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Abstract

We review recent advances in the numerical analysis of the Monge—Ampere equation.
Various computational techniques are discussed including wide stencil finite difference
schemes, two-scaled methods, finite element methods, and methods based on geometric
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considerations. Particular focus is the development of appropriate stability and consis-
tency estimates which lead to rates of convergence of the discrete approximations.
Finally we present numerical experiments which highlight each method for a variety
of test problem with different levels of regularity.
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ciple, Fully nonlinear equations
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1 Introduction

All exact science is dominated by the idea of approximation. When a man tells
you that he knows the exact truth about anything, you are safe in inferring that
he is an inexact man.

Russell (1931)

In this chapter we review recent progress in the numerical treatment of
Monge—Ampere type equations. In its simplest form, and assuming Dirichlet
boundary conditions, the problem we consider is to seek a scalar function u
satisfying the partial differential equation (PDE)

detD?u(x) =f(x) x€Q, (la)
u(x) =g(x) x€oQ. (1b)

Here, D?u denotes the Hessian matrix of u, f > 0, and g are given functions,
and Q C R? is a bounded, convex domain. Problem (1) is a prototypical second
order, fully nonlinear PDE, and it arises in several broad applications in differ-
ential geometry, meteorology, cosmology, economics, and optimal mass trans-
portation problems. Some of these applications are briefly described below.

Despite its growing list of applications, and in contrast to its extensive and
mature PDE theory, the construction and analysis of computational methods
for (1) is still a relatively new and emerging field in numerical analysis.
Numerical algorithms, based on geometric considerations, for the two-
dimensional problem (d = 2) first appeared in 1988 in Oliker and Prussner
(1988), and the extension to practical three-dimensional schemes were not
introduced until some 20 years later (Brenner and Neilan, 2012; Feng and
Neilan, 2009; Froese and Oberman, 2011a,b). Other early attempts that
deserve mention are the least squares and augmented Lagrangian approaches
of Dean and Glowinski (2003, 2004, 2005, 2006a,b), and we refer the reader
to Feng et al. (2013) for more details on these schemes.

The reasons for this delayed development in numerical methods are plen-
tiful. The most evident obstacle is the full nonlinearity of the problem. How-
ever, this is arguably a secondary difficulty, as black-box nonlinear solvers
can, at least heuristically, be applied to algebraic systems resulting from
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discretizations of (1). A rather fundamental difficulty to construct, and espe-
cially to analyze, computational methods for Monge—Ampere type equations
is the variety of solution concepts and, correspondingly, the low regularity
solutions generically possess. As we explain below, weak solutions are not
based on variational principles, but rather on either geometric considerations
or by monotonicity conditions of test functions that touch the graph of the
solution from above or below. These solution concepts are difficult to mimic
at the discrete level, and as a result, the construction of convergent schemes is
an arduous task. Finally, as if these complications were not enough, the
Monge—Ampére equation (1) is usually supplemented by the constraint that
the solution u is convex. This is not only because of geometric applications,
but in many cases a necessary condition for uniqueness, and for the existence
of a well-developed PDE theory. As convexity is a global constraint, it is very
difficult to enforce it in a discrete setting.

Nonetheless, an explosion of results and new techniques to develop them in
computational methods for (1) have occurred during the last 10 years. These
include the construction of monotone, wide stencil finite difference schemes,
semi-Lagrangian methods, and finite element methods. Within only the past
few years, significant progress has been made in the convergence analysis with
an emphasis on the rates of convergence for various discretization schemes.

The main goal of this chapter is to highlight these recent advances in the
numerical analysis of the Monge—Ampere problem (1). To this end, we
organize the chapter as follows. After stating some geometric applications
and a brief PDE theory of the Monge—Ampére problem in this section, we
discuss wide stencil finite difference schemes in Section 2. There we intro-
duce the monotone finite difference schemes (Froese and Oberman, 2011a,b;
Oberman, 2008b) and the corresponding filtered schemes (Froese and
Oberman, 2013), lattice reduction schemes (Benamou et al., 2016), methods
based on power diagrams (Mirebeau, 2015), and the so-called two scale
methods (Nochetto and Ntogkas, 2018; Nochetto et al., 2019a,b). Of partic-
ular focus will be the rates of convergence of these schemes if available.
Next, in Section 3, we review the original method of Oliker and Prussner
(1988), which in honour of its proponents henceforth we shall call the Oli-
ker—Prussner scheme. This method is based on geometric interpretations of
the Monge—Ampeére operator and the notion of Alexandrov solutions. Again,
the emphasis of the discussion is on consistency error and pointwise rates of
convergence recently established in Nochetto and Zhang (2019). Section 4
discusses finite element methods for both smooth and singular solutions.
Finally in Section 5 we perform some numerical experiments using some
of the methods we discuss in this review for a variety of test problems with
different levels of regularity.

We remark that, by design, this review has several major omissions. We
intend to minimize the overlap between two other existing, and rather recent,
reviews on fully nonlinear problems in general and the Monge—Ampere
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equation in particular. Namely, the overview of Feng et al. (2013), which is
dedicated to the Monge—Ampere equation exclusively, and Neilan et al.
(2017) which contains a chapter on the Monge—Ampere equation, and where
the reader can find much more details, for instance, on the semi-Lagrangian
schemes described in Section 2.8.1.

1.1 Geometric applications

To draw connections with the theme of the current volume in the Handbook of
Numerical Analysis, and to further emphasize the prevalence of the Monge—
Ampere problem, in this section we briefly summarize some applications
with a geometric flavour where the Monge—Ampére problem plays an
essential role.

1.1.1 Gauss curvature problem

The classic Gauss curvature problem (cf. Bakelman, 1994; Guan and Spruck,
1993; Oliker, 1984) seeks a manifold M C R"*! with prescribed boundary
and Gauss curvature K. We recall that Gauss curvature is the product of the
principal curvatures, which themselves are the eigenvalues of the shape oper-
ator (or Weingarten map). One may reduce this problem to a PDE problem of
Monge—Ampere type if one assumes that the manifold is the graph of a
function, i.e.,

M={(xux)): u:Q—R}.

The shape operator is given by s = I" ' II, where I and II denote, respectively,
the first and second fundamental forms. In the case that M is the graph of the

function u, we have I = I + Vu ®Vu and II:\/%, where [ denotes the
+ u

d x d identity matrix. Therefore the Gauss curvature is given by

det(I) detD?u
Codet(I) (14 |y

Thus, the problem is to find a scalar function u:Q — R satisfying

K = det(s)

detD?u(x) = K(x)(1+|Vu(x) )" inQ, (2a)
u(x)=g(x) onoQ. (2b)
In conclusion the Gauss curvature problem, in this setting, seeks solutions of a

Monge—Ampere type problem with lower-order terms.

1.1.2  Reflector design problem

The reflector design problem (Norris and Westcott, 1976; Oliker, 1987; Oliker
and Waltman, 1987; Wang, 1996) can be posed as follows: Let S? be the unit
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sphere in R3 centred at the origin, and let Q,O be two disjoint domains on s2,
Let f be a positive function defined on O, and suppose that rays originate from
the origin with density p. We then seek a surface, called I', whose radial pro-
jection onto $? equals €, such that the directions of the reflected rays cover O
with distributed density equal to f.

To formulate a PDE model for this problem, we set I' = {xm(x) : x € Q},
so that if a ray radiates from the origin with direction x, then it is reflected at
the point xm(x). This will create a reflected ray in the direction T(x) € O. Now
if we denote by n the unit normal of " at xm (x), then we have T(x) — x = -2

(x - m)n, and calculations show that m=(Vm—mx)/\/m?+|Vm|*. Here,

VvV =é" 0;x0;, where x is a srpooth parametrlzatlon of S e=g¢; dt 'd¢ is the first
fundamental form of §%, ¢ (e,j) ,and 0; = a/or’. Combmmg these two
identities we find that the direction T is related to m via

2mVm+ (|Vm|* —m?)x
m? + |Vm|?

T(x)= 3)

Next, if the directions of the reflected light do not overlap and if no loss of
energy occurs in the reflection, then we have the energy conservation property

R

for all Borel sets E C Q. Thus we have, at least formally,

01T (x) X LT ()| p(x)
det (e;) f(T(x))
Finally, we set u(x) = 1/m(x), and substitute (3) into this last equation to get

the following problem of Monge—Ampere type (see Oliker and Newman,
1993; Wang, 1996 for details)

det (D*u+ (u— ne;)  p(x)
n*det (e;;) f(T(x)
where T is given by (3) and 7 = (|Vu|* + u?)/2u).

xeQ,

1.1.3 Affine plateau problem

Following Trudinger and Wang (2005, 2008) and Calabi (1990), we con-
sider the following problem. Let My C R?*! be a bounded and connected
hypersurface with smooth boundary that is locally uniformly convex We
denote by S[My] the set of locally uniformly convex hypersurfaces that
can be smoothly deformed from M, within the family of locally uniformly
convex hypersurfaces and whose Gauss map images lie in that of Mj. As in
Section 1.1.1, for a manifold M we denote by II its second fundamental
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form and by K its Gauss curvature. Associated with M is the Berwald—
Blaschke metric

g— KM@y

which is an affine invariant Riemannian metric on the surface. The affine Pla-
teau problem is then to determine the maximizer of the affine area functional

A(M) :/ ]Cl/(d+2)dM
M

over S[Mo).

Recall that if M = M, is the graph of a function u: Q — R, with Q C R",
then the Gauss curvature is K= det (D?u)/(1+ |Vu|2)(d+2>/2, and so, we have
by a change of variables,

A(M,) = /Q (detD?u(x))"/ D dx.

Thus if M, is the graph of a locally uniformly convex g, then in the graph
case, S[My] consists of the graphs of locally uniformly convex functions v €
C*(Q)NC*(Q) satisfying v = g on 0Q and Vv(Q) C Vg(Q). In this setting
the affine Plateau problem seeks u such that

A(M,) =sup{A(M,): M, eS[Mo]}.

Formally taking the Euler—Lagrange equation yields the affine maximal sur-
face equation

cof D*u:D*w=0, w= (detDZM)*(dJr D/d+2)

1.1.4 Optimal mass transport problem
This problem appeared as a generalization of an earlier considered practical
problem of assigning production locations on a railway network to consumption

locations with minimum total transportation expenses.
Kantorovich (2004)

The optimal mass transport problem was originally proposed by G. Monge in
the 18th century to find the optimal way to move oil to an excavation with
minimal transportation cost. In general, the mass transport problem seeks,
for two given sets and densities, the optimal mass-preserving mapping
between them.

In further detail, given bounded Q,0CR? and measures Po:Q—R,
po O — R, the optimal transport problem with quadratic cost seeks a map T :
Q — O such that Typg = p that minimizes the functional

3 | Ir=T( g (o) @)
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over all mass-preserving maps. Here, we assume that the measures are abso-
lutely continuous with respect to Lebesgue measure, with dpo = fodx and
dpp =fodx, and that the measures satisfy the mass balance condition

L@mwzémmm

Above, we denoted by Txpq the pushforward of the measure pg under the
mapping 7, i.e., under the given assumptions, we have

Jpotoae= [ satoas

Thus, by a change of variables, we have, at least formally,
det (VT (x))fo(T(x)) =falx) x€Q, Q)

with T(Q) C O. Thus in summary, we seek a mapping T that minimizes (4)
with the constraint (5). One of the fundamental results in the theory of optimal
transport (Brenier, 1991; Cuesta and Matran, 1989; Riischendorf and Rachev,
1990a,b) is that there exists a unique solution to this problem and that this
optimal mapping is characterized as the gradient of some convex function u:

T(x) =Vu(x).

Hence, by substituting this relation into (5), we see that the problem reduces
to a Monge—Ampere type PDE

fo(Vu(x))detD*u(x) =fo(x) xe€Q (6)

with the constraint Vu(Q) C O. Thus we find that, with quadratic cost, the
optimal mass transport problem reduces to a Monge—Ampere equation with
transport boundary conditions.

1.2 Solution concepts for the Monge—Ampere equation

It is impossible to understand an unmotivated definition [...]
Arnol’d (1998)

In order to properly analyze the numerical schemes that we present below, it
is important to understand in which sense a function u:Q — R must satisfy
the equation and boundary conditions in (1) to be a solution. It is not our
intention here to give a survey of the PDE theory regarding the Monge—
Ampere equation, and we refer the reader to Gutiérrez (2001), Figalli
(2017), and Bakelman (1994) for an in-depth presentation.

1.2.1 Classical solutions

The first definition of a solution to (1) is that of a classical solution. Essen-
tially we require that (1) holds at every point of Q.
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Definition 1 (classical solution).
A function u € C?(Q)NC(Q) is called a classical solution of (1) if these iden-

tities hold for every x € Q.

Notice that this necessarily implies that the right-hand side f:Q — R is
continuous. Regarding the existence of classical solutions we have the follow-
ing result; see Figalli (2017, Section 3.1) for a detailed presentation.
Theorem 1 (existence of classical solutions).

Let a € (0, 1). Assume that €2 is a bounded and uniformly convex domain,
whose boundary is of class C3,f€C“(S_2) with f > fo > 0, and g € C*(02).
Then problem (1) has a unique solution u € C>*(Q).

It is important to notice that classical solutions may not always exist, see
for instance the counterexample given in Figalli (2017, Section 3.2). This
motivates us to introduce weaker notions of solutions.

1.2.2  Viscosity solutions

The Monge-Ampére operator w— detD*w is a fully nonlinear second order
operator, that is it depends nonlinearly on the highest (in this case second) order
derivatives that appear in the expression. For this reason, the theory regarding
fully nonlinear operators can guide us to develop a notion of solution (viscosity
solution) that is weaker than classical. We refer the reader to Gilbarg and
Trudinger (2001, Chapter 17), Caffarelli and Cabré (1995), Crandall et al.
(1992), and Neilan et al. (2017, Section 2) for additional details.

We begin with a definition that encodes the type of admissible nonlineari-
ties that will allow for the development of the theory of viscosity solutions.
Here and in what follows we denote by S? the collection of symmetric
d x d matrices. The set S¢ is endowed with a partial order: if M,N € S? then
we say that M < N if v - My <v - Nv for every yeRY,

Definition 2 (elliptic operator).

Let F: Q xR x S? — R be locally bounded. We say that F is elliptic if it satis-
fies the following monotonicity condition: For all x € Q, r,s € R and M,N € S¢
with » > s and M < N then

F(x,r,M)<F(x,s,N).

Moreover, we say F is uniformly elliptic if for all r,s ¢ R and M € S¢ with
r > s we have

F(x,r,M) <F(x,s,M),

and, in addition, there are constants 0 < A < A such that for all MeS?
we have

AN <F(x,r,M+N)—F(x,s,M) <A||N|s, VN>0.
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Letting F: Q xR xS? — R be an elliptic operator as defined above, we
consider the fully nonlinear elliptic problem

F(x,u(x),D*u(x)) =0 inQ. @)

To be able to properly describe the notion of viscosity solutions we need to
recall the following.

Definition 3 (upper and lower semicontinuous envelopes).

Let w:Q—R. By w*€USC(Q) and w, € LSC(Q), we denote the upper
and lower semicontinuous envelopes, respectively, of the function w. In

other words

w*(x) = lim supw(x), wy(x) = lim infw(x).

y—Xx y—x

Finally, by USC(Q) and LSC(Q) we denote, respectively, the sets of upper
and lower semicontinuous functions.

We are now ready to introduce the notion of viscosity solution.
Definition 4 (viscosity solution).
Let F be elliptic in the sense of Definition 2. We say that the locally bounded
function u:Q — R is:
1. A viscosity subsolution of (7) if whenever xo €Q, ¢ € C*(Q) and u* — ¢
has a local maximum at xo we have that

F.(x0,9(x0),D*¢(x0)) > 0.

2. A viscosity supersolution of (7) if whenever xo € Q, ¢ € C*(Q) and u, — ¢
has a local minimum at x, we have that

F*(x0,0(x0),D*(x0)) < 0.

3. A viscosity solution if it is a sub- and supersolution.

The condition “u* — ¢ has a local maximum at x,” is usually phrased as
“@ touches the graph of u from above at x,”. The reader is encouraged to
draw a picture to see why these two have the same meaning. Similarly,
“u, — ¢ has a local minimum at xy” is: “@ touches the graph of u from
below at x,”.

One of the main technical tools in asserting existence and uniqueness of
viscosity solutions is a comparison principle.

Definition 5 (comparison principle).

We say that problem (7) satisfies a comparison principle if whenever
w e USC(Q) and w € LSC(Q) are sub- and supersolutions, respectively, then
we must have

ww.
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Notice now that if we define

detM —f(x), x€Q,

glx)—r, X €09Q, ®)

FMA()C,F,M) = {
this operator satisfies the monotonicity conditions given in Definition 2 only if
we restrict the third argument to the set of positive semidefinite matrices
which we denote by S‘i. Consequently, we need to restrict the class of admis-
sible functions, that define a viscosity solution to (1) to the set of convex
functions.

Definition 6 (viscosity solution).

Let u € C(Q) be a convex function. We say that u is:

1. A viscosity subsolution of (1) on the set of convex functions if u < g on
0Q and, whenever xy €Q, ¢ € C*(Q), and u — @ has a local maximum
at xo we have that

detD?p(xo) > f(x0).

2. A viscosity supersolution of (1) on the set of convex functions if u > g on
0Q and, whenever xo €Q, ¢ € CZ(Q) is convex, and u — ¢ has a local min-
imum at x, we have that

detD?p(x0) <f(xo).

3. A viscosity solution if it is a sub- and supersolution on the set of convex
functions.

The reader may wonder why these definitions are asymmetric. The con-
cept of supersolution requires convexity of the test functions, whereas subso-
lutions do not. This is due to the fact that, as noted in Gutiérrez (2001,
Remark 1.3.2), if u is convex and u — ¢ has a local maximum at x,, then ¢
is (locally) convex.

The existence and uniqueness of viscosity solutions will be a consequence
of Theorems 2 and 3. Here we mention a remarkable property of viscosity
solutions, namely their stability. The following result can be found, for
instance, in Nochetto et al. (2019a, Lemma 5.3).

Proposition 1 (continuous dependence).

Let fi,fr€C(Q) with fi, f» > 0 and g, g € C(0Q) and denote by
Up,uy € C(Q) the corresponding convex viscosity solutions to (1). Then
we have

| 1 —ua| () < C [ fi —f2 ||£fod(g> + |l g1 — 82| =(002)-

In addition, if f{ > f> > 0 and g, < g, we have that u; < u,.

Finally we comment that viscosity solutions can be approximated by classical
ones over larger, but smooth, domains; see Nochetto et al. (2019a, Lemma 5.4).
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Proposition 2 (smooth approximation).

Let  be uniformly convex, f,g € C(Q) with f > 0, and u the convex viscosity

solution to (1). There exists:

1. A decreasing (in the sense of inclusion) sequence of uniformly convex
smooth domains Q,, such that

disty (Q,,Q) — 0, n— oo,

where by disty(A, B) we mean the d-dimensional Hausdorff distance
between the sets A and B. -
2. A decreasing sequence of smooth functions f,, : Q,, — R with f,, > 0 such that

||fn —f||Lm(Q) —0, n—oo.
3. A sequence of smooth functions g, :Q, — R such that

Il g» —g”Loo(Q) —0, n— oo.

Moreover, if u, € C (Q,,) denotes the convex viscosity solution to (1) over the
domain Q,, and with data f, and g,, then

||ty — | () — 0, n— oo.

1.2.3 Alexandrov solutions

Besides the concept of solution in the viscosity sense, another type of weak
solution to the Monge—Ampere equation is the Alexandrov solution, which
is based on a geometric interpretation. To motivate it, let w € C*() be con-
vex so that the gradient map Vw:Q— R? is well defined and monotone. In
this case, an interesting observation is that detD”w is actually the determinant
of the Jacobian of the gradient map. Therefore, for any open (or Borel) subset
E C Q, we have

s

/detDzw(x)dx = dy=|Vw(E)
E Vw(E)

where |-| denotes the d-dimensional Lebesgue measure.

What is remarkable about this simple observation is that to make sense of
detD?u, we only require Vw(E) to be well defined for any Borel set E. This
enables us to make sense of the previous identity even if w & C*(Q). To define
the weak (Alexandrov) solution, we first introduce the subdifferential of a
convex function.

Definition 7 (subdifferential).
Let Q be convex and w:Q — R be a convex function. The subdifferential of
w at point x €Q is the set

ow(x):={p eRLw(x)+p- (y—x) <w(y) VyeQ}.
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For any Borel set E C Q, we define
Ow(E) = Uyepow(x).

In other words, the subdifferential is the collection of slopes of all affine
functions that touch the graph of w at (x, w(x)) and bound the graph from
below. From this observation, it is easy to see that if w is strictly convex
and smooth, then ow(x) = {Vw(x)}. Here we give an example of subdifferen-
tial of a convex (but not strictly convex) function.

Example 1 (subdifferential).
Let Q =B,(0) C R? and

w(x) = [x].
Then at the origin x = 0, we note that
w(0)+p-y<w(y) VyeQ

provided that the norm of the vector |p|< 1. Hence, by definition, the subdif-
ferential of w at x = 0 is the closed unit ball centred at 0, i.e.

ow(0) =B;(0).
At any other point x €Q, since the function w is differentiable, we note
that the inequality

w(x)+p - (y—x) <w(y) VyeQ
holds if and only if p = Vw(x). Hence, for all x €Q\{0},

ow(x) ={Vw(x)}.

With this motivation at hand we can introduce the so-called Monge—
Ampeére measure, which will be essential in defining Alexandrov solutions.
Definition 8 (Monge—Ampere measure).

Let QCR? be convex and w:Q—R be a convex function. The Monge—
Ampére measure associated to w is

0, (E) = |ow(E)].

It can be shown, see Figalli (2017, Theorem 2.3) that this is indeed a locally
finite Borel measure on Q. With this, we are ready to define Alexandrov solutions.
Definition 9 (Alexandrov solution).

Let f be a Borel measure defined in Q. A convex function u € C(Q) is an
Alexandrov solution to the Monge—Ampere equation (1) if u = g on dQ and
u, = f, that is,
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lou(E)| =f(E). )
for all Borel sets E C Q.

To illustrate the definition of the Alexandrov solution, we consider
Example 1. Let E C Q be Borel, if the set contains the origin, we have the
subdifferential

ou(E) = Uyepou(x) = B1(0),
which yields
|ou(E)|=|B1(0)| == ifx€E.
On the other hand, if the set does not contain the origin, then the subdifferential
0u(E) =U,ep{Vu(x)} C 9B1(0)

Hence, we get |0u(E)| = 0 if O ¢ E. Finally, we conclude that u is an Alexan-
drov solution of Monge—Ampeére equation

detD*u(x) = 71—}

where 8,—¢, is the Dirac measure at the origin. It is worth mentioning that u
is not a viscosity solution because the right-hand side is not a (continuous)
function. Also note that the continuity of the source term f is no longer
required for (9) to be well defined.

The existence and uniqueness of Alexandrov solutions is summarized in
the next theorem, see Gutiérrez (2001, Theorem 1.6.2) and Figalli (2017, The-
orem 2.14).

Theorem 2 (existence and uniqueness).

Let Q CRY be a strictly convex domain, let g € C(0Q) and f be a nonnegative
Borel measure on Q with f(Q) < co. Then there exists a unique convex func-
tion u € C(Q) that is a solution of (1) in the sense of Definition 9.

An important property of Alexandrov solutions is their stability with
respect to weak convergence. We refer the reader to Gutiérrez (2001, Lemma
1.2.3) for a proof of the following result.

Lemma 1 (weak convergence).

Let {wk},‘f’zl,w be convex functions on Q and assume that, as k — oo, we have
wy — w uniformly over compact subsets of Q. Then, the associated Monge—
Ampere measures ., tend to u,, weakly, that is,

[ #0d, 0— [ i, ),

for every ¢ continuous with compact support in €.
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The relation between viscosity and Alexandrov solutions is given in the
following result (Gutiérrez, 2001, Propositions 1.3.4 and 1.7.1). Notice that
this result not only shows, as we have already pointed out, that the notion
of Alexandrov solution is strictly weaker than that of viscosity solutions
but, on the basis of Theorem 2, shows existence and uniqueness of viscosity
solutions.

Theorem 3 (equivalence).

Let u€ C(Q) be an Alexandrov solution of (1). If f € C(Q), then u is also a
viscosity solution in the sense of Definition 6. Conversely, if u is a viscosity
solution of (1) and f € C(Q) with f > 0, then u is an Alexandrov solution.

Since it will be useful in the sequel, we introduce here the convex
envelope of a function, which is the largest convex function that is bounded
above by the given one.

Definition 10 (convex envelope).

Let Q C RY be convex and w: Q — R. The convex envelope of w, denoted by
I'w, is the largest convex function whose graph lies below the graph of w.
It can be computed by

I'w(x) = sup{L(x) : L affine function and L(y) <w(y) Vye€Q}.

To conclude our preliminary discussion we recall the Brunn—Minkowski
inequality, a celebrated result in convex geometry. Given two compact sets
A, B of R, we define their Minkowski sum

A+B::{v+w€Rd:veAandw€B}. (10)

The Brunn—Minkowski inequality relates the Lebesgue measures of compact
subsets A, B of Euclidean space RY with that of their Minkowski sum A + B.
Lemma 2 (Brunn—Minkowski inequality).

Let A and B be two nonempty compact subsets of RY for d > 1. Then the
following inequality holds:

|A+B|"> 14|V +|B|'.

2 Wide stencil finite differences

Problems involving the classical linear partial differential equations of mathemat-
ical physics can be reduced to algebraic ones of a very much simpler structure by
replacing the differentials by difference quotients on some (say rectilinear) mesh.

Courant et al. (1967)

In this section we will study finite difference schemes that aim to approximate
the viscosity solution, in the sense of Definition 6, of (1).
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2.1 A general framework for approximation schemes

Let us describe a general framework under which convergence of approxima-
tion schemes can be shown. Let F: Q x R x S — R be elliptic in the sense of
Definition 2 and assume we wish to approximate the viscosity solution to (7).
To do so, we introduce a family of approximation schemes, which are
described by the collection of maps {F,}.~o, where F.: Q xR x B(Q) — R,
and B(Q) denotes the space of bounded functions on Q. The parameter &
can be understood as a discretization parameter. With this family at hand,

we seek for u, € B(Q) such that
Fo(x,ue(x),u:) =0, inQ. an
We assume that the approximation schemes satisfy the following assumptions:

1. Monotonicity: For all e > 0, x€Q, t€R, and u,v € B(Q) such that u > v
we have that

F.(x,t,u) > Fe(x,t,v). (12)

2. Stability: There is gy > 0 such that if € < &, the scheme (11) has a unique
solution and there is a constant, independent of &, such that

[ el < C. 13)
3. Consistency: For all xo € Q and ¢ € C?(Q) we have

lolim SU? OFe()’»fﬂ(Y) +&,¢+E&) <F.(x0.0(x0).D’p(x0)) (14a)
€ ,)'HXO, —

liminf Fe(y,0(y)+&0+&) > F (x0,0(x0),D*¢(x0))- (14b)

£10,y—x0,6—

The main convergence result in this framework is the following; see Barles
and Souganidis (1991, Theorem 2.1).

Theorem 4 (Barles—Souganidis).

Assume that the family of approximation schemes (11) is monotone, stable and
consistent, in the sense of (12), (13), and (14), respectively. Assume, in addi-
tion, that problem (7) has a comparison principle in the sense of Definition 5.
Then, as € | 0, the functions u,, solution of (11) converge locally uniformly to
u, solution of (7).

Proof. Define u,u € B(Q) by

u(x)=limsupu(y), u(x)=liminfu.(y).
y—»x,glO y—x,el0
Notice that, by stability, we obtain that these functions are well defined and
bounded. In addition, we have that #,u are upper and lower semicontinuous,
respectively.
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The idea now is to show that 7 is a subsolution and u is a supersolution of
(7), for if that is the case we can invoke the comparison principle to see that
u <u, and so that these must coincide with the viscosity solution of (7). This,
in turn, implies the local uniform convergence of u, to u.

Let us then show that % is a subsolution. Let ¢ € C*(Q) and assume that & — ¢
has a local maximum at xo € Q with #(xo) = @(xo). It can be shown then that
there are sequences {e,}ro, CR* and {y,}r-, CQ such that g, | 0, y, — xo,
u,, (yn) — Uu(xo) and the sequence of functions u, — ¢ attains its maximum at y,,.

Notice now that, upon denoting &, = u,, (y,) — @(yn), we get that £, — 0 and
ug, (x) — p(x) <&, locally. Monotonicity then implies that

0=F,, (yn’uen (Yil)’uen) =F,, (Yn’(p(yn) +Enp+ (u€11 _(P))
SFe,(vn () +En+ &),

which by the consistency condition (14a) yields
F(x0,9(x0),D*p(x0)) >0,

so that u is a subsolution. O

Remark 1 (limitations).

We must remark that, although Theorem 4 seems sufficiently general:

1. It only provides sufficient conditions for convergence. There is no guideline
towards the construction of monotone, consistent and stable finite difference
schemes.

2. This result, as is, cannot be applied to approximate viscosity solutions of
the Monge—Ampere equation (1) directly. This is because, as pointed out
in Section 1.2.2, the Monge—Ampere operator is only elliptic over
QxR xS,

3. The existence of a comparison principle in the sense of Definition 5
is assumed. Notice that, in Jensen and Smears (2018, Proposition 2.1) it
is shown that, for a reformulation of the Monge—Ampere problem as a
Hamilton Jacobi Bellman equation (which will be discussed in
Section 2.8.1), if f = 0, there cannot be a comparison principle for this

problem. In other words, this is a highly nontrivial assumption.
|

Although not applicable to the Monge—Ampére equation (1), one of
the messages of Theorem 4 is that monotonicity of a numerical scheme is a
highly desirable property. Thus, it is necessary to explore how to construct
monotone approximation schemes. In the context of finite difference schemes
it was realized as early as in Motzkin and Wasow (1953) that, even for linear
problems, monotonicity of a numerical scheme requires the use of wide sten-
cils, which is rather problematic at points near the boundary. We refer the
reader to Neilan et al. (2017, Section 3.2) for more details, and to Mirebeau
(2016) for the construction of minimal stencils in two dimensions. For this
reason, in the remaining of this section, we will consider wide stencil finite
difference schemes to approximate the viscosity solution of (1).
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2.2 A variational characterization of the determinant

Let us provide a variational characterization of the determinant that will moti-
vate most of the constructions which will come below. This was originally
shown in Froese and Oberman (2011a, Lemma 2).

Lemma 3 (characterization of the determinant).

Let A be a symmetric positive definite d x d matrix and let

= {{Wi};lzl C Rd Wi Wj = 5,‘,1‘},
be the set of all orthonormal bases 0f RY. Then we have that
detA= min le Aw;.

Wiyl evis

Proof. To shorten notation, let M = min ,, esz Wi - Aw;. Then let {vj}
be an orthonormal set of eigenvectors of A so that

d
detA = Hvi “Av; > M.
i=1

On the other hand, for {w,-};l:1 €V, we can represent them in the basis of
eigenvectors w; = S"0_ (w; -v;)v. We have

d d
—logHw,- CAw; = —Zlog (w; - Aw;)
- 4 d d
= —Zlog <Z WiV, v,,1~2(wi~vk)Avk)
=1

k=1

:—Zlog (izk (Wi -ve) )

where a(A):{/lk}Z:l is the spectrum of A. Since |w; = 1 the term

Zf:]/lk(wi -v;)? is a convex combination of the elements of (A). Owing to
the convexity of t— — logt we can apply Jensen’s inequality to obtain that

—logHw, Aw; < Zlog/lkz w; - vk Zlogik —logH/l

As the function t+— — logt is decreasing, we conclude that
d
detA < Hwi -Aw;,
i=1

which since {w,—}f-lz1 €V was arbitrary implies detA <M and this concludes
the proof. O
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The previous result allows us to conclude that, if ¢ € Cz(Q) 1S convex, we
can express the determinant of its Hessian at a point in terms of second direc-
tional derivatives, that is, if x, € Q we have

d d 3
I’
detD*p(xo) = min wi-D*(xo)w;= min — (x0).
{W'}?:levjil; I l {Wi};l:levil}awiz
Recall, in addition, that a solution to (1) must be convex. To enforce convex-
ity we then introduce the following operator

d 1P A -
MA = mi — - — , 15
[¢l(x0)= min H( ow? (m)) ;( o (m)) (15)
where x* = max {x,0} and x~ = (—x)" denote the positive and negative parts
of x, respectively. Notice that, if ¢ € C2(Q) is convex, MA[p] = detD?¢.
The idea behind (15) is that, if ngo(xo) has a negative eigenvalue, then there
is VeV and w € V for which w - D*p(xq)w < 0. Thus,

MA [@](x0) <0 — (w - D*p(x0)w)” <O.
Consequently, ¢ cannot be a solution to (1) since, at x, we have
detD?p(xo) =£ (x0) > 0.

These ideas are made rigorous in Nochetto et al. (2019a, Lemma 5.6).
Proposition 3 (equivalence of operators).

Let f € C(Q) with f > 0. The function u € C(Q) is a convex viscosity solution
of (1) in the sense of Definition 6 if and only if it is a viscosity solution, in the
sense of Definition 4, of the following problem

Fuya (x,u(x),D?u(x)) =0 (16)

with

Foya (x,u(x),D*u(x)) = { Z/I(?)w_](j()x),f(m’ ;CGE(%
One of the advantages of formulation (16) is that it has a comparison
principle.
Proposition 4 (comparison principle for the F;,4 operator).
The operator F 4, defined in (16) has a comparison principle in the sense of
Definition 5.

Proof. It follows from the fact that the operator F,,;4 satisfies the structural
assumptions given, for instance, in Crandall et al. (1992, Theorem 3.3). O

The characterization of the determinant given in Lemma 3 will be the
basis of many of the wide stencil schemes we will describe below.
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2.3 Wide stencil finite difference schemes

Let us describe the first class of methods that exploit the characterization
described in Lemma 3 via the operator introduced in (15) as originally pro-
posed in Froese and Oberman (2011a). Let 4 > 0 be a (spatial) discretization
parameter and assume that, up to a linear change of variables, our domain € is
discretized on a Cartesian grid. In other words, we let

Q,=QNZ, Zi={he:ecZ'}, 0Q,=0QNZ, Q,=Q;\0%.

We set X, as the space of grid functions, that is the collection of functions
Wp . Qh — R.

Given e€Z? we call the point x, € Q, interior with respect to e if
x), & he € Qj,. We will also say that a point is interior with respect to a subset
of § C Z% if it is interior with respect to all elements of S.

Given e € Z% and an interior point x;, we define the second difference in
the direction e to be the operator

1
Aewy, (Xh) :W(Wh (x;, +he) — ZW;I(X;,) +Wh(Xh — he)) (17

When x;, is not interior with respect to e, it essentially means that x;, is close to
0Q. Owing to the convexity of €, there are unique p, € (0, 1] such that x;,
prhe € 0Q. Thus, we can use the boundary condition (1b) to extend this defi-
nition as

A () = 2 <§ (xp+p  he) —wy(xp)
T )l r. s
wh(xn) — & (xn +p_he))
p_ B

where g is either the boundary condition, or an interpolant of w;, based on
neighbouring nodes. With these notions at hand, we would like to define the
discretization of the operator MA [-], introduced in (15), as

d
MAYS [w] (x4) =, nin VH(Aw,wh(xmﬂ
Wisim1 €V =1

Notice, however, that the given expressions may not be defined for all V), as
the points x;, = Aw; may not belong to Q. Even if they did, it may be very
computationally expensive to compute these directional differences at all the
nodes. For these reasons, we also need to introduce a discretization of V.
To this end we introduce a finite subset Gy C (Z4)* such that, if {;}’_, € Gy
then the vectors v; are pairwise orthogonal. We call this the directional discre-
tization of the Monge—Ampere operator and parametrize it by 6 > 0. Thus we
define the operator



124 Handbook of Numerical Analysis

d
MAYS wil(x) = min [ J(Auwaxi)™. (19)
{vitie1€90 721

With this notation at hand, we define the wide stencil finite difference
approximation scheme of (1) as: Find u;, € X}, such that

MAWS [u] () =f (x4), V€ Q. (20a)
up(xn) = g(xn), Vx € 0Qy. (20b)

Remark 2 (variant).
We could have also introduced another wide stencil operator via

d d

MAXBS [wa] () :{ I}leing H(Al/iwh('xh))+ _Z(AVEWI7(X]”))_ ’
Vitiz1€Y0 | i=1 i=1

see (15). [ |

Remark 3 (a regularized version).

Notice that, owing to the presence of the min and max operator in the defi-
nition of (19), this operator is not differentiable. This may make it difficult
to efficiently solve the ensuing nonlinear systems, since Newton methods
are not directly applicable. One could, instead, use semismooth Newton meth-
ods (Hintermtuller et al., 2002) since these operators are slant differentiable;
see Hintermiller et al. (2002, Lemma 3.1). However, if we insist in dealing
with smooth operators, Froese and Oberman (2011a, Section 3.5) introduces
a regularized version of MAZYQS[ -] given by

d
MAYS sfwil(xa) = min® T (Aywn(xa)) ™,
WYL G i—1

where
5 1 2,9
max {x,y}:i X+y+4/(x—y) +6 |,
.5 1 2,9
min {x,y}:i x+y—1/(x=y)"+5 |,
min‘s{xl,...,xn} = min‘s{min‘s{xl, oo Xn—1 FsXn b
and x*% = max®{x,0}. The properties of this operator are similar to those of
MAYS[- . .

Remark 4 (two dimensions).
Given A € S? we have the classical Rayleigh-Ritz relations
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A A
Im(A) = minq: minc(A), Au(A)= maxq: maxo(A),
weR? |W| weR! |W|

so that, if d = 2, we have that
w-Aw w-Aw

detA = min 5— max 5
weR? \w\ weR? |w|

This relation was used in Oberman (2008b) to introduce a two-
dimensional scheme via

MAY S wyl(o) = min (Aywa(x)T max  (A,wi(x) "
1/,»6{1/,’}}]:1690 ”ie{”/},d:legﬂ
Note that, although similar to (20), these operators are different. This was

illustrated in Froese and Oberman (2011a, Section 3.4) with the following
example: Let

— 2424242
w(xy,x2) = X7 +x5 +x7x5,

which is convex in a neighbourhood of the origin, and

o= {16) ()0 CO1

Computing each of the operators over these directions yields
MAY 2 [w](0,0) =4+212,  MA)$[W](0,0) =4.

Notice however, that since both operators are consistent with order O(h?)
we have that, for a convex function v,

MA S W] (x) = MAYS V] (xi) | = O(R), V.

|

The analysis of method (20) will be a particular case of the methods and

analyses presented in Section 2.7. We just comment that, even for smooth

solutions, wide stencils are required in this scheme to assert consistency. Let

us illustrate this in a simple case where there is no boundary conditions and

in two dimensions (d = 2). In other words, given xy €  we assume that it is

an interior point for any e € Z*. Let now ¢(x) =1x- Mx be a convex quadratic,
so that

1
Ae(p(}(o) :We 'Me,

and therefore

MAXQS[(/'](XO) = (v1-Mvy)(vq - M),

min ————
{r1,v2}€Go |V1|2|V2‘2
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independently of xo and the mesh size. At this point we need to recall that
there is {w;,w,} €V, namely the normalized eigenvectors of M, for which

detD?p = detM = (w; - Mw;)(wy - Mw,).

Notice finally, that once w is determined, w, = wll is obtained by a rotation.
In conclusion, to assert consistency, given a w € R? in the unit sphere, for
every 8 > 0 we must be able to find e C Z> such that

<86 2

1
w——e
le
Indeed, if we denote by e, the vector that satisfies this property with respect
to wy, then e, :ell does so for w,. Let now v; :ﬁei for i = 1, 2. Then we

have that

|detM — (v - My, ) (v2 - Myvy)| < C(A)8,

where C(A) is a constant that depends polynomially on A, the maximal eigen-
value of M.

Notice that, since e; € 72, then Vi€ Qz, so finding points that satisfy (21)
is the problem of rational approximation in the sphere. While how to actu-
ally find such points is beyond our discussion here, what we are interested
in is the size of |e|, which would serve as an estimate of the stencil size that
guarantees convergence. The following result is a specialization of Schmutz
(2008, Lemma 2.1) to the two-dimensional case; we refer the reader to this
reference a proof, its generalization to d > 2, and to the case of rational
approximation orthogonal matrices which is of interest when finding
elements of Gy.

Proposition 5 (rational approximation).
Let w € R? be such that |w| = 1. Then, for every 6 > 0, there exists v eQ?
such that lv| = 1 and

|lw—v|<é.

Moreover, ifl/:(pl/ql,pz/qz)T with py,p» €Z and q1,q2 €N then we
have that

64
0<q,~§§.

Now, for a given w € R?, let v be as in Proposition 5. This means that
e:h(:f(ql,qz)l/EZ2 is the smallest vector parallel to v that satisfies (21)
(here, hef(g,, ¢») denotes the highest common factor of ¢; and ¢,). Consequently,
we have that, generically
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C
le]| <C hef(q1,92) <Cmax{qi,q2} Sy

In conclusion, the size of the stencil must grow unboundedly if we restrict
ourselves to Cartesian meshes.

2.4 Filtered schemes

The estimates on the stencil size of the previous section are rather pessimistic.
This is because they are not assuming anything but convexity of the solution.
On the other hand, say in the two-dimensional case (d = 2), a standard nine
point stencil finite difference approximation can be proposed

° 2
MAED [Wh](xh) = A(l,())Wh (xh)A(o,l)Wh(xh) — (A(l,l)wh (Xh)) N (22)

where, if zj, = (xl,xz)T, then

o L (wi(x1+hx+h) —wp(x;y —h,x + h)
Aqywn(zn) :2h< 2h
_Wh ()Cl +h,xy — h) — Wy (X] —h,xy — h))

2h

This formula easily extends to higher dimensions.

It is not difficult to see that MA}P[-] has second-order consistency, even
for nonconvex functions. However, it is not monotone, even if one forgets
about boundary conditions. Thus, it does not perform well when used to dis-
cretize problems that have singular solutions.

Froese and Oberman (2011b) takes advantage of the simplicity of (22) and
the robustness of a wide stencil scheme by proposing a hybrid scheme. Locally,
it is a convex combination of each one of these schemes, where the weighting is
chosen depending on the expected behaviour of the solution. At points where the
solution should be smooth the simple scheme (22) is used, whereas if the solu-
tion is expected to be singular the robustness of (19) is better suited to capture
this behaviour. Summing up, the following discretization is used

MA} W] (x5) = @ (xa) MAGP [wy] (x) o3
+ (1 — a)(xh))MAygs [Wh] (Xh).

Here w € C(Q,[0,1]) is a weighting function defined a priori from the data as
follows: For ¢ > 0 we let Q. be a neighbourhood of the set where the solution
u may be singular, that is,

Q ={xeQ:0<f(x) <e}U{xeoQ:ggC**(U,), orU,NoQis flat },

where U, is a neighbourhood of the point x. We then set @ = 0 in Q, and one
away from it. This scheme was tested in Froese and Oberman (2011b) for a
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series of cases, ranging from smooth to singular solutions, and computational
experiments suggested that this method is robust and accurate.

This method, however, has a major drawback. The tunable function @
must be described by the user, and its values depend on the behaviour of
the problem data. For this reason in Froese and Oberman (2013) it was pro-
posed that instead the difference

IMAMS [wh] (x1) — MAFP [wy] (x4)

l

be used as an a posteriori indicator of accuracy. In regions where this differ-
ence is small, it is expected that the solution is smooth, whereas when this is
large one expects singularities. On the basis of this, we can choose which
scheme to apply. The way to measure this difference is by introducing a filter.
Definition 11 (filter).

A filter is a function S € Cy(IR) such that S(r) = ¢ in a neighbourhood of the
origin.

For instance, the function

X, x| <1
_Jo >2,
S(r)= 2 —x, 1<x<2, (24)
—x—2, =-2<x<-1

depicted in Fig. 1 is a possible filter, see Froese and Oberman (2013, Fig. 1.1
and (1.3)). With this at hand, a filtered operator can be defined via

MAj, [wy] (x1) = MAYS [wy] (x1)

oS (MAI;D [wa) (x) — MA)S [wh](xh)> (25)

h(x
where a € (0, 2] is to be chosen by the user. A filtered scheme seeks u;, € X,
such that
MAF [u] (xn) =f (xn), Vx5, €y, (26a)
up (Xh) = g(xh), Vxy, € 0Qy,. (26b)

Remark 5 (consistency).

Recall that (Kossaczky et al., 2016; Oberman, 2006) a monotone scheme can-
not be more than second-order accurate. Notice, in addition, that by construc-
tion we have

IMAJ [wi] (xn) — MAYS [wi] ()| < h®,

so that a filtered scheme is also consistent, up to second order. Moreover, if
the parameter @ is chosen smaller than the consistency order of both the
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S(t)

FIG. 1 The function S defined in (24) is a filter.

wide stencil, and the finite difference scheme, and the mesh size / is suffi-
ciently small, it can be shown that

MA}g](x) = MA}P ] (x),

whenever ¢ is sufficiently smooth. These two observations serve as a guide-
line for the choice of a. ]

Remark 6 (motivation).

The construction of a filtered scheme seems to be motivated by similar con-
structions for conservation laws and first order Hamilton Jacobi equations.
For instance, Lions and Souganidis (1995) shows the convergence of filtered
finite difference schemes (constructed in a similar way), for Hamilton Jacobi
equations. In the realm of hyperbolic conservation laws, several types of limit-
ers or artificial viscosity methods (Bonito et al., 2014; Guermond and Pasquetti,
2011; Guermond et al., 2011, 2018) have been derived from these ideas. M

As a step towards the analysis of schemes like (26), Froese and Oberman
(2013) introduced a class of schemes called nearly monotone, and showed that
the theory of Section 2.1 also applies to them. To show this, we begin with a
definition.

Definition 12 (nearly monotone).
The family of approximation schemes {F,}..o where F.:Q xR x B(Q) is
called nearly monotone, if every F, can be written as

Fe=FM+F,

where Flf is monotone in the sense of (12), and the function F* f , called a per-
turbation, satisfies
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. P o
lglf(r)l |F. (x,1,v)| =0,
uniformly on bounded subsets of Q x R x B(Q).

The convergence of nearly monotone schemes closely follows that of
monotone schemes.
Corollary 1 (convergence).
Let {F.}. be a family of approximation schemes, that is nearly monotone, in
the sense of Definition 12; consistent, in the sense of (14); and stable in the
sense of (11). Assume, in addition, that problem (7) has a strong comparison
principle. In this setting we have that, as € | 0, the functions u,, solutions of
F(x, u.(x), u.) = 0 converge locally uniformly to u, solution of (7).

Proof. The proof is a small variation on the proof of Theorem 4. Indeed, with
the notation of this proof, we have

0 =F,(Ynsthe, (Yn), Ue,)
=F (Vs @(vn) +Ens @+ (e, — @) + Fy (Vs te, (V). 1e,)
SFg(Yn»(P(yrr) +&,0+&,) +F§,, (Vs tte, (Yn)> U, )-

The stability of the scheme allows us to invoke the fact that the perturbation
vanishes in the limit. Consequently, we still have that 7 is a subsolution. O

Notice that the same considerations made in Remark 1 apply in this
setting.

2.5 Lattice basis reduction scheme

Let us now discuss a two-dimensional method, which was introduced in
Benamou et al. (2016) and is termed the lattice basis reduction scheme.
The aim of this scheme is, for a given stencil, to obtain a different way to
compute the determinant, so that the scheme is more accurate. We begin with
a definition.

Definition 13 (superbasis).

We will say that a basis of Z> is a pair of vectors (e;,e;) € (Z*)* that satisfy
|det (e1,e2)| = 1. A superbasis of Z* is a triple (eg.e;,e2) € (Z2)* such that
(e, e,) is a basis and ey + e; + e, = 0.

We will call a stencil a finite subset of Z*\{0} that is symmetric around
the origin. To a stencil S we associate the set of superbases
Y(S)= {(eo,el,ez) €S5%:|det(er,e0)| =1, ey+e;+es :O}.

With these notations at hand, we define the lattice basis reduction Monge—
Ampere operator
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MAG [wi] (xa) )
= amin - r((Bawn(n)* (Bems(6) . (Bew() ). @D
05€1,5€2
where
?i+15i+27 | 51‘2(‘)‘[+1+5i+2,
7(80,01,82) = E(5051 +6162 +6062) —1(5(2] +5°+63), otherwise.

This allows us to introduce the following scheme: Find u;, € X;, such that
MA}Z%R [un] () =f (xn),  Voon €, (28a)
up(xp) =g(xp), Vx, € 0Qy,. (28b)

The motivation for this, at first glance obscure, definition of the operator
MAt%R[ -] is given in Benamou et al. (2016, Remark 1.10). Let Y = (e, e, €5)
€ Y (§) and notice that for any point x;, that is interior with respect to Y, we
have that the convex hull of {x,+he;}>, is a hexagon. Given a function
wy, € X;, we can associate to it its local convex envelope, that is the maximal
convex function I'y, yw), that is bounded from above by wj, at the points
{xh:l:he,-}izzo. It is then possible to show that I'y, yw), is a piecewise linear
function over a particular triangulation of the aforementioned hexagon. Then
we have that

7 ((Begwn(xn) ™, (Do, wn(xa) ™, (Beywn(xa)) ™) = |00, ywa (xn)], (29)

which is consistent with the definition of the Monge—Ampeére operator in the
sense of Alexandrov given in Definition 9 and hints at the consistency of this
scheme.

The consistency analysis of the operator (27) hinges on the following
definition.
Definition 14 (M—obtuseness).
Let M GSZJr. We say that the superbasis (eq, e, e;) of Z? is M—obtuse if
and only if

ej-Me; <0, VO<i<j<2.

From this definition, a necessary and sufficient condition for consistency
follows (Benamou et al., 2016, Theorem 1.9).
Theorem 5 (consistency).
Let ¢ z%x~Mx be a convex quadratic polynomial. We have that

MAER [p] (x) = detM, Vx

if and only if Y (S) contains an M-obtuse superbais.
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Proof. We will follow Benamou et al. (2016, Section 2.1). To simplify the dis-
cussion, we set

D= {(do,al,az) €R3 ra;<dajy1+ajyn, 1=0,1,2, mod 3},
1 Lon 5 5
71(ao,ar,az) :§(a0a1 +a1az +apay) _4_1<a0 +aj+a;).
Notice that y(ag, ai, az) = yi(ag, ay, a») if and only if (ag,a;,a) € D,
and that if that is not the case, then y(ag,ai,az)—y(ao,ai,a2)=
%(ao —a faz)z > 0. In conclusion, we have that

7(00’01’02) Zyl (a09a19a2)9 (30)
y(ao,a1,az) =y (ao,a1,a2) < (ap,a,az) € D.

Given a superbasis (e, €, e,) define §; =e; - Me; = (A, ¢(x;,)) . For a per-
mutation (i, j, k) of (0, 1, 2) we have

;i — 5_,' — 0= (e, +ek) 'M(Ej +ek) —€- ME'j —eMe, = 28_/ -Me,.
Consequently, (89,81,6,) € D if and only if the superbasis (eq, €}, ;) is
M-—obtuse.

Let A be the linear transformation that maps e; and e, to f; = (1,0)T and

fZ:(O,l)T, respectively. Then we must have that f,=Aeo=(—1, —l)T.
Thus, §; =e; - Me; = A 'f; - MA™'f;, and so

71(Hos 1, 112) = det (ATTMA™!).

However, detA =|det(ey,e;)/det(f;,f,)|=1. Combining this with (30)
we obtain the claim. O

Essentially, the previous result shows that the operator MA;RY[-] system-
atically overestimates the determinant of the Hessian for quadratic functions,
and that we have equality if and only if the stencil S contains a M-obtuse
superbasis. For this reason, it is of interest to obtain conditions on the size
of the stencil that guarantee that such a superbasis can be found. The follow-
ing result is a restatement of Benamou et al. (2016, Proposition 1.12).
Proposition 6 (stencil size estimate).

The stencil

S={ecZ:ged(e)=1,le| <2«},
contains a M—obtuse superbasis for every matrix M € Si that satisfies
Ml (| M~ ]| < 2.

Notice that the cardinality of the stencil stated in Proposition 6 is quite
large, approximately «°, and that if the solution degenerates, that is
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detD?u(xp) = 0 at some point, then the stencil size must again grow unbound-
edly to maintain consistency.

Remark 7. The recent paper (Benamou and Duval, 2018) shows convergence
of the lattice basis reduction scheme (28) applied to the optimal transport
problem.

2.6 Discretization based on power diagrams

In Mirebeau (2015) the following discretization of the Monge—Ampere oper-
ator is proposed and analyzed. Let S be a stencil such that span§=R? and
such that its elements have coprime coordinates, that is, if

e= (el,...,ed)TES, then gecd(e) = ged(ey,...,eq) = 1. We define
MAZPS[wh](xh):ngRd:VeeS:2g-e§|e|2Aewh(xh)H. 31)

Here, we denote the Lebesgue measure by |-|. With this operator at hand, we
define the problem: find u;, € X,, such that

MAS [ua] (x4) =f (x4), Vi € Qs (32a)
up (xh) = g(xh), Vx;, € 0Q,. (32b)

Notice that the set entering the definition (31) is a polytope. Efficient ways
to compute the volume of a polytope are available. For instance, if the dimen-
sion is not too high (and recall that we are mostly interested in the cases d = 2
or d = 3), one can first triangulate this polytope to then easily compute its
volume.

Let us study the consistency of this scheme. To do so, we must introduce a
definition.

Definition 15 (Voronoi cells and facets).
Let M € S”i. The Voronoi cell and facet are

Vor(M)={geR?:VecZ!, g-Mg<(g—e)-M(g—e)},
Vor(M,e)={geVor(M):g-Mg=(g—e)-M(g—e)}.

A M-Voronoi vector is an element e € Z%\ {0} such that Vor(M, e)#Q. It
is a strict M-Voronoi vector if the facet Vor(M, e) is (d — 1)-dimensional.

Now, the consistency of the operator defined in (31) is as follows.
Proposition 7 (consistency).
Let ¢(x) :%x -Mx be a convex quadratic. Then we have that

MAR (@] (x) = detM, Vx

if and only if the stencil S contains all the strict M-Voronoi vectors.
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Proof. Let k= /|| M||2 || M~||,. We divide the proof in several steps.
1. Any point g €Vor(M) must satisfy |g| < K\/_ Any M-Voronoi vector
e satisfies |e| < kv/d and has coprime coordmates
Indeed, if g €Vor(M), then let e, € 7% be obtained by rounding its
coordinates to the nearest integer, so that |g —eg| < %\/c_l The estimate

1 d
HM s |g\ <g Mg<(g—eg): M(g—eg)§||M||2|g—eg|2§1||M||2

yields the desired estimate. In addition, if e is a M-Voronoi vector, there
is g €Vor(M) for which |g| = |e — g| so that

le| <2[g| <xkVd.

Finally, to show that the coordinates must be coprime consider ke € Z¢
with & > 2 and notice that, for every g € R we have

(ke —g)-M(ke—g)+(k—1)g-Mg=k(e—g) -M(e—g)+ (k> —k)e - Me.

Consequently,

(e—g) -M(e—g)<max{(ke—g) -M(ke—g).g Mg},

and ke cannot be a M-Voronoi vector.
2. Let E be the set of strict M-Voronoi vectors, then

Vor(M) C {g€R?:VecS:2g-Me<e-Me},

with equality if and only if £ CS:

Notice that g - Mg < (g — e) - M(g — e) is equivalent to saying that
2g - Me <e - Me. This shows that Vor(M) is a convex polytope, defined
by inequalities of this type where e runs over the set of strict M-Voronoi
vectors. The bound established in the previous step shows that there can
only be a finite number of them.

3. [Vor(M)| = 1:

It follows from the observation that Vor(M) collects all elements g € R4
that are closer to the origin (in the metric induced by the matrix M) than to
any other point e € Z%\{0}.

4. Consistency:

Recall that, for any e € S we have that |e|2Aeq;(x) = e - Me.

Consequently,

MAE,DS[f/’](X):|{g€Rd:VeES:2g-e§e-Me}|
:‘M{gGRd:VeGS:ZgMege'Me}‘.

A combination of the second and third steps then yields
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MA;R[p](x) > detM|Vor(M)| = detM,

with equality if Vor(M) = {g € R?:Ve €S:2g-e <e-Me} with equality if
Vor(M) contains all strict M-Voronoi vectors.

This concludes the proof. O

Since the consistency of the operator MAZPS[ -] requires the stencil to con-
tain all strict Voronoi vectors, it is necessary to provide sufficient conditions
for this to happen.

Corollary 2 (stencil size estimate).
Let k > 0 and define

S={ecZ":|e|<Vdx, gcd(e)=1}.
Let ¢(x) =3x-M -x, then we have that
MAR[p](x) = detM, Vx

provided || M|[|M ™[5 < «*.

Proof. It immediately follows from the norm estimates given in Step 1 in the
proof of Proposition 7. O

Let us now provide a convergence analysis of scheme (32), which will fol-
low from the framework provided in Section 2.1. To do so, we introduce the
operator Fj, s:Q; x R x X;, — R via

MAR W] (xn) —f (xn), x5 €Q
Fus(ontow) = 9§ AST IS >
h,S(xh W) {g(xh) —t, X € 09, G

and notice that (32) can be compactly written as
Fs (X, un(x3), 1) =0, Vxp € Q.

Let us also define the operator Fg:Q x R x S‘i —R

_JIKM)|—f(x), x€Q,
Fs(x,t,M) = {g(x) —t, X€0Q, e

where
KM)={veR?:VecS, 2v-e<e-Me}.

Notice that, if D?u(x,) exists for all x, €Q and its eigenvalues are properly
bounded, see Corollary 2, we have that

detD?u(xq) —f (xo) = Fs (o, u(x0),D?*u(xo)).

For this reason, we will consider the problem: find u that is a viscosity
solution of
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F(x,u(x),D*u(x)) =0, x€Q. (35)

Following Mirebeau (2015, Section 2.3) we will now show the conver-
gence of scheme (32) via Theorem 4. To do so, we must show that scheme
(32) is monotone, consistent, and stable in the sense of (12), (14), and (13),
respectively. We have shown consistency in Proposition 7. For stability, we
refer the reader to Mirebeau (2015, Section 2.2), where stability is shown
by proving global convergence of a damped Newton algorithm. We will focus
then on the monotonicity of the scheme.

Proposition 8 (monotonicity).
The operator F, s, defined in (33) is monotone in the sense of (12).

Proof. Notice that, if x;, € 0, then there is nothing to show. On the other
hand, if x;, € €y, then MAEPS [w](xp) is an increasing function of the second
differences A,w(x;). Indeed, increasing this difference makes the polytope
larger. Notice also that A,w(x,) is a linear combination, with positive coeffi-
cients, of w,(x;, + eh) — wy(x,) and wy(x;, + eh) — wy(x;), with the obvious
modification for points that are not interior with respect to e. Thus, we can
invoke (Neilan et al., 2017, Lemma 3.11) to conclude the monotonicity. O

Next to be able to apply Theorem 4 we must make sure that the operator
F satisfies a comparison principle. To establish this we begin with an auxil-
iary result.
Lemma 4 (polytope comparison).
Let M{,M; € Si and x € Q. If My < M, then, for every t € R we have that
Fg(x, t, M) < Fg(x, t, M>). In addition,

(Fs(x.t.My + M) +f(x))* > (Fs(x..My) +£(x)) '/
+(Fs(x.t.Ma) +f(x))".

Proof. Notice that, since x € Q we have, independently of ¢,
Fx,t,M)+f(x)=|K(M)|, KM)={veR?:VecS, 2v-e<e-Me}.

Notice, in addition, that M| < M, implies that e - M e <e - Mye for every
e € R?. Consequently, M, < M, implies K(M;) C K(M,) from which the first
statement follows.

Now, since e - (M; + My)e = e - Me + e - M»e we have that K(M + M>)
contains K(M;) + K(M,). The Brunn—Minkowski inequality given in Lemma 2
allows us to conclude. O

Now we can establish a comparison principle for Fi.
Proposition 9 (comparison).
Let 1€ USC(Q) and u € LSC(Q) be a sub- and supersolution, respectively,
of (35). Then we have that u < u.
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Proof. We begin by noticing that, since F,(x, t, M) < Fg(x, t, M) for all x € Q
we obtain that, if xo € 02 we must have that

0 < s, (x0,9(x0),D?*(x0)) < Fs(x0,9(x0),D*¢(x0)) = g(x0) — (x0),

for every ¢ sufficiently smooth that satisfies the conditions given in
Definition 4. As a consequence, In this case, the condition defining a viscosity
subsolution at boundary points reduces to 7 < g on 0Q2. Similarly we can show
that for a supersolution we must have g <u on dQ. In conclusion, at the
boundary 0Q we have u <u.

By the semicontinuity assumption we can also define 6 = supg (7 —u) € R.
Additionally, since Q is bounded, there is R > 0 such that Q C Bz. Assume
now, for the sake of contradiction, that 6 > 0.

Let us define, for £ > 0, the operator Fg : OxRxS!—R by

[ Fs(x,t,M) —e(t—u(x)), xeQ,
Fs.e(x.t,M) = {g(x) —t, X € 0%,

and notice that this operator satisfies all the conditions of the comparison prin-
ciple given in Crandall et al. (1992, Theorem 3.3). Moreover, since for all x €
Q we have that Fg . (x,u(x),D?u(x)) = Fs(x,u(x),D?*u(x)) we conclude that u
is a supersolution for the operator Fg_.

We now construct a subsolution. Define

v(x) = (55) e (‘ = ) ue(x) =u(x) +v(x)

and notice that u, € USC(Q) and, moreover, u, <u# < g <u on 0Q. In addi-
tion, we have that, for x € Q

D>v(x) = (8)I,  Fs(x,t,D*v(x)) +f(x) =
see the proof of Proposition 7. Let now x € Q and, to shorten notation, denote
Fs[w] =Fs(x,w(x),D*w(x)) +£(x).
If this is the case we have that, in the viscosity sense
Fs.e(x,1e(x).D?ue (x)) = Fs[i+v] = (x) = e(ii(x) — u(x)) — ev(x)
> (Pl 4 F5) £ (x) — e(a(x) — u(v))
(P 4 Fs ) o) — () — ()
Fs[v] = e(u(x) —u(x))
£(6— (u(x) —u(x))) 2 0.

where we used Lemma 4, the fact that v(x) < 0 for all x € Q, that 7 is a sub-
solution for the operator Fg, the elementary identity

I\/ v
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(x+y)? <x?+y?, Vx,yeR,, V0e(0,1],

and the definition of §. In conclusion, u, is a subsolution for the operator Fi_,.
The comparison principle of Crandall et al. (1992, Theorem 3.3) then
yields that

ue(x) =2 (x) +v(x) <u(x), VxeQ

or that
5)1/d B
u(x)—u(x)>— (e 2) R?, YxeQ.
Letting £ | 0 we obtain 7 (x) < u(x), contradicting that § > 0. a

As a consequence, we have convergence.
Corollary 3 (convergence).
Let {up};~o C Xy be the solutions to (32). Then, as h | 0, we have that u;, — u
locally uniformly, where u is the (unique) viscosity solution of (35).

Proof. Apply Theorem 4. It is only relevant to mention that owing to the com-
parison principle showed in Proposition 9, u must necessarily be unique. O

2.7 Two scale methods

We will now present and analyze the so-called two scale method, which can
be understood as a generalization of the wide stencil schemes presented in
Section 2.3 to unstructured meshes (see also Froese (2018)). Here and in
what follows we will implicitly assume that Q is uniformly convex. Addi-
tional assumptions will be explicitly stated. Next, for # > 0, we introduce a
quasiuniform (in the sense of Ciarlet (2002)) simplicial triangulation 7 of
our domain Q. We denote by Qﬁ; and QZ the set of interior and boundary
nodes, respectively, of 7. We define X,, to be the set of piecewise linear
and continuous functions subject to this triangulation. The mesh size & will
constitute the fine scale of discretization. The large scale, denoted by &,
will be the one at which second-order differences will be evaluated. Notice
that, since now we are dealing with continuous functions, these can be eval-
uated at any point. Indeed, given x, € Q) and w € RY with |w| = 1 we define,
for w, € X,

Wi (x5 + pow) — 2wy, (x5,) +wy (x5 — pSw)
P28

V3, wi () = , (36)
where p € (0, 1] is the largest number so that x;, & pdw € Q; compare with (17)
and (18). As a final discretization ingredient, as in the case of the wide stencil
schemes of Section 2.3, we need a directional discretization. That is if, as
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before, ) denotes the set of all orthonormal bases of R we must construct, for
0 > 0, a set Vy of collections of d unit vectors such that if {w;}¢_ €V, then
there is {w?}flzl € Vy such that

0
ax [wi—w;| <0. (37)

i=1,...,

It is important to notice that the elements of )y are not required to be ortho-
normal collections of vectors.

Having defined all the discretization ingredients, which are parametrized
by the triple € = (h, 6, 0), following Nochetto et al. (2019a) we introduce
the two scale discrete Monge—Ampere operator by defining, for w, € X,
and xj, € Q1

1 (ngiwh (xh)) ' -

_il (V%wiwh (xh)) _] ,

compare with the scheme discussed in Remark 2. With these ingredients at
hand, the two scale method seeks a function uj € X; such that

=N

MA;S; g[wi](xs) = min [
{Wi},fl Vo

MAZS, o[us] (xi) =£ (xa), Vo € 3, (39a)
uf (xn) = g(xn), Vxn €. (39b)

Remark 8 (generalization).

Starting from the Cartesian mesh Q,, used to define the wide stencil schemes
(20) it is possible to construct a simplicial triangulation of Q without introdu-
cing new vertices: in two dimensions this is accomplished by subdividing
each square by its diagonal, and a similar construction is possible in three
dimensions. Once this is done, it can be seen that scheme (39) is, after little
modifications, a generalization of the wide stencil scheme (20). |

Remark 9 (domain approximation).

Notice that, since the domain Q is assumed to be uniformly convex, it is not
possible to triangulate it exactly. If we denote Q7, =Urc7, T, then we have
Q7,< Q. In our discussion we will ignore this fact. This is because we can
either replace Q by Q7, in all the statements that we shall make, or we can
consider all functions in X}, as defined in Q by extending them to Q\Q7, by
a constant in the normal direction to faces. This is a standard construction
and we shall not delve into it further. |

Let us now provide, following Li and Nochetto (2018a); Nochetto et al.
(2019a,b), an analysis of (39). We will first introduce a discrete notion of
convexity, based on the positivity of the second differences defined in (36).
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The operator (38) turns out to have a comparison principle, and acts in a
particular way on discretely convex functions. This will allow us to estab-
lish existence, uniqueness, and stability of solutions to (39). In addition,
since the size large scale § is reduced near the boundary, the consistency
can only hold sufficiently far away from it. For this reason, appropriate bar-
rier functions need to be constructed. All these ingredients will allow us to
assert convergence of the method. Finally, using the comparison principle
and suitable barriers, we will establish rates of convergence for classical
solutions.

2.7.1 Discrete convexity

The second-order differences defined in (36) and the set of directions Vy give
a discrete notion of convexity.

Definition 16 (discrete convexity).

We say that the function w;, € X, is discretely convex if

V%ijh(xh)zo, VthQZ, VWjG{W[}?ZIGV;).

It is well known that if a function is convex, then its second-order differ-
ences are nonnegative. On the other hand, discrete convexity does not imply
convexity. This is due, for instance, to the fact that convexity and interpola-
tion are not easily compatible. In other words, if w€ C(Q) is convex, then
its Lagrange interpolant Z,w € X, satisfies Z,w >w so that it is discretely
convex, but Z,w is not necessarily convex.

On the other hand, discrete convexity implies nonnegativity of the two scale
discrete Monge—Ampere operator; see Nochetto et al. (2019a, Lemma 2.2).
Lemma S (discrete convexity).

A function wy, € X, is discretely convex if and only if

MAGS; owal(xn) >0, Vx, € €.

Moreover, for a discretely convex function we have that

28
MA’; glwa](xp) = min HV(SW wp(xp).
(Wit €Voi]

2.7.2 A comparison principle

Let us now show that the operator defined in (38) is monotone and has a com-
parison principle. From this we will obtain uniqueness of solutions to (39).
Lemma 6 (monotonicity).

Let vy, wy, € X, be such that v;, — wy, attains its maximum at the interior node
X € QZ. Then we have
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MAGS; olwal (xn) > MAZS; 5 [vi] (xa).

Proof. Since x;, is the maximum, for suitable p > 0 and any unit vector
w we have

Vi (xn) = wa(xn) = vi(xn £ pdw) — wy (x5 £ pdw),
which implies that
V%wvh (xh) < v%wwh (Xh) .

multiplying this inequality as w runs over all elements of Vy allows us to
conclude. O

The previous result gives us a comparison principle for the operator (38).
Proposition 10 (comparison).
Let vy, wy, € X}, be such that v, < wy, on 0Q, and

MAGS; o[val (xa) > MAGS; g[wi] (xa), Vo, €,

then we must have that v, < wy, in Q.

Proof. We consider two cases for the inequality between the operators:

1. The inequality is strict. Let us assume, for the sake of contradiction, v;, — wy,
attains a maximum at an interior node. Lemma 6 then gives a contradiction.

2. The inequality is not strict. Since € is bounded, there is R > 0 such that

the convex quadratic ¢(x) :%(|x|2 —R) is nonpositive on Q. Let
qn=TInq € X;. This function is strictly convex and satisfies

02 q (X/, )
ow?

We claim now that, for all @ > 0 and x;, € Q!, we have that

V§WQh (Xh) Z V{%wq(xh) = =1.
28 28 . fa! o«
MA;s o[vi + aqn] (xn) > MA; 4[va] (x4) + min 73 ( (40)

Indeed, fix {w;} € Vy and assume first that V3, (vi(xn) + $qn(xs)) >0
for all i. In this case

d a
V2 v, V2 7
1( 3w Vh (Xn) +a€1h(Xh) g( i (Vi (2 +261h(XI))+2)

—.

4

d

ol
N 2 a hll
> min, T] (VB n(a0) + Sano)) + 2

> <ﬁ (ngivh(xh)) = > (Vﬁw,vh(Xh)) _> + g

i=1 i=1

U
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On the other hand, if there is i €{1, ..., d} for which
V3. (v(xn) +agp(xy)) <0, then this implies that V3, v;(x;) <O0. Thus,

ﬁ(Véw v (xp ) =0,

i=1
and

_ d

Zd: (V5w e +aq;,(xh))) E_Z(ng,vh(xh)>i+%

i=1 i=1

d . d _
2 2 a
= (H(véwfvh(xll)) —;(Véwivh(xh)) ) +§.
A combination of these two cases, since {wl} _1 € Vg was arbitrary,
implies (40).
Finally, since, v, + agq, < v, < w;, on 0Q and, on the basis of (40),
we have

MAS; o[vi+agqu] (xn) > MAG; o [va] () > MAGS o[wi] (x), ¥, € Q)

the previous step then implies that v, + ag, < wj,. Letting a | 0 we can
conclude. O

Remark 10 (discrete interior barrier).

Notice, that, in the course of the second case of the proof of this result we
effectively constructed a discrete interior barrier. If g(x) :%(|x|27R) with
R > 0 sufficiently large, then we have that

Tug<0, onoQ, MAY, [Zugs](x)>1, Vx, Q.
| |

As an immediate consequence, we also have uniqueness of solutions to (39).
Corollary 4 (uniqueness).
Scheme (39) cannot have more than one solution.

As a final application of the comparison principle, let us now show exis-
tence and uniform bounds on the solution to (39).
Theorem 6 (existence and stability).
For all e = (h, 6, 8) > 0 scheme (39) has a solution uj, € X;,. Moreover, this
solution is stable in the sense that || u; || =) is bounded independently of e.

Proof. The existence proceeds via Perron’s method. For this reason, we will
only indicate how to construct a discrete subsolution, that is a function
u2 € X, such that u2 =7,g on 0L and
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MAZS, o[uf] (x) > £ (x2), Vo € Q.

To construct this function, we define

@)=Y sy (), s (0=

Xn EQZ

o,
z'wf(xh)l/d|x—xh|»

where p, € (0,1] is the largest number such that, for all w € R? with |w| = 1
we have x;, £p, w € Q. Notice that V2,5, (y,) > 0 for all y, € Q}, and that

h>
V2,50 (0) =f ()%, YweR?, |w|=1.
Consequently, for y;, € Q)

V2, Zis(vn) = V3,5(m) = f ()" >0,

which, by Lemma 5 implies

d
MATsoZislCa) = min [TV, ZasCo) 2f (). ¥ €€,
Wisiz1€Vo j=1

Let now weC(€) be the convex envelope of (Z,(g—s))|,0. and set
wy, =Z,w. By convexity of w we have that

MA%:,SE,H[W/?] (xp) >0, Vx,€ th

Thus, we define
u2 =w,+ZIys.

This function, by construction, is discretely convex and u2 =7,g on 0Q.
Since the second differences of w;, are nonnegative, then we have that

d
MAE, [l o) = min [TV, wi(0) + V3, Zuston)]
it €Ve iy

d
> min  [[V5,Zus() >f (),
{witi€Ve i

and so u is a discrete subsolution.
It remains to show the uniform boundedness. To achieve this we will show
that every discrete subsolution is uniformly bounded. Let then w;, € X, be a

discrete subsolution and b, = max ycang(x) € X, We have then that

MA%,Sa,e[bh] (xn) =0<f(xn) < MA%?&,&[WJJ (xXn), Vx, € QZ
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Since, in addition, we have that b;, > w;, on d€2, the comparison principle
of Proposition 10 implies that

wy < by,.

This is enough since Perron’s method shows existence of a solution by
constructing an increasing sequence of subsolutions. Thus, u) is a lower
bound for the solution and, evidently, [|u}||;=(q) is independent of . O

2.7.3 Consistency and discrete barriers
Let us now examine the consistency of the operator (38). As we have stated
above, the operator can only be consistent at points sufficiently far away from

the boundary. For this reason, we define the -interior and §-boundary layer of
Q via

Qs = U T, (0Q);=0\Qs.
TeT ) dist(T,0Q)>68

For an interior node x; € Q’h its interior patch is

a)xh - U Ta
TeT p:dist(x;, T)<pd

where, as before, p € (0, 1] is the largest number such that, for any w € R?
with [w| = 1 we have x;, £ péw € Q.

The following result follows, essentially, by a Taylor expansion argument.
Lemma 7 (consistency of second differences).
Let x, € Q) and assume that ¢ € C"'(wy,), then for all w € R? with |w| = 1
we have

V3 Zne(xn)] < Cloleriw,)-

If, in addition, we have that x;, € Qs and ¢ € C**>%(w,,) for k = 0,1, and
a € (0,1] then we also have that

o(x
V(%wz-h(p(xh)_ ;’;(;zh)

/’12
K
<C (|¢|C“2!“(a5h)5 ta gy 5_2 |(p|C1~‘(wrh)) .
Finally, if ¢ is, in addition, convex then we have

62§0 (xh )

aw2 5/{ + a.

= Vo () < Cloplcinage, )

The previous result can be applied to obtain interior consistency of (38).
The following result was first obtained in Nochetto et al. (2019a, Lemma
4.2) under the assumption that Vy C V. This assumption was later removed
in Li and Nochetto (2018a, Lemma 2.4).
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Theorem 7 (interior consistency).

Let x;, € Q}, and ¢ € C**2%(w,,) with k = 0,1 and a € (0,1] be convex. In this
setting the following estimates are valid:

1. If 0 <35 then, for any {w,-}f-lzl € Vy, we have

d 3
0 p(xn) 2
2 2
detD=@(x;) < Iﬁl e (1 +166°(d—1) )

i

2. If {vi }l | €V realizes the minimum in the variational characterization of
the determinant given in Lemma 3, then for any {v‘)}, | € Vo that satisfies
(37) we have

Popla) Pl

ov? ov??

l

< C|(/’|Cl,l(w4\h)02.
3. Finally, if x, € Q) NQs, then
2 25 f+a n
|detD2p(xy) ~ MAZS, 5[ Zug)()| < €16+ Ca 55467 ).

where the constants C1 and C, depend only on the smoothness of ¢, the
domain Q, and the dimension d.

Proof. We prove each statement separately.
1. Let Wy = (wy, ..., w;). We have

det (W) W) detD?@(x;) = det (W)D2gp(x,)We) <

T E&

where, in the last step, we used that Wgngo(xh)Wg is positive semidefinite
and Hadamard’s inequality. We now need to estimate the determinant of
W =W} W, from below. Write

W= Wo w\ 1 0\ [ Wo w
w1 ) \wtwgt 1) 0 1w Wow

implying that detW = (1 —w - Wyw)detW,, which holds if the submatrix
Wy is nonsingular. Notice, however, that W; ; = 1 and |W; j|< 20 as
the columns of W, form an element of V,. This implies, for 8 <-L, that
Wo 221 and |w| <20v/d— 1. Thus, W;' >2I and

id
lw-Wow| <86*(d—1) detW > (1—86*(d—1))detW,,
which by repeating this process yields
detW > (1—86*(d—1))""' >1-86*(d—1)*,
and using, again the bound on 0

1
< 1+166%(d—1)>.
detW — ( )
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2. We begin by noticing that, given the minimization assumption, {v,-};l:l
must be the normalized eigenvectors of Dz(p(xh). Set v?’ =v;+w; and write

Fo(x ’o(x,
;(ezh) =/ Do) = (gv(Zl ) +2w; - D?p(x)vi +w; - D*(x;,)w;
Since {v; } - wi| <16 we then have

Pola)  Fela)
ov?? ov?

<CH.

3. By Lemma 5, since Z,¢ is discretely convex, we have that
MA%,S(S,H[I np)(xp) = min Hvéw Znp(xn).-
{w,}, 1€V 121

Let {wi}il € Vy be the set that realizes the minimum in this expres-
sion. Using Lemma 3 we can write that

2 d

H sw Lno(xn)

;:1Q

detD? () — MAGS; o[ Z1g0] (xa)

55k+(l

where, in the last step, we used repeatedly Lemma 7.
Let now {v; }, €V be the normalized eigenpairs of D*gp(x;), and
{v!}_, € Vy the collection that realizes (37). Then we have

MA}S; o[ Zep] (xi) — detD2

e
> Po(x p(x
(HVMIW () H ;,92 ) (H ;92}1 H ;,, h )

i=1

The first term can be handled by repeatedly applying Lemma 7, while
the second by applying the previous step.

All the estimates have been proved and the interior consistency is thus
obtained. O

As mentioned before, the operator is not consistent near the boundary. For
this reason we will, instead, construct discrete barriers which will allow us to
control the behaviour of the solution near the boundary.

Proposition 11 (discrete barrier I).
Let E > 0 be arbitrary and xj, € Q}, be such that dist(x;, 0Q) < 6. Then, there
is p, € X, such that

pn<0,0n0Q, MASS, j[pil(va) > E, Vyn €€, |pa(xn)| < CE'5,

where the constant C depends only on the domain Q.
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Proof. Without loss of generality, we can assume that x;, = (0, ..., O,z)T with
z > 0 so that 0 € 0Q and z = dist(x,, d€2). The uniform convexity of Q shows
that there is R > 0 such that, in this system of coordinates,

d—1
QC {xeRd:inz—(xd—R)zSRz}.

i=1

El/d
(Zx —(xs—R R2>.

We claim that p, =Z,p is the desired barrier. Indeed, by construction
prn < 0 on the boundary dQ and, since z < § we have that |p,(x,)|< CE Vs,
Finally, since p,, is discretely convex, for any interior node y, we have

Let

d
MAZS, ,[pil () > MAZS, ,[pl () = [ [EV/* = E.
i=1

as claimed. O

To obtain rates of convergence we shall also require another discrete bar-
rier that was originally introduced in Nochetto and Zhang (2018, Section 6.2).
We define

2 2
R = =1

The graph of this function is illustrated in Fig. 2. With this function at hand,
we define

b(x) =¢(dist(x,0Q)),

and b, =ZI,b. The properties of this barrier are as follows.
Proposition 12 (discrete barrier II).
For 6< \1/‘ the barrier function by, satisfies:

1. For all x, € Q) and any w € R with |w| = 1,
V(%wbh (xh) 2 0

2. For all x, € Q}\Qs and {w?}_, €V,

Rl -

max V wobh (xn) >

i=1,..

3. Forall xeQ
—48% < by(x) <0
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FIG. 2 The function ¢ used to define the discrete barrier of Proposition 12.

Proof. We consider each property separately.

1.

Let x;, x €Q with x, # x_. The convexity of Q ensures that
xo=4%(x4+x_) €Q. Denote by y € 0Q the closest point to xo. Since Q is
convex, there is a supporting hyperplane P at y, whose normal is
n :m(xo—y). Let now v = +(x, — x_), where the sign is chosen so
that n - v > 0. Consequently, see Fig. 3,

dist(xx,0Q) <dist(xy,P) =dist(xp,0Q) £n - v.
With this estimate, and using that { is nonincreasing, we can compute

b(x4)+b(x_) > (dist(xg,0Q) +v - n) + {(dist(xp,0Q) —v - n)
> 2£(dist(xg,09)) = 2b(xp),

where the second inequality follows directly from the definition of {. We
then conclude (cf. Krasnosel’skii and Rutickii, 1961, Pages 1-2) that the
function b is convex and the stated property of b, follows.

With the notation of the previous step, if we take a node x;, € QZ\Q(;, and
v €RY with |[v| = 1, then dist(x;, Q) + péw - n € [0, 25]. Since ¢ is non-
increasing and quadratic on that interval

282y - n|?

V2,bi() > V3b() > 222 = oy .
peo

Now, if we let v run over {w?},il € Vy we have obtained that

max V3 ,by(x;) >2 max |w,-9-n|2.
e Wi i=1,..d

i=1,

Let now {w;}?_, €V be such that it satisfies (37). Since |n| = 1 we
must have that
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P

[v|cos Z(v,n) =v-n

FIG. 3 The construction Proposition 12 that shows that the function b is convex. The distance
between x, and the supporting hyperplane P equals the sum of the distance from x, to the bound-
ary 0Q and the inner product between n and v.

Z|n wif=1, = _max |n wi| >—

i=1 =L \/_

Therefore,

wn>w,n— —w!)-n|>\w;-n

Wl -n|>w;-n|—|(w;—w?)-n|>|w;-n| - Z3 f
where we used that 8 < 21_(1’ This implies the estimate.

3. The last property follows directly from the definition of the function {. O

2.74 Convergence

Let us now show convergence. We will do so by adapting the arguments
developed in Section 2.1 to take into account that test functions must be con-
vex. We will rely on Proposition 3.

Theorem 8 (convergence).

Let Q be uniformly convex, f € C(Q) such that f > 0, and g € C(0Q).
As e = (h,8,0) — 0 with hd~" — 0 we have that the family {1}, of solutions
of (39) converges uniformly to u€ C(Q), the solution of (1).

Proof. In a similar way to Theorem 7 we have that, for all xy € Q, x; € Q}; N
Q; and all ¢ € C*%(w,,), it holds that

IMA[g](x0) — MA%,SM[IW] (xn)| < C1 (8 +|xo —xn]")
2 41
+ C2 (h + 92> ( )

Indeed, we only need to use that the operations —¢~ are Lipschitz and
with Lipschitz constant equal one.
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We now extend the ideas of Theorem 4. As there we define

a(x)= limsup w,(y), w(x)= liminf u(y)
e—»O,%ﬂO,ny e—0,35—0,y—x
and we will show that u is a subsolution. For that we assume that 7 — ¢, with
@ € C>%(Q) attains a maximum at x, € Q. Let {x,} be the sequence of nodes
such that x;, — x¢ and uj — Z ¢ attains a maximum at x;. By the monotonicity
result of Lemma 6 we obtain then that

MAGS; o[ ) (x) = MAGS; o[u] (x1) = f (xn)

the consistency, as expressed in (41), implies by passing to the limit that

MA(¢p](x0) = f (x0)-

It remains to understand the boundary behaviour of #. We will show that
the boundary condition is attained in a classical sense, that is . =g. Let x €
0Q and p, be the continuous quadratic constructed during the proof of
existence of the boundary barrier function in Proposition 11 with constant
E = k. As k can be taken arbitrarily large, the sequence of points where
g % py attains a maximum (minimum) over dQ, converges to Xx.

We now observe that the monotonicity of Lemma 6 implies that if v, € X,
is such that MA}S; ,[va](xs) > O for all x, € &}, then v, attains its maximum on
0L2. Since

MA%’S&Q[MZ +Ihpk} ()Ch) >0, Vx, € QZ,
we can apply this observation to uj, +Zp; to obtain that, for x € 0,

7(x) < limsup (uZ(y)+Ihpk(y))— liminf Z,pi(y)

h ,
s—‘0,§—>0,y—>x e—0,5—0,y—x

< limsup  max T(g(z) +pi(2)) —pa(x) < glx) +pi() —pi(x),
EHO,%HO,)'HX 2€0Q
where x; is the point where g + p, attains its maximum over dQ. Letting k —
oo we conclude w7 < g. Similarly u > g.
Finally we invoke the comparison principle of Proposition 4 to conclude. O

Remark 11 (convergence by regularization).

It is interesting to note that by invoking the continuous dependence result
given in Proposition 1, and the approximation result of Proposition 2, another
proof of convergence can be developed. See Nochetto et al. (2019a,
Section 5.3) for details. [ |

2.7.5 Rates of convergence

The ingredients used to assert the convergence of the two scale method (39)
were employed in Nochetto et al. (2019b) to obtain rates of convergence.
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The techniques used in this reference were very similar to those that we will
describe in Section 3 and so, to avoid repetition, we shall not elaborate on
them here. This is further justified by that fact that, although Nochetto et al.
(2019b) was the first work to provide rates of convergence for wide stencil-
type methods, the rates of convergence obtained in this work were
suboptimal.

Let us here, instead, present the results obtained in Li and Nochetto
(2018a), where optimal rates of convergence have been obtained. The main
tools in this are the comparison principle of Proposition 10 and the discrete
barriers constructed in Section 2.7.3.

We begin by noticing that we shall only assume

f=0,

so that the Monge—Ampére equation (1) may be degenerate. The main result
about rates of convergence for classical solutions is the following.

Theorem 9 (error estimate).

Let ue C>*(Q), with a € (0,1], solve (1) and uj, € X, solve (39). If 0 < ﬁ then
we have

=1y S C[12(14672) ucr + 6%l gy

where the constant C depends on the domain Q, the dimension d, and the
shape regularity of the mesh T, but is independent of h, and the solution u.

Proof. Recall that a standard interpolation estimate yields
|| 4t = Zyul| = (@) < CH|ulcri )

so that we only need to bound the difference u;, —Z,u. To do so, we will con-
struct a suitable discrete subsolution u, and supersolution u; and use the
comparison principle of Proposition 10.

Let u, =T,u+Kq, €Xp,, where g, is the interior barrier of Remark 10
and K; > 0 is to be chosen later. Notice that, by construction

u, <ZLu=21Iyg, onoQ.
Thus, to guarantee that this is a subsolution we must show that
MA%’S&Q[u;] (xn) > £ (xn) = detD*u(x;), Vx, €.
However, since u,, is discretely convex, showing this inequality reduces to

showing that, for all {w;}_, €V, we have

d
TIV2, 4y (a) > detD?u(xy), Vg € €2,
i=1
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see Lemma 5. Using the convexity of u, we have, according to Lemma 7, that

02u(xh)

ng,Ih u (xh ) > awlz

— C|M|Cz,a(g)5a,

so that, upon choosing
h? )
Kl =C |:5a|u|cl,a(g) + (62 +0 ) |MC1,1(Q):| .

where C is sufficiently large, we have

()Zu(xh) dzu(xh)
awz —C|M|C2,a(Q>5a+K12 awz

1 1

> (1 +166°(d — 1)2)%2 (1 +166°(d — 1)2)

Vit (1) >

+C02|M|C1,1(Q)

1/d 3*u(xy,)
ow?

Finally, since 9§4‘—d, we multiply this inequality over i = 1, ..., d and

invoke Theorem 7 item 1 to conclude that u, is a subsolution. The compari-
son principle of Proposition 10 then yields that

uy > uy, Ihu+C<5“|M|cl»l(m + (52 +92) |”Clv1<9>>‘1h

>Thu— C(&“\M|C1,1@) +02|M|C1,1<Q>).

We now define
M;-: =Tnu—Kiq,— Kby,

where g, and K are as before, b, is the barrier of Proposition 12 and K, > 0 is
to be chosen. We show that u; is a supersolution. First of all, because of the
choice of signs

uf >ITpu=1I,g, onok.

Now, to show the inequality between operators we must consider in Q5
and outside of it separately. Let x;, € Q’h N Qs and {v,-}fl:] €V such that

d
f() = detD?u(u,) = [ [2 gv(;w)

i=1

Let now {v?}?:1 € Vy satisfy (37). The interior consistency of second differ-
ences of Lemma 7, together with the estimate of Theorem 7 item 2 gives us that

Pu(x
ngelhu(xh) — #

/’12
§ C |:(Sa|u|cl,l(g) + (g +02> |M|CI'I<Q):| N

1
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which, using that VéngIh(Xh) >1, ngebh(x,,) >0, and the definition of K,

immediately implies that

*u(xy)
vgv?l'{/: ('X/’l) S avz .

Notice now that u; might not be discretely convex, so that Vﬁv(guh (%)

might be negative. To deal with this we define the function
d d
G:R!'=R, Gz Hz e;) —Zz e,
i=1 i=1

where {e; } ' | is the canonical basis of RY. Notice that this function is mono-

tone in each coordinate of z. Moreover if, for {wl} _, €Vp and w;, € X),, we
define the vectors

T

0o k) = (T3 wn(0). .o Vi ()

Pu(x,)  ulxy) T
PR .

MAGS; o[wa) (xa) = " r}nlrév GO (wn,{wi}))-

14

Then we have that

Therefore

MAGS, oluir 1 () < Glr(uf {v})) <Gy

_f (xXn)-

Hza.

Consider now a node close to the boundary, that is xj cqQi 5 \Qs, and let
w19 €Vy. Using Proposition 12 item 2 we have that
i Ji=1

1
>_
lirlnax V gbh(.Xh) 2d

Assume that this maximum is attained for index k. Using Lemma 7 we can
conclude that

ngzu;(xh) S ngZIhu(xh) —sz(%wfbh(xh)

1 1
< V;wi.'[hu(xh) —55K < Cluleniq) — 5 K2 <0,
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where the last step holds upon choosing K, sufficiently large. This shows that

_min VE o () =0 = MAGS, 7] (x4) =0 <f (xs).

We have shown that, for all x;, € Q) we have MAJS; o[u;f](x;) <f(x1), so
that ;" is a supersolution. The discrete comparison principle of Proposition 10
then allows us to conclude that

uy SL{;:IhM—Klqh—bih SIhM+C1K1 +C252K2,

where we used the lower bounds on ¢, and b;,. Recalling the choices of K;
and K, allows us to conclude. O

Choosing relations between the discretization parameters 4, o, and 6 we
can obtain explicit rates of convergence.
Corollary 5 (rates of convergence).

2 2

In the setting of Theorem 9, if §=Ch2+a and 6 = Coh2+a, we have
2a_
||M — MZHL‘”(Q) < Ch2+a.

On the other hand, choosing § = h*”> and @ = h'", then we have

, 2
[l —uf || o) < Ch3.
In both estimates the hidden constant is independent of h.

Notice that both choices of relations between the coarse parameters
and the mesh size / in Corollary 5 have its benefits and drawbacks. While
the first choice yields a faster rate of convergence, it requires knowledge
of the regularity of u. On the other hand, the second choice yields a
slower convergence rate, but does not require a priori knowledge of the
smoothness of u.

Remark 12 (error estimates under different assumptions).

The results of Theorem 9 have been extended in Li and Nochetto (2018a) in

several directions:

1. Smoother solutions: If u € C**(Q)mutatis mutandis the proof of Theorem
9 it follows a rate of convergence. The discretization parameters can be
related to each other in such a way that the error is O(h), and numerical
experiments indicate that this is sharp.

2. Estimates for solutions with Sobolev regularity: Assuming that u € W*
P(Q) with s < 3 and s — d/p > 2, and that Dzu(x) > Al, it has been shown
(Li and Nochetto, 2018a, Theorem 5.7) that we have
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h2 53—2
|u—uZ|Lw(Q)§C(6—2+92+52+ 7 ),

where the constant depends on the smoothness of u. Once again, the dis-
cretization parameters can be optimized to obtain a rate O(h>~4/%).

2.8 Extensions, generalizations, and applications

We conclude the discussion on finite difference schemes and its variants by
briefly describing some connections, extensions, generalizations, and applica-
tions of the schemes discussed here.

2.8.1 Hamilton Jacobi Bellman formulation and semi-Lagrangian
schemes

Let
d
A= {leRd:liZO, i=1,...d, Y A= 1}.
i=1

Define the function #:S? x R, — R by

1/d
1 d d

h(M,I): sup —EZA,‘W,"MW,‘+Z‘1/{1 (Hl,) .
i=1 i=1

{witl ev
AEA

The following result is from Krylov (1987), see also Neilan et al. (2017, Prop-
osition 6.13).
Proposition 13 (determinant).

For M €S? and 5§ € R, we have that

h(M,8) =0,

if and only if M € Sd+ and detM =6.

This motivates to define the function Fyp: Q x R x S’ SR by

h(M,f(x)), xeQ,

Frup(x,r,M) = { glx)—r, X €09,

and consider the problem: find u € C(Q) that is a viscosity solution of

Fryp(x,u(x),D?u(x)) =0, x€Q. (42)
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It turns out that this problem has an intimate connection with (1), as shown in
Feng and Jensen (2017, Theorems 3.3 and 3.5).

Theorem 10 (equivalence).

Let f € C(Q) be nonnegative. The function u€ C(Q)NB(Q) is a viscosity
solution of (42), in the sense of Definition 4, if and only if it is a viscosity solu-
tion on the set of convex functions of (1), in the sense of Definition 6.

It is remarkable that the convexity assumption on the solution is not
enforced in (42), it is rather a consequence of the formulation. This motivated
Feng and Jensen (2017) to use (42) for numerical purposes. They proposed a
so-called semi-Lagrangian scheme which we now describe. Over a triangula-
tion 7, we introduce X}, as the space of piecewise linear and continuous func-
tions. On the basis of (42) we introduce over X, the operator

1/d

1 d d

MAGY [wi) (x0) = {M’S}ljpev ~7 ;&-V%wiwh () +£ (xq) <H&‘) ,
AEA

where x;, € Q! and k > 0 is a discretization parameter. The semi-Lagrangian
scheme then seeks for u;, € X, such that

MA,%c [up)(xn) =0, Vx,€Q), (43a)
up(xp) =glxn), Vxu € QZ (43b)

Feng and Jensen (2017) showed existence and uniqueness of solutions to (43)
as well as, provided (4, k) — 0 with %—> 0, convergence to the viscosity solu-
tion of (42) and, as a consequence of Theorem 10, to the viscosity solution of
(1) over the set of convex functions. Rates of convergence, however, were not
provided.

Although rates of convergence for general semi-Lagrangian schemes were
given in Debrabant and Jakobsen (2013, Corollary 7.3) let us here explore a
connection between the solutions of the scheme (43) and the two scale method
of Section 2.7 as described in Li and Nochetto (2018a, Section 6). For that one
needs to notice, first, that the scheme given in (43) is not fully practical. This
is because in the operator MAi‘;{[ -] the supremum runs over all of V. We need
to introduce a directional discretization by, as before, using Vy whose ele-
ments satisfy (37). With this we introduce the new operator

1/d
1 d d
MAGY owa]() = sup —Ezliviw,wh(xh)ﬂc () (HM) ,
{will evp i=1 i=1
AeA
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and denote by u;f’g) € X, the solution to (43) but with this new operator. The

following is a rather surprising fact. For a proof see Li and Nochetto (2018a,
Proposition 6.2).

Proposition 14 (equivalence).

Let uj, € X, denote the solution to the two scale method (39) and u,(lk’g) € X, the
solution to the modified semi-Lagrangian scheme with the operator

MARY o[- ]. In this case, we have uj = u,(f o)

From Proposition 14 and the results of Section 2.7.5, rates of convergence
for (43) can be deduced.
Remark 13 (nonconvex domains).
Notice that convexity of the solution is not a constraint in (42) but rather a
consequence of it. This has motivated (Jensen, 2018) to explore the possibility
of using (42) as an extension of the Monge—Ampére equation to nonconvex
domains, or cases with nonconvex data. |

2.8.2 Filtered two scale schemes
In Nochetto and Ntogkas (2018) the ideas of two scale methods of Section 2.7
and those of filtered schemes of Section 2.4 were extended to construct a fil-

tered two scale scheme. Let T3, be a quasiuniform triangulation of Q of size
2h > 0. The superscript in this triangulation indicates that we are doing a qua-
dratic approximation of the boundary. This can be accomplished, for instance,
by the use of isoparametric approximation of the boundary; see Brenner and
Scott (2008, Section 10.4) and Ciarlet (2002, Section 4.3). Over this mesh
we construct X3, the space of piecewise quadratic and continuous functions.
For wy;, € X3, and xy, € Q5 we define

MAZ9 211 (x2) m1n : *
215,617 21\ 20 H Viwi wan(x21))

d
Z( Viw: way (th))] , (44)

i=1
where Qth denotes the set of internal degrees of freedom of X2h, which
includes now the vertices and edge midpoints of T2 p» and sz 1S a more accu-
rate, say using five points, discretization of the second derivative in direction

w at scale 0.
Following the ideas presented in Theorem 7 we can show that operator

(44) is consistent with order O(6** + g—z +6?); see (Nochetto and Ntogkas,

2018, Lemma 5.8). However, this scheme is not monotone. It will, instead
serve as the two scale analogue of the accurate scheme (22).
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By refining in a conforming way once 7 %h we obtain 7, over which we
can apply the two scale scheme of Section 2.7. Notice that there is a bijection
between Q5, and Q so that the elements of X3, and X,, can be compared by
looking at their nodal values. In light of this observation we alleviate the nota-
tion and carry out the rest of the discussion using the scale 4.

We combine (44) and (38) into a filtered two scale operator: for w;, € X,
and x; € Q),

MAY < slwa] (xa) = MAPS; 5[wa] (xn)

h,6,0,6,
2S
S (MAzh,qg’g [wa) (i) — MA%,S&Q [wi] (xh)>

T

where S(¢) = min{S(),0} and the function S is defined in (24). As explained
in Nochetto and Ntogkas (2018, Section 2) the choice of filter function
ensures discrete convexity in the case that the right-hand side degenerates,

that is if f{x,) = 0, for some x;, € Q}.
With these ingredients the filtered two scale scheme seeks for u} €X),
such that

MAJ ;o s sl (o) =1 (), Von € Q) (452)

The theory of almost monotone schemes of Corollary 1 was combined with
the convergence results of Section 2.7.4 in Nochetto and Ntogkas (2018,
Section 6) to assert the convergence of any solution to (45).

2.8.3 Approximation of convex envelopes

Let us describe the results obtained in Li and Nochetto (2018b) regarding the
approximation of the convex envelope of a function, which was introduced in
Definition 10. Let f € C(Q). As shown in Oberman and Ruan (2017) the con-
vex envelope u = I'f of f can be characterized as the viscosity solution of the
problem

CE[u)(x) =0, x€Q, (46a)
u(x) =f(x), x€oQ, (46b)

where the operator CE[-] is given by
CE[w](x) = min {f(x) — u(x), mino(D*w(x)) }. 47)

The intuition behind (46) is clear. First, we have that u(x) < f(x) for every
x€Q. In addition, if we define the contact set
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C(f) ={xeQ:u(x)=f(x)},

we obtain, upon denoting 4;(w) = mine(D*w(x)), that for x € C(f) we must
have A;(u) > 0. On the other hand, if xZC(f), then we must have A;(u) = 0.
In conclusion, # must be convex.

We remark, however, that problem (46) is very degenerate. Indeed, it can
be shown, see for instance Li and Nochetto (2018b, Lemma 3.1), that if
dist(x,C(f)) >ds and p € du(x) there is v € R? with |v| = 1 such that

xp=xE6v, ulxr)=u(x)+dp-v, Viu(x)=0, p€ou(xs).

In other words, if we are sufficiently far away from the contact set C(f), then
the graph of u is flat in at least one direction. As a consequence, in general,
the convex envelope cannot be arbitrarily smooth, regardless of the smooth-
ness of the domain Q and data f. Indeed, De Philippis and Figalli (2015)
shows that if Q is strictly convex with dQ € C>', and f € C>'(Q), then
ue C"1(Q), and that this is optimal. This very low regularity is one of the
main obstacles in the analysis of numerical schemes for (46).

Formulation (46) was already used for numerical purposes in Oberman
(2008a) via wide stencil schemes like those presented in Section 2.3. Let us
present here, instead, the two scale methods of Li and Nochetto (2018b).
We will follow the notation of Section 2.7. In addition, if S denotes the unit
ball in R? we introduce, in full analogy to (37), a discretization Sy of S such
that, for every w € S there is w? € Sy that satisfies

lw—w?| <6.

Over the space of piecewise linear functions X, subordinated to the trian-
gulation 7, we define

CEh’,s,g[Wh] (Xh) = min {f()(h) — Wp (x;,), ‘rvrég}} ngwh (Xh)} (48)

where w;, € X, and x;, € QZ With the aid of this operator we define the dis-
crete convex envelope of a function f as the function uj, € X}, that solves

CEjs.0(u](xn) =0, xi€ QL (49a)
uf (xn) =f (), xn €. (49b)

The analysis of scheme (49) to a large extent follows that of two scale
methods presented in Section 2.7. Namely, owing to discrete convexity we
can show that the scheme has a comparison principle, from which uniqueness
of solutions follows. The existence of solutions is obtained via a discrete Per-
ron method, and the stability by noticing that u, =Z,u and u; =Z,f are dis-
crete sub- and supersolutions, respectively.
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The considerations given above show that scheme (49) is monotone and
stable. In addition, assuming smoothness of the arguments, one can show its
consistency with similar arguments to those of Section 2.7.3. Upon realizing
that the operator (47) has a comparison principle in the sense of Definition
5, this is enough to appeal to the theory of Section 2.1 and conclude that
the scheme is convergent as € = (h, §, 8) — 0, provided §—> 0.

The derivation of rates of convergence, however, requires special atten-
tion. This is due to the fact that, as stated above, the best regularity we can
expect is u € C!'(Q), and this is not enough to exploit the consistency esti-
mates that were used for convergence (which are applied to smooth test func-
tions). To overcome this, one must take advantage of the flatness of the
solution outside the contact set. To describe these results we must introduce
some notation. Set, for x; € Q,

8., = min {3,dist(x,0Q)}, B, = U T,
TeT ydist(xy, T)<dy,

and
W, ={xeQ:|x—x,| <ds}.
The following is Li and Nochetto (2018b, Proposition 3.3).
Proposition 15 (consistency).
Let Q be strictly convex and u, the solution of (46) satisfy u€ C**(Q) with
k=0,1and a € (0,1]. For x, € Q} we have:
1. If dist(xp,C(f)) > d8, then

. (80)F* 4 phta
}I‘)Iél‘% ngIhu(xh) S C (T |M|CA’"(B.\-,1)’

2. If dist(x;,C(f)) < dé but dist(x;, 0Q) > db, then we have
f(xh) — u(xh) S Ck5k+a,
v?/here C;. depends on |u|Co,a(WXh) + |f|Co,a<Wm> for k =0 and on V|C1,H(W‘h)
for k= 1.
3. If 0 < dist(xy, 0Q) < db, then for all w € S we have

Vi Znu(xy) < C*? [lcraa, )

and the previous item also holds provided k = 0.

To take advantage of this result two new discrete barriers were constructed.
One handles the first case, i.e., points sufficiently far away from the contact set.
The other barrier handles points near the boundary, that is the third case in the
previous result. Without going into details, we present here the main error esti-
mate, and refer the reader to Li and Nochetto (2018b, Theorem 3.7).
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Theorem 11 (convergence rate).
Let Q be strictly convex, u be the viscosity solution of (46), and uj, the solution
of (49). If uc C**(Q), with k = 0, 1 and a € (0, 1], then

(k+a)*
||u — u;”L”(Q) =0 (hk+a+2> s

provided, 6 = (’)(hk?TL) and 6= (’)(hkw;ﬂ) In particular, if k = a =1,
ie.,ucCH-(Q), we obtain
5=0(2), 0=OW?) = |l 1fllwc) = O(h).
Similarly, if k = 0 and a = 1, i.e., u€ C*'(Q), we get
5=0(R), 0=0(P) = [u=1 ey = O

2.84 The Gauss curvature problem

As an application of the wide stencil finite difference schemes that were pre-

sented in Section 2.3 let us here, following Hamfeldt (2018), describe a dis-

cretization of the prescribed Gaussian curvature problem (2). To do so, we

must begin by defining what is a solution of this problem. In a similar manner

to the notion of Alexandrov solutions to Monge—Ampere problem, introduced

in Definition 9, we have

Definition 17 (generalized solution).

A convex function u:Q — R is a generalized solution to (2) if the following

two conditions hold:

1. It is a generalized solution of (2a). This means that, for all Borel sets
D C Q, we have

1
/au(deP:/DK(x)dx.

2. It satisfies

lim supu(y) < g(x), Vxe€aQ

y—x

and, if v is any other generalized solution of (2a), then v < u in Q.

Under the assumptions of uniform convexity of ; continuity of g; conti-
nuity, boundedness, and nonnegativity of /C; and the compatibility condition

/de [
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it can be shown that problem (2) has a unique generalized solution; see
Bakelman (1994).

It is also possible to extend the notion of viscosity solution presented in
Definition 4, by allowing the operators in Definition 2 to also depend on a
variable p € RY. In doing that, we note that the operator Fgic: Q x R x R? x

S? - R defined by

detM—IC(x)(1+|p|2 , x€Q,
g(x)—r, X €0Q,

(d+2)/2
FGK,C(x’lﬁ’p’M) - { )

is, as the Monge—Ampere operator F,;, defined in (8), only elliptic when
M €S%, which implies that to have a reasonable notion of viscosity solution,
we must require sub- and supersolutions to be convex, and restrict the test
functions to be convex, as in Definition 6. As we have seen throughout our
discussion, the convexity constraint is rather difficult to impose explicitly dur-
ing discretization.

Hamfeldt (2018) proposed to consider the following formulation of (2). If
for MeS? we set oM) = {A(M), ..., (M)}, where the eigenvalues are
counted with multiplicity and arranged in nondecreasing order, then the
operator

Féc(x.p.M), x€Q,

Fei(x,r,p,M) = {g(x)—i', X €09,

with
, ' d . 5\ ([@+2)/2
Fi (ep.M) = min{ 21 (M), TJ2(M) " = K@) (1+ 1)
i=1
is elliptic in the sense of Definition 2 and, at least formally, it is clear that if
Fex(x,u(x), Vu(x),D*u(x)) =0, x€Q,

then we must have, that either, /Il(Dzu(x)) > 0, so that u is convex, and

(d+2)/2
detD?u(x) = K(x) (1+]Vu(x)) o
or 4;(D*u(x)) = 0 and, thus
d+2)/2
0= detD%u(x) ZIC(x)(l + |Vu(x)|2) >0.

In either case, the convexity of the solution is recovered.

With these constructions we have two options to define viscosity solutions
to (2). The first one is, like in Definition 6, to require that it is a viscosity solu-
tion, in the set of convex functions, of the problem



The Monge—Ampere equation Chapter | 2 163

Forx.c(xu(x),Vu(x),D*u(x)) =0, Yx€Q. (50)
The second, as in Definition 4, to require that it is a viscosity solution of
For(x,u(x), Vu(x),D*u(x)) =0, Vx€Q. (51)

In full analogy to Proposition 3 it is shown in Hamfeldt (2018, Section 3)
that viscosity subsolutions to problem (51) are convex and that a function is a
viscosity solution of (50) over the set of convex function if and only if it is a
viscosity solution of (51). In addition it is shown that, under certain assump-
tions on /C, this notion of solution, at least in the interior of the domain Q,
coincides with that of Definition 17.

It is important to note that incorporating the boundary conditions into the
definition of the operator is essential in this problem, as they may not be rea-
lized in a classical sense. The following is Hamfeldt (2018, Example 1).
Example 2 (nonclassical boundary conditions).

Letd =1,Q = (0, 1), and L= 1. We set the boundary conditions u#(0) = —1
and u(1) = 1. Then it is possible to show that

u(x)=—v1-x2

is a viscosity solution of (51). It is a classical solution over [0, 1) so it remains
to understand what happens at x = 1.

Note that u/(x) grows unboundedly as x T 1 so that it is not possible to find
a smooth ¢ such that u, — ¢ has a local minimum at x,, in other words, the
graph of u cannot be touched from below at x = 1. This makes u automati-
cally a supersolution.

To show that u is also a subsolution we note that u(1) = 0 < 1 so that, if
@ touches the graph of u from above at x = 1, we must have ¢(1) = u(1) =0, and

(For),(1,u(1),¢'(1),¢"(1)) > 1 —u(1) = 1>0.

The behaviour of Example 2 was characterized in Hamfeldt (2018,
Corollary 24). Namely, if u is a viscosity solution of (50) then at every x €
0Q we either have that u,(x) = u*(x) = g(x), or u,(x) < u*(x) < g(x) and
ou,(x) = . The second option here corresponds to the right endpoint in
Example 2.

Existence of solutions to (51) was shown using a variant of Perron’s
method. The usual argument to show uniqueness is obtained via a comparison
principle of Definition 5. This problem, however, does not have a comparison
principle, as Hamfeldt (2018, Example 3) shows.

Example 3 (lack of comparison).
In the setting of Example 2 we have that u(x) = —v/ 1 —x?2 is a viscosity solu-
tion, so that necessarily it is a supersolution. Let
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_ Jux), xe€lo,1),
V(x)_{l, x=1,

we see that v € USC([0, 1]) and, as in Example 2, if ¢ touches from above the
graph of u at x = 1, then ¢(1) = v(1) = 1 and

(For), (Lv(1),¢'(1),"(1)) 2 1=v(1) =0,

showing that v is a subsolution. Note, however, that (1) < v(1) and this prob-
lem does not have a comparison principle.

The previous result, combined with the behaviour of solutions at the
boundary shows that, in fact, a comparison principle takes place, but only in
the interior of the domain; see Hamfeldt (2018, Theorem 7).

Theorem 12 (interior comparison).
Let u € USC(Q) be a subsolution of (51) and u € LSC(Q) a supersolution.
Then we have u <u in Q.

This weakened comparison principle is sufficient to guarantee uniqueness.

Having shown the existence and uniqueness of solutions to (51), it is pos-
sible now to construct numerical schemes. This is carried using variants of the
wide stencil finite difference schemes of Section 2.3. With the notation intro-
duced there we define, for w;, € X,

GKh,g[Wh](Xh) = min min A,,’.Wh (Xh), MAXS [wh](xh)
v €Go

(d+2))2
—IC(Xh)<1 + |VhWh(Xh)\2) }

where MAY) [ -] was defined in (19) and the vector V,wy,(x;) is such that

wi () —wi(x, — he;)
h b
wh(xh) — wh(xh +he,—) O}

Vhw;, (Xh) - @; =max {
(52)

h

and {e,-}?':1 is the canonical basis of RY. With this operator, the finite differ-
ence approximation of (51) is to find u;, € X, such that

GKy, o[un) (x1) =0, x, €Q, (53a)

h>
u(xp) =g(xn), xp€ QZ (53b)

In Hamfeldt (2018, Section 6) it is shown that scheme (53) is monotone, in
the sense of (12), stable, in the sense of (13), and consistent, in the sense of (14).
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Notice, however, that as Example 3 shows, problem (51) does not have a
comparison principle. As a consequence, Theorem 4 cannot be applied. For
this reason, the framework of Section 2.1 was extended in Hamfeldt (2018,
Theorem 9) to cases where problem (7) only has an interior comparison prin-
ciple like that of Theorem 12 and there exist classical sub- and supersolu-
tions. The conclusion is the locally uniform convergence of u;, to u.

2.8.5 Transport boundary conditions

Let us conclude the discussion of wide stencil finite difference schemes by
describing how these methods can be used to tackle the optimal transportation
problem. Since this will be one of the main topics of chapter “Optimal trans-
port” by Merigot in this volume, we shall be brief.

We recall that, given Q,0 C RY, which we assume bounded, with @ con-
vex, and measures po:Q—R and py:O— R, the optimal transportation
problem (with quadratic cost) seeks for a map T: Q — O with Typq = p(, that
minimizes

3 | =T Pdpa(v).

Q

We recall that Tyu denotes the pushforward of the measure u under the
mapping 7. Assuming that the measures are absolutely continuous with
respect to Lebesgue measure, with densities fo, fo, this condition can be writ-
ten as

Jpotoac= [ atoas

and so by a change of variables, det(VT(x))fo(T(x))=fa(x). Finally, we
recall that since the cost is quadratic, it can be shown that T is given by the
gradient map of a convex potential u:Q — R. This allows us to, at least at
the formal level, rewrite the optimal transportation problem as a Monge—
Ampere problem: find u:Q — R convex, such that

detD?u(x) = F(x,Vu(x)), x€Q. (54)

where we set F(x,p) =pq(x)/po(p). This problem is supplemented by the
so-called transport or second boundary condition

Vu(Q)=0.

Notice that this, more than a boundary condition, is a set of constraints. It can
be shown also that this condition can be replaced by

Vu(6Q) = 00. (55)
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Thus, we want to construct numerical schemes to approximate the solution of
(54) and (55).

It is clear that the main issue is the discretization of the boundary condition
(55). If the boundary of the domain O is given as the zero level set of some
function ® : RY — R, then it is clear that (55) can be equivalently written as

®d(Vu(x)) =0, VxecoQ.

While we would be tempted to discretize this condition directly, the func-
tion @ can be highly nonlinear and nonsmooth, which will make the design
of monotone and consistent numerical schemes a daunting task. However,
this can be achieved very easily if the domains are rectangles, say

Q=(0.1)>=0. In this case, it is shown in Froese (2012, Section 3.2) that
each side must be mapped to itself. If we consider the left side of the square,
that is,

{(x1,%2) €ER?:x; =0,x, € [0,1]},

then the function that describes this is given by ®(y;, y») = y;. Thus, on this
side we can write

ou(0,x;)
6x1

Similarly, in the right, bottom and top sides, respectively, we can write

0.

ou(1,x) _1 ou(x;,0) _o ou(xy, 1)
oxy ’ oxy ’ 0x>

=1.

It is remarkable that on all sides the derivative that appears is actually the nor-
mal derivative. This motivated Froese (2012) to replace the boundary condi-
tion (55) by a Neumann-type boundary condition

ou(x)
on

=¢(x)

for some unknown function ¢.

Obviously, the correct choice of function ¢ is ¢(x) = Vu(x) - n(x), which
motivates the introduction of the following iterative scheme: Given ug, an ini-
tial guess, then

e for k >0
Define, for x € 0Q,

Pi(x) =Projyo (Vi (x)), (56)

where by Projs(w) we denoted a projection of the vector w onto the set S.
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Find u;.; : Q — R convex, and ¢, €R that satisfy

/btk+ 1 (x)dx = O, (573)
Q
detD%ug .1 (x) = cr 1 F(x, Vg1 (x)), x€Q, (57b)
d
erld) ) veon. (57¢)
on
Set k«—k+1
e EndFor

Remark 14 (iterative scheme).

The iterative scheme (56) and (57) deserves several observations.

1. The introduction of the projection p, in step (56) is due to the fact that
there is no reason to expect that Vi, (0Q) C d0. Thus, we settle for the
closest point on the target boundary.

2. Problem (57) is a Neumann problem for an elliptic equation so that the
solution, if it exists, is unique only up to a constant. Condition (57a) forces
uniqueness, while the introduction of the number c;,; in (57b) relaxes the
equation so that the necessary conditions for existence are fulfilled.

3. The initialization of this scheme can done by choosing p, = Mx -n, where
n is the unit outer normal to 0Q and M > 0 is so large that the image of the
mapping Q 3 x—Mx € R contains O. |

We are then going to discretize (56) and (57). Notice that now the bound-
ary conditions (57c) are rather standard and can be approximated by, for
instance, introducing a layer of ghost nodes near the boundary and computing
centred differences.

It remains to discretize (57b). Setting v, = uy, 141, the first alternative, pro-
posed in Froese (2012), is to use

MA]\XS [Vh] (xh) = F(Xh, thh), Xp € Q;v (58)

where MA,‘fg[ -](xz) is the operator defined in (19) or Remark 2, and V,v,, is
defined as in (52). Another option, also from Froese (2012), is to take advan-
tage of the directional difference that are already being computed to approxi-

mate the Monge—Ampere operator. Notice that if {V,'}?Zl €V, we have that
T d d T
ow ow ow ow
Vw=|—....— | = —Vi‘el,....y) —V- 5
" <0X1 0xd> (ZI: al/,‘y ¢ ; 01/,»1/ ed)

where, as usual, {e;}{_, is the canonical basis of R?. This allows us to write
that
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B . [ *w(x) e Pw(x) -

"l H( ow? ) Z( ow?

[ (e T (P

" e H( w? ) Z( wz ) )
B . [ 02w(x))+ d (azw(x)>

wt ey H( ow; ; ow;

d
ow(x)v; - eq
—-F
(X’ (Z wi il

=1

T
()w(x)v,-~ed
wi il ) )]

In conclusion, an approximation of (57b) is obtained by setting

i

= o, ot WO

OTh’g[Vthh) =0, Vxh S QZ,
where

OTh’g[Wh](Xh) = min OT{V}{ [wh](xh).
{V/};[:lega i
Benamou et al. (2014) considered a different treatment of the boundary
condition (55). Since for all x € 0Q we must have that Vu(x) € 00, then we
must have

dist(y,00), 0,
HTu) =0 () ={ G 59)

where H is nothing but the signed distance function to 00O. Notice that (59) is a

sort of Hamilton Jacobi equation posed on d€Q2. Exploiting the convexity of O,

the authors of Benamou et al. (2014) were able to rewrite the function H as the

supremum over linear expressions on y (the supporting hyperplanes of O at y)
H(y)= sup {y-n—H*(n):n-n,>0},

nGRd:\n\:l
where n, is the normal to 0Q at x and H” is the support function of O, that is,

H*(n) = supz-n.
z2€00
This function can be precomputed or evaluated rather cheaply in the discrete
setting. The reformulation of the function H can be approximated by repla-
cing the supremum by one over a finite set of directions, and, finally, the
gradient appearing in (59) can be discretized as in (52). This gives a discre-
tization of (55). Finally, the discretization of (54) is proposed to be carried
similarly to (58).
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3 Discretizations based on geometric considerations

In fact, geometrical representations, graphs and diagrams of all sorts, are used
in all sciences, not only in physics, chemistry, and the natural sciences, but also
in economics, and even in psychology. Using some suitable geometrical repre-
sentation, we try to express everything in the language of figures, to reduce
all sorts of problems to problems of geometry.

Pélya (2014)

In this section we will describe the so-called Oliker—Prussner method, which
is a discrete analogue of the notion of solution in the Alexandrov sense. We
recall that Alexandrov solutions to the Monge—Ampere equation were intro-
duced in Definition 9. They make a connection between the Monge—Ampere
equation and the measure of the subdifferential of its solution. This, very geo-
metric, notion enables us to define solutions that are not smooth, say not
CZ(Q). The Oliker—Prussner method, in turn, will allow us to approximate
these solutions.

3.1 Description of the scheme

To be able to present the Oliker—Prussner method, we must begin by introdu-
cing some useful notions.

3.1.1 Nodal set and domain partition

To discretize the domain Q and its boundary 0Q, we introduce a translation
invariant nodal set and an open, disjoint partition of the domain. For a param-
eter i > 0, we define the interior nodal set as

d
Q=S x=hY 7¢;:7€Z;nQ, (60)
=1

where {éj};l:l is a basis of RY with |¢;/< 1 for all 1 < j < d. To discretize
the boundary 02, we set the boundary nodal set 02, as a collection of points
on the boundary and require that their spacing is of order A, namely,
0Q C Uy, ca0,Bn/2(xn). We set the nodal set Q, =Q,U0Q,. We remark that
this is a generalization of the finite difference discretizations introduced
in Section 2.3. Indeed, in that case the vectors {é_,»}j‘-‘;1 were the canonical
basis of R?.

We define an open, disjoint partition {@,, }, ., of the domain where, for
xXp € Qp,

d
Wy, = Xh+zh’l~3j3 W eR, |h]|§§ NQ. 61)
=1

Jj=
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Note that, by construction, the partition is translation invariant, that is, @,, =
Y —Xp + wy, for all x;, y, €Q, with wy,,0,, CQ.

3.1.2 Nodal functions, their subdifferentials, and convex
envelopes

On the nodal set Q, constructed above, we define a nodal function u, to
approximate the solution of the Monge—Ampeére PDE. First, to mimic the con-
vexity constraint for the PDE, we require the notion of convexity for nodal
functions (compare to Definition 16).

Definition 18 (nodal convexity).

Let w;, be a (nodal) function that maps the set of nodes ,, to R. We say that
wy, is convex if, for any node x;, € Q,,, there exist an affine function L, that is,
L(x) =p - (x — x,) + ¢ for some p € R and ¢ €R, such that

L(yn) <wi(yn) Yy €Qp and L(xp) =wp(xp). (62)

We define the subdifferential of a convex nodal function wj at a fixed
node xj, € Q,, as the set

owp(x) :={p €R: p-(yp—x1) +wa(xn) <wp(yn) Vyn€Qp}.  (63)

In other words, this is the collection of slopes of affine functions that satisfy
the condition that defines convexity for a nodal function. Note that nodal
functions are only defined on Q,. To extend a nodal function to the domain
Q, we introduce its convex envelope.

Definition 19 (convex envelope of a nodal function).

Let wy, be a nodal function defined on Q. The convex envelope of wy, is the
piecewise linear function

C(wy)(x) = sup{L(x): Laffine function and L(x;) <wj(x3) Vx, € Q;}
L
for any x € Q.

We note that, by definition, I'(w;,)(x;,) < wy(x,) for any node x, € Q,, and
equality holds for all interior nodes if wy, is convex. Indeed, if wy, is convex, by
(62), for any node x;, € Qy, there exists an affine function L(x) satisfying

L(yy) <wp(vn) Yy €Qp and L(xy,) =wy(xp).

Since L(x) < I'(wy,)(x) for any x € Q by Definition 19, we deduce that wj(x;,) =
L(x;) < I'(wp,)(x;). Combining this inequality with the inequality in the other
direction, we have wy,(x;) = I'(w;,)(x;,) for all interior nodes. Thus, I'(w},) is a
natural extension to Q of the convex nodal function wj,. With an abuse
of notation, we still use w, to denote the convex envelope of this nodal function.
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The convex envelope of a nodal function w;, induces a triangulation of the
domain € and a piecewise linear function over this triangulation. However,
this triangulation is not known a priori. Here we give an example to illustrate
this property.

Example 4 (convex envelope and triangulation).
Define the nodal set Qj ={zi,...,z5} with z; = (1, 0), zo = (0, 1), z3 =
(—1,0), z4 = (0, —1), and z5 = (0, 0). Consider the nodal functions satisfying

Wl(Zl) :W1(23) = 1, Wz(Zz) :W2(24) = 1,
w3(z1) =w3(z2) =w3(z3) =w3(z4) =1,

and wi(z;) = 0 otherwise. The convex envelopes are I'(w;) = |x1], T(wy) =
|xs|, and T(w3) = |x;| + |x2|. The convex envelopes are subordinate to the
meshes depicted in Fig. 4. u

The above example shows that I'(w;,) is a piecewise linear function that
induces a mesh 7, that depends on the values of w;. The example depicted
in Fig. 5 shows that, if w;, is the nodal interpolant of a function w, and if
the Hessian D?w is degenerate (or nearly degenerate), the induced mesh
may be anisotropic.

bt

FIG. 4 Meshes corresponding to convex envelopes I'(wy) = |x1| (left), [(w) = |x,| (middle), and
T(w3) = |xy| + |xo| (right).

N
NN

FIG. 5 Mesh induced by the nodal interpolant of w(x) = (x-€)* where ¢ = (1,2)T. Its convex
envelope equals |x - ¢| in the star of (0, 0).
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3.1.3 The Oliker-Prussner method

Now we are ready to introduce the Oliker—Prussner method (Nochetto and
Zhang, 2019; Oliker and Prussner, 1988). We seek a convex nodal function
uy, satisfying the boundary condition u,(x;) = g(x;) for all x;, € 0€;, and

|0uh(xh)|:/ fx)dx, Vx, €Qy, (64)

Note that, since the partition {wj, }Xh cq, 18 nonoverlapping, for all Borel sets
D C Q, we have

|oun(D)| = foh, where f;, :/ F(x)dx.

xp€D “h

Thus, the scheme is obtained by replacing f in (9) by a family of Dirac
measures supported at the nodes in €, and by replacing g by its nodal inter-
polant on the boundary. To implement the method, we need to derive a for-
mula to compute the subdifferential of a nodal function u;, This is a
nontrivial task because it is non local. In fact, it involves computing the con-
vex envelope of u;,. The following observation is useful in the characterization
of the subdifferential. For a proof, see Nochetto and Zhang (2018).

Lemma 8 (characterization of subdifferential).

Let wy, be a convex nodal function and T, be the mesh induced by its convex
envelope T'(wy,). Then the subdifferential of wy, at x;, € Q, is the convex hull of
the constant gradients NU(wy,)|r for all T € T, which contain x;,.

Fig. 6 depicts the subdifferential ow(x;) of a convex nodal function w), at
node x;, for d = 2.

Vyuln

Vynln

Vyulr

Vynlr

Vy}l |T4
FIG. 6 Star centred at node x;, corresponding to the mesh 7, induced by the convex envelope
vn = I'(w;,) and subdifferential ow,(x;) of the convex nodal function w;, at node x,. The latter is
the convex hull of the constant element gradients V}’h|r, for1 <j<5.
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3.2 Stability, continuous dependence on data, and discrete
maximum principle

The Alexandrov estimate, which establishes the stability and continuous
dependence of the Monge—Ampere equation, is a cornerstone in the nonlinear
PDE theory. In this subsection, we introduce a discrete version of the Alexan-
drov estimate suitable for nodal functions. We refer the reader to Nochetto
and Zhang (2018) for a complete proof.

Lemma 9 (discrete Alexandrov estimate).

Let wy, be a nodal function with w;(x;,) > 0 at all x;, € 0Q;,. Then

1/d
supw, < C > Jown)l | (65)
h

Xp EC; (W/l )

where C = C(d, Q) is proportional to the diameter of Q and C, (wy) is the
(lower) contact set:

C; (Wh) = {Xh €Qy, F(wh)(xh) = wh(xh)}‘ (66)

The Alexandrov estimate establishes a lower bound for a nodal function in
terms of the measure of the subdifferential at the (lower) contact set. Simi-
larly, one can obtain an upper bound for a nodal function by the measure of
the superdifferential at the (upper) contact set.

Applying the discrete Alexandrov estimate, we are ready to compare two
arbitrary nodal functions in terms of their subdifferentials. This is instrumen-
tal for the error analysis.

Proposition 16 (stability of numerical solution).
Let v;, and wy, be two nodal functions with v, > w;, on 0Q;,. Then

1/d
d
sup(vy—wi)” <C[ D7 (lwaon)|'" = lawu(u) )|

= xXp€Cy, (vi—wn)
where C = C(d, Q) is proportional to the diameter of Q.
Proof. Let v, w;, be two nodal functions. We introduce the convex envelope

(v, — wy,) as in Definition 19, and the nodal contact set C,, (v, —wy,) defined
in (66). The discrete Alexandrov estimate of Lemma 9 yields

1/d

—wi)”<C arn—w) ol | 67
Sghp(w Wh) Do 1orn—wi) ()| (67)

Xn GC; (W, —wWp )

whence we only need to estimate [0l (v, — wp)(x;)| for all x, € C, (v, — wy).
For these nodes, we easily see that
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O (v —wi) (xn) C (v — wy) ().
We claim that
owy, (Xh) + 6F(vh — wh)(xh) C vy, (Xh) V)Ch € C; (Vh — Wh). (68)

Fix x; €C, (vy —wy), and let p € owy(x;) and g € AL (v, — wy)(xp), Tespec-
tively, that is, by definition of the subdifferential (63),

P - (n—xn) <wi(yn) —wa(xn)

and
q - (yn—=xn) <T(Ovn—wn)(yn) =T (va —wa) ()
for all nodes y, €€,,. Adding both inequalities, we get
P+q) - (vn—x1) <wi(yn) +T(vn—wn) (n) = (wa(en) + T (v —wi) (xn))

Since &, is in the contact set C, (v, —wy,), we have I'(v, — wp)(x) = (v —
wy)(xp). For all other nodes y;, €€, we have I'(v, — w;)(y) < (v, — wp)(Vp)-
Hence, we deduce

P +q) - on—x1) < wa(yn) + (Vn—wn) () — (wWa(n) + (v —wi) (x))
= vu(¥n) = va(xn)-

This inequality implies (p + ) € dv,(x;) and proves the claim.
The Brunn—Minkowski inequality of Lemma 2 applied to (68) yields

0w ()[4 +[00 (v — wi) ()|
< |owp (xp) + 0L (v — Wh)(xh)|l/d < |th(xh)|l/d»

whence
d
o= wi) )l < (10w (o) = own () )" W €€ (= w).

This inequality gives us the desired estimate for |0L(v, — wp)(xp)|. In view
of (67), adding over all x;, € C, (v, —wj,) concludes the proof. O

A direct consequence of this stability result is the maximum principle for
nodal functions.
Corollary 6 (discrete maximum principle).
Let v, and wy, be two nodal functions over the nodal set Q. If v (xp) > wi(x;)
at all x;, € 0y, and |0v;,(xp)|<|ow(xp)| at all x;, € Q,, then

wi(xn) <vi(xn) VY, € Q.

Proof. Since v,(y,) > wy(y,) for all y, € 09, then for any node
xp €C, (v —wp), we have
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owp(xp) C vy (xp).

Combining this with the assumption that |dv,(x;)|<|ow.(x;)| for all x;,
€Qy, we deduce |0v(x;)| = |own(xy)| for all x, € C; (v, —wy). Consequently,
the stability of Proposition 16 implies

sup (v, —wy)” =0,
Qy,

whence v, — wy, > 0. This completes the proof. O

Proposition 16 yields a lower bound on the difference between two nodal
functions in terms of the difference of the measure of their subdifferentials.
Similarly, to derive an upper bound, one may consider the functions — wy,
and —v;, and derive

1/d

d
sup(w—vi) <C | S0 (lowa(u)] ! = Javi ()| )

@ xp€Cy, (Wh—vi)

Combining both bounds, we can derive a bound on || v —wy||1=(q,) in terms
of |ov(x;)| and |0wy(x;)|. In particular, the uniqueness of the solution of the
Oliker—Prussner method follows immediately from Proposition 16.

Finally, we notice that Proposition 16 is instrumental to derive error esti-
mates. Define the nodal interpolation of a function w as the nodal function
N,w such that

NhW(Xh) = W()Ch) Vxy, € Qh. (69)

Setting w;, = u;, and v, = N,u In Proposition 16, where u;, and u solve (64)
and (1), respectively, we can derive an estimate for || u;, —Njul|p=(q). It
remains to estimate the discrepancy of the subdifferentials of the two nodal
functions. While |duy(x;)| =f;, is known by definition of the scheme (64),
the measure of the subdifferential |0N,u(x;)| remains unknown. Therefore,

the goal of our next step is to estimate the quantity |ON,u(x;)| L _ f;w,/ 4 which
will then be applied in Proposition 16 to derive a pointwise estimate.

3.3 Consistency

In general, this method (64) is consistent in the sense that the right-hand side
of the (64) can be written equivalently as ) g, fy,dy, and this converges to f
in measure. However, such a concept of convergence is too weak to derive
rates of convergence. Fortunately, we realize that if internal nodes are transla-
tion invariant, then a reasonable notion of operator consistency holds for any
convex quadratic polynomial; see Lemma 12. Such property is shown in
Benamou et al. (2016), Mirebeau (2015), and Nochetto and Zhang (2019)
for Cartesian nodes, see also Section 2.5. In contrast, we give here an
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alternative proof of consistency based on the geometric interpretation of sub-
differentials of convex quadratic polynomials in the interior of the domain,
extend the results to C>* functions, and further investigate the consistency
error in the region close to the boundary. To achieve this we, First, we require
a definition.

Definition 20 (adjacent set).

Given a convex nodal function wy, and a node x;, €Q,, the adjacent set of x,,
denoted by Ay, (wy,), is the collection of nodes y, € Q, closest to x;, such that
there exists a supporting hyperplane L of w;, and L(y;) = w;(y;). Thus, the set
Ay, (wp) is the collection of nodes in the star associated with x;, in the mesh 7,
induced by I'(wy,).

Lemma 10 (size of adjacent sets).

Let the nodal set Q, be translation invariant, and let p be a C* convex func-
tion defined in Q. If Al < D*p <Al in Q for some constants A, A > 0 and
pn := Nyp is the nodal function associated with p defined in (69), then the
adjacent set of nodes Ay, (pp) satisfies

Ay, (Pn) C Br(xn)

where R :%d, and Bg(xy,) is the ball centred at x;, with radius Rh.

Proof. Let zj, € Ay, (py) be such that

|2 — xn| = max {|y, —xa| : ya €A, (Pn)}-

Without loss of generality, we may assume that p(x;,) = 0 and Vp(x;,) = 0.
Let @ be the convex hull of the nodal set {xy;:=x,+he;, j=1,...,d} where
{éj};’zl is the basis defined in (60). If z;, € w, then the assertion is trivial
because R > 1.

If z;,¢w, then there is a constant R > 1 such that R ~1z, € w, which implies
that |z,| <Rh and |z,| > Rd~'/*h. Because o is convex, we may write

d d
p—1, _ E § —
R Zp = AgjXgjs Agj 2 0, Agj = 1.
=1

=1
ce{+,-} ce{+,—}

We next note that p(x.;) <1Ah* for all j = 1, ..., d because D’p <A |xy;
— x4|< h, p(xp) = 0 and Vp(x;,) = 0. Since z;, € Ay, (py), there exists a support-
ing hyperplane L at x;, such that

1
L(zn) =pn(zn),  Llxsy) <pa(xsy) < EAhz.

Exploiting that L is linear and p,(x;,) = 0 yields
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d d
- - 1 25
Ph(zh) :L(Zh) =L|R ’:ZI AgjXgj =R FZ] agjL(xgj) < EAh R.
aé{+,—} cef{+,—}

On the other hand, since D*p > Al and |z,| > Rhd~'/?, we have
pilen) = () = 5laa 2 SR
Combining the last two inequalities implies
ﬁgR:%d

This completes the proof. O

The previous result shows that for any node x;, with dist(x;,, 0€2) > Rh, all

nodes in its adjacent set are contained in ;. We apply this observation to
establish the following consistency result.

Lemma 11 (properties of convex interpolation).

Let p be a convex quadratic polynomial such that AI < D*p <Al and let p, = Nyp
be the nodal function defined by (69). Then the following properties hold:

1.
2.

For all x;, € Q,, we have dp,(x;,)#D.
If the nodal set Qy, is translation invariant and dist(x,, 09;) > Rh, with
R= %d, under a uniform refinement from €, to Ly,», we have

|0pn (i) | =270ps 2 (xn) |-
If the nodal set Qy, is translation invariant, dist(x,, 0Q,h) > Rh, and
dist(yy, 082;) > Rh, then |ops (x1)| = |9pn (1)

Proof. To prove the first claim, we only need to note that if ¢ is the tangent
plane of p at x;, then £ is a supporting plane of p;, at x;. Thus V£ € dpp(xy,).

To prove the second claim, we may assume that p(x;,) = 0, and Vp(x;) = 0.

Note that for homogeneous quadratic polynomials, we have

p@z%@)

A simple calculation yields
Api(xn) = 20py 2 (xn)

and therefore |dp,(x)| = 2%0pa(xn)|.
To prove the third claim. We consider the function
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p* (%) =p(x) = Vp(a) - (x = xn) —p(xn),

obtained by subtracting the tangent plane of p at x;. Since adding an affine
function does not change the measure of the subdifferential, we have
|0pn(xn)| = [0p) (x)|. Further note that by subtracting the tangent plane at a
node y,, we obtain the same function up to a parallel translation, that is,

po(x—xp) =p(x—yp).

Since the mesh is translation invariant, we have that if L is a supporting
plane of p;" at x;, then by a parallel translation it is also a supporting plane of
p)! at y,. Hence, we have |dp}" (xx)| = |dp) (yn)|. Since |0py(xn)| = |op;" (xn)]

for all nodes x;, we conclude that |0p,(x;,)| = |9pr(yp)l. O

Now we are ready to prove the consistency, for a proof see Nochetto and
Zhang (2019, Lemma 5.3).
Lemma 12 (consistency I).
Let p be a convex quadratic polynomial such that Al < D*p <A, and let p,, :=
Nup be the corresponding convex nodal function defined in (69). Let Q;, be
translation invariant. Then

19pn ()| = / det D2p(x)dx

xp,

for any node x;, € Q,, such that dist(x;, 02) > Rh with R :%d.

Proof. Let ¢ be any continuous function with compact support in Q. We con-
sider a sequence of nested refinements Q;, with &, = 27"H, for a fixed H > 0.
By Lemma | we immediately obtain, as n — oo, that

S #0n)lopn 1)) — [ daetDp(a)as= derD?p() [ plajas
Vi €y Q Q
Thus, we only need to prove that as n — o

> bn,)opn, ()| ., 19patan)] / P(x

Vin cQ |w\H|

In view of second and third result in Lemma 11, we have

|0pn, (v,)| = [0pn, (xi)| = 27" |0pr (1)

The refinement strategy implies that |y, | =27"|@,,|. Thus, we infer that
|9pa (x|
> ¢Om)lopn,(m)| = o | > b0y, |
Yhy €2y, WOy Yhp €y

|5PH x|
¢
|a)m|

This completes the proof. O
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Moreover, for convex cubic polynomials, we have the following consis-
tency error estimate. This result, to our knowledge, has not appeared
elsewhere.

Lemma 13 (consistency II).
Let x, € Q, and q be a convex cubic polynomial such that \I < D*q <Al in

the ball Bgy, := Bgy(xn) CQ, with R :%d. Then

§Chd+2|¢]|cﬁ(BRh)'-

Mig(on)| - [ detDa(x)ds

@y

h

Proof. Without loss of generality, we may assume that x;, = 0 and ¢(0) = 0 and
V¢q(0) = 0. We decompose the cubic polynomial g(x) as

q(x) =p(x) +hr(x),

where p(x) is a quadratic polynomial such that D*p = qu(O) and r(x) is a
homogeneous cubic polynomial. Since, by Lemma 10, the adjacent set
Ay, (q) of the node x;, = 0 is contained in a ball of radius Rh we deduce that

Ip(zn)| < Cquhz’ |7 (zn)| S CR*I? Vzj € Ay (9)s
where C, and C, depends on D?p and D°r, respectively. We set
q:/(x) =p(x) +1r(x) t€[—h,h],

and note that A/ < D?q,(0) <Al for all 1. Therefore, the adjacent set of g, at
0 remains in the ball Bgy,.
We set the measure of its subdifferential of ¢, at x;, as a function of ¢

m(t) = [0Nagy(xn)| = |0Nq:(0)],

and note that we aim to show that

m(h)—/ det D?q(x)dx

Dy,

g Cl’ld+2|q|C3(BR/7)'

Now we proceed to prove the lemma in the following steps.
1. We aim to show that m(f) is a polynomial of degree d

m(t) =Y Cit". (70)
and the coefficients C; satisfy |C;|< Ch” where C depends on |D*p|, |D*r],
and the dimension d. By the characterization of the subdifferential, given in
Lemma 8, the subdifferential of N,gq, at O is the convex hull of the piecewise
gradient of its convex envelope VI'(N,q,)|r for all T € T, that have x;, as a

vertex; see Fig. 6. We label these simplices as T, -+, Ty and, to simplify
notation, we set the piecewise gradient of I'(V;p) and I'(NV,r) at T; as
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vi=VI(Nyp)

T, Wi= VI(Nyr)

1 i=1...N.

Hence, we have
u;, = VF(thf”K, =v;+w;.

To compute the measure of the convex hull of {«;}, we may divide the
convex hull into a set of disjoint simplices {S;, i = 1, ---, N} and label the
vertices of S; as {0,u;,,--- ,u;, }. Thus, we obtain

N
m(t) = Z|S,-| where |S;| denotes the signed volume of S;.
i=1

and so, by the volume formula of simplices, we get

1or

g 1 u!
m(t):EZdet o w=v (71)

=1 Co

1 u!

ld

Now, it is clear that

d
S| =Y it
k=0

is a polynomial of ¢ with degree at most d. Thus, m(f) must be a polyno-
mial with degree at most d as well. Furthermore, by the volume formula
of simplices (71), the coefficients |C}| < Ch? because both |v;| < Ch and
|w;,| < Ch. Finally, the number N of simplices S; is finite and bounded
by the number of vertices in the adjacent set A.

2. We show that m/(0) = 0. To do so, it suffices to show that the function m
is even, that is m(f) = m(—t) for all —h < ¢t < h. Note that if v € dN,(p +
tr)(0), then —v € oN,(p — tr)(0) for any ¢ € (0, &]. Indeed, since the sub-
differential set is determined by the function values on the adjacent set
which is contained in the ball Bg,(0), if v - y, < (p + tr)(y;,) for all y, €
Bgri(0), then

v (=yn) < (p+tr)(=yn) Yyn €Bri(0).

Hence, —v € oN,(p — tr)(0) because p(y,) = p(—y;). Thanks to this
symmetry property, we deduce that |ON,(p — tr)(0)] = |ON,(p + tr)(0)|,
i.e., m(t) = m(—t).

3. We show that

|m(h) —m(0)] < Ch?+2.
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Combining the previous two steps we get that
m(t) =m(0) + Cof? + - + Cygt?
because C; = m'(0) = 0. Since |C}|< Ch for j=2,...,d, we deduce that
|m(t) —m(0)] <Ch?*? Vte0,h).

4. It remains to show that

/'@uﬂﬂnw—mm)ch”.

xpy

By the consistency for quadratics given in Lemma 12, we have

m(O):/ detD?p(x)dx.

“h

Therefore, it is sufficient to show that

/ (detD?q(x) — detD?p(x))dx| < Chi+2.

xp,

A Taylor expansion of detD*q = detD?*(p+hr) reveals that
|detD?q(x) — detD?p(x) — hcof D?p(x) : D*r(x)| < Ch?.

where the constant C depends on D?p and D’r. This implies that

/m

),

(detD?q(x) — detsz(x))dx‘

Sh/ cof D?p(x) : D?r(x)dx| + Ch*|@,, |.

X

Noting that cof D? : D*r is an odd function and ®y, 1S symmetric
respect to the origin, we obtain

/ cof D?p(x) : D?r(x)dx=0

),

and

/(wmwp@mwmmgwM.

“h

This completes the proof. O
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Now for any function w that can be approximated locally by a quadratic
polynomial such that w(x) = p(x) + O(h*>*%) in Bg,(x;) or by a cubic polyno-
mial such that w(x) = g(x) + 0(h3+") in Bg;(x;), we show that the consistency
error of the Oliker—Prussner method is of order O(h*) and O(h'*%),
respectively.

Proposition 17 (interior consistency).

Let Q;, be a translation invariant set of nodes, and x; € €, be such that dist
(xp, 0Q;) > Rhwith R="4d. If w € C***(Bgy,), with k €{0, 1}, and a € (0, 1])
is a convex function with Ml < D?w <AlI, then we have

< Chk+a|W|C2+k,u(%) wah |’

ONw ()| — / det D2w (x)dx

@y,

where C = C(d, A, N).

Proof. We divide the proof into two cases k = 0 and k = 1.
1. Case k = 0: We only need to show the inequality

N ()| < / det D2 (1) -+ CH ] o e 0 -

Dy,

because the reverse inequality can be derived similarly. Since
w € C>%(Bgy,), we estimate w by a quadratic polynomial p so that

w(x) <p(x) Vx&Bgu(xp),
where p(x;) = w(xg), Vp(x,) = Vw(x;,) and
D?*p=D*w(x;) + Ch|W| cowa !
for a fixed, and sufficiently large, constant C. Let p, = N,p, and note that
|ONww ()| < |9p(xn)|.

It remains to show that

|dph(xh)|§/ detDzw(x)dx+Ch“|w|cz,(,(%)|wxh

[0)

xpy

Since (1 + Ch®)I < D*p < (A + Ch®)I and

A+Ch* A
<= A>
Tr O =7 because A > A,

invoking the consistency of Lemma 12 we obtain
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1Opn ()| = / det D2p(x)dx

Wy "

provided that dist(x;, 0Q;,) > Rh. Recalling thatw € C Z’Q(BE ), we can write
D’p = D*w(x) + E(x) for all x€Bgy,, where |E(x)|< Ch[W| oo -
A Taylor expansion yields

|0ph(xh)|§/ detDzw(x)dx+Ch“|w|Cz,a(B—m)|a)xh\.

Dy,

2. Case k = 1: If we C>%(Bgy), we approximate w by a cubic polynomial ¢
so that

w(x) < g(x) Vx€&Bgy(xp),
where g(x,) = w(x;), Va(x,) = Vw(x,),
Dq(x) = D*w(xp) + Ch'* *|W| a g »

and D3q = D*w(x;) with universal constant C. The rest of the proof is sim-
ilar to the previous case.

Combing both cases, we conclude the proof of the estimate. O

3.4 Pointwise error estimate

We are now ready to show a pointwise error estimate for the method (64)
under suitable regularity assumptions on the solution u. We aim to apply
the stability of the numerical scheme shown in Proposition 16 to derive a
lower bound of the difference v, — u,, for a suitable convex piecewise linear
function vy,

Assume that the convex solution u of the Monge—Ampere equation (1) is
Ch* near the boundary of the domain © where k €{2, 3} and a € (0, 1].
We first extend the solution to a larger convex domain

Qurn = {x eRY dist(x,Q) < 4Rh}

such that, for sufficiently small %, the extended function, which we still denote
as u, remains C**_continuous in the extended region and satisfies

A
51 <D?u(x) <2AI forany x € Qugy,. (72)

Next, we extend the translation invariant interior nodal set €, to the extended
domain Quz;, and, by an abuse of notation, we still denote the set as €, that is,

d
Q= {xh :ZZ/EJ’: ZiGZ} NQupp-

J=1
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We construct the piecewise linear function v, = I'(V,u) by taking the convex
envelope of the nodal interpolation of the solution # on €, in the extended
domain and then restrict the piecewise linear function v, to the domain Q.
Thus, this procedure yields a piecewise linear function v, defined on the
domain Q.

We claim that the piecewise linear function v, satisfies the following
two conditions which are useful in the error estimate. First, the adjacent
set size estimate of Lemma 10 and the bound of D?u given in (72) imply
that for any interior node x; € Q,NQ, its adjacent set Ay, (v;) is contained
in the extended domain Q. Second, we notice that |v,(x) — u(x)|< Ch*
on the boundary 9Q where the constant C depends on [|ul|¢c2(q). This is sim-
ply due to the fact that the diameter of any patch of a node z€ Q,NQ is
bounded by 4RA and interpolation theory of piecewise linear function.

Now we are ready to derive the main error estimate.

Theorem 13 (error estimate).

Let u be the solution of the Monge—Ampére equation (1), 0 < A < D*u <AI
and u € C*>*%*(Q) with k €{0, 1} and a € (0, 1]. Let Q, be a translation
invariant nodal set satisfying (60), and let u; be the solution of discrete
Monge—Ampeére equation (64) defined on Q,,. Then we have

[ — 1t || o) < CHF*,

where the constant C depends only on |[ul|c2+t.a(q), 4, A, diam(Q), and space
dimension d.

Proof. Let v, be the interpolation of the extension of the solution u defined
above. Since |v;, — u|< Ch* on the boundary 0Q2, we have v, + Ch* > u,
By the stability of the numerical solution, Proposition 16, we obtain

1/d

sgp(vﬁczﬁ—uh)*gc ST (o)l = [oun ()|
h

x;€C; (vi—up)
Invoking the consistency error estimate, Proposition 17, we immediately
obtain

sup (v, + Ch* —u;,)~ < Ch e,
Q
By a simple algebraic manipulation, the estimate yields a lower bound for
the error v, — u, >—Ch* — Ch**“. Similarly, an estimate for the upper bound
follows by considering the function u;, + Ch* — v,. Combining both estimates,
we get the desired result. O
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3.5 W?*P error estimate

The results and arguments of the previous section have recently been
extended to the derivation of W>? error estimates of the Oliker—Prussner
scheme (Neilan and Zhang, 2018). Here, the discrete WP norm is taken to
be the sum of weighted second-order differences:

1/p
||V||W2/’ = (waz Agv(xy)l” ) .

Xn €L
The starting point is a simple observation that the contact set of a nodal
function contains information of its second-order difference. In particular, if
uy is the solution to (64) and v, is some approximation to u, then we can
define the perturbed error

wh =v,— (1= €)uy (73)

with parameter ¢ € (0, 1). Now, by wusing the identity
AW (x1) > AW (x) >0 for x;, €C, (w),), we have, after some algebraic
manipulations,

€ — (@
Ao (up —vi) (%) <1TA Vn(xn)  Vx, €C (w)).

The right-hand side of this expression is uniformly bounded for appropriate v,
if u is sufficiently smooth, and therefore we find that the error A (i), — v;,)(x},)
is controlled on the contact set C, (w},). However, noting that wj is not neces-
sary convex, we must estimate A.(u;, — v,)(x;) on the complement set

C=\C, (wh)- (74)

This is done by estimating its cardinality in terms of the consistency of
the method.

Lemma 14 (size of complement set).

Let uy, and v;, be convex nodal functions with u; = v;, on 08;, and u;, < v; on
Qh' Set

[Oup(xp)| =fr, and |0vi(xp)|=gv, X1 € .

Then there exists a constant C > 0 depending only on f such that

S f <UD g

xpEEC

where w5, and E are defined by (73) and (74), respectively.
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The last ingredient to develop W7 estimates is a simple result of the dis-
crete L' norm of a nodal function in terms of its level sets. Roughly speaking
this result gives a relation between Riemann and Lebesgue sums; see Neilan
and Zhang (2018, Lemma 5.1)

Lemma 15. Let s, be a nodal function with |s,(x;)|< M for some M > 0. Then,
for any ¢ > 0,

M
S fulsita)l <o 3 fi

X, €Qy k=0 x, €A,
where

A= {Xh €Qy: |sh(xh)| de}

Theorem 14 (W>? error estimate).
Suppose that the conditions of Theorem 14 are satisfied with k + a = 2. Then
there holds

Ch'/p pE(d, o)
. < ’
e ”h|Wﬁ’{C|1ogh|1/"h1/d pe(l.d).

We now give a sketch of the main ideas to prove Theorem 14 and refer the
reader to Neilan and Zhang (2018) for details. To communicate the main
ideas, we make the simplifying assumption that the consistency estimate in
Proposition 17 holds up to the boundary. We also assume homogeneous
boundary conditions, i.e., g = 0 in (1b). These assumptions, which do not hold
in general, allow us to derive better rates of convergence than those stated in
Theorem 14.

As a first step we set v, = (1—Ch*»YN,u, where C > 0 is sufficiently
large such that (cf. Proposition 17)

&, = |ova(x)| = (1 = Ch?)[ONu(xn)| < fr,.-

Therefore by the comparison principle in Corollary 6, we have v, > u;, on €,
We also have |f,, — g, | < Ch>*4.
To deduce the estimate, it suffices bound

D FaBelun—vi) ()"

Xp €

Bounding the negative part of the error can be obtained by similar arguments.
For parameter ¢; with ¢;/(1 — ¢,) = CkYPh?, we define

€
A= {Xh €Qpn: Ag(up—vi)(xn) > ﬁAevh(Xh)},
— ¢
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and note that Ay C E%. Let s;(x,) = ‘ e (y — vh)) , and note that |s;(x;)|<
Ch™? because u;, and v, are bounded. Applylng Lemma 15, with 6 = Ch*,
we have

Ch™
foh Mh _Vh |17 < Cth <1 + Z fo,,)

xpEQ, =1 x,€A

On the other had, using Lemma 14 and the consistency of the scheme yields,
for h sufficiently small,

me— Zth <C ||fl/d Ud”["(C,j(w;"))

Xp €A xpEE%

<Ch2 =Ck™ /P,
€k

Thus, we find that

>
1
E _ p 2p E
x,eg,fm o)) <cn <1+ kl/p)
h*|logh| ifp=1
< )
_C{hz ifp>1.

In certain settings, Theorems 13 and 14 immediately give us W'” error
estimates as well. To make this precise, we assume that the basis
{e j};i:l :{ej}j:l defined in (60) is the canonical one. We then define the
backward difference operator
v(xp) —v(x, —eh)

h 9

and the discrete norms/semi-norms, for p € (1, ),

D v(xy) =

1/p
Wl @) = (hd > v(xhw’) ,

Xp €L,

d 1/p
d P
HVHth( (lvle +h leefvlLZ(Qh)) ,
=

1/p

d d
_ P d P — =P
HVHW,?’F(Qh) = HVHW,II'I)(Q/I) +h j§—1 Il Aeﬂ HLI/;(Q” + § 1 HDe,-De,-‘ HLZ(Q )
— i

J#i
We then have (Jovanovi¢ and Siili, 2014, Lemmas 2.60-2.61)
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1/2 1/2
L5 () v ij!ﬂ(gh) ’

Wl gy <C IV

Therefore noting that ||v|

@) < CVli= @), and,

1
D, D v(x) = 3 (Ae,v(x —he;) + Ag,v(x — he;) — Ag, v(x—h(e; +e))))

with ¢; ; =e; —e;, we have the following, by Theorems 13 and 14.
Corollary 7. Suppose that the conditions in Theorem 13 are satisfied with
k + a =2, and assume that f > fo > 0 in Q. Then there holds

1
ch't pE (d, ),

H”_”hHWW(Q) 1 1
P Clloghf2dn'*2d  pe(1.d).

Remark 15 (extensions).

In this section we showed that the stability estimate given in Proposition 16
provides a powerful tool to develop error estimates for the Monge—Ampére
equation, as it allows us to derive L* and Wg error estimates when the solu-

tion enjoys regularity u € C>*%#(Q). Thanks to this stability estimate, it also
possible to extend these estimates if the solution is of lower regularity and/or
degenerate. The key observation is that the stability estimate measures the
consistency error in the ¢“-norm. If the solution is rough in a region of small
measure and smooth elsewhere, so that the consistency error is small in
¢“-norm, then by the stability estimate, we may still derive a rate of conver-
gence for the low regularity case. This is explored in Nochetto and Zhang
(2019, Theorem 6.3) to prove a rate of convergence for solutions in C 1’I(Q),
but not in C*(Q). [ |

4 Finite Element Methods

It will be found that most classical mathematical approximation procedures as
well as the various direct approximations used in engineering fall into this cat-
egory. It is thus difficult to determine the origins of the finite element method
and the precise moment of its invention.

Zienkiewicz and Taylor (2000)

In this section, we summarize recent developments of finite element methods
for the Monge—Ampére problem with Dirichlet boundary conditions (1). For
simplicity, throughout this section, we assume that boundary conditions in
(1) are homogeneous, i.e., g = 0. The extension to nonhomogenous boundary
conditions is straightforward.
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The main difficulty to construct (and analyze) finite element schemes for
fully nonlinear problems is that the PDEs are nonvariational. Recall that a
finite element method is typically derived by

(i) multiplying the PDE by a test function;
(ii) integrating the resulting product over the domain;
(ili) performing integration by parts to arrive at a variational formulation;
(iv) posing the variational formulation on a finite dimensional space, usually
consisting of piecewise polynomials.

Note that the third step usually requires some structure conditions of the
PDE, e.g., that the PDE is in divergence-form, which is not present for
fully nonlinear problems. Another obvious difficult to construct convergent
finite element schemes is that the notion of viscosity solutions, given in
Definition 4, and Alexandrov solutions, as in Definition 9 for the Monge—Am-
pere equation are nonvariational, and it is unclear how this solution concept
can be adopted within a finite element framework.

We must remark, however, that the Monge—Ampeére operator (1a) does
possess a divergence-form. Using well-known algebraic identities and the
divergence-free property of cofactor matrices, there holds detDzu:('—JV-
(cof D*uVu). Note however that variational formulations based on this
identity would still involve second-order derivatives, and therefore, at this
time, it is unclear whether numerical methods based on this approach
are advantageous.

Nonetheless, assuming some regularity of the solution, well-defined finite
element methods can be formulated and analyzed for fully nonlinear PDEs.
One approach is to omit the third step of the four-step process described
above. For example, multiplying the Monge—Ampére equation (1a) by a func-
tion v and integrating over Q yields the identity

/Q(f— detD?u)vdx =0. (75)

A simple calculation involving Holder’s inequality and Sobolev embeddings
show that expression (75) is well-defined provided u, v € W>4(Q). Finite ele-
ment methods can then be constructed based on the identity (75). Namely, an
obvious finite element method based on the identity (75) seeks u;, € V,
satisfying

/(f— detD?u;)vydx=0 Vv, €Xp, (76)
Q

where X, is a finite dimensional space consisting of piecewise polynomials
with respect to a partition of Q that vanish on the boundary. While this
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method may be convergent (cf. Awanou, 2014, 2015c, 2017b; Bohmer, 2008;
Davydov and Saeed, 2013; Neilan, 2014b), the appearance of global second-
order derivatives in the method necessitates the use of C' finite element
spaces which can be arduous to implement and are not found in most finite
element software packages. In addition, C' finite element generally require
high-degree polynomial bases, resulting in a relatively large algebraic system.

Because of the many disadvantages of the finite element method (76) sev-
eral finite element methods with simpler spaces have been developed. These
include C° penalty methods, discontinuous Galerkin (DG) methods, mixed
finite element methods, and methods based on high order regularizations.
We now discuss these methods in the subsequent sections.

4.1 Continuous finite element methods

Here we summarize finite element methods presented in Brenner et al. (2011),
Brenner and Neilan (2012), and Neilan (2013) for the Monge—Ampere equa-
tion which employ spaces consisting of continuous, piecewise polynomials,
i.e., the Lagrange finite element space. These are arguably the simplest finite
element spaces and are available on virtually all finite element software pro-
grams and libraries. In addition, we provide a slightly new and improved con-
vergence analysis based on recent results for finite element methods for linear
nondivergence form PDEs (Feng et al., 2017). To describe these methods and
their accompanying analysis, we require some notation.

As before, we assume that QCR? (d=2,3) is a bounded, convex
domain. Let 7, denote a shape-regular and simplicial triangulation of Q.
We denote the sets of interior and boundary (d — 1)-dimensional faces of
Tpby F 2 and F I,f , restrictively. The jump of a vector valued function v across
an interior face F =0T, NdT_ € F) is given by

1
[[v]]:E(v+®n++n+®v++v,®n,+n,®v,), )

where n. is the outward unit normal of 07, and vy = v|Ti. We also define the
average of B (a scalar, vector, or matrix-valued function) across F as

{{B}}:%(B++B_). (78)

If F=0T,NoQ e FB then we define

[[v]]:%(v+®n++n+®v+), {B} =B.. (79)

For an integer r > 2, the Lagrange finite element space with homogeneous
boundary conditions is given by
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Vi={meWg=(Q): wily €PAT) VT €T,},

where P,.(T) is the space of polynomials with degree less than or equal to r
with domain 7. In addition, for a number p € (1, 00) and integer m, we define

wnr(Ty) = [ W (D),  V, =Wy (@NW>(T)),
TGT/I

and note that V;, C'V,, for all p € (1, 00). We also set H"(T ) = W™(T ).

Because of the noninclusion V,¢W>9(Q), the finite element formulation
(76) is not well defined if X, is taken to be the Lagrange finite element space.
A naive approach to bypass this issue is to redefine this formulation so that
integration is done piecewise over the mesh, i.e., to consider

Z /T(f — detDzuh)vhdx Vv, €V (80)

TeT,

While this method is well defined (i.e., all quantities are defined and bounded),
it is easy to see that the scheme is ill-posed. For example, if w;, € V}, is strictly
piecewise linear, then detD?w;, =0 on each T € T, and consequently, unique-
ness (and stability) is dramatically lost.

The arguments given in Brenner et al. (2011) offer an alternative expla-
nation on why the formulation (80) leads to an ill-posed problem. Namely,
the main point in Brenner et al. (2011) is that the linearization of the dis-
crete problem (80) is not consistent with respect to the linearization of the
continuous problem (1a). Instead, to ensure consistency and stability, finite
element methods for the Monge—Ampére problem should be designed such
that the discrete linearization at the solution u is a coercive operator over
the finite element space. We now explain how to construct methods with
stable linearizations. To do so, we first assume that the exact solution to
the Monge-Ampére equation satisfies u € C**(Q) with k + a > 2 and is
strictly convex.

Define

Flu] =f — detD*u

to be the Monge—Ampeére operator, and let L be the linearization of F at the
solution u, i.e.,

. Flu+tw|—Flu

Lw= lm(}w: —cof D*u: D*w, 81)

11—
where cof D?u denotes the cofactor matrix of D%, and *:” denotes the Frobe-
nius inner product. The assumptions on u imply that matrix cof D*u is positive
definite on Q and uniformly continuous.
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A consistent discretization of linear operators in nondivergence form (such
as L) was introduced in Feng et al. (2017). In the case that the linear problem
is given by (81), the discretization is given by L;,:V, — V,’q with

(Lpv,wp) = — / cofD2u D%y )whdx

TeT),
(82)

/{{coszu}} [Vv]wads,

Fe]—"

where (-, -) denotes the dual pairing between some Banach space and its
dual. The operator L, is clearly consistent with L: If v € WP (Q)NWy" (Q),
then (Lyv,wp,) = (Lv,wy,) for all w), € V,. In addition, the discrete operator is
stable as the next lemma shows. We refer the reader to Feng et al. (2017)
for a proof.

Lemma 16 (stability).

Define the discrete W* P-norm

1—
IIVIIsz =DM ) + D e IV 1<p <o,
FeF),
lly2sq) =l Dyvllemi) + ;neaxhp ITVV o)

h

where D3v is the piecewise Hessian of v. Assume that u € C*(Q) and is strictly
convex over Q. Then there exists hy > 0 depending on the modulus of conti-
nuity of D*u, such that for h € (0, hol, there holds the following inf-sup con-
dition (2<p < o0)

(Lawn,vi)
20y SC I Liwnllp@) = sup ———— VYw, €V,

wevin(oy vl @)

where 1/p + 1/p' =1

Based on the definition of L, and the stability results stated in Lemma 16
we can develop a consistent discretization for the Monge—Ampére problem
as well as a convergence theory. Essentially, its construction is based on the
observations that the expressions [i.(cof D*u:D?v)w,dx and [, {cof D*u}} :
[Vvlwyds are the linearizations of [,.(f— detD*v)w;, and [, {cof D*v}:
[Vv]wyds, respectively, about the solution x. With this in mind, we define
the discrete operator Fj,: V — V), via

Fulv],w detD? v wydx cof D>y : [Vv]w,ds,
Eblo) = 32 [ (= deappmacs 3 [ oot D) [

FeF,

and consider the finite element method: Find u;, € V), such that



The Monge—Ampere equation Chapter | 2 193

Discretize

F(u) =0 — Fp(up) =0
l Linearize lLinearize
Discretize
L(w)=0 — Lp(wp) =0

FIG. 7 A commuting diagram connecting the nonlinear problems and their discretizations.

<Fh [uh],vh> =0 Wy,eV,. (83)

We immediately see that method (83) is consistent: There holds [Vu]|, =0
over all interior faces F, and therefore (F}[u],v;) =0 for all v;, € V,,. Further-
more, the proceeding discussion implies that L, is the linearization of Fy:

Fylu+tw] —Fylu)

. !
; inV,.

In summary the diagram given in Fig. 7 commutes. We now show that this
property (along with the regularity and convexity assumptions of u) implies
that there exists a locally unique solution to (83) with optimal rates of
convergence.

As a first step, we first point out that Lemma 16 implies that Lh|vh is bijec-
tive. Therefore, the mapping M, : V,, — V), given by

M= (Lily,) (L —F) (84)

is well defined. The existence of a solution to the finite element method (83)
is proven by showing that M, has a fixed point in a ball centred at u,. ,, where
u.p, is the elliptic projection of u given by

-1
weni=(Laly,) Lo (85)

The basis of this argument is provided in the next lemma.

Lemma 17 (M, is Lipschitz).

Assume that the convex solution of the Monge—Ampére equation satisfies
u€C**(Q) with k + a > 2. Then there holds, for all p€[2,0) and all
v, V2 €V,

|M v —MhV2||W§,p<Q) <C; [lv1 —VzHW,f,p(Q),

1
M_E(VI +v7)

h

where Cy > 0 depends on p and u, but is independent of h.
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Proof. We give the proof of the two-dimensional case d = 2; the arguments in
three dimensions are similar and can be found in Brenner and Neilan (2012).

We first use Taylor’s Theorem and the fact that F, is quadratic in two
dimensions, to get

Fulv] =Fy[u] +Ly(v —u) + Rp[v — u] =L (v — u) + Ry [v — u],

where R, : V — V) is quadratic in its arguments and independent of u.
Using this expansion into the mapping M), yields

My[vi] —My[va] = (Lh|Vh) B (Lavy = Lyva = (Fu[v1] = Fa[v2]))
. (36)
— (i) Rl == Ryl —a).

Since R, is quadratic there holds

Rufva — ] = Ryt —1a] = /O DRy [t(vs — 10) + (1 — £)(vy — )] (v2 — vy )dl
:DRh(%(vz+v1)—u)(vz—v1),

where by DR, we denoted the derivative of R,,. Therefore, by (86) and Lemma
16 we have

1
|M vy —thz||Wz,p(g) < CHDR;, (2(vz +vy) — u) (v2—v1)
h L[I;(Q)

Several applications of Holder’s inequality yields (cf. Neilan, 2013,
Lemma 4.2)
IDRy (W) (D)5 2) < ClIWlly2 =y lallwzr )

and therefore

1
||MhV1 _MhVZHW:»F(Q) < CHE(VI +V2) —Uu "
i

[[vi _V2||w’2”ﬁ<g)-

O
Lemma 18 (contraction).
Assume that the hypotheses of Lemma 17 are satisfied. For fixed p > 0 and
p € [2, ), define the closed ball

Bp,p: {Vhe‘/h: ||uc,h_vh||wivﬂ(g> SP},
where u.;, € V), is defined by (85). Then, for all v\, v, € B, , there holds
|Myvy —M11V2||W;»:><Q) < Coh P (W7 + p) vy — V2||Wﬁ"’(sz)’
where {=min{r—2, k—2}.



The Monge—Ampere equation Chapter | 2 195

Proof. First, the smoothness assumptions on u allows us to conclude that the
elliptic projection u, , satisfies (Feng et al., 2017, Theorem 3.2)

e = te.pll oy < Csh™* p €2, 00), 87)

where C3 > 0 depends on p and ||ul|ct.«(q). Consequently, there holds by
an inverse estimate, for any w;, € V,,

e = sl @y <l =wllyzom ) + CH=7 lltcsn = willy2r g
<l = wlly 2 gy + P (||u —ttelly 2o+ llu— wh||W5,,,(Q)) .
Taking wy, to be the nodal interpolant of u yields
e = sl ) < Cah >~ (88)

Applying this result to Lemma 17 and using an inverse estimate, we obtain

||MhV1 —MhV2 ||W/2’,p(g>

B 1
< C<||u— MC,;1||W:,.>0(Q> +h dfp Huc’h _E(Vl +V2)||W;:»F(Q)> HV] _VZHngﬂ(Q)

< Ch~d/p (hl+a+p) [vi *VZHW%I’(Q)
for all vi, v, € B, .. O

Theorem 15 (error estimate).

Assume that ue C**(Q) with k + a > 2 and is strictly convex. Set
¢=min{r—2,k—2}. There exists hy > 0 such that for h < hy, there exists
a solution to (83) satisfying

et — |2 ) < CRE*. (89)
Moreover, if u, is another solution to (83) then there holds
[ = itn|yy2. ) = C, with the constant C > 0 independent of h.
h
Proof. Fix p € [2, ) such that £ + @ — d/p > 0, and let

hy=min{1/(4C,), 1/(2C1C2C3C4)}1/(a+ffd/p).

Then, for 7 < min{hg,h; }, where hy was defined in Lemma 16, set p; =

h[+"/(4C2). Lemma 18 then shows that, for vi{,v, €B,, ,,

||th1 _th2||Wh2,p(Q) <(C, <h4+a7d/l7 +h7d/l7pl> HVI _VZHW:,’)(Q)

t-d 1
<20k vi = vallyegy <5 IV = V2l -
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and therefore M|, is a contraction mapping on B,, ,. Likewise, we can use
Lemma 17 and the fact that u.;, = M,u to get (cf. (87) and (88))

||1/l(-,h —MhVHW:,,;(Q) :||Mhu _th”W,zl”'(Q)

1
< 7 ”” - ”c,h”W:v“’(Q) ”” - ”C,h”WIf’P(Q)

Clc3c4h2a+2/f—d/p hl+a
< <
2 4C,

P1-

Therefore M;, maps B, , to itself. By Banach’s fixed point theorem, we
conclude that M), has a fixed point in B, ,, and this fixed point is a solution
to (83). The error estimate for ¢ — d/p > 0 (89) follows from the inclusion
uy € B,, , and the definition of p,. The other cases £ + a — d/p < 0 then follow
from Holder’s inequality.

Finally, if i, € V), is another solution to (83), then there holds My, = ii),.
Therefore, by Lemma 17 we conclude that

[ = w20 ) =Mt = Mytan ||y

C . i
< 5 (||u - UhHW’Z,,co(Q) + |lu— ”h||wg,°°<g)> oty — ”h”W,fm(g)-

Now applying similar arguments as those found in Lemma 17, we
conclude that ||u—u;,|\Wz,w<Q)gCha—d/p_>O. Therefore, by dividing by
h

||et, — gh||W/2,/7(Q>, we get C <|ju— ﬁhHWIZ,oo<Q> for h sufficiently small. m|

Remark 16 (extensions).
The proposed method and the conclusion of Theorem 15 deserve the follow-
ing comments:

e As mentioned earlier, the analysis given here slightly improves the
results given in Brenner et al. (2011) and Neilan (2013). Namely, the
paper (Brenner et al., 2011) requires d = 2, r > 3, and u € H’(Q) for
s > 3 (implying that u € C>%(Q) by a Sobolev embedding). The paper
(Neilan, 2013) requires r > 2 and regularity u € W*»*(Q) to carry out
the analysis.

e Discontinuous Galerkin methods have also been developed under this
methodology in Neilan (2013). The analysis carried out in this section
can be applied to these methods using the recent results for nondivergence
PDEs given in Feng et al. (2018).

e A two—grid method to solve the nonlinear method has recently been pro-
posed in Awanou et al. (2018). |
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4.2 Mixed formulations

In this section we describe mixed finite element formulations for the Monge—
Ampere equation proposed in Lakkis and Pryer (2011), Neilan (2014a),
Awanou (2015a); Awanou and Li (2014), Awanou (2017a), and Kawecki
et al. (2018). Essentially, the main idea in these approaches is to introduce
the Hessian matrix of u as an additional auxiliary unknown in the formulation
of the Monge—Ampere problem, that is, we write the PDE (la) as

6=D%u, dete=f inQ. 90)

As before, assuming regularity u € W24(Q) so that 6 € L), we can multiply
the second equation by a smooth test function and integrate over the domain:

/Q(f— deto)vdx=0 (91)

for all ve L*(Q).

The direct analogue of this formulation in the discrete setting requires C'
finite element spaces by the same reasons that the method described in
Section 4.1 does. In other words, to ensure that the discrete version of (91)
is well-defined, we require that the Hessian of the discrete approximation uy,
has (global) second-order derivatives in Ld(Q); if uy, is a piecewise polynomial,
then this restriction implies that ¥ € C Q). To relax this restriction on the
finite element spaces, one can instead develop finite element methods that only
employ continuous (or discontinuous) bases based on this formulation by intro-
ducing the notion of a discrete Hessian (also known as a finite element Hessian
(Lakkis and Pryer, 2011)). The discrete Hessian is defined globally via an inte-
gration by parts procedure rather than a piecewise fashion. This idea has been
carried out for (linear) Kirchhoff plates in Huang et al. (2010), and its formu-
lation is reminiscent of the construction of local discontinuous Galerkin meth-
ods for second-order problems (Arnold et al., 2002; Cockburn and Shu, 1998).

To motivate the definition of the discrete Hessian, we introduce the auxil-
iary space

¥ = {7, €LY (R : |, € P(T; R VT €T},

and note the following integration by parts identity

Z/TDZW:Thdx:fz/T(V“rh)'Vde

TETh TETh (92)
+ Z/ (zpnr) - Vwds,
TeT, or

forall w € Hz(Q) and 7;, €X;,. Here, ny is the outward unit normal of 97, and
the divergence acting on a matrix is performed row-wise. We may then write
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the integral boundary terms in (92) using the jump and average operators. In
addition to (77)—(79), we define the jump of a matrix-valued function 7 across
F=0T.NT_€F} as

[tfl=rsns+7_n_,
and define [¢] =7,n, if F=0T,N0Q € F¥. We then have

TeT,,/dT tanr) - Vwds = Z /{{Th}}:[[Vw]]d.H Z /[[Th]]-{{Vw}}ds

FeF!, FeFyF

P> / o] - {Vwhds,

where we used that [Vw]|, = 0 for all F € 7, due to the regularity w € H*(Q).
Combining this identity with (92), we arrive at

/ D*w:gydy =— / (Vezy) - Vwdx+ / [ea] - {Vw}hds.
TeT), TeT),

F€.7:/, F

This identity leads to the following definitions of the discrete Hessian.
Definition 21 (discontinuous discrete Hessian).
The discontinuous discrete Hessian is the operator Hj, : H' (Q) NH?*(T ;) — %
uniquely defined by the conditions

/Hh(w):rhdx = /V ) dex+ /rh {Vwlds
Q TeT,, FEF,

for all z;, €%,

Remark 17 (characterization through liftings).
Define the lifting operator

0: L} (Fi:R) — %,
via

/ pdr=—)" / {1} :[]lds Ve, €

FeF,
Integrating by parts we obtain

TeT /Hh = Z /DZW:T”dX_ Z /{{Th}}fﬂVW]]ds

TeT FeF,

/ “w+0O(Vw)) : 7yd.
TeT,
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Recalling that D;w denotes the piecewise Hessian of w, and that V), is the
(scalar) Lagrange space of degree r, we then have D7V}, C %, and therefore

H, (Wh) = Dﬁwh + @(th) Ywy, € V).
|

The notion of the discrete Hessian and the formal identities (90) and (91) lead
to the following scheme introduced in Neilan (2014a): Find u;, € V), such that

/(f* det]HIh(uh))vhdx Vv, €V 93)
Q

Remark 18 (mixed formulation).

While (93) is written in primal form, the problem is in fact a mixed finite ele-
ment method. Introducing o), = Hj,(u;,) € £, we see from the definition of the
discrete Hessian that (93) is equivalent to the system

/ahzrhdx+/(V~Th) “updx — Z /[[Th]]'{{v”h}}ds =0, (%94a)
Q Q F

FeFy,

/(f— detah)vhdx =0, (94b)
Q

for all (zj, v;,) €Z, x V,. Note that the matrix representation of the form
(on,7h) = [oon :Thdx is symmetric positive definite, and more importantly,
block-diagonal because X, does not have any continuity constraints. As a
result, the Schur complement (i.e., the primal method (93)) represents a sparse
algebraic system of equations. |

Theorem 16 (error estimate).

Assume that d = 2, and that (1) has a unique strictly convex solution u €
C"™ *(Q) with r > 3 and a > 0. Then for h sufficiently small, there exists
a locally unique solution to the finite element method (93). Moreover,
there holds

|t — || @) + 1 || 6 — ol 20) < CH. 95)

Proof. See Neilan (2014a, Theorem 4.2). O

Remark 19 (regularity).

The regularity assumptions on u in Theorem 16 can be relaxed using the sta-
bility analysis for linear nondivergence form PDES found in Neilan (2017).
There it is shown that, assuming u € C*(Q),

||W/1||W12’2(Q) <C| LhWhHL%(Q) Ywy, € Vi,
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with
<Lhwh,vh> = —/COf D2u : Hh (wh)vhdx.
Q

By applying the same techniques found in the previous section, it is simple
to show that the solution to (93) satisfies |ju—u|,2. @ < Ch'*® with
h

¢=min{r—2,k—2} provided that u € C**(Q) with k + @ > 3, r > 3, and
h is sufficiently small.

To reduce the number of unknowns in the mixed system (94), continuity
constraints can be added in the matrix—valued space X,. This is the idea of
the method proposed in Lakkis and Pryer (2013). There, the auxiliary space
is defined as the matrix-valued Lagrange space, i.e.,

=%, NH (QR>) = {7,c H'(Q): 7, €P(T; R YT €T,}.

Restricting Definition 21 to Xj leads to the following notation of the discrete
Hessian.

Definition 22 (continuous discrete Hessian).

The continuous discrete Hessian is the operator Hj : H'(Q)NH?(T ) — X
uniquely defined by the conditions

/HZ<W) s Tpdx :_/(V'Th)'Vde+/ (zpn) - Vwds
Q Q oQ
for all 7, € Zj.
This definition leads to a finite element method proposed in Lakkis and

Pryer (2013) which similar to (93), but with the continuous version of the dis-
crete Hessian.

/(f— detH; (u;))vadx =0 Vv, €V, (96)
Q

As before, we may set o, = H;I(uh) as an auxiliary variable, and deduce from
Definition 22 that (96) is equivalent to the mixed method

/dh:fhdx+/(v-rh)-Vuhdx—/ (zpn) - Vupds =0, (97a)
Q Q 0
/(f—detah)vhdx =0, (97b)
Q

for all (z,vy) € Z§ x V), Compared with the formulation using the discontinu-
ous discrete Hessian, the mixed problem (97) has significantly less unknowns
than (94) due to the continuity restrictions of Xj. On the other hand, the
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(mass) matrix associated with the form (oy,7,) — fgah 17, is not block-
diagonal, and therefore the Schur complement of (97) (i.e., the algebraic sys-
tem representing the primal problem (96)) is dense.

Existence, (local) uniqueness, and error estimates for method (97) are sim-
ilar to the statements given in Theorem 16.
Theorem 17 (error estimates).
Assume that d €{2, 3}, and that (1) has a unique strictly convex solution u €
H"™3(Q) with r > d. Then for h sufficiently small, there exists a locally unique
solution to the finite element method (97). Moreover, there holds

[l =l (@) +h || 0 = Onllr2 @) < CH'. (98)

Proof. See Awanou and Li (2014, Theorem 3.13) and Awanou (2015a, 2017a,
Theorem 1). O

Remark 20 (extension to optimal transport).
The mixed finite element method (97) has recently been extended to the opti-
mal transport problem in Kawecki et al. (2018). |

Remark 21 (historical remark).

Our presentation follows a reverse chronological order. The first Galerkin-
type method based on the concept of discrete Hessians was that of Lakkis
and Pryer (2013), where they used the continuous Hessian of Definition 22.
The DG version was introduced later. [ ]

4.3 Galerkin methods for singular solutions

The analysis of the Galerkin methods discussed thus far require relatively
stringent regularity conditions to carry out the analysis (e.g., u € C* *(Q)).
While numerical experiments indicate that regularity assumptions can be
relaxed somewhat, they also indicate that some regularity of the solution is
required for the methods to converge. For example, the numerical experiments
in Brenner et al. (2011) indicate that the C° penalty method (83) does not con-
verge if u¢H*(Q) in two dimensions. In this section, we discuss various ways
to modify the Galerkin methods and the analysis such that the resulting
numerical scheme is robust with respect to the solution’s regularity.

The first approach, introduced in Feng and Neilan (2009), regularizes the
problem at the PDE level by adding a higher order perturbation, resulting in a
fourth-order, quasi-linear problem. The motivation of this approach is that
solutions of the regularized problem are defined via variational principles,
so that weak formulations can be obtained via integration by parts, and there-
fore the resulting PDE framework is amenable to Galerkin methods. Applying
this methodology to the Monge—Ampére problem results in
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—eA*u + detD*u‘ =f  inQ, (99a)

u=0 onoQ, (99b)

where ¢ > 0 and A2 = AA denotes the biharmonic operator. Note that, due to
the higher order of the PDE, the Dirichlet boundary condition is no longer suf-

ficient to close the system. In Feng and Neilan (2009), the following addi-
tional boundary conditions are proposed:

€
‘)A: —0 onoQ. (99¢)

Au¢=0, or

These conditions are chosen so that the resulting boundary layer is minimized,
see Feng and Neilan (2009) for details. For the sake of illustration, we take the
first boundary condition in (99¢) in the discussion below.

Since the problem (99) is quasi—linear and in divergence—form, the notion
of weak solutions is easily defined.
Definition 23 (weak solution).

A function u € W>4(Q) NW, () is a weak solution to (99) provided that
—¢ / Au‘ Avdx + / vdetD%u‘dx = / frdx  Wew>(Q)NWiY(Q). (100)
Q o o

The function u = limjou¢, if it exists, is called a weak (resp., strong)
moment solution to the Monge—Ampére problem if convergence holds in a
W' weak (resp., W>“-weak) topology.

Remark 22 (relation to other solution concepts).

Except in very simple settings (e.g., radially symmetric solutions (Feng and
Neilan, 2014)), the existence of moment solutions and their relation with
viscosity and Alexandrov solutions is an open problem. Nonetheless, numer-
ical experiments indicate that this methodology leads to robust numerical
methods with respect to regularity of the solution of the Monge—Ampére
equation. For example, numerical methods applied to problem (99) are
able to capture viscosity/Alexandrov solutions that are merely Lipschitz
continuous. |

Constructing methods for the regularized problem (100) can be done by
applying any of the above Galerkin methods described above; one only needs
to tack on a consistent and stable discretization of the biharmonic operator to
the discrete formulation. For example, the simplest method, at least in theory,
is to restrict the variational formulation (100) onto a finite dimensional sub-
space of W24(Q)NWy“(Q). This results in the method to find u € X,
satisfying
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e/Au;Av,,dx+/(f—detDzu;)vh dx=0 Vv, €Xy, (101)
Q Q

with X, € C1(Q)NW§?(Q). A convergence analysis of this discrete problem
has been done in Feng and Neilan (2011). There it is shown that, if there
exists a moment solution with sufficient regularity, then there exists a locally
unique solution to the discrete problem (101).

Analogously, combining the C° finite element method (83) with the sym-
metric C° interior penalty method for the biharmonic problem introduced in
Engel et al. (2002) and Brenner and Sung (2005) results in the method: Find
uj, € V), satisfying

€ Z /TAMZAVth

TeT),
ey /F (A Y (1 [Vl + {av (0 [V ])
:EH (102)
i INZAE [[Vw,]]) ds+ ;71 /T (f — detD*uj, )vydx
+ Z /{{coszuz }} : [[Vuﬂ] vpds=0
Fer’F

for all v, € V,,. Here, ¢ > 0 is a penalty parameter, and we recall that I denotes
the d x d identity matrix and V), is the Lagrange finite element space of
degree r > 2 with homogeneous Dirichlet boundary conditions. The method
(102) can be written succinctly as

c(Ath,vh) + <Fh [lftﬂ,\/}» =0 VVh S Vh,

where the operator F), is defined by (83), and A, is a consistent discretization
of the biharmonic operator given by

(Apw,vp) = Z /TAwAvhdx— Z {AwR 1y :[Vvi])

TeT), Feffl F
+{{AVh}}(Id . IIVW;J]) —%I[VW]] : [[VVh]]) ds.

Arguments given in Brenner and Sung (2005); Engel et al. (2002) show that

there exists 69 > 0, independent of 4, such that (A,vy,vy) >C || v Hﬁv“ @
h

for all v, € V, provided that ¢ > o0, Moreover, there holds
e(Apus,vp) + (Fy[uf],vy) =0 for all v, € V), provided that u® € H*(Q) for some
s > 5/2. Thus, the method (102) is consistent.

While a convergence analysis of the regularized PDE (99) and the discre-
tization (102) is an open problem, we show, via numerical experiments in the
next section, that the method is able to capture nonsmooth solutions for the
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Monge—-Ampere problem in a variety of settings. In addition, as shown in
Brenner et al. (2011), Newton’s method is robust for the regularized solution,
which allows a natural way to construct initial guesses for the (unregularized)
problem (83).

4.3.1 Convergence of interior discretizations

Recent results given in Awanou (2015b, 2016, 2017b); Awanou and Awi
(2016) argue that, in certain settings, standard discretizations (both finite ele-
ment and finite difference) for the Monge—Ampere equation converge to the
Alexandrov solution as the discretization parameter tends to zero. Here, in this
section, we summarize these results and the techniques to obtain them.

As always, we assume that Q is convex. More importantly, we assume also
that the Dirichlet boundary conditions can be extended to a function g that is
convex on Q. Note that the existence of g is guaranteed if the domain is strictly
convex. However, due to our assumption that u|yo = 0, we may simply take
¢ =0 in our setting. We further assume that f € C(Q) with f > C > 0 on Q.
Let {fu}ory CC®(Q) be a sequence of approximations of f with f,, — f uni-
formly on Q and f,, > C > 0 for all m. We then consider the PDE problem

detD?u,, =f, inQ, (103a)
Uy =0 on oQ. (103b)

Even though the source data of this problem is smooth, in general there does
not exist smooth solutions to (103) because Q is not necessarily strictly con-
vex nor smooth, see Theorem 1. Nonetheless, there exists a unique (convex)
Alexandrov solution u,, € C(Q).

Let Q C Q be a strict subdomain of Q that is polyhedral and convex, and
let 7, be a simplicial triangulation of Q. Finally, we denote by X;, a C' (Q)-
conforming finite element space consisting of piecewise polynomials with
respect to T 1. We then consider the finite element method: Find i, eXx j satis-
fying i, , = up on 0Q and

/ (fu — detD?%iiy, )vidx =0 Vv, € X, NWy*(Q). (104)
Q
This method is similar to (76),~the differences being

(i) the problem is posed on Q instead of Q;

(ii) the source function has been regularized;
(iii) the homogeneous Dirichlet boundary conditions have been replaced by

ﬁm,h|a§2 :”rn|o§2'
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It is clear that method (104) is a discretization of the PDE problem

detD%i,, =f, inQ, (105a)
Up=u, onoQ, (105b)

which, similar to (103), has a unique Alexandrov solution and is generally
nonsmooth. In fact, it is simple to see that, due to the inclusion QCQ and
the uniqueness of Alexandrov solutions, that i,, = u, on Q.

Theorem 18 (interior convergence).

There exists hy > 0, which depends on dist{0Q, OQ}, such that for h < hy,
there exists a locally unique solution to (104). In addition, as h — 0, i, ;, con-

verges uniformly to ii,, (the solution to (105)) on compact subsets of Q.

Proof. The proof relies on a series of smooth approximations to problem (105).
Let {QS};";O be a sequence of strictly convex and smooth domains such that Qg C
Qg1 CQ for all s, and Q; —Q as s — o0; see Fig. 8. Consider the problem
detD%u,; =f, inQ;,
Ups =0 on 0€.

Note that, because the data is regular, and since € is uniformly convex
with smooth boundary, the solution to this problem is smooth. In particular,

(—
—

o}

o0Q2

QO

FIG. 8 Pictorial description of the proof of Theorem 18. Here, Qc Q; C Q1 CQ, where Q is
the physical domain, Q is the computational domain, and {Q,} are smooth and uniformly convex
approximations to Q.
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interior Schauder estimates (Gilbarg and Trudinger, 2001, Section 6.1) show
that, for any D CC Q,

||Mm.vHC"+1 D Scm,
(D)

where C,, > 0 depends on m, f,,, D, and dist{D, 0Q}<dist{D, dQ}. More-
over, results in Savin (2013) show that u,,; (up to subsequence) converges uni-
formly on compact subsets of € as s — o0. Now, because u,,, is smooth, and
because the derivatives of u,,; are uniformly bounded on Q (with respect to s),
arguments similar those given in the previous section (see Awanou, 2015d;
Bohmer, 2008) show that, for i < hy with A sufficiently small, there exists
a locally unique and convex solution to the following discrete problem: Find
Ums,h € X, satisfying Ums, h| g5 = Ums|go and

[ (fm - detDzﬁms,h)Vhdx =0 Yy, Gih n Wé’d(g)
Q

Furthermore, there holds ||us — ﬁms,hHWz,z(Q) <Ch~! where C > 0
depends on [[itys]|or+1(q) but is independent of s. Because |||l c+1(g) is uni-

formly bounded with respect to s, it follows from a Sobolev embedding
theorem that i, ; is uniformly bounded. Thus, since u,, , is convex and uni-
formly bounded, the sequence {iiy;.}, is locally uniformly equicontinuous,
and thus has a pointwise convergent subsequence. Standard arguments, along
with u,,; — u,, on 0Q, then show that this limit is a solution to the discrete
problem (104). O

Remark 23 (interior convergence).

Regarding Theorem 18 note that:

1. The ideas and techniques given in this section has been applied to standard
finite difference discretizations of the Monge—Ampére problem in Awanou
(2016).

2. While the results and techniques of Theorem 18 are interesting, it is not
immediately clear how to obtain the Dirichlet boundary condition
U,y = Uy, ON 0Q since U, is not given data. One can alternatively use
U n|j0 =0, but this condition is not consistent with problem (103). We
also point out that /s, depends on dist{()f},()ﬂ}, and therefore Theorem
18 suggests we cannot take Q to be arbitrarily close to Q. |

5 Numerical examples

The high point of this classical algorithmic age was perhaps reached in the
work of Leonhard Euler [...] Innumerable numerical examples are dispersed
in the (so far) seventy volumes of his collected works, showing that Euler always
kept foremost in his mind the immediate numerical use of his formulas and
algorithms.

Henrici (1964)
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In this section we perform some simple numerical examples to show the effi-
ciency and accuracy of some of the numerical schemes discussed in the pre-
vious sections. We consider three different test problems, each reflecting
different scenarios of regularity. These are computed using the wide stencil
finite difference scheme (20), the analogous filtered scheme (26), Oliker—
Prussner method (64), the C finite element method (83), and its regularized
version using the vanishing moment methodology (102). We emphasize that
these tests are not meant to form comparisons, but rather to highlight their
advantages in different situations.

5.1 Example 1: Smooth solution

In the first set of experiments, we take the data such that the Monge—Ampere
equation has a C®(Q) solution: Q = (—1, 1)%,

2 2
i +x)

f(xl,xz):(1+x%+x%)e"f”§, u(xi,xm)=e 2 . (106)

In this setting, the Galerkin methods discussed in Sections 4.1 and 4.2 are
advantageous due to their relative high order. We implement the C° finite
element method (83) and the Oliker—Prussner method (64) on a sequence
of mesh refinements and report the resulting errors in Fig. 9. In agreement
with Theorem 89 (with £ = r — 2 and @ = 1), the plots show optimal order
convergence in WZ’I’ -norm with respect to the discretization parameter 4 for
the Galerkin methods. In terms of the degrees of freedom (DOFs), the errors
scale like

HM — uh”W]ZI,p(Q) == O(DOFS(lir)/z).

The errors in L* converge with optimal order provided that the polynomial
degree is sufficiently high. Fig. 9 shows that

|t — |0 @) = O(DOFs 1 =1/2) =34,

[ — up|| = () = O(DOFs™") r=2.
These rates are proven in Neilan (2013). For the Oliker—Prussner method and

finite difference methods defined on translation invariant meshes, we define
its W*” error on the nodal set as

1/p
= unll 2, = h Z | A, (10— up) (x)]"

X/,G.Q;’, e/'GS

where S is the 9-points stencil in two space dimensions and Aejv(xh) denotes
the centred second difference, defined in (17), of the function v at node x;,
in the direction e;. We observe in Fig. 9 that, for the Oliker—Prussner
method,
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Example 1: L Error

Example 1: W>! Error

107! _— 10! _—
1073
| \\‘\‘\\
10-5 1
1073
10-7 1
—eo— FE2 s —eo— FE2
10-9 || —=—FE3 107 1| _aFE3
—o— FE4 —e— FE4
—— OP —— OP
1071 ool 0l ool o o] 1077k Tl vl il il
10 103 10* 10° 10° 10? 103 10* 10° 100
Example 1: H? Error
107 |- \\‘\\
10-3 1
10~5 || —®—FE2
—a—FE3
—e— FE4
g oP
10 Il Ll Lol Lol Lol L
10 103 10* 10° 10°

FIG.9 Example 1: Errors versus degrees of freedom for the C° finite element method (83) with
polynomial degrees r = 2, 3, 4, and the Oliker—Prussner method (64) applied to the smooth test
problem (106).

[loe — uh||W:,p(Qh) =O(DOFs™") and |ju—uy||1=@) = O(DOFs™")
These results on W ? error are consistent with the theorems proven in Neilan

and Zhang (2018) and Theorem 13.

5.2 Example 2: Nonclassical solution

In this set of experiments, we again take Q = (—1, 1)2, but choose the data
such that the resulting solution is not a classical one:

B 16, |x|§1/2,
fxx0) = {64_16x1, [ >1/2.
20x|%, <172,

u(xy,x) = {

(x| —1/2)2 +20x%,  |x]>1/2.
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Example 2: L*® Error Example 2: W>! Error
1071 F g _
10' £
1072
10();
1073 ¢ §
| | —e— FD33 107! | —e— FD33
10~4 || —=—FD33F f | —=—FD33F
F|—e— FE2 | —e— FE2
r OP 1072 F|—— OP
L vl vl vl vl L T I R S W 1T B S AR 1] B A R A1T] R NI
102 1080 10* 100 10° 10> 100 10*  10° 10°

Example 2: H? Error

1001
| —e— FD33
. —a—FD33F
107" | —e— FE2
E+ OP

I M Lol Lol Lol Lo
102 100 10* 105  10°

FIG. 10 Example 2: Errors versus degrees of freedom for the 33-point wide stencil scheme,
33-point wide stencil filtered scheme, the quadratic C° finite element method and Oliker—
Prussner method.

One easily finds that u¢C"'(Q)\C?*(Q). We implement the C° finite element
method (83), the wide stencil finite difference scheme (20) with a stencil size that
consists of 33 grid points, and the Oliker—Prussner method (64). We also com-
pare the results with the filtered scheme (26) The errors, depicted in Fig. 10, show
that all methods converge with similar rates, although the finite element scheme
and Oliker—Prussner method have smaller errors with similar DOFs. While the
rate of convergence in the L norm is not obvious from the tests, Fig. 10 clearly
shows that all three methods converge in the W P-norms with rates

=l = ODOFs ™), =ty o =O(POFs™ ). (107)

We note that, for the finite element, these rates seem to be the same rates of
interpolation errors. Indeed, let ’T; denote the set of triangles in 7, intersect
the circle |x| = 1/2. Likewise, we let F denote the set of edges in F% that
intersect I'. Finally, we denote by Z,u the nodal interpolant of u.
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Because u# is smooth on both QN{xeQ: [x|<1/2} and
QN{xeQ: x>1/2}, we have by standard interpolation estimates,

(= Zhu||pzp <Ch1” Dy 1D (u—Twu) |
TeT),

3 BNV 1= T

FeF],

L(T)

<c hf’("*l)+Z(||D2(quhu) 10,y +hi” IV (u — Ty ||Z,(T)) ,
TeT),

where we used a standard trace inequality. Applying interpolation estimates
and Holder’s inequality, noting that u € W* ®(Q), yields

o — Ty ||” <C w04 > ID%ull),

TeT),

Z”(Q

<Cl U+ E hi |ID*u e (r)
TeT),
< Chr=Y 4 Ch,

where we used that the cardinality of T; is O(h!). We then take the pth
root of this inequality to deduce that ||u—Ihuh||Wz,p(Q> =O(h'/r) =
h

O(DOFs~'/()), which is the same rates as (107).

5.3 Example 3: Lipschitz and degenerate solution

In our last set of experiments, we take the domain to be Q = (—1, 1)2 with data

36 —9x§x1‘6, | < |x1|3,

2
f(xl’XZ) 8 5 > 75 3
9 Y% 2| > [x1 |7,
3x2
\ 1|4+2—X§, bea| < i,
u(xy,x) = 2 14

Ex 23423, |l >l

Similar to the previous example, u is not a classical solution to (1) as it only
has regularity u € C” '(Q) and ugW? (Q) for any p > 2 (Wang, 1995).
Moreover, a simple calculation shows that [D?u(x)| — oo as x — 0. Since
the determinant in two dimensions is the product of two eigenvalues of the
Hessian and detD?u(x) =f(x) is bounded in the domain, the largest eigen-
value blows up while the other eigenvalue of D?u(x) approaches zero as x
— 0. Hence, the Hessian of the solution degenerates as x — O.
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Example 3: L™ Error Example 3: H' Error
r T T T T o T
107" £ i
L 107
10721 i
| |[—e— FD33 \ 102 L FD33
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10 103 10 10° 10° 10? 108 10* 105 10°
FIG. 11 Example 3: Errors versus degrees of freedom for the 33-point wide stencil scheme, the
33-point wide stencil filtered scheme, and the quadratic C° finite element method with regulariza-
tion and Oliker—Prussner method.

While the monotone finite difference schemes presented in Section 2 are
robust for problems with low regularity, Galerkin methods generally fail to
capture solutions whose second derivatives are not square integrable; our
numerical tests show that Newton’s method applied to (83) does not converge
for this example even when using very generous initial guesses. In fact, even
for the monotone finite difference schemes and the Oliker—Prussner method,
Newton’s method is very sensitive with respect to the initial guess and the
convexity of the iterates for this problem. In our implementation, we found
that at each iteration, we require the solution to remain convex. As Newton’s
method may not give a convex solution in general, we applied, if necessary,
the algorithm proposed in Oberman (2008a) to preserve convexity.

In addition to the 33-point finite difference scheme and Oliker—Prussner
method, we implement the fourth-order regularization of the C° finite element
method (83) with parameters ¢ = 100 and ¢ = 0.14% The resulting errors
measured in the L and H' norms are plotted in Fig. 11. Similar to the previ-
ous series of experiments, the plots show that both methods have similar beha-
viour rates. While the rate in the L™ is not clear, the second plot in Fig. 11
shows that

10—y |11 (@) = O(DOFs~1/2).

6 Concluding remarks

“And if anyone knows anything about anything” said Bear to himself, “it's Owl
who knows something about something,” he said, “or my name is not Winnie-
the-Pooh,” he said. “Which it is,” he added. “So there you are.”

Hoff (1982)
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In this work we have reviewed the progress that has been made concerning the
approximation and numerical analysis of the Monge—Ampére problem. In
doing so we highlighted how to develop a convergence analysis of wide sten-
cil finite difference schemes as well as their generalizations, schemes based
on geometric considerations, and finite element methods. A focus that we
have taken, and one of recent development, is the derivation of rates of con-
vergence for these discretizations.

Despite fundamental advances in only the past decade, there still remain
several open problems in the analysis of computational methods for
Monge—Ampere problems. One of these is the derivation of rates of conver-
gence for the Oliker—Prussner scheme on unstructured grids. Another basic
problem is rates of convergence of any of the schemes presented in this
work assuming that the solution is not a classical one, i.e., without the
assumption u € C>%(Q). In most of the error analyses we have presented,
it is assumed that 0 < A/ < Dzu(x) <Al for all x €Q. However, if the func-
tion f(x) is discontinuous, the Hessian of the solution may be degenerate as
the third example in the numerics section illustrates. The design and analy-
sis of robust and high order numerical schemes to capture degenerate solu-
tions remains a challenging problem. A posteriori error estimation, and
adaptive methods based on the existing schemes are nonexistent. Finally
let us mention that, as far as we are aware, except for the recent work
(Berman, 2018), rates of convergence are restricted to the Dirichlet problem
(1); extensions to, e.g., the applications discussed in Section 1.1 is still
unchartered territory.

In conclusion, we know something about the numerical analysis of the
Monge—Ampere problem, but there is much more that needs to be developed.
It is our hope that this overview will encourage the numerical analysis com-
munity to work on the interesting, and challenging, problems found in geom-
etry in general, and those that the Monge—Ampére equation in particular
present to us.
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