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STABILITY OF THE STOKES PROJECTION

ON WEIGHTED SPACES AND APPLICATIONS

RICARDO G. DURÁN, ENRIQUE OTÁROLA, AND ABNER J. SALGADO

Abstract. We show that on convex polytopes in two or three dimensions,

the finite element Stokes projection is stable on weighted spaces W1,p
0 (ω,Ω)×

Lp(ω,Ω), where the weight belongs to a certain Muckenhoupt class and the
integrability index can be different from two. We show how this estimate can
be applied to obtain error estimates for approximations of the solution to the
Stokes problem with singular sources.

1. Introduction

In this work we shall be interested in the stability and approximation properties
of the finite element Stokes projection when measured over weighted norms. To be
precise, let d ∈ {2, 3} and Ω ⊂ R

d be a convex polytope. Assume that T = {Th}h>0

is a family of quasiuniform triangulations of Ω̄ parametrized by their mesh size h > 0
and Vh × Ph is a pair of finite element spaces constructed over the mesh Th. To
describe the question that we wish to address here let (u, π) ∈ W

1,1
0 (Ω)×L1(Ω)/R,

with u solenoidal (see Section 2 for notation), and define (uh, πh) ∈ Vh ×Ph to be
its Stokes projection; i.e., the pair (uh, πh) is such that

(1.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ˆ

Ω

[∇uh : ∇vh − πh div vh] dx =

ˆ

Ω

[∇u : ∇vh − π div vh] dx ∀vh ∈ Vh,

ˆ

Ω

qh div uh dx = 0 ∀qh ∈ Ph.

With this notation, the main result in our work is that for a certain range of
integrability indices p and a certain class of Muckenhoupt weights ω, we have

(1.2) ‖∇uh‖Lp(ω,Ω) + ‖πh‖Lp(ω,Ω) � ‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω).

Our main motivation for the development of such estimates is the study of the
Stokes problem

(1.3)

⎧

⎪

⎨

⎪

⎩

−Δu+∇π = f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω,
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in the case where the forcing term f is allowed to be singular. Essentially, by
introducing a weight, we can allow for forces such that f /∈ W−1,2(Ω). In particular,
our theory will allow the following particular examples. For a fixed F ∈ R

d we can
set f = Fδz, where δz denotes the Dirac delta supported at the interior point z ∈ Ω.
Similarly, if Γ denotes a smooth curve or surface without boundary contained in Ω,
we can allow the components of f to be measures supported in Γ.

While the stability and approximation properties for the Stokes problem in en-
ergy type norms has a rich history and is by now well established, the derivation
of these properties in non energy norms is more delicate. To our knowledge, the
first works that address these questions in a nonenergy setting are [14,18]. In these
references, the authors establish an L∞-norm almost stability (up to logarithmic
factors) in two dimensions. Later, in view of the weighted a priori estimate for
a solution of the divergence operator of [17], the results of [18] were extended to
three dimensions; see [17, Section 3] for a discussion. We would also like to men-
tion reference [8] for results on domains with smooth boundaries. Results without
logarithmic factors were first established in [25], albeit under certain restrictions
on the internal angles of the domain. This last assumption was finally removed in
[29] and not so much after and with a different technique in [24]. The state of the

art is that, simply put, the Stokes projection is stable in W
1,p
0 (Ω) × Lp(Ω)/R for

p ∈ (1,∞] if the domain Ω is a convex polytope.
We must remark that in the PDE literature, the idea of introducing weights

to handle singular sources is by now well established. There is a vast amount of
literature dealing with weighted a priori estimates for solutions of elliptic equations
and systems and for models of incompressible fluids that are even more general than
(1.3); see for instance [6]. However, in most of these works, it is usually assumed
that the domain is at least C1, which is not finite element friendly. Two exceptions
are [12, 39]. In [12] the well-posedness of the Poisson problem in W 1,p

0 (ω,Ω) is
established for all p ∈ (1,∞) and ω ∈ Ap, provided Ω is a convex polytope. In
addition, the stability of the Ritz projection is obtained for p ∈ [2,∞) and ω ∈ A1,
and for p = 2 and ω−1 ∈ A1. On the other hand, [39] works on general Lipschitz
domains and shows that the Poisson and Stokes problems are well-posed, provided
that p is restricted to a neighborhood of 2, that depends on the domain, and the
weight is regular near the boundary (ω ∈ Ap(Ω) in the notation of that work).

From the discussion given above, it is clear that the stability of the Stokes pro-
jection is open and, in light of applications, needed. This is the main contribution
of our work.

Our presentation will be organized as follows. We set notation in Section 2, where
we also recall the definition of Muckenhoupt weights and introduce the weighted
spaces we shall work with. In addition, in Section 2.2, we introduce a saddle
point formulation of the Stokes problem (1.3) in weighted spaces and review well-
posedness results. In Section 3 we introduce the discrete setting in which we will
operate. Section 4 is dedicated to obtaining the stability of the finite element
Stokes projection in weighted spaces; this is one of the highlights of our work. As
an immediate application, Section 5 studies the development of Lp-error estimates
for the error approximation of the velocity field. We also specialize these results
and study the approximation of the Stokes problem with a forcing term that is
a linear combination of Dirac measures. All the developments of the previous
sections rest on a series of assumptions on the finite element velocity–pressure pairs.
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1583

For this reason, in the final section, Section 6, we derive a continuous weighted
inf–sup condition and study some suitable finite element pairs that satisfy all the
assumptions that our theory rests upon.

2. Notation and preliminaries

We begin by fixing notation and the setting in which we will operate. Throughout
this work d ∈ {2, 3} and Ω ⊂ R

d is an open, bounded, and convex polytope. If
W and Z are Banach function spaces, we write W →֒ Z to denote that W is
continuously embedded in Z. We denote by W ′ and ‖ · ‖W the dual and the norm
of W , respectively.

For E ⊂ Ω open and f : E → R, we set
 

E

f dx =
1

|E|

ˆ

E

f dx.

For w ∈ L1
loc(Ω), the Hardy–Littlewood maximal operator is defined by

(2.1) Mw(x) = sup
Q∋x

 

Q

|w(y)| dy,

where the supremum is taken over all cubes Q containing x.
Given p ∈ (1,∞), we denote by p′ its Hölder conjugate, i.e., the real number

such that 1/p + 1/p′ = 1. By a � b we will denote that a ≤ Cb for a constant C
that does not depend on a, b nor the discretization parameters. The value of C
might change at each occurrence.

2.1. Weights and weighted Sobolev spaces. By a weight we mean a locally
integrable, nonnegative function defined on R

d. If ω is a weight and E ⊂ R
d we set

ω(E) =

ˆ

E

ω dx.

Of particular interest to us will be the so-called Muckenhoupt Ap weights [13,36,44].

Definition 2.1 (Muckenhoupt class Ap). Let p ∈ [1,∞). We say that a weight
ω ∈ Ap if

(2.2)

[ω]Ap
:= sup

B

(
 

B

ω dx

)(
 

B

ω1/(1−p) dx

)p−1

< ∞, p ∈ (1,∞),

[ω]A1
:= sup

B

(
 

B

ω dx

)

sup
x∈B

1

ω(x)
< ∞, p = 1,

where the supremum is taken over all balls B in R
d. In addition, A∞ :=

⋃

p>1 Ap.

We call [ω]Ap
, for p ∈ [1,∞), the Muckenhoupt characteristic of ω.

Notice that there is a certain symmetry in the Ap classes with respect to Hölder

conjugate exponents. If ω ∈ Ap, then its conjugate ω′ := ω1/(1−p) ∈ Ap′ and

[ω′]Ap′
= [ω]

1/(p−1)
Ap

.

We comment also that, following [13, Chapter 7.1], an equivalent characterization
of ω ∈ A1 is that for almost every x,

(2.3) Mω(x) � ω(x).

The class of Ap weights was introduced by Muckenhoupt in [36], where he showed
that the Ap weights are precisely those weights for which the Hardy-Littlewood
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maximal operator is bounded on weighted Lebesgue spaces; see [36] and [13, The-
orem 7.3].

Distances to lower dimensional objects are prototypical examples of Mucken-
houpt weights. In particular, if K ⊂ Ω is a smooth compact submanifold of dimen-
sion k ∈ [0, d) ∩ Z, then, owing to [2] and [21, Lemma 2.3(vi)], we have that the
function

(2.4) d
α
K(x) = dist(x,K)α

belongs to the class Ap provided

α ∈ (−(d− k), (d− k)(p− 1)) .

This allows us to identify three particular cases:

(i) Let d > 1 and z ∈ Ω. Then the weight dαz ∈ A2 if and only if α ∈ (−d, d).
(ii) Let d ≥ 2 and γ ⊂ Ω be a smooth closed curve without self-intersections.

We have that dαγ ∈ A2 if and only if α ∈ (−(d− 1), d− 1).
(iii) Finally, if d = 3 and Γ ⊂ Ω is a smooth surface without boundary, then

d
α
Γ ∈ A2 if and only if α ∈ (−1, 1).

It is important to notice, first, that in all the examples shown above we have that
either the weight or its inverse, which is the conjugate within the A2 class, belongs
to A1. Second, since the lower dimensional objects are strictly contained in Ω, there
is a neighborhood of ∂Ω where the weight has no degeneracies or singularities. In
fact, it is continuous and strictly positive. This observation motivates us to define a
restricted class of Muckenhoupt weights that will be of importance for the analysis
that follows. The next definition is inspired by [21, Definition 2.5].

Definition 2.2 (Class Ap(D)). Let D ⊂ R
d be a Lipschitz domain. For p ∈ (1,∞)

we say that ω ∈ Ap belongs to Ap(D) if there is an open set G ⊂ D and positive
constants ε > 0 and ωl > 0 such that:

(a) {x ∈ Ω : dist(x, ∂D) < ε} ⊂ G,
(b) ω ∈ C(Ḡ), and
(c) ωl ≤ ω(x) for all x ∈ Ḡ.

Notice that the weights described in (i)–(iii) belong to the restricted Mucken-
houpt class A2(Ω). The latter has been shown to be crucial in the analysis of [39]
that guarantees the well-posedness of problem (1.3) in the weighted Sobolev spaces
that we define below.

Let p ∈ (1,∞), ω ∈ Ap, and E ⊂ R
d be an open set. We define Lp(ω,E) as the

space of Lebesgue p–integrable functions with respect to the measure ω dx. We also
define the weighted Sobolev space W 1,p(ω,E) as the set of functions v ∈ Lp(ω,E)
with weak derivatives Dαv ∈ Lp(ω,E) for |α| ≤ 1. The norm of a function v ∈
W 1,p(ω,E) is given by

(2.5) ‖v‖W 1,p(ω,E) :=
(

‖v‖pLp(ω,E) + ‖∇v‖pLp(ω,E)

)1/p

.

We also define W 1,p
0 (ω,E) as the closure of C∞

0 (E) in W 1,p(ω,E). It is remarkable
that most of the properties of classical Sobolev spaces have a weighted counterpart.
This is not because of the specific form of the weight but rather due to the fact that
the weight ω belongs to the Muckenhoupt class Ap. If p ∈ (1,∞) and ω belongs
to Ap, then Lp(ω,E) and W 1,p(ω,E) are Banach spaces [44, Proposition 2.1.2],
and smooth functions are dense [44, Corollary 2.1.6]; see also [28, Theorem 1].
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1585

In addition, [20, Theorem 1.3] guarantees a weighted Poincaré inequality which,

in turn, implies that over W 1,p
0 (ω,E) the seminorm ‖∇v‖Lp(ω,E) is an equivalent

norm to the one defined in (2.5).
Spaces of vector valued functions will be denoted by boldface, that is,

W
1,p
0 (ω,E) = [W 1,p

0 (ω,E)]d, ‖∇v‖Lp(ω,E) :=

(

d
∑

i=1

‖∇vi‖p
Lp(ω,E)

)1/p

,

where v = (v1, . . . , vd)⊺.
For future use we recall a particular Sobolev-type embedding theorem between

weighted spaces. For the general case we refer to [7, 22, 34] and [38, Section 6].

Proposition 2.3 (Embedding in weighted spaces). Let p ∈ (1,∞) and ω ∈ Ap.

Assume that for all x ∈ Ω and 0 < r ≤ R, we have that

rp+d

Rp+d

ω(B(x,R))

ω(B(x, r))
� 1.

Then W 1,p(ω,Ω) →֒ Lp(Ω) and W 1,p′

(Ω) →֒ Lp′

(ω′,Ω).

2.2. The Stokes problem in weighted spaces. We begin with a motivation for
the use of weights. Let us assume that (1.3) is posed over the whole space R

d and
that f = Fδz for some z ∈ R

d. The results of [23, Section IV.2] thus provide the
following asymptotic behavior of the solution (u, π) to problem (1.3) near the point
z:

(2.6) |∇u(x)| ≈ |x− z|1−d and |π(x)| ≈ |x− z|1−d,

so that |∇u|, π /∈ L2(Rd). However, basic computations reveal that for every ball
B,

α ∈ (d− 2,∞) =⇒

ˆ

B

d
α
z |∇u|2 dx < ∞,

ˆ

B

d
α
z |π|

2 dx < ∞.

This heuristic suggests to seek solutions to problem (1.3) in weighted Sobolev spaces
[6, 39]. In what follows we will make these considerations rigorous.

Let ω ∈ Ap. Given f ∈ W−1,p(ω,Ω), we seek for (u, π) ∈ W
1,p
0 (ω,Ω) ×

Lp(ω,Ω)/R such that

(2.7)

{

a(u,v) + b(v, π) = 〈f ,v〉 ∀v ∈ W
1,p′

0 (ω′,Ω),

b(u, q) = 0 ∀q ∈ Lp′

(ω′,Ω)/R,

where 〈·, ·〉 denotes the duality pairing between W−1,p(ω,Ω) := W
1,p′

0 (ω′,Ω)′ and

W
1,p′

0 (ω′,Ω). Finally, to shorten notation, here and in what follows we set

a(v,w) =

ˆ

Ω

∇v : ∇w dx, b(v, q) = −

ˆ

Ω

q div v dx.

The well-posedness of (2.7) in Lipschitz domains was studied in [39, Theorem
17]. The main result is summarized below.

Proposition 2.4 (Well-posedness in weighted spaces). Let d ∈ {2, 3} and Ω ⊂ R
d

be a Lipschitz domain. There exists ǫ = ǫ(d,Ω) ∈ (0, 1] such that if P = 2 + ǫ,
p ∈ (P ′, P ), and ω ∈ Ap(Ω), problem (2.7) is well-posed. In other words, for all
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f ∈ W−1,p(ω,Ω) problem (2.7) has a unique solution (u, π) ∈ W
1,p
0 (ω,Ω) ×

Lp(ω,Ω)/R, and the following stability estimate holds:

(2.8) ‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω) � ‖f‖W−1,p(ω,Ω).

Remark 2.5 (p < 2). Strictly speaking [39, Theorem 17] shows well-posedness only
for p ≥ 2. However, using the equivalent characterization of well-posedness via
inf–sup conditions given in [4, Theorem 2.1] (see also [19, Exercise 2.14]) one can
deduce that (2.7) is also well-posed for p ∈ (P ′, 2).

Notice that Proposition 2.4 assumes only that the domain is Lipschitz. Finer
results can be obtained provided more information on the domain is available. Since
we are working on convex polytopes we have the following result; see [35, Corollary
1.8].

Proposition 2.6 (Lp–regularity). Let d ∈ {2, 3} and Ω ⊂ R
d be a convex polytope.

If p ∈ (1, 2] and f ∈ Lp(Ω), then the solution of (1.3) is such that

u ∈ W2,p(Ω) ∩W
1,p
0 (Ω), π ∈ W 1,p(Ω)/R,

with a corresponding estimate.

3. Finite element approximation

We now introduce the discrete setting in which we will operate. We first intro-
duce some terminology and a few basic ingredients and assumptions that will be
common to all our methods.

3.1. Triangulation and finite element spaces. We denote by Th = {T} a
conforming partition, or mesh, of Ω̄ into closed simplices T with size hT = diam(T )
and define h = maxT∈Th

hT . We assume that T = {Th}h>0 is a collection of
conforming and quasiuniform meshes [9, 19]. For T ∈ Th, we define the star or
patch associated with the element T as

(3.1) ST :=
⋃

{T ′ ∈ Th : T ∩ T ′ �= ∅}.

In the literature, several finite element approximations have been proposed and
analyzed to approximate the solution to the Stokes problem (2.7) when the forcing
term of the momentum equation is not singular; see, for instance, [19, Section 4],
[26, Chapter II], and references therein. Initially we shall not be specific about the
type of finite element approximation that we are using. We will only state a set
of assumptions that our discrete spaces need to satisfy. Given a mesh Th ∈ T,
we denote by Vh and Ph the finite element spaces that approximate the velocity
field and the pressure, respectively, constructed over Th. We assume that for every
p ∈ (1,∞) and ω ∈ Ap,

Vh ⊂ W
1,∞
0 (Ω) ⊂ W

1,p
0 (ω,Ω), Ph ⊂ L∞(Ω)/R ⊂ Lp(ω,Ω)/R.

In addition, we require that functions in Vh and Ph are locally polynomials of
degree at least one and zero, respectively. Moreover, we need to assume that
these spaces are compatible, in the sense that they satisfy weighted versions of the
classical LBB condition [19, Proposition 4.13]. Namely, we assume that if ω ∈ Ap,
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then there exists a positive constant β = β([ω]Ap
) such that, for all Th ∈ T,

(3.2)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

inf
qh∈Ph

sup
vh∈Vh

b(vh, qh)

‖∇vh‖Lp′ (ω′,Ω)‖qh‖Lp(ω,Ω)
≥ β,

inf
qh∈Ph

sup
vh∈Vh

b(vh, qh)

‖∇vh‖Lp(ω,Ω)‖qh‖Lp′ (ω′,Ω)

≥ β.

3.2. A quasiinterpolation operator. Since our interest is to approximate rough
functions, the classical Lagrange interpolation operator cannot be applied. Instead,
we can consider a variant of the quasiinterpolation operator analyzed in [38]. Its
construction is inspired in the ideas developed by Clément [10], Scott and Zhang
[42], and Durán and Lombardi [15]: it is built on local averages over stars and is thus
well-defined for locally integrable functions; it also exhibits optimal approximation
properties.

For Th ∈ T, we let Xh be the space of piecewise linear, continuous functions over
the mesh Th. For w ∈ L1(Ω), we define ΠXh

w ∈ Xh to be the interpolation operator

of [38] onto piecewise linears. Define Xh = [Xh∩H1
0 (Ω)]

d. For v ∈ W
1,1
0 (Ω), we set

ΠVh
v ∈ Xh ⊂ Vh to be the operator ΠXh

applied component-wise and accordingly
modified to preserve boundary conditions.

To define an interpolant onto the pressure space Ph we distinguish two cases. If
Ph contains piecewise constants, then, for q ∈ L1(Ω)/R, we simply define ΠPh

q ∈
Ph to be the local average of q. On the other hand, if Ph contains piecewise linears,
then ΠPh

q = ΠXh
q + cq, where cq ∈ R is chosen so that ΠPh

q ∈ Ph.
To alleviate notation, if there is no source of confusion, we shall use Πh to denote

indistinctly ΠVh
or ΠPh

. The properties of Πh are summarized below. For a proof
we refer the reader to [38, Section 5].

Proposition 3.1 (Stability and interpolation estimates). Let p ∈ (1,∞), ω ∈ Ap,

and T ∈ Th. Then, for every v ∈ W 1,p(ω,ST ), we have the local stability bound

(3.3) ‖∇Πhv‖Lp(ω,T ) � ‖∇v‖Lp(ω,ST )

and the interpolation error estimate

(3.4) ‖v −Πhv‖Lp(ω,T ) � hT ‖∇v‖Lp(ω,ST ).

The hidden constants in (3.3) and (3.4) are independent of v, T , and h.

This operator also enjoys the following approximation property [38, Section 6].

Proposition 3.2 (Interpolation in different metrics). Assume that ω ∈ Ap is such

that Proposition 2.3 holds. Then, for every vp ∈ W 1,p(ω,ST ), we have that

‖vp −Πhvp‖Lp(T ) � h
1+d/p
T ω(ST )

−1/p‖∇vp‖Lp(ω,ST ).

Similarly, for vp′ ∈ W 1,p′

(ST ), we have

‖vp′ −Πhvp′‖Lp′ (ω′,T ) � h
1−d/p′

T ω′(ST )
1/p′

‖∇vp′‖Lp′ (ST ).

The hidden constants in the previous inequalities are independent of the functions

being iterpolated, the cell T , and h.

Remark 3.3 (Higher order elements). We comment that the construction of [38]
allows for polynomial degrees of any order, with the corresponding analogue of (3.3)
and (3.4) being true. Since, as mentioned in the introduction, our main motivation
for the introduction of weights is to handle problems with singular data, we do not
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expect the solution to possess much regularity. For this reason we only consider
interpolations into piecewise linears for the velocity and either constants or linears
for the pressure, respectively.

3.3. Approximate Green’s function. Let z ∈ Ω be such that z ∈ T̊z for some
Tz ∈ Th. Let δ̃z be a regularized Dirac delta satisfying the following properties:

(1) δ̃z ∈ C∞
0 (Tz);

(2)
´

Ω
δ̃z dx = 1;

(3) ‖δ̃z‖L∞(Tz) � h−d
Tz

;

(4)
´

Ω
δ̃zvh dx = vh(z) for all vh ∈ Vh.

We refer to [43] and [5, Exercise 8.1] for a construction of such a function. Notice
that if vh = (v1h, . . . , v

d
h)

⊺ ∈ Vh and j ∈ {1, . . . , d}, we have

∂xi
v
j
h(z) =

ˆ

Ω

∂xi
v
j
hδ̃z dx = −

ˆ

Ω

v
j
h∂xi

δ̃z dx, i ∈ {1, . . . , d}.

With these ingredients at hand, we define a regularized Green’s function (G, Q)
as the solution to the following problem: Find (G, Q) ∈ H1

0(Ω) × L2(Ω)/R such
that

(3.5)

⎧

⎨

⎩

a(G,v) + b(v, Q) =

ˆ

Ω

δ̃z∂xi
vj dx ∀v ∈ H1

0(Ω),

b(G, q) = 0 ∀q ∈ L2(Ω)/R,

where i, j ∈ {1, . . . , d}. Notice that the functions G and Q depend on z and the
indices i and j. However, to alleviate notation we will omit this dependence.

We also define (Gh, Qh), the Stokes projection of (G, Q), as the solution to the
discrete problem: Find (Gh, Qh) ∈ Vh × Ph such that

(3.6)

⎧

⎨

⎩

a(Gh,vh) + b(vh, Qh) =

ˆ

Ω

δ̃z∂xi
v
j
h dx ∀vh ∈ Vh,

b(Gh, qh) = 0 ∀qh ∈ Ph.

Let R be a fixed positive number such that for any x ∈ Ω̄ the ball B(x,R)
contains Ω. For y ∈ Ω, we define the weight function σy, introduced by Natterer
[37], as

(3.7) σy(x) =
(

|x− y|2 + (κh)2
)1/2

,

where κ > 1 is a parameter independent of h but such that κh ≤ R; see [24, Section
1.7]. We recall that this weight verifies [25, inequality (0.18)]

(3.8)

ˆ

Ω

σ−d−λ
y dx � h−λ, λ ∈ (0, 1).

We shall assume that if ν ∈ (0, 1/2), 0 < λ < ν/2, μ = d + λ, and Th is
quasiuniform, then there exists κ1 > 1 such that for all κ ≥ κ1 and for all meshsizes
h > 0 such that κh ≤ R, we have

(3.9) sup
y∈Ω

∥

∥

∥
σ

µ
2
y ∇(G−Gh)

∥

∥

∥

L2(Ω)
� hλ/2.

Examples of spaces that satisfy this assumption will be presented below.
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4. Discrete stability estimates in weighted spaces

Let p ∈ (1,∞), ω ∈ Ap, (u, π) ∈ W
1,p
0 (ω,Ω) × Lp(ω,Ω)/R with u solenoidal,

and the pair (uh, ph) ∈ Vh × Ph be the finite element approximation of (u, π).
Our goal in this section is, on the basis of the weighted compatibility conditions
(3.2), to derive the weighted stability estimate (1.2). To do so, we must place some
restrictions on the range of the integrability p and the weight ω. We codify these
in the assumption

(S)

⎧

⎪

⎨

⎪

⎩

p ∈ (2,∞) =⇒ ω ∈ A1,

p = 2 =⇒ ω ∈ A1 or ω−1 ∈ A2(Ω) ∩A1,

p ∈ (P ′, 2] =⇒ ω′ ∈ Ap′(Ω) ∩ A1,

where P is as in Proposition 2.4 and P ′ is its Hölder conjugate.

Theorem 4.1 (Weighted stability estimate). Let d ∈ {2, 3} and Ω ⊂ R
d be an open

convex polytope. Assume that (S) holds and that (u, π) ∈ W
1,p
0 (ω,Ω)×Lp(ω,Ω)/R

with u solenoidal. Let (uh, πh) ∈ Vh ×Ph be its finite element Stokes projection. If

the spaces (Vh,Ph) satisfy (3.2) and (3.9), then estimate (1.2) holds. The hidden

constant in this estimate is independent of (u, π), (uh, πh), and h.

Proof. We begin by noticing that, by density, it suffices to show the estimate,
assuming that u and π are smooth.

We split the proof into several steps.

(1) Assume that we have already shown that

(4.1) ‖∇uh‖Lp(ω,Ω) � ‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω).

Utilizing the first discrete inf–sup condition of (3.2) and that (uh, πh) solves
(1.1), we arrive at

‖πh‖Lp(ω,Ω) � sup
vh∈Vh

b(vh, πh)

‖∇vh‖Lp′ (ω′,Ω)

= sup
vh∈Vh

a(u,vh)− a(uh,vh) + b(vh, π)

‖∇vh‖Lp′ (ω′,Ω)

,

which immediately yields

‖πh‖Lp(ω,Ω) � ‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω) + ‖∇uh‖Lp(ω,Ω).

This, in view of (4.1), implies the desired bound for ‖πh‖Lp(ω,Ω).
(2) Assume that p ≥ 2 and ω ∈ A1. Set vh = uh in (3.6) to arrive at

a(Gh, uh) =

ˆ

Ω

δ̃z∂xi
u
j
h dx = ∂xi

u
j
h(z).

Now set vh = Gh in (1.1) and use that b(Gh, qh) = 0 for all qh ∈ Ph to
obtain

(4.2) a(uh,Gh) = a(u,Gh) + b(Gh, π).

Using that b(G, π) = 0, we can thus conclude the identity

a(uh,Gh) = a(u,Gh) + b(Gh, π) = a(u,Gh −G) + b(Gh −G, π) + a(u,G).

Since the bilinear form a is symmetric, we have

∂xi
u
j
h(z) = a(u,Gh −G) + b(Gh −G, π) + a(u,G)

= a(u,Gh −G) + b(Gh −G, π) +

ˆ

Ω

δ̃z∂xi
u
j dx.
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Notice that here we used the smoothness assumption on u to be able to
assert that this is an admissible test function in (3.5).

Now let E = G−Gh. The previous equality implies that
ˆ

Ω

ω|∂xi
u
j
h|

p dz �

ˆ

Ω

ω

[
ˆ

Ω

∇u : ∇Edx

]p

dz

+

ˆ

Ω

ω

[
ˆ

Ω

π divEdx

]p

dz +

ˆ

Ω

ω

[
 

Tz

|∇u| dx

]p

dz =: I + II + III,

where we have used that δ̃z is supported on Tz and that ‖δ̃z‖L∞(Ω) � h−d.
We estimate the terms I, II, and III with the help of (3.9), similar ar-

guments to those developed in the proof of [12, Theorem 3.1], and mod-
ifications inspired by [40]. We begin by controlling the term III. Since
the weight ω ∈ A1 ⊂ Ap, we utilize that the Hardy–Littlewood maximal
operator M is continuous from Lp(ω,Rd) to Lp(ω,Rd) to arrive at

III =

ˆ

Ω

ω

[
 

Tz

|∇u| dx

]p

dz �

ˆ

Ω

ωM(|∇u|)p dz �

ˆ

Ω

ω|∇u|p dz.

We now control I and II. Using the weight σz, defined in (3.7), and its
property (3.8) we have that for any λ ∈ (0, 1):

ˆ

Ω

∇u : ∇Edx � h−λ(p−2)/(2p)

(
ˆ

Ω

σ−d−λ
z |∇u|p dx

)1/p (ˆ

Ω

σd+λ
z |∇E|2 dx

)1/2

and
ˆ

Ω

π divEdx � h−λ(p−2)/(2p)

(
ˆ

Ω

σ−d−λ
z |π|p dx

)1/p (ˆ

Ω

σd+λ
z | divE|2 dx

)1/2

.

Thus, we have that

I + II � h−λ(p−2)/2

ˆ

Ω

ω

(
ˆ

Ω

σd+λ
z |∇E|2 dx

)p/2 (ˆ

Ω

|∇u|p + |π|p

σd+λ
z

dx

)

dz.

Assume now that 0 < λ < ν/2 with ν ∈ (0, 1/2). In this case estimate (3.9)
immediately yields

h−λ(p−2)/2

(
ˆ

Ω

σd+λ
z |∇E|2 dx

)p/2

� hλ.

In addition, the arguments developed in the proof of [12, Theorem 3.1] yield

(4.3)

ˆ

Ω

hλω(z)

(|x− z|2 + (κh)2)(d+λ)/2
dz � Mω(x) � ω(x),

where, in the last step, we used (2.3). For completness, we have provided a
detailed proof of this estimate in Appendix A. In conclusion, we obtained
that

I + II �

ˆ

Ω

ˆ

Ω

ω(z)hλ

(|x− z|2 + (κh)2)(d+λ)/2
dz (|∇u(x)|p + |π(x)|p) dx

�

ˆ

Ω

ω(x) (|∇u(x)|p + |π(x)|p) dx.

A collection of the estimates for the terms I, II, and III yield (4.1) when
p ≥ 2.
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(3) It remains to consider the case p ∈ (P ′, 2] with ω′ ∈ Ap′(Ω) ∩ A1. Notice
that p′ = p/(p − 1) ≥ 2 so that, as in [12, Corollary 3.3], we will reduce
our considerations to the previous case. Since p′ ∈ [2, P ) and ω′ ∈ Ap′(Ω)

then, as Proposition 2.4 shows, for every g ∈ W−1,p′

(ω′,Ω) we conclude
that the Stokes problem

⎧

⎪

⎨

⎪

⎩

−Δϕg +∇ψg = g, in Ω,

divϕg = 0, in Ω,

ϕg = 0, on ∂Ω,

is well-posed in W
1,p′

0 (ω′,Ω)× Lp′

(ω′,Ω)/R so that we have the estimate

‖∇ϕg‖Lp′ (ω′,Ω) + ‖ψg‖Lp′ (ω′,Ω) � ‖g‖W−1,p′ (ω′,Ω).

Let (ϕg,h, ψg,h) ∈ Vh×Ph be the Stokes projection of (ϕg, ψg) so we have

‖∇uh‖Lp(ω,Ω) = sup
g∈W−1,p′ (ω′,Ω)

〈g, uh〉

‖g‖W−1,p′ (ω′,Ω)

= sup
g∈W−1,p′ (ω′,Ω)

a(uh,ϕg) + b(uh, ψg)

‖g‖W−1,p′ (ω′,Ω)

= sup
g∈W−1,p′ (ω′,Ω)

a(ϕg,h, uh) + b(uh, ψg,h)

‖g‖W−1,p′ (ω′,Ω)

= sup
g∈W−1,p′ (ω′,Ω)

a(u,ϕg,h) + b(ϕg,h, π)

‖g‖W−1,p′ (ω′,Ω)

,

where we used that both uh and ϕg,h are discretely solenoidal. The stability

of the Stokes projection in W1,p′

(ω′,Ω) × Lp′

(ω′,Ω) and the bound on
(ϕg, ψg) yield

‖∇uh‖Lp(ω,Ω) � ‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω).

The proof is thus complete. �

As usual, the a priori estimate (1.2) implies a best approximation result à la
Céa.

Corollary 4.2 (Best approximation). In the setting of Theorem 4.1, assume, in

addition, that p ∈ (P ′, P ) and ω ∈ Ap(Ω). Then we have that

‖∇(u− uh)‖Lp(ω,Ω) + ‖π − πh‖Lp(ω,Ω) � inf
wh∈Vh

‖∇(u−wh)‖Lp(ω,Ω)

+ inf
rh∈Ph

‖π − rh‖Lp(ω,Ω),

where the hidden constant is independent of (u, π), (uh, ph), and h.

Proof. The proof is rather standard, but we reproduce it here for the sake of com-
pleteness. Notice that if wh ∈ Vh and rh ∈ Ph are arbitrary and wh is discrete
solenoidal, by linearity of (1.1) we obtain that for all (vh, qh) ∈ Vh × Ph we have

{

a(uh −wh,vh) + b(vh, πh − rh) = a(u−wh,vh) + b(vh, π − rh),

b(uh −wh, qh) = b(u−wh, qh).
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Now let (ϕ, ψ) ∈ W
1,p
0 (ω,Ω)× Lp(ω,Ω)/R be the unique solution of

{

a(ϕ,v) + b(v, ψ) = a(u−wh,v) + b(v, π − rh) ∀v ∈ W
1,p′

0 (ω′,Ω),

b(ϕ, q) = b(u−wh, q) ∀q ∈ Lp′

(ω′,Ω)/R.

As shown in Proposition 2.4, the assumptions on the integrability index and the
weight allow us to conclude that this problem is well-posed, and we have the esti-
mate

(4.4) ‖∇ϕ‖Lp(ω,Ω) + ‖ψ‖Lp(ω,Ω) � ‖∇(u−wh)‖Lp(ω,Ω) + ‖π − rh‖Lp(ω,Ω).

Notice now that (uh −wh, πh − rh) ∈ Vh ×Ph is nothing but the finite element

approximation of (ϕ, ψ) ∈ W
1,p
0 (ω,Ω) × Lp(ω,Ω)/R. This, in conjunction with

Theorem 4.1 and (4.4), then yields

‖∇(uh −wh)‖Lp(ω,Ω) + ‖πh − rh‖Lp(ω,Ω) � ‖∇(u−wh)‖Lp(ω,Ω)

+ ‖π − rh‖Lp(ω,Ω).

We conclude with the triangle inequality and an argument similar to [24, Corol-
lary 6]. �

5. Error estimates

We now provide an Lp(Ω)-error estimate for the error approximation of the
velocity field. For that, obviously, one needs to assume that Proposition 2.3 holds
so that u ∈ Lp(Ω).

In what follows, for a weight ω, we denote ω(h) = supT∈Th
ω(T ). The main

error estimate is provided below.

Theorem 5.1 (Error estimate). Let p ∈ [2, P ) and ω ∈ Ap(Ω) be such that con-

dition (S) holds. Assume, in addition, that the compatibility condition required

for Proposition 2.3 to be valid holds. Let (u, π) ∈ W
1,p
0 (ω,Ω) × Lp(ω,Ω)/R with

u solenoidal, and let (uh, πh) ∈ Vh × Ph be its Stokes projection, defined as the

solution of (1.1). In this setting, we have that

(5.1) ‖u− uh‖Lp(Ω) � h1+d/pω(h)−1/p
(

‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω)

)

,

where the hidden constant is independent of (u, π), (uh, πh), and h.

Proof. We proceed in several steps on the basis of a duality argument.

(1) We begin by recalling that, owing to Proposition 2.6, for every t ∈ (1, 2]

we have that if g ∈ Lt(Ω), the Stokes problem: find (ϕg, ψg) ∈ W
1,t
0 (Ω)×

Lt(Ω)/R

(5.2)

⎧

⎪

⎨

⎪

⎩

a(ϕg,v) + b(v, ψg) =

ˆ

Ω

g · v dx ∀v ∈ W
1,t′

0 (Ω),

b(ϕg, q) = 0 ∀q ∈ Lt′(Ω)/R,

is well-posed, (ϕg, ψg) ∈ W2,t(Ω)×W 1,t(Ω), and

(5.3) ‖ϕg‖W2,t(Ω) + ‖ψg‖W 1,t(Ω) � ‖g‖Lt(Ω).
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(2) Since p ≥ 2 and ω ∈ Ap(Ω) satisfies the compatibility condition of Propo-
sition 2.3 we can use the results of the previous step with t = p′ and the
embedding results of Proposition 2.3 to conclude that

(ϕg, ψg) ∈ W2,p′

(Ω) ∩W
1,p′

0 (ω′,Ω)×W 1,p′

(Ω) ∩ Lp′

(ω′,Ω)

with an estimate.
(3) Let g = |u−uh|

p−2(u−uh) and note that ‖g‖Lp′ (Ω) = ‖u−uh‖
p−1
Lp(Ω), which is

finite given the assumption on ω and the embedding results of Proposition
2.3.

(4) With this choice of g fixed, we would like to set v = u − uh in (5.2) to
obtain

(5.4) ‖u− uh‖
p
Lp(Ω) = a(u− uh,ϕg) + b(u− uh, ψg).

However, since p ≥ 2, u− uh /∈ W
1,p
0 (Ω) so that (5.4) must be justified by

a density argument. Namely, let wn ∈ C∞
0 (Ω) be such that wn → u − uh

in W
1,p
0 (ω,Ω). Since wn ∈ C∞

0 (Ω) ⊂ W
1,p
0 (Ω), we set v = wn in (5.2) and

arrive at

(5.5) a(wn,ϕg) + b(wn, ψg) =

ˆ

Ω

|u− uh|
p−2(u− uh) ·wn dx.

Now, since ϕg ∈ W
1,p′

0 (ω′,Ω),

|a(u− uh,ϕg)− a(wn,ϕg)| ≤ ‖∇ϕg‖Lp′ (ω′,Ω)‖∇(u− uh −wn)‖Lp(ω,Ω) → 0

as n ↑ ∞. Similar arguments reveal that |b(u− uh, ψg)− b(wn, ψg)| → 0 as

n ↑ ∞. Finally, in view of the continuous embedding W
1,p
0 (ω,Ω) →֒ Lp(Ω),

the right hand side of (5.5) converges to ‖u − uh‖
p
Lp(Ω). These arguments

yield (5.4).
(5) From (5.4) and (1.1) we have, for an arbitrary pair (wh, rh) ∈ Vh × Ph,

‖u− uh‖
p
Lp(Ω) = a(u− uh,ϕg −wh)− b(uh, ψg − rh)− b(wh, π − πh),

where we also used that u is solenoidal. Now set wh = ϕg,h and rh = ψg,h,
i.e., the Stokes projection of (ϕg, ψg). Galerkin orthogonality once again
yields

‖u− uh‖
p
Lp(Ω) = a(u,ϕg −ϕg,h) + b(ϕg −ϕg,h, π).

Consequently,

‖u− uh‖
p
Lp(Ω) � ‖∇(ϕg −ϕg,h)‖Lp′ (ω′,Ω)

(

‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω)

)

.

(6) As a final step we must bound the first term on the right hand side of
the previous estimate. Notice that with t = p′ < 2 and ̺ := ω′ what we
are trying to estimate is the error in the velocity component of the Stokes
projection in W

1,t
0 (̺,Ω). This means that, since t < 2, we can apply

Corollary 4.2 provided condition (S) holds; that is,

ρ′ ∈ At′(Ω) ⇔ (ω′)−t′/t ∈ Ap′′(Ω) ⇔ (ω−p′/p)−p/p′

∈ Ap(Ω) ⇔ ω ∈ Ap(Ω),

and

̺′ ∈ A1 ⇔ (ω′)
−t′/t

∈ A1 ⇔
(

ω−p′/p
)−p/p′

∈ A1 ⇔ ω ∈ A1,
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which is true by assumption. The best approximation result of Corol-
lary 4.2, the interpolation estimates of Proposition 3.2, and the regularity
estimate given in (5.3) then yield

‖∇(ϕg −ϕg,h)‖Lp′ (ω′,Ω) � h1−d/p′

ω′(h)1/p
′

‖u− uh‖
p−1
Lp(Ω).

Conclude by observing that, since ω ∈ Ap, we have that

ω′(T )1/p
′

� hdω(T )−1/p ∀T ∈ Th.

This concludes the proof. �

5.1. Application: The Stokes problem with delta sources. Let us now, as
an application, show how Theorem 5.1 can be applied to the case of singular forces
described in item (i) of Section 2.1. Assume that Z ⊂ Ω with #Z < ∞; i.e., it is a
finite collection of points. We now define

(5.6) fZ =
∑

z∈Z

Fzδz,

with Fz ∈ R
d. We begin by establishing the suitable functional framework.

Proposition 5.2 (fZ ∈ H−1(dαZ ,Ω)). Assume that α ∈ (d − 2, d). Then d
α
Z ∈

A2(Ω), d
−α
Z ∈ A2(Ω) ∩ A1, and fZ ∈ H−1(dαZ ,Ω).

Proof. The bounds on α guarantee that dαZ ∈ A2(Ω) and d
−α
Z ∈ A2(Ω). In addition,

since d− 2 ≥ 0, we have that d−α
Z ∈ A1.

Now, owing to [31, Remark 21.19], a compactly supported Radon measure ν
belongs to the dual of H1

0 (ω,Ω) if
ˆ

Ω

ˆ r

0

t2ν(B(x, t))

ω(B(x, t))

dt

t
dν(x) < ∞

for some r > 0. Setting ν =
∑

z∈Z δz and ω = d
−α
Z we get

ˆ

Ω

ˆ r

0

t2ν(B(x, t))

ω(B(x, t))

dt

t
dν(x) �

∑

z∈Z

ˆ r

0

t

td−α
dt,

which is finite provided d− 2 < α. �

The previous result shows that if f = fZ in (1.3), then this problem has a unique
solution (u, π) ∈ H1

0(d
α
Z ,Ω) × L2(dαZ ,Ω)/R. The following result is the missing

ingredient to obtain error estimates via Theorem 5.1.

Proposition 5.3 (Embedding). If α ∈ (d− 2, 2), then H1
0(d

α
z ,Ω) →֒ L2(Ω).

Proof. We only need to verify the condition of Proposition 2.3. In this case, we
have

r2+d

R2+d

d
α
z (B(x,R))

d
α
z (B(x, r))

≈
r2+d

R2+d

Rd+α

rd+α
=

( r

R

)2−α

.

The provided bounds on α guarantee that this ratio is uniformly bounded. �

We can now obtain an error estimate. Notice that since d
−α
Z ∈ A2(Ω) ∩ A1, the

results of Theorem 4.1 and Corollary 4.2 apply.
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Corollary 5.4 (Error estimate). Let α ∈ (d − 2, 2) and (u, π) ∈ H1
0(d

α
Z ,Ω) ×

L2(dαZ ,Ω)/R solve (1.3) with f = fZ . Let (uh, πh) be the finite element approxima-

tion of (u, π). In the setting of Theorem 5.1 we have, for every ε > 0,

‖u− uh‖L2(Ω) � h2−d/2−ε
(

‖∇u‖L2(dα
Z
,Ω) + ‖π‖L2(dα

Z
,Ω)

)

,

where the hidden constant does not depend on u, π, or h but blows up as ε ↓ 0.

Proof. Proposition 5.2 guarantees that there is a unique pair (u, π) ∈ H1
0(d

α
Z ,Ω)×

L2(dαZ ,Ω)/R that solves (1.3). In addition, Proposition 5.3 guarantees that u ∈
L2(Ω). The rest is just an application of Theorem 5.1. In this case, we have that

h1+d/2ω(h)−1/2 = h1+d/2h−d/2−α/2 = h1−α/2

and
α ∈ (d− 2, 2) =⇒ 1−

α

2
∈

(

0, 2−
d

2

)

.

The blowup of the constants is due to the fact that in the limiting case the embed-
ding H1

0(d
α
z ,Ω) →֒ L2(Ω) no longer holds. �

We conclude by commenting that via similar techniques we can consider the
cases described in items (ii) and (iii) of Section 2.1.

6. Examples of suitable pairs

To conclude our analyisis, we study some pairs that satisfy assumptions (3.2),
(3.9) so that the theory we have presented above applies.

We begin with a continuous weighted inf–sup condition that immediately follows
from the existence of a right inverse of the divergence.

Lemma 6.1 (Continuous weighted inf–sup). Let p ∈ (1,∞) and ω ∈ Ap. For all

q ∈ Lp′

(ω′,Ω)/R we have that

(6.1) ‖q‖Lp′ (ω′,Ω) � sup
v∈W

1,p
0

(ω,Ω)

b(v, q)

‖∇v‖Lp(ω,Ω)
,

where the hidden constant depends only on Ω and [ω]Ap
but not on q.

Proof. Let q ∈ Lp′

(ω′,Ω)/R and define r̃ = ω′|q|p
′/p sign(q). Notice that

‖r̃‖pLp(ω,Ω) =

ˆ

Ω

ω|r̃|p dx =

ˆ

Ω

ω1−p′

|q|p
′

dx = ‖q‖p
′

Lp′ (ω′,Ω)
,

so that r̃ ∈ Lp(ω,Ω) and, since Ω is bounded, r̃ ∈ L1(Ω). Consequently, we can set
r = r̃ −

ffl

Ω
r̃ dx and we conclude that r ∈ Lp(ω,Ω)/R with

‖r‖Lp(ω,Ω) � ‖q‖p
′−1

Lp′ (ω′,Ω)
.

Our final initial observation is that, since q has zero mean,
ˆ

Ω

qr dx =

ˆ

Ω

qr̃ dx =

ˆ

Ω

|q|p
′

ω′ dx = ‖q‖p
′

Lp′ (ω′,Ω)
.

Recall now that there is w ∈ W
1,p
0 (ω,Ω) such that

divw = r, ‖∇w‖Lp(ω,Ω) � ‖r‖Lp(ω,Ω),

where the constant in the estimate is independent of r; see [16, Theorem 3.1], [41,
Theorem 1], [11, Theorem 5.2], or [1, Theorem 2.8] for a proof. As a consequence,
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we have

sup
v∈W

1,p
0

(ω,Ω)

b(v, q)

‖∇v‖Lp(ω,Ω)
≥

b(w, q)

‖∇w‖Lp(ω,Ω)
=

‖q‖p
′

Lp′ (ω′,Ω)

‖∇w‖Lp(ω,Ω)

�
‖q‖p

′

Lp′ (ω′,Ω)

‖r‖Lp(ω,Ω)
� ‖q‖Lp′ (ω′,Ω),

as we intended to show. �

6.1. The mini element. This pair is considered in [3], [19, Section 4.2.4] for the
unweighted case and is defined by

Vh =
{

vh ∈ C(Ω̄) : ∀T ∈ Th,vh|T ∈ [P1(T )⊕ B(T )]d
}

∩H1
0(Ω),(6.2)

Ph =
{

qh ∈ L2(Ω)/R ∩ C(Ω̄) : ∀T ∈ Th, qh|T ∈ P1(T )
}

,(6.3)

where B(T ) denotes the space spanned by local bubble functions.
We must immediately note that for d ∈ {2, 3}, assumption (3.9) is proved in

[24, Theorem 12] and [25, Theorem 8.1]. Thus, we focus on the weighted LBB
condition (3.2). This will be obtained with the aid of the auxiliary, continuous
inf–sup condition (6.1).

Theorem 6.2 (Discrete inf–sup condition). Let p ∈ (1,∞) and ω ∈ Ap. If Vh and

Ph are defined by (6.2) and (6.3), respectively, then we have that

(6.4) β‖qh‖Lp′ (ω′,Ω) ≤ sup
vh∈Vh

b(vh, qh)

‖∇vh‖Lp(ω,Ω)
∀qh ∈ Ph,

where β is a positive constant that is independent of Th.

Proof. Our argument will be based on (6.1) and the construction of a so-called

Fortin operator [19, Lemma 4.19]. Given v ∈ W
1,p
0 (ω,Ω), we will construct Fhv ∈

Vh such that

(6.5) b(v, qh) = b(Fhv, qh) ∀qh ∈ Ph, ‖∇Fhv‖Lp(ω,Ω) � ‖∇v‖Lp(ω,Ω),

with a hidden constant independent of h. To accomplish this task, we first notice
that if qh ∈ Ph, then, for all T ∈ Th, ∇qh|T ∈ R

d. Consequently, an integration by
parts argument reveals that Fhv must be such that

(6.6)

ˆ

T

v dx =

ˆ

T

Fhv dx ∀T ∈ Th.

Let Πh denote the quasi-interpolation operator introduced in Section 3.2. We
define

Fhv = Πhv +
∑

T∈Th

d
∑

i=1

γi
T eibT .

Here, {e1, . . . , ed} denotes the canonical basis of Rd, γi
T ∈ R, i ∈ {1, . . . , d}, and bT

is the bubble function associated with T . We thus have that the discrete function
Fhv satisfies (6.6) if

γi
T =

´

T
(vi −Πhv

i) dx
´

T
bT dx

, i ∈ {1, . . . , d}, T ∈ Th.
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It thus remains to prove the stability bound ‖∇Fhv‖Lp(ω,Ω) � ‖∇v‖Lp(ω,Ω).
Write

‖∇Fhv‖Lp(ω,Ω) ≤ ‖∇Πhv‖Lp(ω,Ω) +

∥

∥

∥

∥

∥

∇

(

∑

T∈Th

d
∑

i=1

γi
TeibT

)∥

∥

∥

∥

∥

Lp(ω,Ω)

= I + II,

and notice that the local stability estimate (3.3) and the finite overlapping property
of stars yield

I = ‖∇Πhv‖Lp(ω,Ω) � ‖∇v‖Lp(ω,Ω).

To bound II we use the interpolation estimate (3.4) and properties of the bubble
function to obtain

|γi
T | � |T |−1hT ‖∇v‖Lp(ω,ST )

(
ˆ

T

ω′ dx

)
1

p′

� h
1−d+d/p′

T ‖∇v‖Lp(ω,ST )

(
 

T

ω′ dx

)
1

p′

.

Consequently,

II �
∑

T∈Th

d
∑

i=1

|γi
T |‖∇bT ‖Lp(ω,T )

�
∑

T∈Th

h
1−d+d/p′

T ‖∇v‖Lp(ω,ST )

(
 

T

ω′ dx

)
1

p′

h
d
p
−1

T

(
 

T

ω dx

)
1
p

.

Since (1− d+ d/p′) + d/p− 1 = 0 shape regularity allows us to conclude that

II �
∑

T∈Th

‖∇v‖Lp(ω,ST )

[

(
 

T

ω dx

)(
 

T

ω′ dx

)p−1
]

1
p

� [ω]
1
p

Ap
‖∇v‖Lp(ω,Ω),

where we have used (2.2) and the finite overlapping property of stars. The collection
of the derived estimates for I and II yields

‖∇Fhv‖Lp(ω,Ω) � (1 + [ω]
1
p

Ap
)‖∇v‖Lp(ω,Ω).

The Fortin operator is thus constructed, and this concludes the proof. �

6.2. The lowest order Taylor Hood pair. The lowest order Taylor Hood ele-
ment [32], [46], [19, Section 4.2.5] is defined by

Vh =
{

vh ∈ C(Ω̄) : ∀T ∈ Th,vh|T ∈ P2(T )
d
}

∩H1
0(Ω),(6.7)

Ph =
{

qh ∈ L2(Ω)/R ∩ C(Ω̄) : ∀T ∈ Th, qh|T ∈ P1(T )
}

.(6.8)

In two dimensions, estimate (3.9) for this pair is also obtained in [24, Theorem 12]
and [25, Theorem 8.1]. In three dimensions, these references show this result only
for certain classes of meshes. As a consequence, we will focus on (3.2). Notice that,
as in the unweighted case, the technique of proof must differ from that used in
Section 6.1. We will follow the ideas of [45, Section 3]; see also [19, Section 4.2.5].

We begin with a preparatory step.
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Lemma 6.3 (Perturbation). Let p ∈ (1,∞) and ω ∈ Ap. Assume that all {Th}h>0

are such that every T ∈ Th has at least d edges in Ω and that Vh and Ph are

defined as in (6.7) and (6.8), respectively. Then we have that

h‖∇qh‖Lp′ (ω′,Ω) � sup
vh∈Vh

b(vh, qh)

‖∇vh‖Lp(ω,Ω)
∀qh ∈ Ph,

where the hidden constant does not depend on h.

Proof. We denote by Eh,Vh, and Mh the sets of interior edges, interior vertices,
and interior edge midpoints, respectively, of Th. Let e ∈ Eh and set τ e to be a unit
vector in the direction of e. Notice that there is a bijection between Eh and Mh.

For qh ∈ Ph we define wh ∈ Vh as

wh(v) = 0 ∀v ∈ Vh

and

wh(m) = |e|p
′

τ e sign(∂τ e
qh)|∂τ e

qh|
p′−1ω

′(T )

|T |
∀m ∈ Mh.

Let {φm}m∈Mh
∪{φv}v∈Vh

be the Lagrange nodal basis for piecewise quadratics over
Th. Upon expanding wh on this basis we realize that

‖∇wh‖
p
Lp(ω,Ω) =

∑

T∈Th

ˆ

T

ω

∣

∣

∣

∣

∣

∑

m∈Mh:m∈T

wh(m)∇φm

∣

∣

∣

∣

∣

p

dx

� hp′
∑

T∈Th

ω(T ) [ω′(T )]
p

|T |p

∑

m∈Mh:m∈T

|∂τ e
qh|

p′

� hp′

[ω]Ap

∑

T∈Th

ω′(T )|∇qh|
p′

� hp′

‖∇qh‖
p′

Lp′ (ω′,Ω)
.

Recall now (see [19, Tables 8.2 and 8.3]) that for d ∈ {2, 3} there is a quadrature
formula on the unit simplex which is exact for quadratics, is supported on the ver-
tices and edge midpoints of the simplex, and has positive weights on the midpoints.
Let {̺m} be the weights of this formula. Then we have that

b(wh, qh) =
∑

T∈Th

∇qh ·

ˆ

T

wh dx

=
∑

T∈Th

ω′(T )∇qh ·
∑

m∈Mh:m∈T

̺mτ e|e|
p′

sign(∂τ e
qh)|∂τ e

qh|
p′−1

� hp′
∑

T∈Th

ω′(T )
∑

e∈Eh:e⊂T

|∂τ e
qh|

p′

� hp′
∑

T∈Th

ω′(T )|∇qh|
p′

,

where, in the last step, we used that the mesh assumption implies that for any
element T the collection {τ e}e∈Eh:e⊂T spans R

d. Conclude by recalling that ∇qh
is constant over T . �

With this result at hand we now prove (3.2) for the Taylor Hood pair.

Theorem 6.4 (Discrete inf–sup condition). In the setting of Lemma 6.3, we have

(6.9) ‖qh‖Lp′ (ω′,Ω) � sup
vh∈Vh

b(vh, qh)

‖∇vh‖Lp(ω,Ω)
∀qh ∈ Ph,

where the hidden constant is independent of h.
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Proof. Given qh ∈ Ph ⊂ Lp′

(ω′,Ω)/R, let wqh ∈ W
1,p
0 (ω,Ω) be the function con-

structed in the course of the proof of (6.1) and let Πh be the interpolant, onto Vh,
described in Section 3.2. The properties of Πh and an argument similar to the one
used in the proof of (6.1) show that

sup
vh∈Vh

b(vh, qh)

‖∇vh‖Lp(ω,Ω)
≥

b(Πhwqh , qh)

‖∇Πhwqh‖Lp(ω,Ω)

� ‖qh‖Lp′ (ω′,Ω) +
b (Πhwqh −wqh , qh)

‖∇wqh‖Lp(ω,Ω)
.

Integration by parts and the properties of Πh show that

b (Πhwqh −wqh , qh)

‖∇wqh‖Lp(ω,Ω)
≥ −

‖∇qh‖Lp′ (ω′,Ω)‖wqh −Πhwqh‖Lp(ω,Ω)

‖∇wqh‖Lp(ω,Ω)

� −h‖∇qh‖Lp′ (ω′,Ω).

Lemma 6.3 allows us to conclude. �

6.3. Elements with a quasilocal Fortin operator. We will say that the pair
(Vh,Ph) has a quasilocal Fortin operator if there is a map Fh : W1,1

0 (Ω) → Vh

such that

b(v −Fhv, qh) = 0 ∀qh ∈ Ph

and, for every T ∈ Th,
 

T

(|Fhv|+ hT |∇Fhv|) dx �

 

ST

(|v|+ hT |∇v|) dx ∀v ∈ W
1,1
0 (Ω),

where ST is defined in (3.1). Our purpose here will be to show that whenever there
is a quasilocal Fortin operator, (3.2) holds.

We begin with the following result for the unweighted case.

Lemma 6.5 (Stability). A quasilocal Fortin operator satisfies
 

T

|∇Fhv| dx �

 

ST

|∇v| dx ∀v ∈ W
1,1
0 (Ω),

with a hidden constant that is independent of T , v, and h.

Proof. This is shown, for instance, in [33, formula (3.2)]. �

We now show stability on weighted spaces.

Proposition 6.6 (Weighted stability). Let p ∈ (1,∞) and ω ∈ Ap. A quasilocal

Fortin operator is stable in W
1,p
0 (ω,Ω).

Proof. The proof is, essentially, a combination of a scaling argument and the defi-
nition of the class Ap. Let v ∈ W

1,p
0 (ω,Ω). Since ∇Fhv|T is a polynomial

|∇Fhv|T (z)| �

 

T

|∇Fhv| dx ∀z ∈ T.

Therefore,

‖∇Fhv‖
p
Lp(ω,Ω) =

∑

T∈Th

ˆ

T

|∇Fhv(z)|
pω dz �

∑

T∈Th

ˆ

T

(
 

T

|∇Fhv| dx

)p

ω dz.
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The local stability of Lemma 6.5 yields

‖∇Fhv‖
p
Lp(ω,Ω) �

∑

T∈Th

ˆ

T

(
 

ST

|∇v| dx

)p

ω dz.

Now
(
 

ST

|∇v| dx

)p

≤
1

|ST |p
ω′(ST )

p−1

ˆ

ST

|∇v|pω dx,

which then implies that

‖∇Fhv‖
p
Lp(ω,Ω) �

∑

T∈Th

ω(T )ω′(ST )
p−1

|ST |p

ˆ

ST

|∇v|pω dx � [ω]Ap
‖∇v‖p

Lp(ω,Ω),

where, in the last step, we used the shape regularity of Th, the fact that ω ∈ Ap,
and the finite overlapping property of stars. �

We conclude by recalling a standard result, in this context known as the Fortin

criterion [19, Lemma 4.19]: If (6.1) holds and there is a stable Fortin operator,
then (3.2) holds uniformly in h. Notice that in view of the results of Proposition
6.6, a quasilocal Fortin operator is stable in weighted spaces. This result allows for
a rich variety of examples, provided we content ourselves to deal with a sufficiently
high polynomial degree. For instance, in [27, Section 3], such a quasilocal Fortin
operator is constructed for:

• Any order Taylor Hood pair if d = 2. Section 6.2 had already treated the
lowest order case in dimensions d = 2 and d = 3.

• Taylor Hood pairs with at least cubic velocities for d = 3. The lowest order
case, in three dimensions, was already discussed in Section 6.2.

• The two-dimensional conforming Crouzeix–Raviart pair; each component
of the velocity, locally, belongs to P2(T )⊕ B(T ), while the pressure is dis-
continuous and local in P1(T ).

In addition, we can also consider spaces such that the velocity, locally, belongs to
P2(T )

d, while the pressure consists of piecewise constants; see [33, Remark 3.4].
We must remark, however, that our main interest in considering weighted spaces

is to be able to handle singular data in the Stokes problem. This, in turn, implies
that we do not expect the solution to possess much regularity. The approximation
power of higher order elements then is lost.

Appendix A. Proof of (4.3)

Although not original, for the sake of readability, here we present a proof of the
first estimate in (4.3). We will follow [12, Theorem 3.1] and [30] to show that, for
any x ∈ Ω,

ˆ

Ω

hλω(z)

(|x− z|2 + (κh)2)(d+λ)/2
dz � Mω(x).

We begin, for a fixed x ∈ Ω, by partitioning the integration into points “near”
and “far” from it:

ˆ

Ω

hλω(z)

(|x− z|2 + (κh)2)(d+λ)/2
dz = N + F,
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where

N =

ˆ

|x−z|≤h

hλω(z)

(|x− z|2 + (κh)2)(d+λ)/2
dz �

1

hd

ˆ

|x−z|≤h

ω(z) dz � Mω(x)

and

(A.1) F =

ˆ

|x−z|>h

hλω(z)

(|x− z|2 + (κh)2)(d+λ)/2
dz �

ˆ

|x−z|>h

hλω(z)

|x− z|d+λ
dz.

Now we follow [30, Lemma (b)] and [13, Lemma 7.9] and introduce a dyadic de-
composition of the last integral in (A.1). We write

ˆ

|x−z|>h

ω(z)

|x− z|d+λ
dz =

∞
∑

k=0

ˆ

h2k<|x−z|≤h2k+1

ω(z)

|x− z|d+λ
dz

≤ 2λ+dh−λ
∞
∑

k=0

2−λ(k+1)

(h2k+1)d

ˆ

h2k<|x−z|≤h2k+1

ω(z) dz

≤ 2λ+dh−λ
∞
∑

k=0

2−λ(k+1)

(h2k+1)d

ˆ

|x−z|≤h2k+1

ω(z) dz

� h−λMω(x)

∞
∑

k=0

2−λ(k+1) � h−λMω(x),

where, in the last step, we used that since λ > 0 the series converges.
A combination of the estimates obtained for N and F is (4.3).
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[11] L. Diening, M. Růžička, and K. Schumacher, A decomposition technique for John do-

mains, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 1, 87–114, DOI 10.5186/aasfm.2010.3506.
MR2643399

[12] I. Drelichman, R. G. Durán, and I. Ojea, A weighted setting for the numerical approximation

of the Poisson problem with singular sources, SIAM J. Numer. Anal. (2019) (To appear).
[13] J. Duoandikoetxea, Fourier analysis, translated and revised from the 1995 Spanish original

by David Cruz-Uribe, Graduate Studies in Mathematics, vol. 29, American Mathematical

Society, Providence, RI, 2001. MR1800316
[14] R. Durán, R. H. Nochetto, and J. P. Wang, Sharp maximum norm error estimates for finite

element approximations of the Stokes problem in 2-D, Math. Comp. 51 (1988), no. 184,
491–506, DOI 10.2307/2008760. MR935076

[15] R. G. Durán and A. L. Lombardi, Error estimates on anisotropic Q1 elements for functions

in weighted Sobolev spaces, Math. Comp. 74 (2005), no. 252, 1679–1706, DOI 10.1090/S0025-
5718-05-01732-1. MR2164092
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