we define, for wh 2 Xh,

GKh,θ½wh�ðxhÞ¼ min min
fνigdi¼12Gθ

ΔνiwhðxhÞ, MAWS
h,θ ½wh�ðxhÞ

(

�KðxhÞ 1 + jrhwhðxhÞj2

 �ðd + 2Þ=2

�

,

where MAWS
h,θ ½ � � was defined in (19) and the vector rhwh(xh) is such that

rhwhðxhÞ � ei¼max
whðxhÞ�whðxh�heiÞ

h
,

�

whðxhÞ�whðxh + heiÞ
h

,0

�

,

(52)

and feigdi¼1 is the canonical basis of d. With this operator, the finite differ-

ence approximation of (51) is to find uh 2 Xh such that

GKh,θ½uh�ðxhÞ¼ 0, xh 2Ωi
h, (53a)

uðxhÞ¼ gðxhÞ, xh 2Ωb
h: (53b)

In Hamfeldt (2018, Section 6) it is shown that scheme (53) is monotone, in

the sense of (12), stable, in the sense of (13), and consistent, in the sense of (14).
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Notice, however, that as Example 3 shows, problem (51) does not have a

comparison principle. As a consequence, Theorem 4 cannot be applied. For

this reason, the framework of Section 2.1 was extended in Hamfeldt (2018,

Theorem 9) to cases where problem (7) only has an interior comparison prin-

ciple like that of Theorem 12 and there exist classical sub- and supersolu-

tions. The conclusion is the locally uniform convergence of uh to u.

2.8.5 Transport boundary conditions

Let us conclude the discussion of wide stencil finite difference schemes by

describing how these methods can be used to tackle the optimal transportation

problem. Since this will be one of the main topics of chapter “Optimal trans-

port” by Merigot in this volume, we shall be brief.

We recall that, given Ω,O�d, which we assume bounded, with O con-

vex, and measures ρΩ :Ω! and ρO :O!, the optimal transportation

problem (with quadratic cost) seeks for a map T :Ω!O with T♯ρΩ¼ ρO that

minimizes

1

2

Z

Ω

jx�TðxÞj2dρΩðxÞ:

We recall that T♯μ denotes the pushforward of the measure μ under the

mapping T. Assuming that the measures are absolutely continuous with

respect to Lebesgue measure, with densities fΩ, fO, this condition can be writ-

ten as
Z

E

fOðxÞdx¼
Z

T�1ðEÞ
fΩðxÞdx,

and so by a change of variables, detðrTðxÞÞfOðTðxÞÞ¼ fΩðxÞ. Finally, we
recall that since the cost is quadratic, it can be shown that T is given by the

gradient map of a convex potential u :Ω!. This allows us to, at least at

the formal level, rewrite the optimal transportation problem as a Monge–

Ampère problem: find u : �Ω! convex, such that

detD2uðxÞ¼Fðx,ruðxÞÞ, x2Ω: (54)

where we set Fðx,pÞ¼ ρΩðxÞ=ρOðpÞ. This problem is supplemented by the

so-called transport or second boundary condition

ruð�ΩÞ¼ �O:

Notice that this, more than a boundary condition, is a set of constraints. It can

be shown also that this condition can be replaced by

ruð∂ΩÞ¼ ∂O: (55)
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Thus, we want to construct numerical schemes to approximate the solution of

(54) and (55).

It is clear that the main issue is the discretization of the boundary condition

(55). If the boundary of the domain O is given as the zero level set of some

function Φ :d!, then it is clear that (55) can be equivalently written as

ΦðruðxÞÞ¼ 0, 8x2 ∂Ω:
While we would be tempted to discretize this condition directly, the func-

tion Φ can be highly nonlinear and nonsmooth, which will make the design

of monotone and consistent numerical schemes a daunting task. However,

this can be achieved very easily if the domains are rectangles, say

Ω¼ð0,1Þ2¼O. In this case, it is shown in Froese (2012, Section 3.2) that

each side must be mapped to itself. If we consider the left side of the square,

that is,

fðx1,x2Þ 22
: x1¼ 0,x2 2 ½0,1�g,

then the function that describes this is given by Φ(y1, y2) ¼ y1. Thus, on this

side we can write

∂uð0,x2Þ
∂x1

¼ 0:

Similarly, in the right, bottom and top sides, respectively, we can write

∂uð1,x2Þ
∂x1

¼ 1,
∂uðx1,0Þ

∂x2
¼ 0,

∂uðx1,1Þ
∂x2

¼ 1:

It is remarkable that on all sides the derivative that appears is actually the nor-

mal derivative. This motivated Froese (2012) to replace the boundary condi-

tion (55) by a Neumann-type boundary condition

∂uðxÞ
∂n
¼ϕðxÞ

for some unknown function ϕ.

Obviously, the correct choice of function ϕ is ϕ(x) ¼ ru(x) � n(x), which
motivates the introduction of the following iterative scheme: Given u0, an ini-

tial guess, then

l For k � 0

– Define, for x 2 ∂Ω,

pkðxÞ¼ Proj
∂OðrukðxÞÞ, (56)

where by ProjS(w) we denoted a projection of the vector w onto the set S.
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– Find uk + 1 : �Ω! convex, and ck + 1 2 that satisfy
Z

Ω

uk + 1ðxÞdx¼ 0, (57a)

detD2uk + 1ðxÞ¼ ck + 1Fðx,ruk + 1ðxÞÞ, x2Ω, (57b)

∂uk + 1ðxÞ
∂n

¼ pkðxÞ, x2 ∂Ω: (57c)

– Set k k + 1

l EndFor

Remark 14 (iterative scheme).

The iterative scheme (56) and (57) deserves several observations.

1. The introduction of the projection pk in step (56) is due to the fact that

there is no reason to expect that rukð∂ΩÞ� ∂O. Thus, we settle for the

closest point on the target boundary.

2. Problem (57) is a Neumann problem for an elliptic equation so that the

solution, if it exists, is unique only up to a constant. Condition (57a) forces

uniqueness, while the introduction of the number ck+1 in (57b) relaxes the

equation so that the necessary conditions for existence are fulfilled.

3. The initialization of this scheme can done by choosing p0 ¼ Mx �n, where
n is the unit outer normal to ∂Ω and M > 0 is so large that the image of the

mapping �Ω 3 x 7!Mx2d contains �O. ■

We are then going to discretize (56) and (57). Notice that now the bound-

ary conditions (57c) are rather standard and can be approximated by, for

instance, introducing a layer of ghost nodes near the boundary and computing

centred differences.

It remains to discretize (57b). Setting vh ¼ uh, k+1, the first alternative, pro-

posed in Froese (2012), is to use

MAWS
h,θ ½vh�ðxhÞ¼Fðxh,rhvhÞ, xh 2Ωi

h, (58)

where MAWS
h,θ ½ � �ðxhÞ is the operator defined in (19) or Remark 2, and rhvh is

defined as in (52). Another option, also from Froese (2012), is to take advan-

tage of the directional difference that are already being computed to approxi-

mate the Monge–Ampère operator. Notice that if fνigdi¼1 2V, we have that

rw¼ ∂w

∂x1
,…,

∂w

∂xd

� �Т

¼
X

d

i¼1

∂w

∂νi
νi � e1,…,

X

d

i¼1

∂w

∂νi
νi � ed

 !Т

,

where, as usual, feigdi¼1 is the canonical basis of d. This allows us to write

that
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detD2wðxÞ�Fðx,rwðxÞÞ¼MA½w�ðxÞ�Fðx,rwðxÞÞ

¼ min
fwigdi¼12V

Y

d

i¼1

∂
2wðxÞ
∂w2

i

 ! +

�
X

d

i¼1

∂
2wðxÞ
∂w2

i

 !�" #

¼ min
fwigdi¼12V

Y

d

i¼1

∂
2wðxÞ
∂w2

i

 ! +

�
X

d

i¼1

∂
2wðxÞ
∂w2

i

 !�
�Fðx,rwðxÞÞ

" #

¼ min
fwigdi¼12V

Y

d

i¼1

∂
2wðxÞ
∂w2

i

 ! +

�
X

d

i¼1

∂
2wðxÞ
∂w2

i

 !�"

�F x,
X

d

i¼1

∂wðxÞ
∂νi

νi � e1
jνij

,…,

X

d

i¼1

∂wðxÞ
∂νi

νi � ed
jνij

 !Т
0

@

1

A

3

5

¼ min
fwigdi¼12V

OTfwigdi¼1
½w�ðxÞ:

In conclusion, an approximation of (57b) is obtained by setting

OTh,θ½vh�ðxhÞ¼ 0, 8xh 2Ωi
h,

where

OTh,θ½wh�ðxhÞ¼ min
fνigdi¼12Gθ

OTfνigdi¼1 ½wh�ðxhÞ:

Benamou et al. (2014) considered a different treatment of the boundary

condition (55). Since for all x 2 ∂Ω we must have that ruðxÞ 2 ∂O, then we

must have

HðruðxÞÞ¼ 0, HðyÞ¼ distðy,∂OÞ, y2O,
�distðy,∂OÞ, y 62O,

�

(59)

where H is nothing but the signed distance function to ∂O. Notice that (59) is a
sort of Hamilton Jacobi equation posed on ∂Ω. Exploiting the convexity of O,
the authors of Benamou et al. (2014) were able to rewrite the function H as the

supremum over linear expressions on y (the supporting hyperplanes of O at y)

HðyÞ¼ sup
n2d

:jnj¼1
y � n�H?ðnÞ : n � nx > 0f g,

where nx is the normal to ∂Ω at x and H? is the support function of O, that is,

H?ðnÞ¼ sup
z2∂O

z � n:

This function can be precomputed or evaluated rather cheaply in the discrete

setting. The reformulation of the function H can be approximated by repla-

cing the supremum by one over a finite set of directions, and, finally, the

gradient appearing in (59) can be discretized as in (52). This gives a discre-

tization of (55). Finally, the discretization of (54) is proposed to be carried

similarly to (58).
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3 Discretizations based on geometric considerations

In fact, geometrical representations, graphs and diagrams of all sorts, are used

in all sciences, not only in physics, chemistry, and the natural sciences, but also

in economics, and even in psychology. Using some suitable geometrical repre-

sentation, we try to express everything in the language of figures, to reduce

all sorts of problems to problems of geometry.

Pólya (2014)

In this section we will describe the so-called Oliker–Prussner method, which

is a discrete analogue of the notion of solution in the Alexandrov sense. We

recall that Alexandrov solutions to the Monge–Ampère equation were intro-

duced in Definition 9. They make a connection between the Monge–Ampère

equation and the measure of the subdifferential of its solution. This, very geo-

metric, notion enables us to define solutions that are not smooth, say not

C2(Ω). The Oliker–Prussner method, in turn, will allow us to approximate

these solutions.

3.1 Description of the scheme

To be able to present the Oliker–Prussner method, we must begin by introdu-

cing some useful notions.

3.1.1 Nodal set and domain partition

To discretize the domain Ω and its boundary ∂Ω, we introduce a translation

invariant nodal set and an open, disjoint partition of the domain. For a param-

eter h > 0, we define the interior nodal set as

Ωh¼ xh¼ h
X

d

j¼1
zj~ej : z

j 2
( )

\Ω, (60)

where f~ejgdj¼1 is a basis of d with jejj	 1 for all 1 	 j 	 d. To discretize

the boundary ∂Ω, we set the boundary nodal set ∂Ωh as a collection of points

on the boundary and require that their spacing is of order h, namely,

∂Ω�[xh2∂Ωh
Bh=2ðxhÞ. We set the nodal set �Ωh¼Ωh[∂Ωh. We remark that

this is a generalization of the finite difference discretizations introduced

in Section 2.3. Indeed, in that case the vectors f~ejgdj¼1 were the canonical

basis of d.

We define an open, disjoint partition fωxhgxh2�Ωh
of the domain where, for

xh 2 �Ωh,

ωxh ¼ xh +
X

d

j¼1
hj~ej : hj 2, jhjj 	 h

2

( )

\Ω: (61)
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Note that, by construction, the partition is translation invariant, that is, ωyh ¼
yh� xh +ωxh for all xh, yh 2Ωh with ωyh ,ωxh �Ω.

3.1.2 Nodal functions, their subdifferentials, and convex
envelopes

On the nodal set Ωh constructed above, we define a nodal function uh to

approximate the solution of the Monge–Ampère PDE. First, to mimic the con-

vexity constraint for the PDE, we require the notion of convexity for nodal

functions (compare to Definition 16).

Definition 18 (nodal convexity).

Let wh be a (nodal) function that maps the set of nodes �Ωh to . We say that

wh is convex if, for any node xh 2 �Ωh, there exist an affine function L, that is,

L(x) ¼ p � (x � xh) + c for some p2d and c2, such that

LðyhÞ	whðyhÞ 8yh 2 �Ωh and LðxhÞ¼whðxhÞ: (62)

We define the subdifferential of a convex nodal function wh at a fixed

node xh 2 �Ωh as the set

∂whðxhÞ :¼fp2d
: p � ðyh� xhÞ+whðxhÞ	whðyhÞ 8yh 2 �Ωhg: (63)

In other words, this is the collection of slopes of affine functions that satisfy

the condition that defines convexity for a nodal function. Note that nodal

functions are only defined on �Ωh. To extend a nodal function to the domain

Ω, we introduce its convex envelope.

Definition 19 (convex envelope of a nodal function).

Let wh be a nodal function defined on �Ωh. The convex envelope of wh is the

piecewise linear function

ΓðwhÞðxÞ¼ sup
L

LðxÞ : Laffine function and LðxhÞ	whðxhÞ 8xh 2 �Ωhf g

for any x 2 Ω.

We note that, by definition, Γ(wh)(xh) 	 wh(xh) for any node xh 2 �Ωh, and

equality holds for all interior nodes if wh is convex. Indeed, if wh is convex, by

(62), for any node xh 2 �Ωh, there exists an affine function L(x) satisfying

LðyhÞ	whðyhÞ 8yh 2 �Ωh and LðxhÞ¼whðxhÞ:
Since L(x) 	 Γ(wh)(x) for any x 2 Ω by Definition 19, we deduce that wh(xh) ¼
L(xh) 	 Γ(wh)(xh). Combining this inequality with the inequality in the other

direction, we have wh(xh) ¼ Γ(wh)(xh) for all interior nodes. Thus, Γ(wh) is a

natural extension to �Ω of the convex nodal function wh. With an abuse

of notation, we still use wh to denote the convex envelope of this nodal function.
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The convex envelope of a nodal function wh induces a triangulation of the

domain Ω and a piecewise linear function over this triangulation. However,

this triangulation is not known a priori. Here we give an example to illustrate

this property.

Example 4 (convex envelope and triangulation).

Define the nodal set �Ωh¼fz1,…,z5g with z1 ¼ (1, 0), z2 ¼ (0, 1), z3 ¼
(�1, 0), z4 ¼ (0, �1), and z5 ¼ (0, 0). Consider the nodal functions satisfying

w1ðz1Þ¼w1ðz3Þ¼ 1, w2ðz2Þ¼w2ðz4Þ¼ 1,

w3ðz1Þ¼w3ðz2Þ¼w3ðz3Þ¼w3ðz4Þ¼ 1,

and wj(zi) ¼ 0 otherwise. The convex envelopes are Γ(w1) ¼ jx1j, Γ(w2) ¼
jx2j, and Γ(w3) ¼ jx1j + jx2j. The convex envelopes are subordinate to the

meshes depicted in Fig. 4. ■

The above example shows that Γ(wh) is a piecewise linear function that

induces a mesh T h that depends on the values of wh. The example depicted

in Fig. 5 shows that, if wh is the nodal interpolant of a function w, and if

the Hessian D2w is degenerate (or nearly degenerate), the induced mesh

may be anisotropic.

FIG. 4 Meshes corresponding to convex envelopes Γ(w1) ¼ jx1j (left), Γ(w2) ¼ jx2j (middle), and
Γ(w3) ¼ jx1j + jx2j (right).

FIG. 5 Mesh induced by the nodal interpolant of w(x) ¼ (x�e)2 where e¼ð1,2ÞТ. Its convex

envelope equals jx � ej in the star of (0, 0).
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3.1.3 The Oliker–Prussner method

Now we are ready to introduce the Oliker–Prussner method (Nochetto and

Zhang, 2019; Oliker and Prussner, 1988). We seek a convex nodal function

uh satisfying the boundary condition uh(xh) ¼ g(xh) for all xh 2 ∂Ωh and

j∂uhðxhÞj¼
Z

ωxh

f ðxÞdx, 8xh 2Ωh, (64)

Note that, since the partition fωxhgxh2Ωh
is nonoverlapping, for all Borel sets

D�Ω, we have

j∂uhðDÞj ¼
X

xh2D
fxh , where fxh ¼

Z

ωxh

f ðxÞdx:

Thus, the scheme is obtained by replacing f in (9) by a family of Dirac

measures supported at the nodes in Ωh, and by replacing g by its nodal inter-

polant on the boundary. To implement the method, we need to derive a for-

mula to compute the subdifferential of a nodal function uh. This is a

nontrivial task because it is non local. In fact, it involves computing the con-

vex envelope of uh. The following observation is useful in the characterization

of the subdifferential. For a proof, see Nochetto and Zhang (2018).

Lemma 8 (characterization of subdifferential).

Let wh be a convex nodal function and T h be the mesh induced by its convex

envelope Γ(wh). Then the subdifferential of wh at xh 2 Ωh is the convex hull of

the constant gradients rΓ(wh)jT for all T 2T h which contain xh.

Fig. 6 depicts the subdifferential ∂wh(xh) of a convex nodal function wh at

node xh for d ¼ 2.

FIG. 6 Star centred at node xh corresponding to the mesh T h induced by the convex envelope

γh ¼ Γ(wh) and subdifferential ∂wh(xh) of the convex nodal function wh at node xh. The latter is

the convex hull of the constant element gradients rγhjTj for 1 	 j 	 5.
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3.2 Stability, continuous dependence on data, and discrete
maximum principle

The Alexandrov estimate, which establishes the stability and continuous

dependence of the Monge–Ampère equation, is a cornerstone in the nonlinear

PDE theory. In this subsection, we introduce a discrete version of the Alexan-

drov estimate suitable for nodal functions. We refer the reader to Nochetto

and Zhang (2018) for a complete proof.

Lemma 9 (discrete Alexandrov estimate).

Let wh be a nodal function with wh(xh) � 0 at all xh 2 ∂Ωh. Then

sup
Ωh

w�h 	C
X

xh2C�h ðwhÞ
j∂whðxhÞj

0

@

1

A

1=d

, (65)

where C ¼ C(d, Ω) is proportional to the diameter of Ω and C�h ðwhÞ is the

(lower) contact set:

C�h ðwhÞ :¼fxh 2Ωh, ΓðwhÞðxhÞ¼whðxhÞg: (66)

The Alexandrov estimate establishes a lower bound for a nodal function in

terms of the measure of the subdifferential at the (lower) contact set. Simi-

larly, one can obtain an upper bound for a nodal function by the measure of

the superdifferential at the (upper) contact set.

Applying the discrete Alexandrov estimate, we are ready to compare two

arbitrary nodal functions in terms of their subdifferentials. This is instrumen-

tal for the error analysis.

Proposition 16 (stability of numerical solution).

Let vh and wh be two nodal functions with vh � wh on ∂Ωh. Then

sup
Ωh

ðvh�whÞ�	C
X

xh2C�h ðvh�whÞ
j∂vhðxhÞj1=d�j∂whðxhÞj1=d

 �d

0

@

1

A

1=d

,

where C ¼ C(d, Ω) is proportional to the diameter of Ω.

Proof. Let vh, wh be two nodal functions. We introduce the convex envelope

Γ(vh � wh) as in Definition 19, and the nodal contact set C�h ðvh�whÞ defined
in (66). The discrete Alexandrov estimate of Lemma 9 yields

sup
Ωh

ðvh�whÞ�	C
X

xh2C�h ðvh�whÞ
j∂Γðvh�whÞðxhÞj

0

@

1

A

1=d

, (67)

whence we only need to estimate j∂Γ(vh � wh)(xh)j for all xh 2C�h ðvh�whÞ.
For these nodes, we easily see that
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∂Γðvh�whÞðxhÞ� ∂ðvh�whÞðxhÞ:
We claim that

∂whðxhÞ+ ∂Γðvh�whÞðxhÞ� ∂vhðxhÞ 8 xh 2C�h ðvh�whÞ: (68)

Fix xh 2C�h ðvh�whÞ, and let p 2 ∂wh(xh) and q 2 ∂Γ(vh � wh)(xh), respec-

tively, that is, by definition of the subdifferential (63),

p � ðyh� xhÞ	whðyhÞ�whðxhÞ
and

q � ðyh� xhÞ	Γðvh�whÞðyhÞ�Γðvh�whÞðxhÞ

for all nodes yh 2Ωh. Adding both inequalities, we get

ðp+ qÞ � ðyh� xhÞ	whðyhÞ+Γðvh�whÞðyhÞ� whðxhÞ+Γðvh�whÞðxhÞð Þ
Since xh is in the contact set C�h ðvh�whÞ, we have Γ(vh � wh)(xh) ¼ (vh �

wh)(xh). For all other nodes yh 2Ωh, we have Γ(vh � wh)(yh) 	 (vh � wh)(yh).

Hence, we deduce

ðp+ qÞ � ðyh� xhÞ	 whðyhÞ+ ðvh�whÞðyhÞ� whðxhÞ + ðvh�whÞðxhÞð Þ
¼ vhðyhÞ� vhðxhÞ:

This inequality implies (p + q) 2 ∂vh(xh) and proves the claim.

The Brunn–Minkowski inequality of Lemma 2 applied to (68) yields

j∂whðxhÞj1=d +j∂Γðvh�whÞðxhÞj1=d

	 j∂whðxhÞ+ ∂Γðvh�whÞðxhÞj1=d 	 j∂vhðxhÞj1=d,

whence

j∂Γðvh�whÞðxhÞj 	 j∂vhðxhÞj1=d�j∂whðxhÞj1=d

 �d

8xh 2C�h ðvh�whÞ:

This inequality gives us the desired estimate for j∂Γ(vh � wh)(xh)j. In view

of (67), adding over all xh 2C�h ðvh�whÞ concludes the proof. □

A direct consequence of this stability result is the maximum principle for

nodal functions.

Corollary 6 (discrete maximum principle).

Let vh and wh be two nodal functions over the nodal set �Ωh. If vh(xh) � wh(xh)

at all xh 2 ∂Ωh and j∂vh(xh)j	j∂wh(xh)j at all xh 2 Ωh, then

whðxhÞ	 vhðxhÞ 8xh 2Ωh:

Proof. Since vh(yh) � wh(yh) for all yh 2 ∂Ωh, then for any node

xh 2C�h ðvh�whÞ, we have
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∂whðxhÞ� ∂vhðxhÞ:
Combining this with the assumption that j∂vh(xh)j	j∂wh(xh)j for all xh

2Ωh, we deduce j∂vh(xh)j ¼ j∂wh(xh)j for all xh 2C�h ðvh�whÞ. Consequently,
the stability of Proposition 16 implies

sup
Ωh

ðvh�whÞ�¼ 0,

whence vh � wh � 0. This completes the proof. □

Proposition 16 yields a lower bound on the difference between two nodal

functions in terms of the difference of the measure of their subdifferentials.

Similarly, to derive an upper bound, one may consider the functions � wh

and �vh and derive

sup
Ωh

ðwh� vhÞ�	C
X

xh2C�h ðwh�vhÞ
j∂whðxhÞj1=d�j∂vhðxhÞj1=d

 �d

0

@

1

A

1=d

:

Combining both bounds, we can derive a bound on k vh�whkL∞ðΩhÞ in terms

of j∂vh(xi)j and j∂wh(xi)j. In particular, the uniqueness of the solution of the

Oliker–Prussner method follows immediately from Proposition 16.

Finally, we notice that Proposition 16 is instrumental to derive error esti-

mates. Define the nodal interpolation of a function w as the nodal function

Nhw such that

NhwðxhÞ¼wðxhÞ 8xh 2 �Ωh: (69)

Setting wh ¼ uh and vh ¼ Nhu In Proposition 16, where uh and u solve (64)

and (1), respectively, we can derive an estimate for k uh�NhukL∞ðΩÞ. It

remains to estimate the discrepancy of the subdifferentials of the two nodal

functions. While j∂uhðxhÞj ¼ fxh is known by definition of the scheme (64),

the measure of the subdifferential j∂Nhu(xh)j remains unknown. Therefore,

the goal of our next step is to estimate the quantity j∂NhuðxhÞj1=d� f 1=dxh
which

will then be applied in Proposition 16 to derive a pointwise estimate.

3.3 Consistency

In general, this method (64) is consistent in the sense that the right-hand side

of the (64) can be written equivalently as
P

xh2Ωh
fxhδxh and this converges to f

in measure. However, such a concept of convergence is too weak to derive

rates of convergence. Fortunately, we realize that if internal nodes are transla-

tion invariant, then a reasonable notion of operator consistency holds for any

convex quadratic polynomial; see Lemma 12. Such property is shown in

Benamou et al. (2016), Mirebeau (2015), and Nochetto and Zhang (2019)

for Cartesian nodes, see also Section 2.5. In contrast, we give here an
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alternative proof of consistency based on the geometric interpretation of sub-

differentials of convex quadratic polynomials in the interior of the domain,

extend the results to C2,α functions, and further investigate the consistency

error in the region close to the boundary. To achieve this we, First, we require

a definition.

Definition 20 (adjacent set).

Given a convex nodal function wh and a node xh 2Ωh, the adjacent set of xh,

denoted by AxhðwhÞ, is the collection of nodes yh 2 �Ωh closest to xh such that

there exists a supporting hyperplane L of wh and L(yh) ¼ wh(yh). Thus, the set

AxhðwhÞ is the collection of nodes in the star associated with xh in the mesh T h

induced by Γ(wh).

Lemma 10 (size of adjacent sets).

Let the nodal set Ωh be translation invariant, and let p be a C2 convex func-

tion defined in �Ω. If λI 	 D2p 	ΛI in Ω for some constants λ, Λ > 0 and

ph :¼ Nhp is the nodal function associated with p defined in (69), then the

adjacent set of nodes AxhðphÞ satisfies
AxhðphÞ�BRhðxhÞ

where R¼ Λ

λ
d, and BRh(xh) is the ball centred at xh with radius Rh.

Proof. Let zh 2AxhðphÞ be such that

jzh� xhj ¼ maxfjyh� xhj : yh 2AxhðphÞg:
Without loss of generality, we may assume that p(xh) ¼ 0 and rp(xh) ¼ 0.

Let ω be the convex hull of the nodal set fx�j :¼ xh�h~ej, j¼ 1,…,dg where
f~ejgdj¼1 is the basis defined in (60). If zh 2 ω, then the assertion is trivial

because R � 1.

If zh 62ω, then there is a constant ~R� 1 such that ~R�1zh 2ω, which implies

that jzhj 	 ~Rh and jzhj � ~Rd�1=2h. Because ω is convex, we may write

~R�1zh¼
X

d

j¼ 1

σ 2f+ ,�g

ασjxσj, ασj� 0,
X

d

¼ 1

σ 2f+ ,�g

ασj¼ 1:

We next note that pðx�jÞ	 1
2
Λh2 for all j ¼ 1,…, d because D2p 	ΛI, jx�j

� xhj	 h, p(xh) ¼ 0 and rp(xh) ¼ 0. Since zh 2AxhðphÞ, there exists a support-
ing hyperplane L at xh such that

LðzhÞ¼ phðzhÞ, Lðx�jÞ	 phðx�jÞ	
1

2
Λh2:

Exploiting that L is linear and ph(xh) ¼ 0 yields
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phðzhÞ¼ LðzhÞ¼ L ~R
X

d

j¼ 1

σ 2f+ ,�g

ασjxσj

0

B

B

B

@

1

C

C

C

A

¼ ~R
X

d

j¼ 1

σ 2f+ ,�g

ασjLðxσjÞ	
1

2
Λh2 ~R:

On the other hand, since D2p � λI and jzhj � ~Rhd�1=2, we have

phðzhÞ¼ pðzhÞ�
λ

2
jzhj2�

λ

2
~R2d�1h2:

Combining the last two inequalities implies

~R	R¼Λ

λ
d:

This completes the proof. □

The previous result shows that for any node xh with dist(xh, ∂Ω) > Rh, all

nodes in its adjacent set are contained in Ωh. We apply this observation to

establish the following consistency result.

Lemma 11 (properties of convex interpolation).

Let p be a convex quadratic polynomial such that λI	D2p	ΛI, and let ph¼ Nhp

be the nodal function defined by (69). Then the following properties hold:

1. For all xh 2 Ωh we have ∂ph(xh) 6¼∅.

2. If the nodal set Ωh is translation invariant and dist(xh, ∂Ωh) � Rh, with

R¼ Λ

λ
d, under a uniform refinement from Ωh to Ωh/2, we have

j∂phðxhÞj ¼ 2dj∂ph=2ðxhÞj:
3. If the nodal set Ωh is translation invariant, dist(xh, ∂Ωhh) � Rh, and

dist(yh, ∂Ωh) � Rh, then j∂phðxhÞj ¼ j∂phðyhÞj:

Proof. To prove the first claim, we only need to note that if ‘ is the tangent

plane of p at xh, then ‘ is a supporting plane of ph at xh. Thus r‘ 2 ∂ph(xh).

To prove the second claim, we may assume that p(xh) ¼ 0, and rp(xh) ¼ 0.

Note that for homogeneous quadratic polynomials, we have

pðxÞ¼ 4p
x

2


 �

:

A simple calculation yields

∂phðxhÞ¼ 2∂ph=2ðxhÞ

and therefore j∂ph(xh)j ¼ 2dj∂ph/2(xh)j.
To prove the third claim. We consider the function
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pxhðxÞ¼ pðxÞ�rpðxhÞ � ðx� xhÞ�pðxhÞ,
obtained by subtracting the tangent plane of p at xh. Since adding an affine

function does not change the measure of the subdifferential, we have

j∂phðxhÞj ¼ j∂pxhh ðxhÞj. Further note that by subtracting the tangent plane at a

node yh, we obtain the same function up to a parallel translation, that is,

pxhðx� xhÞ¼ pyhðx� yhÞ:
Since the mesh is translation invariant, we have that if L is a supporting

plane of pxhh at xh, then by a parallel translation it is also a supporting plane of

p
yh
h at yh. Hence, we have j∂pxhh ðxhÞj¼ j∂p

yh
h ðyhÞj. Since j∂phðxhÞj¼ j∂pxhh ðxhÞj

for all nodes xh, we conclude that j∂ph(xh)j ¼ j∂ph(yh)j. □

Now we are ready to prove the consistency, for a proof see Nochetto and

Zhang (2019, Lemma 5.3).

Lemma 12 (consistency I).

Let p be a convex quadratic polynomial such that λI 	 D2p 	ΛI, and let ph :¼
Nhp be the corresponding convex nodal function defined in (69). Let Ωh be

translation invariant. Then

j∂phðxhÞj ¼
Z

ωxh

detD2pðxÞdx

for any node xh 2 Ωh such that dist(xh, ∂Ω) � Rh with R¼ Λ

λ
d.

Proof. Let ϕ be any continuous function with compact support in Ω. We con-

sider a sequence of nested refinements Ωhn with hn ¼ 2�nH, for a fixed H > 0.

By Lemma 1 we immediately obtain, as n!∞, that

X

yhn2Ωhn

ϕðyhnÞj∂phnðyhnÞj!
Z

Ω

ϕdetD2pðxÞdx¼ detD2pðxÞ
Z

Ω

ϕðxÞdx:

Thus, we only need to prove that as n!∞

X

yhn2Ω
ϕðyhnÞj∂phnðyhnÞj!

j∂pHðxHÞj
jωxH j

Z

Ω

ϕðxÞdx:

In view of second and third result in Lemma 11, we have

j∂phnðyhnÞj ¼ j∂phnðxHÞj ¼ 2�ndj∂pHðxHÞj:

The refinement strategy implies that jωyhn
j ¼ 2�ndjωxH j. Thus, we infer that

X

yhn2Ωhn

ϕðyhnÞj∂phnðyhnÞj ¼
j∂pHðxHÞj
jωxH j

X

yhn2Ωhn

ϕðyhnÞjωyhn
j

! j∂pHðxHÞjjωxH j

Z

Ω

ϕðxÞdx:

This completes the proof. □
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Moreover, for convex cubic polynomials, we have the following consis-

tency error estimate. This result, to our knowledge, has not appeared

elsewhere.

Lemma 13 (consistency II).

Let xh 2 Ωh and q be a convex cubic polynomial such that λI 	 D2q 	ΛI in
the ball BRh :¼BRhðxhÞ �Ω, with R¼ Λ

λ
d. Then

j∂NhqðxhÞj�
Z

ωxh

detD2qðxÞ dx
	

	

	

	

	

	

	

	

	

	

	Chd + 2jqjC3ðBRhÞ::

Proof. Without loss of generality, we may assume that xh ¼ 0 and q(0) ¼ 0 and

rq(0) ¼ 0. We decompose the cubic polynomial q(x) as

qðxÞ¼ pðxÞ+ hrðxÞ,
where p(x) is a quadratic polynomial such that D2p ¼ D2q(0) and r(x) is a

homogeneous cubic polynomial. Since, by Lemma 10, the adjacent set

AxhðqÞ of the node xh ¼ 0 is contained in a ball of radius Rh we deduce that

jpðzhÞj 	CqR
2h2, jrðzhÞj 	CrR

2h2 8zh 2AxhðqÞ,
where Cq and Cr depends on D2p and D3r, respectively. We set

qtðxÞ¼ pðxÞ + trðxÞ t2 ½�h,h�,
and note that λI 	 D2qt(0) 	ΛI for all t. Therefore, the adjacent set of qt at

0 remains in the ball BRh.

We set the measure of its subdifferential of qt at xh as a function of t

mðtÞ¼ j∂NhqtðxhÞj ¼ j∂Nhqtð0Þj,
and note that we aim to show that

mðhÞ�
Z

ωxh

detD2qðxÞdx
	

	

	

	

	

	

	

	

	

	

	Chd + 2jqjC3ðBRhÞ:

Now we proceed to prove the lemma in the following steps.

1. We aim to show that m(t) is a polynomial of degree d

mðtÞ¼
X

d

k¼0
Ckt

k: (70)

and the coefficients Ck satisfy jCkj	 Chd where C depends on jD2pj, jD3rj,
and the dimension d. By the characterization of the subdifferential, given in

Lemma 8, the subdifferential of Nhqt at 0 is the convex hull of the piecewise

gradient of its convex envelope rΓ(Nhqt)jT for all T 2T h that have xh as a

vertex; see Fig. 6. We label these simplices as T1, ⋯, TN and, to simplify

notation, we set the piecewise gradient of Γ(Nhp) and Γ(Nhr) at Ti as
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vi¼rΓðNhpÞjTi , wi¼rΓðNhrÞjTi , i¼ 1,…,N:

Hence, we have

ui :¼rΓðNhqtÞjKi
¼ vi + twi:

To compute the measure of the convex hull of {ui}, we may divide the

convex hull into a set of disjoint simplices {Si, i ¼ 1, ⋯, N} and label the

vertices of Si as f0,ui1 ,⋯ ,uidg. Thus, we obtain

mðtÞ¼
X

N

i¼1
jSij where jSij denotes the signed volume of Si:

and so, by the volume formula of simplices, we get

mðtÞ¼ 1

d!

X

N

i¼1
det

1 0
Т

1 uТi1
⋮ ⋮

1 uТid

0

B

B

B

@

1

C

C

C

A

: uij ¼ vij + twij : (71)

Now, it is clear that

jSij ¼
X

d

k¼0
Ci
kt
k

is a polynomial of t with degree at most d. Thus, m(t) must be a polyno-

mial with degree at most d as well. Furthermore, by the volume formula

of simplices (71), the coefficients jCi
kj 	Chd because both jvij j 	Ch and

jwij j 	Ch. Finally, the number N of simplices Si is finite and bounded

by the number of vertices in the adjacent set A.

2. We show that m0(0) ¼ 0. To do so, it suffices to show that the function m

is even, that is m(t) ¼ m(�t) for all �h 	 t 	 h. Note that if v 2 ∂Nh(p +

tr)(0), then �v 2 ∂Nh(p � tr)(0) for any t 2 (0, h]. Indeed, since the sub-

differential set is determined by the function values on the adjacent set

which is contained in the ball BRh(0), if v � yh 	 (p + tr)(yh) for all yh 2
BRh(0), then

v � ð�yhÞ	 ðp+ trÞð�yhÞ 8yh 2BRhð0Þ:

Hence, �v 2 ∂Nh(p � tr)(0) because p(yh) ¼ p(�yh). Thanks to this

symmetry property, we deduce that j∂Nh(p � tr)(0)j ¼ j∂Nh(p + tr)(0)j,
i.e., m(t) ¼ m(�t).

3. We show that

jmðhÞ�mð0Þj 	Chd + 2:
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Combining the previous two steps we get that

mðtÞ¼mð0Þ+C2t
2 +⋯+Cdt

d

because C1 ¼ m0(0) ¼ 0. Since jCjj	 Chd for j¼ 2,…,d, we deduce that

jmðtÞ�mð0Þj 	Chd + 2 8t2 ½0,h�:
4. It remains to show that

Z

ωxh

detD2qðxÞdx�mð0Þ
	

	

	

	

	

	

	

	

	

	

	Chd + 2:

By the consistency for quadratics given in Lemma 12, we have

mð0Þ¼
Z

ωxh

detD2pðxÞdx:

Therefore, it is sufficient to show that

Z

ωxh

detD2qðxÞ� detD2pðxÞð Þdx
	

	

	

	

	

	

	

	

	

	

	Chd + 2:

A Taylor expansion of detD2q¼ detD2ðp+ hrÞ reveals that

detD2qðxÞ� detD2pðxÞ�h cof D2pðxÞ :D2rðxÞ
	

	

	

		Ch2:

where the constant C depends on D2p and D3r. This implies that

Z

ωxh

detD2qðxÞ� detD2pðxÞð Þdx
	

	

	

	

	

	

	

	

	

	

	 h

Z

ωxh

cof D2pðxÞ :D2rðxÞdx
	

	

	

	

	

	

	

	

	

	

+Ch2jωxh j:

Noting that cof D2p : D2r is an odd function and ωxh is symmetric

respect to the origin, we obtain

Z

ωxh

cof D2pðxÞ :D2rðxÞdx¼ 0

and

Z

ωxh

detD2qðxÞ� detD2pðxÞð Þdx
	

	

	

	

	

	

	

	

	

	

	Chd + 2:

This completes the proof. □
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Now for any function w that can be approximated locally by a quadratic

polynomial such that wðxÞ¼ pðxÞ+Oðh2 + αÞ in BRh(xh) or by a cubic polyno-

mial such that w(x) ¼ q(x) + O(h3+α) in BRh(xh), we show that the consistency

error of the Oliker–Prussner method is of order OðhαÞ and Oðh1 + αÞ,
respectively.

Proposition 17 (interior consistency).

Let Ωh be a translation invariant set of nodes, and xh 2 Ωh be such that dist

(xh, ∂Ωh) � Rh with R¼ Λ

λ
d. If w2C2 + k,αðBRhÞ, with k 2{0, 1}, and α 2 (0, 1])

is a convex function with λI 	 D2w 	ΛI, then we have

j∂NhwðxhÞj�
Z

ωxh

detD2wðxÞdx
	

	

	

	

	

	

	

	

	

	

	Chk + αjwjC2 + k,αðBRh Þjωxh j,

where C ¼ C(d, λ, Λ).

Proof. We divide the proof into two cases k ¼ 0 and k ¼ 1.

1. Case k ¼ 0: We only need to show the inequality

j∂NhwðxhÞj	
Z

ωxh

detD2wðxÞdx +ChαjwjC2,αðBRh Þjωxh j,

because the reverse inequality can be derived similarly. Since

w2C2,αðBRhÞ, we estimate w by a quadratic polynomial p so that

wðxÞ	 pðxÞ 8x2BRhðxhÞ,

where p(xh) ¼ w(xh), rp(xh) ¼ rw(xh) and

D2p¼D2wðxhÞ+ChαjwjC2,αðBRh ÞI

for a fixed, and sufficiently large, constant C. Let ph ¼ Nhp, and note that

j∂NhwðxhÞj 	 j∂phðxhÞj:

It remains to show that

j∂phðxhÞj 	
Z

ωxh

detD2wðxÞdx+ChαjwjC2,αðBRh Þjωxh j:

Since (λ + Chα)I 	 D2p 	 (Λ + Chα)I and

Λ+Chα

λ+Chα
	Λ

λ
becauseΛ� λ,

invoking the consistency of Lemma 12 we obtain
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j∂phðxhÞj¼
Z

ωxh

detD2pðxÞdx

provided that dist(xh, ∂Ωh)� Rh. Recalling that w2C2,αðBRhÞ, we can write
D2p ¼ D2w(x) + E(x) for all x2BRh , where jEðxÞj 	ChαjwjC2,αðBRh Þ.
A Taylor expansion yields

j∂phðxhÞj 	
Z

ωxh

detD2wðxÞdx+ChαjwjC2,αðBRh Þjωxh j:

2. Case k ¼ 1: If w2C3,αðBRhÞ, we approximate w by a cubic polynomial q

so that

wðxÞ	 qðxÞ 8x2BRhðxhÞ,
where q(xh) ¼ w(xh), rq(xh) ¼ rw(xh),

D2qðxhÞ¼D2wðxhÞ+Ch1 + αjwjC3,αðBRh Þ,

and D3q ¼ D3w(xh) with universal constant C. The rest of the proof is sim-

ilar to the previous case.

Combing both cases, we conclude the proof of the estimate. □

3.4 Pointwise error estimate

We are now ready to show a pointwise error estimate for the method (64)

under suitable regularity assumptions on the solution u. We aim to apply

the stability of the numerical scheme shown in Proposition 16 to derive a

lower bound of the difference vh � uh, for a suitable convex piecewise linear

function vh.

Assume that the convex solution u of the Monge–Ampère equation (1) is

Ck,α near the boundary of the domain Ω where k 2{2, 3} and α 2 (0, 1].

We first extend the solution to a larger convex domain

Ω4Rh¼fx2d,distðx,ΩÞ	 4Rhg
such that, for sufficiently small h, the extended function, which we still denote

as u, remains Ck,α-continuous in the extended region and satisfies

λ

2
I	D2uðxÞ	 2ΛI for any x2Ω4Rh: (72)

Next, we extend the translation invariant interior nodal set Ωh to the extended

domain Ω4Rh and, by an abuse of notation, we still denote the set as Ωh, that is,

Ωh¼ xh¼
X

d

j¼1
zj~ej : zj 2

( )

\Ω4Rh:
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We construct the piecewise linear function vh ¼ Γ(Nhu) by taking the convex

envelope of the nodal interpolation of the solution u on Ωh in the extended

domain and then restrict the piecewise linear function vh to the domain Ω.

Thus, this procedure yields a piecewise linear function vh defined on the

domain Ω.

We claim that the piecewise linear function vh satisfies the following

two conditions which are useful in the error estimate. First, the adjacent

set size estimate of Lemma 10 and the bound of D2u given in (72) imply

that for any interior node xh 2Ωh\Ω, its adjacent set AxhðvhÞ is contained

in the extended domain Ω4Rh. Second, we notice that jvh(x) � u(x)j	 Ch2

on the boundary ∂Ω where the constant C depends on kukC2ðΩÞ. This is sim-

ply due to the fact that the diameter of any patch of a node z2Ωh\Ω is

bounded by 4Rh and interpolation theory of piecewise linear function.

Now we are ready to derive the main error estimate.

Theorem 13 (error estimate).

Let u be the solution of the Monge–Ampère equation (1), 0 	 λI 	 D2u 	ΛI
and u2C2 + k,αð�ΩÞ with k 2{0, 1} and α 2 (0, 1]. Let Ωh be a translation

invariant nodal set satisfying (60), and let uh be the solution of discrete

Monge–Ampère equation (64) defined on Ωh. Then we have

ku�uhkL∞ðΩÞ	Chk + α,

where the constant C depends only on kukC2 + k,αðΩÞ, λ, Λ, diam(Ω), and space

dimension d.

Proof. Let vh be the interpolation of the extension of the solution u defined

above. Since jvh � uhj	 Ch2 on the boundary ∂Ω, we have vh + Ch2 � uh.

By the stability of the numerical solution, Proposition 16, we obtain

sup
Ωh

ðvh +Ch2�uhÞ�	C
X

xi2C�h ðvh�uhÞ
ðj∂vhðxiÞj1=d�j∂uhðxiÞj1=dÞd

0

@

1

A

1=d

:

Invoking the consistency error estimate, Proposition 17, we immediately

obtain

sup
Ωh

ðvh +Ch2�uhÞ�	Chk +α:

By a simple algebraic manipulation, the estimate yields a lower bound for

the error vh � uh ��Ch2 � Chk+α. Similarly, an estimate for the upper bound

follows by considering the function uh + Ch2 � vh. Combining both estimates,

we get the desired result. □
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3.5 W2,p error estimate

The results and arguments of the previous section have recently been

extended to the derivation of W2,p error estimates of the Oliker–Prussner

scheme (Neilan and Zhang, 2018). Here, the discrete W2,p norm is taken to

be the sum of weighted second-order differences:

kvkW2,p
f

¼
X

xh2Ωh

fxh jΔevðxhÞjp
 !1=p

:

The starting point is a simple observation that the contact set of a nodal

function contains information of its second-order difference. In particular, if

uh is the solution to (64) and vh is some approximation to u, then we can

define the perturbed error

wE

h¼ vh�ð1� EÞuh (73)

with parameter E 2 (0, 1). Now, by using the identity

Δew
E

hðxhÞ�ΔeΓw
E

hðxhÞ� 0 for xh 2C�h ðwE

hÞ, we have, after some algebraic

manipulations,

Δeðuh� vhÞðxhÞ	
E

1� E

ΔevhðxhÞ 8xh 2C�h ðwE

hÞ:

The right-hand side of this expression is uniformly bounded for appropriate vh
if u is sufficiently smooth, and therefore we find that the error Δe(uh � vh)(xh)

is controlled on the contact set C�h ðwE

hÞ. However, noting that wE

h is not neces-

sary convex, we must estimate Δe(uh � vh)(xh) on the complement set

EE
:¼ΩhnC�h ðwE

hÞ: (74)

This is done by estimating its cardinality in terms of the consistency of

the method.

Lemma 14 (size of complement set).

Let uh and vh be convex nodal functions with uh ¼ vh on ∂Ωh and uh 	 vh on

Ωh. Set

j∂uhðxhÞj ¼ fxh and j∂vhðxhÞj ¼ gxh xh 2Ωh:

Then there exists a constant C > 0 depending only on f such that

X

xh2EE

fxh 	C
ð1� EÞ

E

k f 1=d�g1=dk‘dðC�h ðwE

h
ÞÞ,

where wE

h and EE are defined by (73) and (74), respectively.
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The last ingredient to develop W2,p estimates is a simple result of the dis-

crete L1 norm of a nodal function in terms of its level sets. Roughly speaking

this result gives a relation between Riemann and Lebesgue sums; see Neilan

and Zhang (2018, Lemma 5.1)

Lemma 15. Let sh be a nodal function with jsh(xh)j	 M for some M > 0. Then,

for any σ > 0,

X

xh2Ωh

fxh jshðxhÞj 	 σ
X

M

k¼0

X

xh2Ak

fxh ,

where

Ak ¼fxh 2Ωh : jshðxhÞj � kσg:

Theorem 14 (W2,p error estimate).

Suppose that the conditions of Theorem 14 are satisfied with k + α ¼ 2. Then

there holds

ku�uhkW2,p
f

	 Ch1=p p2 ðd,∞Þ
Cj loghj1=dh1=d p2 ð1,d�:

�

We now give a sketch of the main ideas to prove Theorem 14 and refer the

reader to Neilan and Zhang (2018) for details. To communicate the main

ideas, we make the simplifying assumption that the consistency estimate in

Proposition 17 holds up to the boundary. We also assume homogeneous

boundary conditions, i.e., g ¼ 0 in (1b). These assumptions, which do not hold

in general, allow us to derive better rates of convergence than those stated in

Theorem 14.

As a first step we set vh ¼ (1�Ch2)1/dNhu, where C > 0 is sufficiently

large such that (cf. Proposition 17)

gxh ¼ j∂vhðxhÞj ¼ ð1�Ch2Þj∂NhuðxhÞj	 fxh :

Therefore by the comparison principle in Corollary 6, we have vh � uh on Ωh.

We also have jfxh �gxh j 	Ch2 + d.

To deduce the estimate, it suffices bound
X

xh2Ωh

fxh Δeðuh� vhÞðxhÞð Þ+:

Bounding the negative part of the error can be obtained by similar arguments.

For parameter Ek with Ek/(1 � Ek) ¼ Ck1/ph2, we define

Ak¼ xh 2Ωh : Δeðuh� vhÞðxhÞ�
Ek

1� Ek

ΔevhðxhÞ
� �

,
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and note that Ak�EEk . Let shðxhÞ¼ ðΔeðuh� vhÞÞ+
	

	

	

	

p
, and note that jsh(xh)j	

Ch�2p because uh and vh are bounded. Applying Lemma 15, with σ ¼ Ch2p,

we have

X

xh2Ωh

fxh Δeðuh� vhÞðxhÞð Þ +
	

	

	

	

p	Ch2p 1 +
X

Ch�2p

k¼1

X

xh2Ak

fxh

 !

:

On the other had, using Lemma 14 and the consistency of the scheme yields,

for h sufficiently small,

X

xh2Ak

fxh 	
X

xh2EEk

fxh 	C
1� Ek

Ek

k f 1=d�g1=dk‘dðC�h ðwEk
h
ÞÞ

	Ch2
1� Ek

Ek

¼Ck�1=p:

Thus, we find that

X

xh2Ωh

fxh Δeðuh� vhÞðxhÞð Þ+
	

	

	

	

p 	Ch2p 1 +
X

Ch�2p

k¼1

1

k1=p

 !

	C
h2j loghj if p¼ 1,

h2 if p> 1:

�

In certain settings, Theorems 13 and 14 immediately give us W1,p error

estimates as well. To make this precise, we assume that the basis

f~ejgdj¼1¼fejg
d
j¼1 defined in (60) is the canonical one. We then define the

backward difference operator

D�e vðxhÞ¼
vðxhÞ� vðxh� ehÞ

h
,

and the discrete norms/semi-norms, for p2 ð1,∞Þ,

kvkLp
h
ðΩhÞ ¼ hd

X

xh2Ωh

jvðxhÞjp
0

@

1

A

1=p

,

kvk
W

1,p
h
ðΩhÞ ¼ kv kp

L
p

h
ðΩhÞ

+ hd
X

d

j¼1
kD�ej v k

p

L
p

h
ðΩhÞ

0

@

1

A

1=p

,

kvk
W

2,p
h
ðΩhÞ ¼ kv kp

W
1,p
h
ðΩhÞ

+ hd
X

d

j¼1
kΔejv k

p

L
p

h
ðΩhÞ

+
X

d

i¼ 1

j 6¼ i

kD�eiD
�
ej
v kp

L
p

h
ðΩhÞ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

1=p

:

We then have (Jovanovi�c and S€uli, 2014, Lemmas 2.60–2.61)
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kvk
W

1,p
h
ðΩhÞ	C kv k1=2

L
p

h
ðΩhÞkv k

1=2

W
2,p
h
ðΩhÞ

:

Therefore noting that kvkLp
h
ðΩhÞ	C kvkL∞ðΩÞ, and,

D�eiD
�
ej
vðxÞ ¼ 1

2
Δeivðx�heiÞ+Δejvðx�hejÞ�Δ~e i, jvðx�hðei + ejÞÞ
� 


with ~ei, j¼ ei� ej, we have the following, by Theorems 13 and 14.

Corollary 7. Suppose that the conditions in Theorem 13 are satisfied with

k + α ¼ 2, and assume that f � f0 > 0 in Ω. Then there holds

ku�uhkW1,p
h
ðΩhÞ 	

Ch
1 +

1
2p p2 ðd,∞Þ,

Cj loghj
1
2dh1 +

1
2d p2 ð1,d�:

8

<

:

Remark 15 (extensions).

In this section we showed that the stability estimate given in Proposition 16

provides a powerful tool to develop error estimates for the Monge–Ampère

equation, as it allows us to derive L∞ and W2
p error estimates when the solu-

tion enjoys regularity u2C2 + k,αð�ΩÞ. Thanks to this stability estimate, it also

possible to extend these estimates if the solution is of lower regularity and/or

degenerate. The key observation is that the stability estimate measures the

consistency error in the ‘d-norm. If the solution is rough in a region of small

measure and smooth elsewhere, so that the consistency error is small in

‘d-norm, then by the stability estimate, we may still derive a rate of conver-

gence for the low regularity case. This is explored in Nochetto and Zhang

(2019, Theorem 6.3) to prove a rate of convergence for solutions in C1,1(Ω),

but not in C2(Ω). ■

4 Finite Element Methods

It will be found that most classical mathematical approximation procedures as

well as the various direct approximations used in engineering fall into this cat-

egory. It is thus difficult to determine the origins of the finite element method

and the precise moment of its invention.

Zienkiewicz and Taylor (2000)

In this section, we summarize recent developments of finite element methods

for the Monge–Ampère problem with Dirichlet boundary conditions (1). For

simplicity, throughout this section, we assume that boundary conditions in

(1) are homogeneous, i.e., g ¼ 0. The extension to nonhomogenous boundary

conditions is straightforward.
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The main difficulty to construct (and analyze) finite element schemes for

fully nonlinear problems is that the PDEs are nonvariational. Recall that a

finite element method is typically derived by

(i) multiplying the PDE by a test function;

(ii) integrating the resulting product over the domain;

(iii) performing integration by parts to arrive at a variational formulation;

(iv) posing the variational formulation on a finite dimensional space, usually

consisting of piecewise polynomials.

Note that the third step usually requires some structure conditions of the

PDE, e.g., that the PDE is in divergence-form, which is not present for

fully nonlinear problems. Another obvious difficult to construct convergent

finite element schemes is that the notion of viscosity solutions, given in

Definition 4, and Alexandrov solutions, as in Definition 9 for the Monge–Am-

père equation are nonvariational, and it is unclear how this solution concept

can be adopted within a finite element framework.

We must remark, however, that the Monge–Ampère operator (1a) does

possess a divergence-form. Using well-known algebraic identities and the

divergence-free property of cofactor matrices, there holds detD2u¼ 1
d
r �

ðcof D2uruÞ. Note however that variational formulations based on this

identity would still involve second-order derivatives, and therefore, at this

time, it is unclear whether numerical methods based on this approach

are advantageous.

Nonetheless, assuming some regularity of the solution, well-defined finite

element methods can be formulated and analyzed for fully nonlinear PDEs.

One approach is to omit the third step of the four-step process described

above. For example, multiplying the Monge–Ampère equation (1a) by a func-

tion v and integrating over Ω yields the identity

Z

Ω

f � detD2uð Þvdx¼ 0: (75)

A simple calculation involving H€older’s inequality and Sobolev embeddings

show that expression (75) is well-defined provided u, v 2 W2,d(Ω). Finite ele-

ment methods can then be constructed based on the identity (75). Namely, an

obvious finite element method based on the identity (75) seeks uh 2 Vh

satisfying

Z

Ω

f � detD2uhð Þvhdx¼ 0 8vh 2Xh, (76)

where Xh is a finite dimensional space consisting of piecewise polynomials

with respect to a partition of Ω that vanish on the boundary. While this
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method may be convergent (cf. Awanou, 2014, 2015c, 2017b; B€ohmer, 2008;

Davydov and Saeed, 2013; Neilan, 2014b), the appearance of global second-

order derivatives in the method necessitates the use of C1 finite element

spaces which can be arduous to implement and are not found in most finite

element software packages. In addition, C1 finite element generally require

high-degree polynomial bases, resulting in a relatively large algebraic system.

Because of the many disadvantages of the finite element method (76) sev-

eral finite element methods with simpler spaces have been developed. These

include C0 penalty methods, discontinuous Galerkin (DG) methods, mixed

finite element methods, and methods based on high order regularizations.

We now discuss these methods in the subsequent sections.

4.1 Continuous finite element methods

Here we summarize finite element methods presented in Brenner et al. (2011),

Brenner and Neilan (2012), and Neilan (2013) for the Monge–Ampère equa-

tion which employ spaces consisting of continuous, piecewise polynomials,

i.e., the Lagrange finite element space. These are arguably the simplest finite

element spaces and are available on virtually all finite element software pro-

grams and libraries. In addition, we provide a slightly new and improved con-

vergence analysis based on recent results for finite element methods for linear

nondivergence form PDEs (Feng et al., 2017). To describe these methods and

their accompanying analysis, we require some notation.

As before, we assume that Ω�d ðd¼ 2,3Þ is a bounded, convex

domain. Let T h denote a shape-regular and simplicial triangulation of Ω.

We denote the sets of interior and boundary (d � 1)–dimensional faces of

T h by F I
h and FB

h , restrictively. The jump of a vector valued function v across

an interior face F¼ ∂T+\∂T� 2F I
h is given by

v½ �½ � ¼ 1

2
v+�n+ + n +�v+ + v��n� + n��v�ð Þ, (77)

where n� is the outward unit normal of ∂T�, and v�¼ vjT� . We also define the

average of B (a scalar, vector, or matrix-valued function) across F as

Bf gf g¼ 1

2
B + +B�ð Þ: (78)

If F¼ ∂T +\∂Ω2FB
h , then we define

v½ �½ � ¼ 1

2
v+�n + + n +�v+ð Þ, Bf gf g¼B +: (79)

For an integer r � 2, the Lagrange finite element space with homogeneous

boundary conditions is given by
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Vh¼ vh 2W1,∞
0 ðΩÞ : vhjT 2rðTÞ 8T 2T h

� �

,

where rðTÞ is the space of polynomials with degree less than or equal to r

with domain T. In addition, for a number p2 ð1,∞Þ and integer m, we define

Wm,pðT hÞ¼
Y

T2T h

Wm,pðTÞ, Vp¼W
1,p
0 ðΩÞ\W2,pðT hÞ,

and note that Vh�Vp for all p2 ð1,∞Þ. We also set HmðT hÞ¼Wm,2ðT hÞ.
Because of the noninclusion Vh⊄W2,dðΩÞ, the finite element formulation

(76) is not well defined if Xh is taken to be the Lagrange finite element space.

A naı̈ve approach to bypass this issue is to redefine this formulation so that

integration is done piecewise over the mesh, i.e., to consider

X

T2T h

Z

T

f � detD2uh
� 


vhdx 8vh 2Vh: (80)

While this method is well defined (i.e., all quantities are defined and bounded),

it is easy to see that the scheme is ill-posed. For example, if wh 2 Vh is strictly

piecewise linear, then detD2wh¼ 0 on each T 2T h, and consequently, unique-

ness (and stability) is dramatically lost.

The arguments given in Brenner et al. (2011) offer an alternative expla-

nation on why the formulation (80) leads to an ill-posed problem. Namely,

the main point in Brenner et al. (2011) is that the linearization of the dis-

crete problem (80) is not consistent with respect to the linearization of the

continuous problem (1a). Instead, to ensure consistency and stability, finite

element methods for the Monge–Ampère problem should be designed such

that the discrete linearization at the solution u is a coercive operator over

the finite element space. We now explain how to construct methods with

stable linearizations. To do so, we first assume that the exact solution to

the Monge–Ampère equation satisfies u2Ck,αð�ΩÞ with k + α > 2 and is

strictly convex.

Define

½u� ¼ f � detD2u

to be the Monge–Ampère operator, and let L be the linearization of F at the

solution u, i.e.,

Lw¼ lim
t!0

½u+ tw��½u�
t

¼�cof D2u :D2w, (81)

where cof D2u denotes the cofactor matrix of D2u, and “:” denotes the Frobe-

nius inner product. The assumptions on u imply that matrix cof D2u is positive

definite on �Ω and uniformly continuous.
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A consistent discretization of linear operators in nondivergence form (such

as L) was introduced in Feng et al. (2017). In the case that the linear problem

is given by (81), the discretization is given by Lh :Vp!V0h with

Lhv,whh i¼�
X

T2T h

Z

T

cof D2u :D2v
� 


whdx

+
X

F2F I
h

Z

F

cof D2u
� �� �

: rv½ �½ �whds,

(82)

where h � , � i denotes the dual pairing between some Banach space and its

dual. The operator Lh is clearly consistent with L: If v2W2,pðΩÞ\W1,p
0 ðΩÞ,

then hLhv,whi¼ hLv,whi for all wh 2 Vh. In addition, the discrete operator is

stable as the next lemma shows. We refer the reader to Feng et al. (2017)

for a proof.

Lemma 16 (stability).

Define the discrete W2, p-norm

kv kp
W

2,p
h
ðΩÞ :¼kD2

hv k
p

LpðΩÞ +
X

F2F I
h

h
1�p
F rv½ �½ �k kp

LpðFÞ 1< p<∞,

kvkW2,∞
h
ðΩÞ :¼kD2

hvkL∞ðΩÞ + max
F2F I

h

h�1F rv½ �½ �k kL∞ðFÞ,

where D2
hv is the piecewise Hessian of v. Assume that u2C2ð�ΩÞ and is strictly

convex over �Ω. Then there exists h0 > 0 depending on the modulus of conti-

nuity of D2u, such that for h 2 (0, h0], there holds the following inf-sup con-

dition ð2	 p<∞)

kwhkW2,p
h
ðΩÞ	C k LhwhkLp

h
ðΩÞ :¼ sup

vh2Vhnf0g

Lhwh,vhh i
k vhkLp0 ðΩÞ

8wh 2Vh,

where 1/p + 1/p0 ¼ 1

Based on the definition of Lh and the stability results stated in Lemma 16

we can develop a consistent discretization for the Monge–Ampère problem

as well as a convergence theory. Essentially, its construction is based on the

observations that the expressions
R

T
ðcof D2u :D2vÞwhdx and

R

F
ffcof D2ugg :

rv½ �½ �wh ds are the linearizations of
R

T
ðf � detD2vÞwh and

R

F
ffcof D2vgg :

rv½ �½ �whds, respectively, about the solution u. With this in mind, we define

the discrete operator h :V!V0h via

h½v�,wh i¼
X

T2T h

Z

T

f � detD2v
� 


whdx+
X

F2F I
h

Z

F

cof D2v
� �� �

: rv½ �½ �whds,

and consider the finite element method: Find uh 2 Vh such that

192 Handbook of Numerical Analysis



h½uh�,vhh i¼ 0 8vh 2Vh: (83)

We immediately see that method (83) is consistent: There holds ru½ �½ �jF¼ 0

over all interior faces F, and therefore hh½u�,vhi¼ 0 for all vh 2 Vh. Further-

more, the proceeding discussion implies that Lh is the linearization of h:

Lhw¼ lim
t!0

h½u+ tw��h½u�
t

inV0h:

In summary the diagram given in Fig. 7 commutes. We now show that this

property (along with the regularity and convexity assumptions of u) implies

that there exists a locally unique solution to (83) with optimal rates of

convergence.

As a first step, we first point out that Lemma 16 implies that LhjVh
is bijec-

tive. Therefore, the mapping Mh : Vp ! Vh given by

Mh¼ LhjVh


 ��1
Lh�hð Þ (84)

is well defined. The existence of a solution to the finite element method (83)

is proven by showing that Mh has a fixed point in a ball centred at uc,h, where

uc,h is the elliptic projection of u given by

uc,h :¼ LhjVh


 ��1
Lhu: (85)

The basis of this argument is provided in the next lemma.

Lemma 17 (Mh is Lipschitz).

Assume that the convex solution of the Monge–Ampère equation satisfies

u2Ck,αð�ΩÞ with k + α > 2. Then there holds, for all p2 ½2,∞Þ and all

v1, v2 2 Vp,

kMhv1�Mhv2kW2,p
h
ðΩÞ	C1 u�1

2
ðv1 + v2Þ

�

�

�

�

�

�

�

�

W
2,∞
h
ðΩÞ
kv1� v2kW2,p

h
ðΩÞ,

where C1 > 0 depends on p and u, but is independent of h.

FIG. 7 A commuting diagram connecting the nonlinear problems and their discretizations.
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Proof. We give the proof of the two-dimensional case d ¼ 2; the arguments in

three dimensions are similar and can be found in Brenner and Neilan (2012).

We first use Taylor’s Theorem and the fact that Fh is quadratic in two

dimensions, to get

h½v� ¼h½u�+ Lhðv�uÞ+Rh½v�u� ¼ Lhðv�uÞ+Rh½v�u�,
where Rh :V!V0h is quadratic in its arguments and independent of u.

Using this expansion into the mapping Mh yields

Mh½v1��Mh½v2� ¼ LhjVh


 ��1
Lhv1�Lhv2� h½v1��h½v2�ð Þð Þ

¼ LhjVh


 ��1
Rh½v2�u��Rh½v1�u�ð Þ:

(86)

Since Rh is quadratic there holds

Rh½v2�u��Rh½v1�u� ¼
Z 1

0

DRh½tðv2�uÞ+ ð1� tÞðv1�uÞ�ðv2� v1Þdt

¼DRhð
1

2
ðv2 + v1Þ�uÞðv2� v1Þ,

where by DRh we denoted the derivative of Rh. Therefore, by (86) and Lemma

16 we have

kMhv1�Mhv2kW2,p
h
ðΩÞ	C DRh

1

2
ðv2 + v1Þ�u

� �

ðv2� v1Þ
�

�

�

�

�

�

�

�

L
p

h
ðΩÞ

:

Several applications of H€older’s inequality yields (cf. Neilan, 2013,

Lemma 4.2)

kDRhðwÞðqÞkLp
h
ðΩÞ	C kwkW2,∞

h
ðΩÞ kqkW2,p

h
ðΩÞ,

and therefore

kMhv1�Mhv2kW2,p
h
ðΩÞ 	C

1

2
ðv1 + v2Þ�u

�

�

�

�

�

�

�

�

W
2,∞
h
ðΩÞ
kv1� v2kW2,p

h
ðΩÞ:

□

Lemma 18 (contraction).

Assume that the hypotheses of Lemma 17 are satisfied. For fixed ρ > 0 and

p2 ½2,∞Þ, define the closed ball

Bρ,p¼ vh 2Vh : kuc,h� vhkW2,p
h
ðΩÞ	 ρ

n o

,

where uc,h 2 Vh is defined by (85). Then, for all v1, v2 2 Bρ,p, there holds

kMhv1�Mhv2kW2,p
h
ðΩÞ	C2h

�d=p h‘ + α + ρ
� 


kv1� v2kW2,p
h
ðΩÞ,

where ‘¼ minfr�2, k�2g.
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Proof. First, the smoothness assumptions on u allows us to conclude that the

elliptic projection uc,h satisfies (Feng et al., 2017, Theorem 3.2)

ku�uc,hkW2,p
h
ðΩÞ	C3h

‘+ α p2 ½2,∞Þ, (87)

where C3 > 0 depends on p and kukCk,αð�ΩÞ. Consequently, there holds by

an inverse estimate, for any wh 2 Vh,

ku�uc,hkW2,∞
h
ðΩÞ	ku�whkW2,∞

h
ðΩÞ +Ch

�d=p kuc,h�whkW2,p
h
ðΩÞ

	ku�whkW2,∞
h
ðΩÞ +Ch

�d=p ku�uc,hkW2,p
h
ðΩÞ + ku�whkW2,p

h
ðΩÞ


 �

:

Taking wh to be the nodal interpolant of u yields

ku�uc,hkW2,∞
h
ðΩÞ	C4h

‘ +α�d=p: (88)

Applying this result to Lemma 17 and using an inverse estimate, we obtain

kMhv1�Mhv2kW2,p
h
ðΩÞ

	C ku�uc,hkW2,∞
h
ðΩÞ + h

�d=p kuc,h�
1

2
ðv1 + v2ÞkW2,p

h
ðΩÞ

� �

kv1� v2kW2,p
h
ðΩÞ

	Ch�d=p h‘ + α + ρ
� 


kv1� v2kW2,p
h
ðΩÞ

for all v1, v2 2 Bρ,p. □

Theorem 15 (error estimate).

Assume that u2Ck,αð�ΩÞ with k + α > 2 and is strictly convex. Set

‘¼ minfr�2,k�2g. There exists h1 > 0 such that for h 	 h1, there exists

a solution to (83) satisfying

ku�uhkW2,p
h
ðΩÞ	Ch‘+ α: (89)

Moreover, if ~uh is another solution to (83) then there holds

ku� ~uhkW2,∞
h
ðΩÞ�C, with the constant C > 0 independent of h.

Proof. Fix p2 ½2,∞Þ such that ‘ + α � d/p > 0, and let

h1¼ minf1=ð4C2Þ,1=ð2C1C2C3C4Þg1=ðα+ ‘�d=pÞ:
Then, for h	 minfh0,h1g, where h0 was defined in Lemma 16, set ρ1 ¼

h‘+α/(4C2). Lemma 18 then shows that, for v1,v2 2Bρ1,p,

kMhv1�Mhv2kW2,p
h
ðΩÞ	C2 h‘+ α�d=p + h�d=pρ1


 �

kv1� v2kW2,p
h
ðΩÞ

	 2C2h
α + ‘�d=p
1 kv1� v2kW2,p

h
ðΩÞ	

1

2
kv1� v2kW2,p

h
ðΩÞ,
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and therefore MhjVh
is a contraction mapping on Bρ1,p. Likewise, we can use

Lemma 17 and the fact that uc,h ¼ Mhu to get (cf. (87) and (88))

kuc,h�MhvkW2,p
h
ðΩÞ¼kMhu�MhvkW2,p

h
ðΩÞ

	C1

2
ku�uc,hkW2,∞

h
ðΩÞ ku�uc,hkW2,p

h
ðΩÞ

	C1C3C4h
2α + 2‘�d=p

2
	 h‘+ α

4C2

¼ ρ1:

Therefore Mh maps Bρ1,p to itself. By Banach’s fixed point theorem, we

conclude that Mh has a fixed point in Bρ1,p, and this fixed point is a solution

to (83). The error estimate for α � d/p > 0 (89) follows from the inclusion

uh 2Bρ1,p and the definition of ρ1. The other cases ‘ + α � d/p 	 0 then follow

from H€older’s inequality.

Finally, if ~uh 2Vh is another solution to (83), then there holds Mh~uh¼ ~uh.

Therefore, by Lemma 17 we conclude that

k~uh�uhkW2,p
h
ðΩÞ¼kMh~uh�MhuhkW2,p

h
ðΩÞ

	C1

2
ku�uhkW2,∞

h
ðΩÞ + ku� ~uhkW2,∞

h
ðΩÞ


 �

kuh� ~uhkW2,p
h
ðΩÞ:

Now applying similar arguments as those found in Lemma 17, we

conclude that ku�uhkW2,∞
h
ðΩÞ	Chα�d=p! 0. Therefore, by dividing by

kuh� ~uhkW2,p
h
ðΩÞ, we get C	ku� ~uhkW2,∞

h
ðΩÞ for h sufficiently small. □

Remark 16 (extensions).

The proposed method and the conclusion of Theorem 15 deserve the follow-

ing comments:

l As mentioned earlier, the analysis given here slightly improves the

results given in Brenner et al. (2011) and Neilan (2013). Namely, the

paper (Brenner et al., 2011) requires d ¼ 2, r � 3, and u 2 Hs(Ω) for

s > 3 (implying that u2C2,αð�ΩÞ by a Sobolev embedding). The paper

(Neilan, 2013) requires r � 2 and regularity u2W3,∞ðΩÞ to carry out

the analysis.

l Discontinuous Galerkin methods have also been developed under this

methodology in Neilan (2013). The analysis carried out in this section

can be applied to these methods using the recent results for nondivergence

PDEs given in Feng et al. (2018).

l A two–grid method to solve the nonlinear method has recently been pro-

posed in Awanou et al. (2018). ■
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4.2 Mixed formulations

In this section we describe mixed finite element formulations for the Monge–

Ampère equation proposed in Lakkis and Pryer (2011), Neilan (2014a),

Awanou (2015a); Awanou and Li (2014), Awanou (2017a), and Kawecki

et al. (2018). Essentially, the main idea in these approaches is to introduce

the Hessian matrix of u as an additional auxiliary unknown in the formulation

of the Monge–Ampère problem, that is, we write the PDE (1a) as

σ¼D2u, detσ¼ f inΩ: (90)

As before, assuming regularity u 2 W2,d(Ω) so that σ 2 Ld(Ω), we can multiply

the second equation by a smooth test function and integrate over the domain:
Z

Ω

ðf � detσÞvdx¼ 0 (91)

for all v2 L∞ðΩÞ.
The direct analogue of this formulation in the discrete setting requires C1

finite element spaces by the same reasons that the method described in

Section 4.1 does. In other words, to ensure that the discrete version of (91)

is well–defined, we require that the Hessian of the discrete approximation uh
has (global) second-order derivatives in Ld(Ω); if uh is a piecewise polynomial,

then this restriction implies that u 2 C1(Ω). To relax this restriction on the

finite element spaces, one can instead develop finite element methods that only

employ continuous (or discontinuous) bases based on this formulation by intro-

ducing the notion of a discrete Hessian (also known as a finite element Hessian

(Lakkis and Pryer, 2011)). The discrete Hessian is defined globally via an inte-

gration by parts procedure rather than a piecewise fashion. This idea has been

carried out for (linear) Kirchhoff plates in Huang et al. (2010), and its formu-

lation is reminiscent of the construction of local discontinuous Galerkin meth-

ods for second-order problems (Arnold et al., 2002; Cockburn and Shu, 1998).

To motivate the definition of the discrete Hessian, we introduce the auxil-

iary space

Σh¼fτh 2 L∞ðΩ;d�dÞ : τhjT 2rðT;d�dÞ 8T 2T hg,
and note the following integration by parts identity

X

T2T h

Z

T

D2w : τhdx¼�
X

T2T h

Z

T

ðr � τhÞ �rwdx

+
X

T2T h

Z

∂T

ðτhnTÞ �rwds,
(92)

for all w 2 H2(Ω) and τh 2Σh. Here, nT is the outward unit normal of ∂T, and

the divergence acting on a matrix is performed row-wise. We may then write
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the integral boundary terms in (92) using the jump and average operators. In

addition to (77)–(79), we define the jump of a matrix-valued function τ across

F¼ ∂T+\T� 2F I
h as

τ½ �½ � ¼ τ +n+ + τ�n�,

and define τ½ �½ � ¼ τ +n+ if F¼ ∂T+\∂Ω2FB
h . We then have

X

T2T h

Z

∂T

ðτhnTÞ �rwds ¼
X

F2F I
h

Z

F

τhf gf g : rw½ �½ �ds+
X

F2F h

Z

F

τh½ �½ � � rwf gf gds

¼
X

F2F h

Z

F

τh½ �½ � � rwf gf gds,

where we used that rw½ �½ �jF¼ 0 for all F2F I
h due to the regularity w 2 H2(Ω).

Combining this identity with (92), we arrive at

X

T2T h

Z

T

D2w : τhdx ¼�
X

T2T h

Z

T

ðr � τhÞ �rwdx+
X

F2F h

Z

F

τh½ �½ � � rwf gf gds:

This identity leads to the following definitions of the discrete Hessian.

Definition 21 (discontinuous discrete Hessian).

The discontinuous discrete Hessian is the operator h :H
1ðΩÞ\H2ðT hÞ!Σh

uniquely defined by the conditions

Z

Ω

hðwÞ : τhdx ¼�
X

T2T h

Z

T

ðr � τhÞ �rwdx+
X

F2F h

Z

F

τh½ �½ � � rwf gf gds

for all τh 2Σh.

Remark 17 (characterization through liftings).

Define the lifting operator

Θ : L2ðF I
h;

dÞ!Σh

via
Z

Ω

ΘðvÞ : τhdx¼�
X

F2F I
h

Z

F

τhf gf g : v½ �½ �ds 8τh 2Σh:

Integrating by parts we obtain

X

T2T h

Z

T

hðwÞ : τhdx¼
X

T2T h

Z

T

D2w : τhdx�
X

F2F I
h

Z

F

τhf gf g : rw½ �½ �ds

¼
X

T2T h

Z

T

D2w +ΘðrwÞ
� 


: τhdx:
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Recalling that D2
hw denotes the piecewise Hessian of w, and that Vh is the

(scalar) Lagrange space of degree r, we then have D2
hVh�Σh, and therefore

hðwhÞ¼D2
hwh +ΘðrwhÞ 8wh 2Vh:

■

The notion of the discrete Hessian and the formal identities (90) and (91) lead

to the following scheme introduced in Neilan (2014a): Find uh 2 Vh such that
Z

Ω

f � dethðuhÞð Þvhdx 8vh 2Vh: (93)

Remark 18 (mixed formulation).

While (93) is written in primal form, the problem is in fact a mixed finite ele-

ment method. Introducing σh¼hðuhÞ 2Σh, we see from the definition of the

discrete Hessian that (93) is equivalent to the system
Z

Ω

σh : τhdx+

Z

Ω

ðr � τhÞ � uhdx�
X

F2F h

Z

F

τh½ �½ � � ruhf gf gds ¼ 0, (94a)

Z

Ω

f � detσhð Þvhdx ¼ 0, (94b)

for all (τh, vh) 2Σh � Vh. Note that the matrix representation of the form

ðσh,τhÞ!
R

Ω
σh : τhdx is symmetric positive definite, and more importantly,

block-diagonal because Σh does not have any continuity constraints. As a

result, the Schur complement (i.e., the primal method (93)) represents a sparse

algebraic system of equations. ■

Theorem 16 (error estimate).

Assume that d ¼ 2, and that (1) has a unique strictly convex solution u 2
Cr+3, α(Ω) with r � 3 and α > 0. Then for h sufficiently small, there exists

a locally unique solution to the finite element method (93). Moreover,

there holds

ku�uhkH1ðΩÞ + h k σ�σhkL2ðΩÞ	Chr: (95)

Proof. See Neilan (2014a, Theorem 4.2). □

Remark 19 (regularity).

The regularity assumptions on u in Theorem 16 can be relaxed using the sta-

bility analysis for linear nondivergence form PDES found in Neilan (2017).

There it is shown that, assuming u2C2ð�ΩÞ,

kwhkW2,2
h
ðΩÞ	C k LhwhkL2

h
ðΩÞ 8wh 2Vh,
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with

Lhwh,vhh i¼�
Z

Ω

cof D2u :hðwhÞvhdx:

By applying the same techniques found in the previous section, it is simple

to show that the solution to (93) satisfies ku�uhkW2,2
h
ðΩÞ	Ch‘ + α with

‘¼ minfr�2,k�2g provided that u2Ck,αð�ΩÞ with k + α > 3, r � 3, and

h is sufficiently small.

To reduce the number of unknowns in the mixed system (94), continuity

constraints can be added in the matrix–valued space Σh. This is the idea of

the method proposed in Lakkis and Pryer (2013). There, the auxiliary space

is defined as the matrix-valued Lagrange space, i.e.,

Σ
c
h :¼Σh\H1ðΩ;d�dÞ¼ fτh 2H1ðΩÞ : τh 2rðT;d�dÞ 8T 2T hg:

Restricting Definition 21 to Σ
c
h leads to the following notation of the discrete

Hessian.

Definition 22 (continuous discrete Hessian).

The continuous discrete Hessian is the operator c
h :H

1ðΩÞ\H2ðT hÞ!Σ
c
h

uniquely defined by the conditions

Z

Ω

c
hðwÞ : τhdx ¼�

Z

Ω

ðr � τhÞ �rwdx+
Z

∂Ω

ðτhnÞ �rwds

for all τh 2Σc
h.

This definition leads to a finite element method proposed in Lakkis and

Pryer (2013) which similar to (93), but with the continuous version of the dis-

crete Hessian.
Z

Ω

f � detc
hðuhÞ

� 


vhdx¼ 0 8vh 2Vh: (96)

As before, we may set σh¼c
hðuhÞ as an auxiliary variable, and deduce from

Definition 22 that (96) is equivalent to the mixed method

Z

Ω

σh : τhdx+

Z

Ω

ðr � τhÞ �ruhdx�
Z

∂Ω

ðτhnÞ �ruhds ¼ 0, (97a)

Z

Ω

f � detσhð Þvhdx ¼ 0, (97b)

for all ðτh,vhÞ 2Σc
h�Vh Compared with the formulation using the discontinu-

ous discrete Hessian, the mixed problem (97) has significantly less unknowns

than (94) due to the continuity restrictions of Σ
c
h. On the other hand, the
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(mass) matrix associated with the form ðσh,τhÞ!
R

Ω
σh : τh is not block-

diagonal, and therefore the Schur complement of (97) (i.e., the algebraic sys-

tem representing the primal problem (96)) is dense.

Existence, (local) uniqueness, and error estimates for method (97) are sim-

ilar to the statements given in Theorem 16.

Theorem 17 (error estimates).

Assume that d 2{2, 3}, and that (1) has a unique strictly convex solution u 2
Hr+3(Ω) with r � d. Then for h sufficiently small, there exists a locally unique

solution to the finite element method (97). Moreover, there holds

ku�uhkH1ðΩÞ + h k σ�σhkL2ðΩÞ	Chr: (98)

Proof. See Awanou and Li (2014, Theorem 3.13) and Awanou (2015a, 2017a,

Theorem 1). □

Remark 20 (extension to optimal transport).

The mixed finite element method (97) has recently been extended to the opti-

mal transport problem in Kawecki et al. (2018). ■

Remark 21 (historical remark).

Our presentation follows a reverse chronological order. The first Galerkin-

type method based on the concept of discrete Hessians was that of Lakkis

and Pryer (2013), where they used the continuous Hessian of Definition 22.

The DG version was introduced later. ■

4.3 Galerkin methods for singular solutions

The analysis of the Galerkin methods discussed thus far require relatively

stringent regularity conditions to carry out the analysis (e.g., u 2 C2, α(Ω)).

While numerical experiments indicate that regularity assumptions can be

relaxed somewhat, they also indicate that some regularity of the solution is

required for the methods to converge. For example, the numerical experiments

in Brenner et al. (2011) indicate that the C0 penalty method (83) does not con-

verge if u 62H2(Ω) in two dimensions. In this section, we discuss various ways

to modify the Galerkin methods and the analysis such that the resulting

numerical scheme is robust with respect to the solution’s regularity.

The first approach, introduced in Feng and Neilan (2009), regularizes the

problem at the PDE level by adding a higher order perturbation, resulting in a

fourth-order, quasi-linear problem. The motivation of this approach is that

solutions of the regularized problem are defined via variational principles,

so that weak formulations can be obtained via integration by parts, and there-

fore the resulting PDE framework is amenable to Galerkin methods. Applying

this methodology to the Monge–Ampère problem results in
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�EΔ
2uE + detD2uE¼ f inΩ, (99a)

u¼ 0 on ∂Ω, (99b)

where E > 0 and Δ
2 ¼ ΔΔ denotes the biharmonic operator. Note that, due to

the higher order of the PDE, the Dirichlet boundary condition is no longer suf-

ficient to close the system. In Feng and Neilan (2009), the following addi-

tional boundary conditions are proposed:

ΔuE¼ 0, or
∂ΔuE

∂n
¼ 0 on ∂Ω: (99c)

These conditions are chosen so that the resulting boundary layer is minimized;

see Feng and Neilan (2009) for details. For the sake of illustration, we take the

first boundary condition in (99c) in the discussion below.

Since the problem (99) is quasi–linear and in divergence–form, the notion

of weak solutions is easily defined.

Definition 23 (weak solution).

A function u2W2,dðΩÞ\W1,d
0 ðΩÞ is a weak solution to (99) provided that

�E

Z

Ω

ΔuE
Δvdx +

Z

Ω

vdetD2uEdx¼
Z

Ω

fvdx 8v2W2,dðΩÞ\W1,d
0 ðΩÞ: (100)

The function u¼ lim E#0uE, if it exists, is called a weak (resp., strong)

moment solution to the Monge–Ampère problem if convergence holds in a

W1,d-weak (resp., W2,d-weak) topology.

Remark 22 (relation to other solution concepts).

Except in very simple settings (e.g., radially symmetric solutions (Feng and

Neilan, 2014)), the existence of moment solutions and their relation with

viscosity and Alexandrov solutions is an open problem. Nonetheless, numer-

ical experiments indicate that this methodology leads to robust numerical

methods with respect to regularity of the solution of the Monge–Ampère

equation. For example, numerical methods applied to problem (99) are

able to capture viscosity/Alexandrov solutions that are merely Lipschitz

continuous. ■

Constructing methods for the regularized problem (100) can be done by

applying any of the above Galerkin methods described above; one only needs

to tack on a consistent and stable discretization of the biharmonic operator to

the discrete formulation. For example, the simplest method, at least in theory,

is to restrict the variational formulation (100) onto a finite dimensional sub-

space of W2,dðΩÞ\W1,d
0 ðΩÞ. This results in the method to find uE

h 2Xh

satisfying
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E

Z

Ω

ΔuE

hΔvhdx+

Z

Ω

f � detD2uE

h

� 


vh dx¼ 0 8vh 2Xh, (101)

with Xh�C1ðΩÞ\W1,d
0 ðΩÞ. A convergence analysis of this discrete problem

has been done in Feng and Neilan (2011). There it is shown that, if there

exists a moment solution with sufficient regularity, then there exists a locally

unique solution to the discrete problem (101).

Analogously, combining the C0 finite element method (83) with the sym-

metric C0 interior penalty method for the biharmonic problem introduced in

Engel et al. (2002) and Brenner and Sung (2005) results in the method: Find

uE

h 2Vh satisfying

E

X

T2T h

Z

T

ΔuE

hΔvhdx

� E

X

F2F I
h

Z

F

ΔuE

h

� �� �

I : rvh½ �½ �ð Þ+ Δvhf gf gðI : ruE

h

� �� �

Þ
�

� σ

hF
ruE

h

� �� �

: rvh½ �½ �
�

ds+
X

T2T h

Z

T

f � detD2uE

h

� 


vhdx

+
X

F2F I
h

Z

F

cof D2uE

h

� �� �

: ruE

h

� �� �

vhds¼ 0

(102)

for all vh 2 Vh. Here, σ > 0 is a penalty parameter, and we recall that I denotes

the d � d identity matrix and Vh is the Lagrange finite element space of

degree r � 2 with homogeneous Dirichlet boundary conditions. The method

(102) can be written succinctly as

EhAhu
E

h,vhi + hh½uE

h�,vhi¼ 0 8vh 2Vh,

where the operator h is defined by (83), and Ah is a consistent discretization

of the biharmonic operator given by

Ahw,vhh i¼
X

T2T h

Z

T

ΔwΔvhdx�
X

F2F I
h

Z

F

Δwf gf gðId : rvh½ �½ �Þð

+ Δvhf gf gðId : rwh½ �½ �Þ� σ

hF
rw½ �½ � : rvh½ �½ �

�

ds:

Arguments given in Brenner and Sung (2005); Engel et al. (2002) show that

there exists σ0 > 0, independent of h, such that hAhvh,vhi�C k vh k2W2,2
h
ðΩÞ

for all vh 2 Vh provided that σ � σ0. Moreover, there holds

EhAhu
E,vhi+ hh½uE�,vhi¼ 0 for all vh 2 Vh provided that uE 2 Hs(Ω) for some

s > 5/2. Thus, the method (102) is consistent.

While a convergence analysis of the regularized PDE (99) and the discre-

tization (102) is an open problem, we show, via numerical experiments in the

next section, that the method is able to capture nonsmooth solutions for the
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Monge–Ampère problem in a variety of settings. In addition, as shown in

Brenner et al. (2011), Newton’s method is robust for the regularized solution,

which allows a natural way to construct initial guesses for the (unregularized)

problem (83).

4.3.1 Convergence of interior discretizations

Recent results given in Awanou (2015b, 2016, 2017b); Awanou and Awi

(2016) argue that, in certain settings, standard discretizations (both finite ele-

ment and finite difference) for the Monge–Ampère equation converge to the

Alexandrov solution as the discretization parameter tends to zero. Here, in this

section, we summarize these results and the techniques to obtain them.

As always, we assume that Ω is convex. More importantly, we assume also

that the Dirichlet boundary conditions can be extended to a function ~g that is

convex on Ω. Note that the existence of ~g is guaranteed if the domain is strictly

convex. However, due to our assumption that uj∂Ω ¼ 0, we may simply take

~g
 0 in our setting. We further assume that f 2Cð�ΩÞ with f � C > 0 on Ω.

Let ffmg∞m¼0�C∞ð�ΩÞ be a sequence of approximations of f with fm ! f uni-

formly on �Ω and fm � C > 0 for all m. We then consider the PDE problem

detD2um ¼ fm in Ω, (103a)

um ¼ 0 on ∂Ω: (103b)

Even though the source data of this problem is smooth, in general there does

not exist smooth solutions to (103) because Ω is not necessarily strictly con-

vex nor smooth, see Theorem 1. Nonetheless, there exists a unique (convex)

Alexandrov solution um 2Cð�ΩÞ.
Let ~Ω�Ω be a strict subdomain of Ω that is polyhedral and convex, and

let ~T h be a simplicial triangulation of ~Ω. Finally, we denote by ~Xh a C1ð �~ΩÞ-
conforming finite element space consisting of piecewise polynomials with

respect to ~T h. We then consider the finite element method: Find ~uh 2 ~Xh satis-

fying ~um,h¼ um on ∂~Ω and
Z

~Ω

fm� detD2
~um,hð Þvhdx¼ 0 8vh 2 ~Xh\W1,d

0 ð~ΩÞ: (104)

This method is similar to (76), the differences being

(i) the problem is posed on ~Ω instead of Ω;

(ii) the source function has been regularized;

(iii) the homogeneous Dirichlet boundary conditions have been replaced by

~um,hj∂~Ω ¼ umj∂~Ω :
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It is clear that method (104) is a discretization of the PDE problem

detD2
~um¼ fm in ~Ω, (105a)

~um¼ um on ∂~Ω, (105b)

which, similar to (103), has a unique Alexandrov solution and is generally

nonsmooth. In fact, it is simple to see that, due to the inclusion ~Ω�Ω and

the uniqueness of Alexandrov solutions, that ~um¼ um on ~Ω.

Theorem 18 (interior convergence).

There exists h0 > 0, which depends on distf∂Ω,∂~Ωg, such that for h 	 h0,

there exists a locally unique solution to (104). In addition, as h! 0, ~um,h con-

verges uniformly to ~um (the solution to (105)) on compact subsets of ~Ω.

Proof. The proof relies on a series of smooth approximations to problem (105).

Let fΩsg∞s¼0 be a sequence of strictly convex and smooth domains such thatΩs�
Ωs+ 1�Ω for all s, and Ωs!Ω as s!∞; see Fig. 8. Consider the problem

detD2ums¼ fm inΩs,

ums¼ 0 on ∂Ωs:

Note that, because the data is regular, and since Ωs is uniformly convex

with smooth boundary, the solution to this problem is smooth. In particular,

FIG. 8 Pictorial description of the proof of Theorem 18. Here, Ω
�
�Ωs�Ωs + 1 �Ω, where Ω is

the physical domain, Ω
�
is the computational domain, and {Ωs} are smooth and uniformly convex

approximations to Ω.
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interior Schauder estimates (Gilbarg and Trudinger, 2001, Section 6.1) show

that, for any D��Ωs,

kumskCr + 1ðDÞ	Cm,

where Cm > 0 depends on m, fm, D, and dist{D, ∂Ωs}	dist{D, ∂Ω}. More-

over, results in Savin (2013) show that ums (up to subsequence) converges uni-

formly on compact subsets of Ω as s!∞. Now, because ums is smooth, and

because the derivatives of ums are uniformly bounded on ~Ω (with respect to s),

arguments similar those given in the previous section (see Awanou, 2015d;

B€ohmer, 2008) show that, for h 	 h0 with h0 sufficiently small, there exists

a locally unique and convex solution to the following discrete problem: Find

~ums,h 2 ~Xh satisfying ~ums,hj∂~Ω ¼ umsj∂~Ω and
Z

~Ω

fm� detD2~ums,hð Þvhdx¼ 0 8vh 2 ~Xh\W1,d
0 ð~ΩÞ:

Furthermore, there holds kums� ~ums,hkW2,2ð~ΩÞ	Chr�1 where C > 0

depends on kumskCr + 1ð~ΩÞ but is independent of s. Because kumskCr + 1ð~ΩÞ is uni-

formly bounded with respect to s, it follows from a Sobolev embedding

theorem that ~ums,h is uniformly bounded. Thus, since ums,h is convex and uni-

formly bounded, the sequence f~ums,hgs is locally uniformly equicontinuous,

and thus has a pointwise convergent subsequence. Standard arguments, along

with ums ! um on ∂~Ω, then show that this limit is a solution to the discrete

problem (104). □

Remark 23 (interior convergence).

Regarding Theorem 18 note that:

1. The ideas and techniques given in this section has been applied to standard

finite difference discretizations of the Monge–Ampère problem in Awanou

(2016).

2. While the results and techniques of Theorem 18 are interesting, it is not

immediately clear how to obtain the Dirichlet boundary condition

~um,h¼ um on ∂~Ω since um is not given data. One can alternatively use

~um,hj∂~Ω ¼ 0, but this condition is not consistent with problem (103). We

also point out that h0 depends on distf∂~Ω,∂Ωg, and therefore Theorem

18 suggests we cannot take ~Ω to be arbitrarily close to Ω. ■

5 Numerical examples

The high point of this classical algorithmic age was perhaps reached in the

work of Leonhard Euler […] Innumerable numerical examples are dispersed

in the (so far) seventy volumes of his collected works, showing that Euler always

kept foremost in his mind the immediate numerical use of his formulas and

algorithms.

Henrici (1964)
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In this section we perform some simple numerical examples to show the effi-

ciency and accuracy of some of the numerical schemes discussed in the pre-

vious sections. We consider three different test problems, each reflecting

different scenarios of regularity. These are computed using the wide stencil

finite difference scheme (20), the analogous filtered scheme (26), Oliker–

Prussner method (64), the C0 finite element method (83), and its regularized

version using the vanishing moment methodology (102). We emphasize that

these tests are not meant to form comparisons, but rather to highlight their

advantages in different situations.

5.1 Example 1: Smooth solution

In the first set of experiments, we take the data such that the Monge–Ampère

equation has a C∞ðΩÞ solution: Ω ¼ (�1, 1)2,

f ðx1,x2Þ¼ ð1 + x21 + x22Þex
2
1
+ x2

2 , uðx1,x2Þ¼ e
x2
1
+ x2

2

2 : (106)

In this setting, the Galerkin methods discussed in Sections 4.1 and 4.2 are

advantageous due to their relative high order. We implement the C0 finite

element method (83) and the Oliker–Prussner method (64) on a sequence

of mesh refinements and report the resulting errors in Fig. 9. In agreement

with Theorem 89 (with ‘ ¼ r � 2 and α ¼ 1), the plots show optimal order

convergence in W
2,p
h -norm with respect to the discretization parameter h for

the Galerkin methods. In terms of the degrees of freedom (DOFs), the errors

scale like

ku�uhkW2,p
h
ðΩÞ¼OðDOFsð1�rÞ=2Þ:

The errors in L∞ converge with optimal order provided that the polynomial

degree is sufficiently high. Fig. 9 shows that

ku�uhkL∞ðΩÞ¼OðDOFsð�1�rÞ=2Þ r¼ 3,4,

ku�uhkL∞ðΩÞ¼OðDOFs�1Þ r¼ 2:

These rates are proven in Neilan (2013). For the Oliker–Prussner method and

finite difference methods defined on translation invariant meshes, we define

its W2,p error on the nodal set as

ku�uhkW2,p
h
ðΩhÞ¼ hd

X

xh2Ωi
h, ej2S

jΔejðu�uhÞðxhÞjp
0

@

1

A

1=p

where S is the 9-points stencil in two space dimensions and Δej
v(xh) denotes

the centred second difference, defined in (17), of the function v at node xh
in the direction ej. We observe in Fig. 9 that, for the Oliker–Prussner

method,
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ku�uhkW2,p
h
ðΩhÞ¼OðDOFs

�1Þ and ku�uhkL∞ðΩÞ¼OðDOFs�1Þ

These results on W2, p error are consistent with the theorems proven in Neilan

and Zhang (2018) and Theorem 13.

5.2 Example 2: Nonclassical solution

In this set of experiments, we again take Ω ¼ (�1, 1)2, but choose the data

such that the resulting solution is not a classical one:

f ðx1,x2Þ¼
16, jxj 	 1=2,
64�16jxj�1, jxj> 1=2:

�

uðx1,x2Þ¼ 2jxj2, jxj 	 1=2,
2ðjxj�1=2Þ2 + 2jxj2, jxj> 1=2:

�

FIG. 9 Example 1: Errors versus degrees of freedom for the C0 finite element method (83) with

polynomial degrees r ¼ 2, 3, 4, and the Oliker–Prussner method (64) applied to the smooth test

problem (106).
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One easily finds that u 62C1,1ð�ΩÞnC2ðΩÞ. We implement the C0 finite element

method (83), the wide stencil finite difference scheme (20) with a stencil size that

consists of 33 grid points, and the Oliker–Prussner method (64). We also com-

pare the results with the filtered scheme (26) The errors, depicted in Fig. 10, show

that all methods converge with similar rates, although the finite element scheme

and Oliker–Prussner method have smaller errors with similar DOFs. While the

rate of convergence in the L∞ norm is not obvious from the tests, Fig. 10 clearly

shows that all three methods converge in the W2, p-norms with rates

ku�uhkH2
h
ðΩÞ¼OðDOFs�1=4Þ, ku�uhkW2,1

h
ðΩÞ¼OðDOFs�1=2Þ: (107)

We note that, for the finite element, these rates seem to be the same rates of

interpolation errors. Indeed, let T Γ

h denote the set of triangles in T h intersect

the circle jxj ¼ 1/2. Likewise, we let F Γ

h denote the set of edges in F I
h that

intersect Γ. Finally, we denote by I hu the nodal interpolant of u.

FIG. 10 Example 2: Errors versus degrees of freedom for the 33-point wide stencil scheme,

33-point wide stencil filtered scheme, the quadratic C0 finite element method and Oliker–

Prussner method.
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Because u is smooth on both Ω\fx2Ω : jxj< 1=2g and

Ω\fx2Ω : x> 1=2g, we have by standard interpolation estimates,

ku�Ihu kp
W

2,p
h
ðΩÞ	Chpðr�1Þ +

X

T2T Γ

h

kD2ðu�IhuÞ kpLpðTÞ

+
X

F2F Γ

h

h
1�p
F rðu�IhuÞ½ �½ �k kp

LpðFÞ

	C hpðr�1Þ +
X

T2T Γ

h

kD2ðu�IhuÞ kpLpðTÞ + h
�p
T krðu�IhuÞ k

p

LpðTÞ


 �

0

@

1

A,

where we used a standard trace inequality. Applying interpolation estimates

and H€older’s inequality, noting that u2W2,∞ðΩÞ, yields

ku�Ihu kp
W

2,p
h
ðΩÞ 	C hpðr�1Þ +

X

T2T Γ

h

kD2u kp
LpðTÞ

0

@

1

A

	C hpðr�1Þ +
X

T2T Γ

h

h2T kD2u kp
L∞ðTÞ

0

@

1

A

	Chpðr�1Þ +Ch,

where we used that the cardinality of T Γ

h is Oðh�1Þ. We then take the pth

root of this inequality to deduce that ku�IhuhkW2,p
h
ðΩÞ¼Oðh1=pÞ¼

OðDOFs�1=ð2pÞÞ, which is the same rates as (107).

5.3 Example 3: Lipschitz and degenerate solution

In our last set of experiments, we take the domain to be Ω ¼ (�1, 1)2 with data

f ðx1,x2Þ¼
36�9x22x

�6
1 , jx2j 	 jx1j3,

8

9
�5

9
x21x
�2

3
2 , jx2j> jx1j3,

8

>

<

>

:

uðx1,x2Þ¼
jx1j4 +

3x22
2x21

, jx2j 	 jx1j3,

1

2
x21x

2

3
2 + 2x

4

3
2 , jx2j> jx1j3:

8

>

>

>

<

>

>

>

:

Similar to the previous example, u is not a classical solution to (1) as it only

has regularity u 2 C0, 1(Ω) and u 62W2, p(Ω) for any p > 2 (Wang, 1995).

Moreover, a simple calculation shows that jD2uðxÞj!∞ as x ! 0. Since

the determinant in two dimensions is the product of two eigenvalues of the

Hessian and detD2uðxÞ¼ f ðxÞ is bounded in the domain, the largest eigen-

value blows up while the other eigenvalue of D2u(x) approaches zero as x

! 0. Hence, the Hessian of the solution degenerates as x ! 0.
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While the monotone finite difference schemes presented in Section 2 are

robust for problems with low regularity, Galerkin methods generally fail to

capture solutions whose second derivatives are not square integrable; our

numerical tests show that Newton’s method applied to (83) does not converge

for this example even when using very generous initial guesses. In fact, even

for the monotone finite difference schemes and the Oliker–Prussner method,

Newton’s method is very sensitive with respect to the initial guess and the

convexity of the iterates for this problem. In our implementation, we found

that at each iteration, we require the solution to remain convex. As Newton’s

method may not give a convex solution in general, we applied, if necessary,

the algorithm proposed in Oberman (2008a) to preserve convexity.

In addition to the 33-point finite difference scheme and Oliker–Prussner

method, we implement the fourth-order regularization of the C0 finite element

method (83) with parameters σ ¼ 100 and E ¼ 0.1h2. The resulting errors

measured in the L∞ and H1 norms are plotted in Fig. 11. Similar to the previ-

ous series of experiments, the plots show that both methods have similar beha-

viour rates. While the rate in the L∞ is not clear, the second plot in Fig. 11

shows that

ku�uhkH1ðΩÞ¼OðDOFs�1=2Þ:

6 Concluding remarks

“And if anyone knows anything about anything” said Bear to himself, “it’s Owl

who knows something about something,” he said, “or my name is not Winnie-

the-Pooh,” he said. “Which it is,” he added. “So there you are.”

Hoff (1982)

FIG. 11 Example 3: Errors versus degrees of freedom for the 33-point wide stencil scheme, the

33-point wide stencil filtered scheme, and the quadratic C0 finite element method with regulariza-

tion and Oliker–Prussner method.
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In this work we have reviewed the progress that has been made concerning the

approximation and numerical analysis of the Monge–Ampère problem. In

doing so we highlighted how to develop a convergence analysis of wide sten-

cil finite difference schemes as well as their generalizations, schemes based

on geometric considerations, and finite element methods. A focus that we

have taken, and one of recent development, is the derivation of rates of con-

vergence for these discretizations.

Despite fundamental advances in only the past decade, there still remain

several open problems in the analysis of computational methods for

Monge–Ampère problems. One of these is the derivation of rates of conver-

gence for the Oliker–Prussner scheme on unstructured grids. Another basic

problem is rates of convergence of any of the schemes presented in this

work assuming that the solution is not a classical one, i.e., without the

assumption u2C2,αð�ΩÞ. In most of the error analyses we have presented,

it is assumed that 0 < λI 	 D2u(x) 	ΛI for all x 2Ω. However, if the func-

tion f(x) is discontinuous, the Hessian of the solution may be degenerate as

the third example in the numerics section illustrates. The design and analy-

sis of robust and high order numerical schemes to capture degenerate solu-

tions remains a challenging problem. A posteriori error estimation, and

adaptive methods based on the existing schemes are nonexistent. Finally

let us mention that, as far as we are aware, except for the recent work

(Berman, 2018), rates of convergence are restricted to the Dirichlet problem

(1); extensions to, e.g., the applications discussed in Section 1.1 is still

unchartered territory.

In conclusion, we know something about the numerical analysis of the

Monge–Ampère problem, but there is much more that needs to be developed.

It is our hope that this overview will encourage the numerical analysis com-

munity to work on the interesting, and challenging, problems found in geom-

etry in general, and those that the Monge–Ampère equation in particular

present to us.
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