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STABILITY OF THE STOKES PROJECTION
ON WEIGHTED SPACES AND APPLICATIONS

RICARDO G. DURAN, ENRIQUE OTAROLA, AND ABNER J. SALGADO

ABSTRACT. We show that on convex polytopes in two or three dimensions,
the finite element Stokes projection is stable on weighted spaces Wé'p (w, Q) x
LP(w,Q), where the weight belongs to a certain Muckenhoupt class and the
integrability index can be different from two. We show how this estimate can
be applied to obtain error estimates for approximations of the solution to the
Stokes problem with singular sources.

1. INTRODUCTION

In this work we shall be interested in the stability and approximation properties
of the finite element Stokes projection when measured over weighted norms. To be
precise, let d € {2,3} and Q C R? be a convex polytope. Assume that T = {7}, } >0
is a family of quasiuniform triangulations of ) parametrized by their mesh size h > 0
and V), X Py is a pair of finite element spaces constructed over the mesh 7,. To
describe the question that we wish to address here let (u, 7) € W' (Q) x L1(Q)/R,
with u solenoidal (see Section 2 for notation), and define (up,7) € Vi, X Py, to be
its Stokes projection; i.e., the pair (up,7p) is such that

/ [Vuy, : Vv, — 7 divvy]de = / [Vu: Vv, —wdivvy]dz Vv, € Vy,
Q Q

(1.1)
/ qndivupder =0 Yan € Ph.
Q

With this notation, the main result in our work is that for a certain range of
integrability indices p and a certain class of Muckenhoupt weights w, we have

(1.2) IVurllLew,o) + I7rllLe w0 S IVUllLe o) + I17llrw,.0)-

Our main motivation for the development of such estimates is the study of the
Stokes problem

—Au+Vr=1£f inQ,
(1.3) divu =0, in
u=0, on 0,
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in the case where the forcing term f is allowed to be singular. Essentially, by
introducing a weight, we can allow for forces such that £ ¢ W~12(Q). In particular,
our theory will allow the following particular examples. For a fixed F € R? we can
set f = FJ,, where §, denotes the Dirac delta supported at the interior point z € 2.
Similarly, if I' denotes a smooth curve or surface without boundary contained in €2,
we can allow the components of f to be measures supported in I.

While the stability and approximation properties for the Stokes problem in en-
ergy type norms has a rich history and is by now well established, the derivation
of these properties in non energy norms is more delicate. To our knowledge, the
first works that address these questions in a nonenergy setting are [14,18]. In these
references, the authors establish an L>-norm almost stability (up to logarithmic
factors) in two dimensions. Later, in view of the weighted a priori estimate for
a solution of the divergence operator of [17], the results of [18] were extended to
three dimensions; see [17, Section 3] for a discussion. We would also like to men-
tion reference [8] for results on domains with smooth boundaries. Results without
logarithmic factors were first established in [25], albeit under certain restrictions
on the internal angles of the domain. This last assumption was finally removed in
[29] and not so much after and with a different technique in [24]. The state of the
art is that, simply put, the Stokes projection is stable in Wé’p(Q) x LP(Q2)/R for
p € (1,00] if the domain  is a convex polytope.

We must remark that in the PDE literature, the idea of introducing weights
to handle singular sources is by now well established. There is a vast amount of
literature dealing with weighted a priori estimates for solutions of elliptic equations
and systems and for models of incompressible fluids that are even more general than
(1.3); see for instance [6]. However, in most of these works, it is usually assumed
that the domain is at least C, which is not finite element friendly. Two exceptions
are [12,39]. In [12] the well-posedness of the Poisson problem in Wy (w,Q) is
established for all p € (1,00) and w € A, provided Q is a convex polytope. In
addition, the stability of the Ritz projection is obtained for p € [2,00) and w € Aj,
and for p = 2 and w™! € A;. On the other hand, [39] works on general Lipschitz
domains and shows that the Poisson and Stokes problems are well-posed, provided
that p is restricted to a neighborhood of 2, that depends on the domain, and the
weight is regular near the boundary (w € A,(€2) in the notation of that work).

From the discussion given above, it is clear that the stability of the Stokes pro-
jection is open and, in light of applications, needed. This is the main contribution
of our work.

Our presentation will be organized as follows. We set notation in Section 2, where
we also recall the definition of Muckenhoupt weights and introduce the weighted
spaces we shall work with. In addition, in Section 2.2, we introduce a saddle
point formulation of the Stokes problem (1.3) in weighted spaces and review well-
posedness results. In Section 3 we introduce the discrete setting in which we will
operate. Section 4 is dedicated to obtaining the stability of the finite element
Stokes projection in weighted spaces; this is one of the highlights of our work. As
an immediate application, Section 5 studies the development of LP-error estimates
for the error approximation of the velocity field. We also specialize these results
and study the approximation of the Stokes problem with a forcing term that is
a linear combination of Dirac measures. All the developments of the previous
sections rest on a series of assumptions on the finite element velocity—pressure pairs.
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1583

For this reason, in the final section, Section 6, we derive a continuous weighted
inf-sup condition and study some suitable finite element pairs that satisfy all the
assumptions that our theory rests upon.

2. NOTATION AND PRELIMINARIES

We begin by fixing notation and the setting in which we will operate. Throughout
this work d € {2,3} and @ C R? is an open, bounded, and convex polytope. If
W and Z are Banach function spaces, we write W — Z to denote that W is
continuously embedded in Z. We denote by W’ and || - ||y the dual and the norm
of W, respectively.

For £ C Q open and f: E — R, we set

]ifdx—%/Efdx.

For w € L (Q), the Hardy-Littlewood maximal operator is defined by

loc
(21) Mu(a) = sup | Ju(y)]d.
Q3zJQ
where the supremum is taken over all cubes @) containing z.

Given p € (1,00), we denote by p’ its Holder conjugate, i.e., the real number
such that 1/p+ 1/p’ = 1. By a < b we will denote that a < Cb for a constant C
that does not depend on a, b nor the discretization parameters. The value of C
might change at each occurrence.

2.1. Weights and weighted Sobolev spaces. By a weight we mean a locally
integrable, nonnegative function defined on R?. If w is a weight and E C R? we set

w(E):/Ewdx.

Of particular interest to us will be the so-called Muckenhoupt A, weights [13,36,44].
Definition 2.1 (Muckenhoupt class A,). Let p € [1,00). We say that a weight

we Ay if
p—1
[w], :=sup (7[ wdm) (][ wt/(t=p) dx) <oo, pe€(l,00),
’ B B B

1
w|, =su wdx | sup — < 00, =1,
ey, = (f e sup 5 <o

where the supremum is taken over all balls B in R%. In addition, A, := J
We call [w]a,, for p € [1,00), the Muckenhoupt characteristic of w.

(2.2)

A,.

p>1

Notice that there is a certain symmetry in the A, classes with respect to Holder
conjugate exponents. If w € A,, then its conjugate w’ := wl/-p) ¢ A,y and

1/(p-1)
A .

W, = WY/

We comment also that, following [13, Chapter 7.1], an equivalent characterization
of w € A; is that for almost every x,

(2.3) Muw(z) S w(x).

The class of A, weights was introduced by Muckenhoupt in [36], where he showed
that the A, weights are precisely those weights for which the Hardy-Littlewood
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maximal operator is bounded on weighted Lebesgue spaces; see [36] and [13, The-
orem 7.3].

Distances to lower dimensional objects are prototypical examples of Mucken-
houpt weights. In particular, if I C €2 is a smooth compact submanifold of dimen-
sion k € [0,d) N Z, then, owing to [2] and [21, Lemma 2.3(vi)], we have that the
function

(2.4) di(z) = dist(z, K)
belongs to the class A, provided
a € (=(d—k),(d=k)(p—1)).
This allows us to identify three particular cases:
(i) Let d > 1 and z € Q. Then the weight dJ € A if and only if a € (—d, d).
(ii) Let d > 2 and v C Q be a smooth closed curve without self-intersections.
We have that d € Ay if and only if a € (—(d —1),d - 1).

(iii) Finally, if d = 3 and I' C 2 is a smooth surface without boundary, then

dir € Ay if and only if & € (—1,1).

It is important to notice, first, that in all the examples shown above we have that
either the weight or its inverse, which is the conjugate within the A, class, belongs
to Aj. Second, since the lower dimensional objects are strictly contained in €2, there
is a neighborhood of 02 where the weight has no degeneracies or singularities. In
fact, it is continuous and strictly positive. This observation motivates us to define a

restricted class of Muckenhoupt weights that will be of importance for the analysis
that follows. The next definition is inspired by [21, Definition 2.5].

Definition 2.2 (Class A,(D)). Let D C R? be a Lipschitz domain. For p € (1, 00)
we say that w € A, belongs to A,(D) if there is an open set G C D and positive
constants € > 0 and w; > 0 such that:

(a) {z € Q:dist(z,0D) <e} CG,

(b) we C(G), and
(c) w <w(z) forall z € G.

Notice that the weights described in (i)—(iii) belong to the restricted Mucken-
houpt class A3(€2). The latter has been shown to be crucial in the analysis of [39]
that guarantees the well-posedness of problem (1.3) in the weighted Sobolev spaces
that we define below.

Let p € (1,00), w € A,, and E C R? be an open set. We define LP(w, E) as the
space of Lebesgue p-integrable functions with respect to the measure w dz. We also
define the weighted Sobolev space WP (w, E) as the set of functions v € LP(w, E)
with weak derivatives D% € LP(w, E) for |a] < 1. The norm of a function v €
WP(w, E) is given by

1/p
(2.5) lolwrsom = (1015 m + 1902 m)

We also define Wy*(w, E) as the closure of C3°(E) in WP (w, E). It is remarkable
that most of the properties of classical Sobolev spaces have a weighted counterpart.
This is not because of the specific form of the weight but rather due to the fact that
the weight w belongs to the Muckenhoupt class A,. If p € (1,00) and w belongs
to A, then LP(w,E) and W1P(w, E) are Banach spaces [44, Proposition 2.1.2],
and smooth functions are dense [44, Corollary 2.1.6]; see also [28, Theorem 1].
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In addition, [20, Theorem 1.3] guarantees a weighted Poincaré inequality which,
in turn, implies that over Wol’p(w,E) the seminorm ||Vo||rs(y, ) is an equivalent
norm to the one defined in (2.5).

Spaces of vector valued functions will be denoted by boldface, that is,

d 1/p
WP (@, E) = [Wo " (w, B, [[VVl|Lo(,m) = (Z IIVv’Iip(w,E)> ;
i=1

where v = (v!,... v9)T.
For future use we recall a particular Sobolev-type embedding theorem between
weighted spaces. For the general case we refer to [7,22,34] and [38, Section 6].

Proposition 2.3 (Embedding in weighted spaces). Let p € (1,00) and w € A,.
Assume that for all x € Q and 0 < r < R, we have that

rP*d w(B(z, R)) <
Rrtd o(B(z,r)) ~

Then WP (w, Q) < LP(Q) and W' (Q) = L (', Q).

2.2. The Stokes problem in weighted spaces. We begin with a motivation for
the use of weights. Let us assume that (1.3) is posed over the whole space R? and
that f = FJ§, for some 2z € R%. The results of [23, Section IV.2] thus provide the
following asymptotic behavior of the solution (u, ) to problem (1.3) near the point
z:

(2.6) |Vu(z)| ~ |z — 2" and |n(z)| =~ |z — 2|79,

so that |Vu|,7 ¢ L?(R?). However, basic computations reveal that for every ball

b

a€(d—2,00) = /d§‘|Vu\2dx<oo, /d§‘|7r\2dx<oo.
B B

This heuristic suggests to seek solutions to problem (1.3) in weighted Sobolev spaces
[6,39]. In what follows we will make these considerations rigorous.

Let w € Ay. Given f € W 1P(w,Q), we seek for (u,m) € WP (w, Q) x
LP(w,Q)/R such that

(2.1 {‘““»V) Fbvam) = (Ev) W e W (w1, 9)

b(u,q) =0 Vg € L (', Q) /R,

where (-,-) denotes the duality pairing between WP (w, Q) := Wé’p/ (w', Q) and
Wé’p (w', Q). Finally, to shorten notation, here and in what follows we set

a(v,w)= | Vv:Vwdz, b(v,q) = —/ gdivvdz.

Q Q

The well-posedness of (2.7) in Lipschitz domains was studied in [39, Theorem
17]. The main result is summarized below.

Proposition 2.4 (Well-posedness in weighted spaces). Let d € {2,3} and Q C R?
be a Lipschitz domain. There exists € = €(d,Q) € (0,1] such that if P = 2 + ¢,
p € (P',P), and w € A,(Q), problem (2.7) is well-posed. In other words, for all
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f € W '2(w,Q) problem (2.7) has a unique solution (u,m) € WiP(w,Q) x
LP(w,Q)/R, and the following stability estimate holds:

(2.8) IVullLrw,0) + 17l zrw.0) S Ifllw-1rw,0)-

Remark 2.5 (p < 2). Strictly speaking [39, Theorem 17] shows well-posedness only
for p > 2. However, using the equivalent characterization of well-posedness via
inf-sup conditions given in [4, Theorem 2.1] (see also [19, Exercise 2.14]) one can
deduce that (2.7) is also well-posed for p € (P, 2).

Notice that Proposition 2.4 assumes only that the domain is Lipschitz. Finer
results can be obtained provided more information on the domain is available. Since
we are working on convex polytopes we have the following result; see [35, Corollary
1.8].

Proposition 2.6 (LP-regularity). Let d € {2,3} and Q C R? be a convex polytope.
Ifp e (1,2] and £ € LP(Q), then the solution of (1.3) is such that

ue W2P(Q)NW,P(Q), 7me W'P(Q)/R,

with a corresponding estimate.

3. FINITE ELEMENT APPROXIMATION

We now introduce the discrete setting in which we will operate. We first intro-
duce some terminology and a few basic ingredients and assumptions that will be
common to all our methods.

3.1. Triangulation and finite element spaces. We denote by 7, = {T} a
conforming partition, or mesh, of Q into closed simplices T with size hy = diam(T')
and define h = maxpeg, hy. We assume that T = {Z},}r>0 is a collection of
conforming and quasiuniform meshes [9,19]. For T' € 7},, we define the star or
patch associated with the element T as

(3.1) Sp=|J{T" € Z:TnT #0}.

In the literature, several finite element approximations have been proposed and
analyzed to approximate the solution to the Stokes problem (2.7) when the forcing
term of the momentum equation is not singular; see, for instance, [19, Section 4],
[26, Chapter II], and references therein. Initially we shall not be specific about the
type of finite element approximation that we are using. We will only state a set
of assumptions that our discrete spaces need to satisfy. Given a mesh 7, € T,
we denote by Vj and Py the finite element spaces that approximate the velocity
field and the pressure, respectively, constructed over .7;,. We assume that for every
p € (1,00) and w € A4,

Vi CWy™(Q) € WP (w,Q),  PnC L®(Q)/R C LP(w,Q)/R.

In addition, we require that functions in Vj and P}, are locally polynomials of
degree at least one and zero, respectively. Moreover, we need to assume that
these spaces are compatible, in the sense that they satisfy weighted versions of the
classical LBB condition [19, Proposition 4.13]. Namely, we assume that if w € A,,
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then there exists a positive constant 3 = B([w]a,) such that, for all .7, € T,

b
inf sup (Vh: Gn) > B,
(32) 1€Pu vy vy, [[VVallLy w0 lanllLrw.9)
’ b
inf sup Vi, ) > .
an€Ph v, eV, vVh”LP(w,Q)th”LP'(w/,Q)

3.2. A quasiinterpolation operator. Since our interest is to approximate rough
functions, the classical Lagrange interpolation operator cannot be applied. Instead,
we can consider a variant of the quasiinterpolation operator analyzed in [38]. Its
construction is inspired in the ideas developed by Clément [10], Scott and Zhang
[42], and Durdn and Lombardi [15]: it is built on local averages over stars and is thus
well-defined for locally integrable functions; it also exhibits optimal approximation
properties.

For .7, € T, we let X}, be the space of piecewise linear, continuous functions over
the mesh 7,. For w € L'(Q), we define Il x, w € X, to be the interpolation operator
of [38] onto piecewise linears. Define X, = [ X}, NHE ()] For v.e W' (Q), we set
IIyv, v € X}, C Vy, to be the operator Ily, applied component-wise and accordingly
modified to preserve boundary conditions.

To define an interpolant onto the pressure space P;, we distinguish two cases. If
Py, contains piecewise constants, then, for ¢ € L*(Q)/R, we simply define Ilp, g €
Py, to be the local average of ¢. On the other hand, if P}, contains piecewise linears,
then Ilp, ¢ = Ilx, ¢ + ¢4, where ¢, € R is chosen so that Ilp, g € Py,

To alleviate notation, if there is no source of confusion, we shall use 11 to denote
indistinctly IIv, or IIp,. The properties of II;, are summarized below. For a proof
we refer the reader to [38, Section 5.

Proposition 3.1 (Stability and interpolation estimates). Let p € (1,00), w € A4,
and T € F,. Then, for every v € WHP(w, Sr), we have the local stability bound

(3.3) [VIpollLewr) S 1VVllLew,sr)
and the interpolation error estimate
(3.4) [v = Tpol| e, S hrlIVO|lLew,sp)-
The hidden constants in (3.3) and (3.4) are independent of v, T, and h.
This operator also enjoys the following approximation property [38, Section 6].

Proposition 3.2 (Interpolation in different metrics). Assume that w € A, is such
that Proposition 2.3 holds. Then, for every v, € W'P(w,Sr), we have that

1+d _
lop = Thvpll ogry S b Peo(Sr) ™7V 0yl o 51
Similarly, for v, € W' (Sr), we have
1—d/p’ /
l[vpr = Tpvp || Lo (w',T) S by v w/(ST)l/p [V HLP’(ST)'

The hidden constants in the previous inequalities are independent of the functions
being iterpolated, the cell T', and h.

Remark 3.3 (Higher order elements). We comment that the construction of [38]
allows for polynomial degrees of any order, with the corresponding analogue of (3.3)
and (3.4) being true. Since, as mentioned in the introduction, our main motivation
for the introduction of weights is to handle problems with singular data, we do not
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expect the solution to possess much regularity. For this reason we only consider
interpolations into piecewise linears for the velocity and either constants or linears
for the pressure, respectively.

3.3. Approximate Green’s function. Let z €  be such that z € T, for some
T, € 9,. Let 6, be a regularized Dirac delta satisfying the following properties:

(1) b. € C§°(T2);

(2) [q0.dz=1;
B3) l10:llpee () S s
(4) [q0:vhdz = vy(z) for all vj, € V.

We refer to [43] and [5, Exercise 8.1] for a construction of such a function. Notice

that if v, = (vi,...,v)T € Vj, and j € {1,...,d}, we have

Bmvi(z) = / 5‘xivi52 dz = —/ V{Lf)‘xigz dz, ie{l,...,d}.
Q Q

With these ingredients at hand, we define a regularized Green’s function (G, Q)
as the solution to the following problem: Find (G, Q) € H}(Q) x L?(2)/R such
that

(35) a(G,v) +b(v,Q) = /ngamivj dz Vv e H{(Q),

b(G,q) =0 Vg € L*(Q)/R,

where 4,j € {1,...,d}. Notice that the functions G and @ depend on z and the
indices ¢ and j. However, to alleviate notation we will omit this dependence.

We also define (Gp, Q},), the Stokes projection of (G, @), as the solution to the
discrete problem: Find (G, Qr) € V5, X Py, such that

a(Gh,vh) + b(Vh, Qh) = / 5Z8I7vi dz Vvp € Vy,
Q
b(Gn,qn) =0 Van € Ph.

(3.6)

Let R be a fixed positive number such that for any z € Q the ball B(z, R)
contains 2. For y € €, we define the weight function o, introduced by Natterer
[37], as

1/2

(3.7) oy (@) = (Jo =yl + (xh)*) ",

where k > 1 is a parameter independent of h but such that kh < R; see [24, Section
1.7]. We recall that this weight verifies [25, inequality (0.18)]

(3.8) / o, e ShT, A e (0,1).
Q

We shall assume that if v € (0,1/2), 0 < A < v/2, p = d+ A\, and J}, is
quasiuniform, then there exists x1 > 1 such that for all Kk > k1 and for all meshsizes
h > 0 such that kh < R, we have

S h)\/Q.

3.9
(39) sup o

yeQ

o) V(G - Gu)|

Examples of spaces that satisfy this assumption will be presented below.
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4. DISCRETE STABILITY ESTIMATES IN WEIGHTED SPACES

Let p € (1,00), w € Ay, (u,7) € WiP(w, Q) x LP(w,Q)/R with u solenoidal,
and the pair (up,pp) € Vp x Pp, be the finite element approximation of (u,w).
Our goal in this section is, on the basis of the weighted compatibility conditions
(3.2), to derive the weighted stability estimate (1.2). To do so, we must place some
restrictions on the range of the integrability p and the weight w. We codify these
in the assumption

pE(2,0) = we A,
(S) p=2 — we A orw e A(Q)N A,
pe(P,2] = W eA,(Q)N A,

where P is as in Proposition 2.4 and P’ is its Holder conjugate.

Theorem 4.1 (Weighted stability estimate). Let d € {2,3} and Q C R? be an open
convex polytope. Assume that (S) holds and that (u,7) € WP (w, Q) x LP(w, Q)/R
with u solenoidal. Let (up,7p) € Vi, X Py, be its finite element Stokes projection. If
the spaces (V,,Py,) satisfy (3.2) and (3.9), then estimate (1.2) holds. The hidden
constant in this estimate is independent of (u,m), (up, ), and h.

Proof. We begin by noticing that, by density, it suffices to show the estimate,
assuming that u and 7 are smooth.
We split the proof into several steps.

(1) Assume that we have already shown that

(4.1) VurllLew,) S IVullLew,e) + |7l Lew,0)-

Utilizing the first discrete inf-sup condition of (3.2) and that (up, 7p,) solves
(1.1), we arrive at
b(Vh, ) a(u,v) = alup, vi) + b(vh, )

I7rllir o) S sup o7 = sup
= IVVallLe o) vieva IVVallLe (w0 7

which immediately yields

I7nll e (w,0) S IVUllLr@w.e) + 17l 2ew,0) + [[VurllLew.o)-

This, in view of (4.1), implies the desired bound for ||m || Lr(w,0)-
(2) Assume that p > 2 and w € A;. Set v, = up, in (3.6) to arrive at

a(Gp,up) = / 0,0,u) dz = 9, ul (2).
Q

Now set vp, = Gy, in (1.1) and use that b(Gp,qn) = 0 for all g, € P to
obtain
(4.2) a(up, Gp) = a(u, Gp) + b(Gp, 7).
Using that (G, 7) = 0, we can thus conclude the identity
a(up, Gp) = a(u,Gp) + b(Gp,7) = a(u, G, — G) + (G, — G, 7) + a(u, G).
Since the bilinear form a is symmetric, we have

O, u%(z) =a(u,Gp — G) +b(G, — G,7) + a(u, G)

= a(u,Gy — G) +b(Gj, — G, ) +/ 0.0,,u7 dz.
Q
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1590 RICARDO G. DURAN, ENRIQUE OTAROLA, AND ABNER J. SALGADO

Notice that here we used the smoothness assumption on u to be able to
assert that this is an admissible test function in (3.5).
Now let E = G — Gyj,. The previous equality implies that

. »
/w|c’9ziu{b1’dz§/w[/ Vu:Vde} dz
Q Q Q
» P
—l—/w[/ﬂdivde} dz—l—/w{][ |Vudx] dz =: T+ II 4 III,
Q Q Q T,

where we have used that 4, is supported on T, and that HSZHLOC(Q) < hd
We estimate the terms I, II, and III with the help of (3.9), similar ar-
guments to those developed in the proof of [12, Theorem 3.1], and mod-
ifications inspired by [40]. We begin by controlling the term III. Since
the weight w € A; C A,, we utilize that the Hardy-Littlewood maximal
operator M is continuous from LP(w,R%) to LP(w,R?) to arrive at

P
III:/w {][ |Vu|dx} dz§/wM(|Vu\)pdz§/w|Vu|pdz.
Q T, Q Q

We now control I and II. Using the weight o, defined in (3.7), and its
property (3.8) we have that for any A € (0, 1):

1/p
Vu: VEdz < h~AP=2/(p) (/ o M Vup dx) (/ US+A|VE|2dl‘)
Q Q
and

1/p 1/2
/ rdivEdz < pAP=2/p) (/ o TP dx) (/ oA div E|? dx) .
Q Q Q

Thus, we have that

p/2 p P
[+1< h*MH)/?/ w (/ agHVEFdx) ( w(jx) dz.
Q Q Q Oz

Assume now that 0 < A < v/2 with v € (0,1/2). In this case estimate (3.9)
immediately yields

p/2
h=AP=2)/2 (/ aj+A|VE|2dx) < B
Q

1/2

Q

In addition, the arguments developed in the proof of [12, Theorem 3.1] yield

hAw(z)
(4.3) /Q (7 = 22 1 (wh) )@V 2 dz S Mw(z) S w(x),

where, in the last step, we used (2.3). For completness, we have provided a
detailed proof of this estimate in Appendix A. In conclusion, we obtained
that

w(z)p*
LS [ G e 8=V + o) a

S [ wla) (Va(@) + fe(a)P) da.

A collection of the estimates for the terms I, II, and III yield (4.1) when
p =2
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1591

(3) It remains to consider the case p € (P’,2] with o’ € A,/(2) N A;. Notice
that p’ = p/(p — 1) > 2 so that, as in [12, Corollary 3.3|, we will reduce
our considerations to the previous case. Since p’ € [2, P) and w’ € 4,/ ()

then, as Proposition 2.4 shows, for every g € WL (W', Q) we conclude
that the Stokes problem

_A('Pg + vwg =8, in Q7
dive, =0, in €,
pg =0, on 0,
is well-posed in Wé’pl (W, Q) x LV (w', Q) /R so that we have the estimate

Vgl w o) T 1Yell e w.0) S lgllw-10 . 0)-
Let (¢g ns¥g.n) € Vi X Pp, be the Stokes projection of (¢4, g) so we have

g, Up
VunlLewa) = sup __{&w)
geEW 1.7/ (w' Q) ||g||wf1»z/(w',sz)

a(Uh, Lpg) + b(uh7 d’g)

= sup
geW—1.7 (W' Q) ||gHW71,p’ (w',92)
a(Pg psun) + b(un, g n)
= sup
geEW-1.¢' (w/ Q) HgHW*LP'(w’,Q)
a(uv Sog,h) + b(¢g,hv 7T)
= sup ,
geW 1.7/ (W', Q) HgHW*LP’(w/,Q)

where we used that both up, and ¢ ;, are discretely solenoidal. The stability
of the Stokes projection in Wh#'(«', Q) x LP («',Q) and the bound on
(Qogv "pg) yield
[Vurlleew,o) S IVullue o) + [7l2r@,0)-
The proof is thus complete. O
As usual, the a priori estimate (1.2) implies a best approximation result a la

Céa.

Corollary 4.2 (Best approximation). In the setting of Theorem 4.1, assume, in
addition, that p € (P',P) and w € Ap(Q). Then we have that

[V(u=un)llerwe) + 17— mallerwo) S wgg{,} [V(u—=whn)|lLr w0

inf .
+ thEan ||7T rhl|LP(w"Q)7

where the hidden constant is independent of (u,m), (up,pr), and h.
Proof. The proof is rather standard, but we reproduce it here for the sake of com-

pleteness. Notice that if wy, € Vj, and 1, € P, are arbitrary and wy, is discrete
solenoidal, by linearity of (1.1) we obtain that for all (v, qn) € Vi X Pp, we have

alup — W, vp) + b(vi, T — 1) = a(u — Wi, V) + b(Vip, T — 1),
b(up — Wh,qn) = b(u — Wy, qn).
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1592 RICARDO G. DURAN, ENRIQUE OTAROLA, AND ABNER J. SALGADO
Now let (¢, 1) € WP (w, Q) x LP(w, Q) /R be the unique solution of

a(p,v) +b(v,¥) =alu—wy,v)+b(v,Tr—ry) Vve Wé’pl (W', Q),
b(, q) = b(u —wn, q) Vg € LY (W, Q)/R.
As shown in Proposition 2.4, the assumptions on the integrability index and the

weight allow us to conclude that this problem is well-posed, and we have the esti-
mate

(4.4) IVellLe o) + 1Ullrwe) SV =wi)llLew,o) + IT = rhllr@w.0)-

Notice now that (up — wp, 7, — ) € Vi X Py, is nothing but the finite element
approximation of (¢,1) € WP (w,Q) x LP(w,Q)/R. This, in conjunction with
Theorem 4.1 and (4.4), then yields

IV (un = wi)llLew,0) + 1m0 = rrllLew,0) S V(U= wWhi)|Lr w0

+ 17 =l e (w,0)-

We c]onclude with the triangle inequality and an argument similar to [24, Corol-
lary 6].

5. ERROR ESTIMATES

We now provide an LP(Q)-error estimate for the error approximation of the
velocity field. For that, obviously, one needs to assume that Proposition 2.3 holds
so that u € LP(Q).

In what follows, for a weight w, we denote w(h) = suppe g w(T). The main
error estimate is provided below.

Theorem 5.1 (Error estimate). Let p € [2,P) and w € A,(Q) be such that con-
dition (S) holds. Assume, in addition, that the compatibility condition required
for Proposition 2.3 to be valid holds. Let (u,7) € W (w,Q) x LP(w,Q)/R with
u solenoidal, and let (up,m,) € Vi x Py be its Stokes projection, defined as the
solution of (1.1). In this setting, we have that

(5.1) lu = unllLe ) S B FYPO(R) P (IVUllLr @w.0) + 17l w0) |
where the hidden constant is independent of (u,7), (up,mh), and h.

Proof. We proceed in several steps on the basis of a duality argument.

(1) We begin by recalling that, owing to Proposition 2.6, for every ¢t € (1,2]
we have that if g € L*(2), the Stokes problem: find (p,vg) € Wi (Q) x

LYQ)/R
a(pg, V) +b(v,Yg) = / g-vdx Wve Wé’t,(Q),
(5.2) Q
b(pg:q) =0 Vg e L' (Q)/R,
is well-posed, (¢g,1g) € W21(Q) x WH(Q), and
(5.3) legllwzr) + IVgllwiig) S llglle@)-
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1593

(2) Since p > 2 and w € A,(Q) satisfies the compatibility condition of Propo-
sition 2.3 we can use the results of the previous step with ¢ = p’ and the
embedding results of Proposition 2.3 to conclude that

(g Vg) € WP (Q) N WP (W, Q) x W (Q) 0 LY (o, Q)

with an estimate.
(3) Let g = [u—up[P~*(u—up) and note that ||g|| 1, o) = [lu=un|[F5q,, which is
finite given the assumption on w and the embedding results of Proposition

2.3.
(4) With this choice of g fixed, we would like to set v = u — up, in (5.2) to
obtain
(54) ||U - uh”Z[),p(Q) = a’(u — Up, Qog) + b(u - uhvwg)'

However, since p > 2, u — uj, ¢ Wy (Q) so that (5.4) must be justified by
a density argument. Namely, let w,, € C5°(Q) be such that w,, = u —uy,
in Wi*(w,Q). Since w,, € C°(Q) € W (), we set v = w,, in (5.2) and
arrive at

(5.5) (Wi, Pg) + b(Wn,g) = / lu—upP7%(u—up) - w, da.
Q

Now, since ¢, € Wé"pl (W, Q),
|a(u = un, @g) — a(Wn, 0g)| < Vgl w o)llV(u—up = wa) e, — 0

as n T co. Similar arguments reveal that |b(u — up, ¥g) — b(Wy,, ¥g)| — 0 as
n 1 co. Finally, in view of the continuous embedding Wé’p (w, Q) = LP(Q),
the right hand side of (5.5) converges to |ju — Uh||11),p(9). These arguments

yield (5.4).
(5) From (5.4) and (1.1) we have, for an arbitrary pair (wp, ) € Vi, X Pp,
lu = unllfs o) = alu — un, g — Wn) = bun, g — r4) — b(Wp, ™ — 741,

where we also used that u is solenoidal. Now set wj, = ¢, ;, and 1, = g n,
i.e., the Stokes projection of (¢g,%g). Galerkin orthogonality once again
yields

HU - uh”i?(g) = a(U, Sog - Sog,h) + b(‘Pg - Sog,}mﬂ-)'
Consequently,
lu—=unllfs @) S IV(eg = Pgn)llLr w0 (IVUllrw,e) + 17l w,0) -

(6) As a final step we must bound the first term on the right hand side of
the previous estimate. Notice that with t = p’ < 2 and ¢ := ' what we
are trying to estimate is the error in the velocity component of the Stokes
projection in Wé’t(g, Q). This means that, since ¢ < 2, we can apply
Corollary 4.2 provided condition (S) holds; that is,

P e Ap(Q) & (W) e A (Q) & (PP € A,(Q) & we A,(Q),

and

o ;N\ —p/P
g’eAI@(w’)t/teAlﬁ(w*’”/ﬁ) €A SweE A,
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which is true by assumption. The best approximation result of Corol-
lary 4.2, the interpolation estimates of Proposition 3.2, and the regularity
estimate given in (5.3) then yield

IV (g = @enllie oy S B P () Ju = unllfs -
Conclude by observing that, since w € A,, we have that
W (TP < hw(T)~VP VT € .
This concludes the proof. O

5.1. Application: The Stokes problem with delta sources. Let us now, as
an application, show how Theorem 5.1 can be applied to the case of singular forces
described in item (i) of Section 2.1. Assume that Z C  with #2Z < oo; i.e., it is a
finite collection of points. We now define

(5.6) fz =) F.0.,

2€EZ
with F, € R?. We begin by establishing the suitable functional framework.

Proposition 5.2 (fz € H 1(d%,Q)). Assume that o € (d — 2,d). Then d% €
A2(Q), dz% € A2(Q) N Ay, and fz € H1(d%, Q).

Proof. The bounds on « guarantee that dz € A3(Q2) and dz* € A>(Q). In addition,
since d — 2 > 0, we have that dZ* € A;.

Now, owing to [31, Remark 21.19], a compactly supported Radon measure v
belongs to the dual of H}(w, Q) if

" tQI/(B(QC,t))ﬁ ) < o0
L Sme gy T e <

for some r > 0. Setting v =3 9. and w =dz" we get

evB@ ) Aty T
/Q/o (B ) t W )52/0 o dt,

z€EZ

which is finite provided d — 2 < «. O

The previous result shows that if f = fz in (1.3), then this problem has a unique
solution (u,m) € H{(d%, Q) x L*(d%,Q)/R. The following result is the missing
ingredient to obtain error estimates via Theorem 5.1.

Proposition 5.3 (Embedding). If a € (d —2,2), then H}(dS, Q) — L(Q).

Proof. We only need to verify the condition of Proposition 2.3. In this case, we

have
r2td d%(B(x, R)) N p2td pdto (1)2—0
R2+d d%(B(z,r)) ~ R2+d pdta — \R '
The provided bounds on « guarantee that this ratio is uniformly bounded. (Il

We can now obtain an error estimate. Notice that since dZ% € A2(Q2) N Ay, the
results of Theorem 4.1 and Corollary 4.2 apply.
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1595

Corollary 5.4 (Error estimate). Let o € (d — 2,2) and (u,7) € H}(d%,Q) x
L?(d%,Q)/R solve (1.3) with f = fz. Let (un, 1) be the finite element approzima-
tion of (u,m). In the setting of Theorem 5.1 we have, for every e > 0,

Ju = unlleeee) S B2 27 (IVules o) + 17l 2z, )
where the hidden constant does not depend on u, 7, or h but blows up as e | 0.

Proof. Proposition 5.2 guarantees that there is a unique pair (u,7) € H}(d%, Q) x
L2(d%,Q)/R that solves (1.3). In addition, Proposition 5.3 guarantees that u €
L2(Q). The rest is just an application of Theorem 5.1. In this case, we have that

hl-‘,—d/Qw(h)—l/Q — hl+d/2h—d/2—a/2 — hl—a/Q

and d

ae(d—22) = 1—%e (0,2—5).
The blowup of the constants is due to the fact that in the limiting case the embed-
ding H}(d2, Q) < L2(Q2) no longer holds. O

We conclude by commenting that via similar techniques we can consider the
cases described in items (ii) and (iii) of Section 2.1.
6. EXAMPLES OF SUITABLE PAIRS

To conclude our analyisis, we study some pairs that satisfy assumptions (3.2),
(3.9) so that the theory we have presented above applies.

We begin with a continuous weighted inf-sup condition that immediately follows
from the existence of a right inverse of the divergence.

Lemma 6.1 (Continuous weighted inf-sup). Let p € (1,00) and w € A,. For all
q e LP (W, Q)/R we have that

b(v.q
(6.1) lgll o ) S sup V(i)’
vew! 7 (w.0) VY0

where the hidden constant depends only on Q2 and [w]a, but not on q.

Proof. Let q € L (w/,Q)/R and define 7 = «’|q[P'/? sign(q). Notice that

1710 ) = /leflpdx = /le—f’ gl dz = 114117, 0
so that 7 € LP(w, Q) and, since 2 is bounded, 7 € L' (2). Consequently, we can set
r =7 — f,7dz and we conclude that r € L?(w,Q)/R with
1
HTHLP(w,Q) 5 ”qup’(w/’Q)'

Our final initial observation is that, since ¢ has zero mean,

= r = p, / = p/
/qudm /qudx /Q lg|P w' dx ||qHLP'(w’7Q)'

Recall now that there is w € W (w, Q) such that
divw=r,  [VWllLrwe) S IrllLrw.o),

where the constant in the estimate is independent of r; see [16, Theorem 3.1], [41,
Theorem 1], [11, Theorem 5.2], or [1, Theorem 2.8] for a proof. As a consequence,
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we have )
b(viq) _ _ b(w,q) 191 Z o )
sup = =
vew! 2w, IVVILrwe) — IVWlrwe)  IVWlLew,o)
lall?, ..
> (w’,92) >
~ ~ q 4 ’ )
||T||LP(UJ,Q) || HLP (w’,2)
as we intended to show. O

6.1. The mini element. This pair is considered in [3], [19, Section 4.2.4] for the
unweighted case and is defined by

(6.2) Vi ={v, € C(Q): VT € T, vp|r € [P1(T) & B(T)]*} N H(Q),
(6.3) Prn={an € L*(Q)/RNC(Q) : VT € T, qnlr € P1(T)},

where B(T') denotes the space spanned by local bubble functions.

We must immediately note that for d € {2,3}, assumption (3.9) is proved in
[24, Theorem 12] and [25, Theorem 8.1]. Thus, we focus on the weighted LBB
condition (3.2). This will be obtained with the aid of the auxiliary, continuous
inf-sup condition (6.1).

Theorem 6.2 (Discrete inf-sup condition). Let p € (1,00) andw € A,. If V}, and
Pr are defined by (6.2) and (6.3), respectively, then we have that

b(Vh, Qh)

—= Vg, € Py,
VVallLe(w,0) " "

(6.4) BHQhHLP’(w/,Q) < sup
vrLEV

where 3 is a positive constant that is independent of F,.

Proof. Our argument will be based on (6.1) and the construction of a so-called
Fortin operator [19, Lemma 4.19]. Given v e W (w, ), we will construct F,v €
V, such that

(6.5) b(v,qn) = 0(Fnv,qn) Yan € Ph,  [IVFrVlLew,0) S IVVILe(w,),

with a hidden constant independent of h. To accomplish this task, we first notice
that if g € Py, then, for all T' € .F,, Vapr € R?. Consequently, an integration by
parts argument reveals that F;, v must be such that

(6.6) /de:/]:hvd:r vT € T,
T T

Let II;, denote the quasi-interpolation operator introduced in Section 3.2. We

define
d

Fpv =1IIv + Z Z’yrfpeib;p.

T, i=1

Here, {e1,...,eq} denotes the canonical basis of R%, 74, € R, i € {1,...,d}, and br

is the bubble function associated with 7. We thus have that the discrete function
Fnv satisfies (6.6) if

Jp (v =TLv') da

fT bT dx ’

%

YT =

ie{l,....d}, Te .
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1597

It thus remains to prove the stability bound ||VFuv|Lrw.0) S IVVLe(w)-
Write

411,
Lr(w,Q)

IVFrvLe w0 < VIRV (w.0) +

v ( > zd:'yiTeibT>

TET, i=1

and notice that the local stability estimate (3.3) and the finite overlapping property
of stars yield

I=||VILV|Lr(wo) S IVV]Lewo)-
To bound IT we use the interpolation estimate (3.4) and properties of the bubble

function to obtain

1
I

il S 171 19V o s ( /T o dx)

1
7

—d+d/p’ g
Shr]f + /p HVV”LP(UJ,ST) <f w/dx) .
T

Consequently,
d .
I Z Z\’YHHV(?THLP(UJ,T)
TeT, i=1

1 1
! pld_ P
S Y W Iy (forar) 0 (feas )"

TEIh T T

Since (1 —d+d/p’) + d/p — 1 = 0 shape regularity allows us to conclude that

1
p—1]7» 1
IISJ Z va‘|Lp(w75T) l(ﬁwdl‘) (]éw/d;[;) ] 5 [W]IZPHVVHLP(M,Q%

TEI,

where we have used (2.2) and the finite overlapping property of stars. The collection
of the derived estimates for I and II yields

1
IVFrvlLe o) S 1+ WA )IVYLewe)-

The Fortin operator is thus constructed, and this concludes the proof. O

6.2. The lowest order Taylor Hood pair. The lowest order Taylor Hood ele-
ment [32], [46], [19, Section 4.2.5] is defined by

(6.7) Vi = {vy €C(Q): VT € F,vp|r € Po(T)*} NH(Q),
(6.8) Prn={qn € L*(Q)/RNC(Q) : YT € Ty, qn|r €P1(T)}.

In two dimensions, estimate (3.9) for this pair is also obtained in [24, Theorem 12]

and [25, Theorem 8.1]. In three dimensions, these references show this result only

for certain classes of meshes. As a consequence, we will focus on (3.2). Notice that,

as in the unweighted case, the technique of proof must differ from that used in

Section 6.1. We will follow the ideas of [45, Section 3]; see also [19, Section 4.2.5].
We begin with a preparatory step.
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Lemma 6.3 (Perturbation). Letp € (1,00) andw € Ap,. Assume that all { T} }r>0
are such that every T € 9, has at least d edges in 0 and that Vi and Py are
defined as in (6.7) and (6.8), respectively. Then we have that

b(V}“ qh)

o —— Van € Py,
VvilLe(w,0)

hHVQhHLP’(w’,Q) S 51618
Vh h

where the hidden constant does not depend on h.

Proof. We denote by &, %,, and 4} the sets of interior edges, interior vertices,

and interior edge midpoints, respectively, of 7. Let e € &}, and set T, to be a unit

vector in the direction of e. Notice that there is a bijection between &, and .#,.
For g, € P, we define wj, € Vy, as

wi(v) =0 VYve
and

!
, / T
wp,(m) = |e|? Tesign(0r, qn)|0r. qn |’ _1% Vm € A),.

Let {¢n tne.a, U{dv}vey, be the Lagrange nodal basis for piecewise quadratics over
5. Upon expanding wj, on this basis we realize that

vah”][g,p(w’gz) = Z /TW
TeI,
' w(T) [w' (7)) /
< hP S SO S B P
w3 AR 5
TeT, me Ay meT
I3 / I3 I3 4
S s, 3 OVl W NG, o
TeI,
Recall now (see [19, Tables 8.2 and 8.3]) that for d € {2, 3} there is a quadrature
formula on the unit simplex which is exact for quadratics, is supported on the ver-

tices and edge midpoints of the simplex, and has positive weights on the midpoints.
Let {gn} be the weights of this formula. Then we have that

b(Whoan) = Y VCIh'/thx
T

TEIh

- Z W (T)Van - Z QmTe‘elpl Sign(a‘rth)laTthw/_l
TEI mE My, meT

2RI DY Ol 2R Y S (D) Val”

TeT, e€&):eCT TeT,

p

Z w,(m) V| dx

n€. Ay meT

where, in the last step, we used that the mesh assumption implies that for any
element T' the collection {Te¢}ecs, . ecT Spans R?. Conclude by recalling that Vg
is constant over T O

With this result at hand we now prove (3.2) for the Taylor Hood pair.
Theorem 6.4 (Discrete inf-sup condition). In the setting of Lemma 6.3, we have

b(vh7Qh)
69 Bl ) S S T Y € P
(6.9) lgnll o (o 02) vneVa IVVallLe w0

where the hidden constant is independent of h.
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STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES 1599

Proof. Given g, € Py, C LP (W', Q)/R, let w,, € WP (w, Q) be the function con-
structed in the course of the proof of (6.1) and let IIj, be the interpolant, onto Vy,
described in Section 3.2. The properties of II;, and an argument similar to the one
used in the proof of (6.1) show that

sup b(vhv Qh) Z b(thqh ; (Ih)
vieVi IVVhlLewe) — (VI W, [Lew.o)
b (th% — Wan Qh)
[Vwg, HLP(W,Q)

2 Nanll o o ) +

Integration by parts and the properties of II;, show that

b(pwy, — Wq,,qn) > IVanll (w',9) [Wq, — Hpwy, HL”(w,Q)

VW, e (w,0) VW, [lLe(w,0)
2 —hlIVanl L (w,Q)"

Lemma 6.3 allows us to conclude. O

6.3. Elements with a quasilocal Fortin operator. We will say that the pair

(Vh, Py) has a quasilocal Fortin operator if there is a map F, : W' () — Vj,

such that
b(v —Fnv,qn) =0 Vg € Py

and, for every T € 7},

][ (|Fnv| + ho|VFuv]) dz < ][ ([v| + hp|Vv]) dz Vv e WEH(Q),
T St

where Sy is defined in (3.1). Our purpose here will be to show that whenever there
is a quasilocal Fortin operator, (3.2) holds.
We begin with the following result for the unweighted case.

Lemma 6.5 (Stability). A quasilocal Fortin operator satisfies
][ |V Fuv|dz 5][ |Vv|dz YveWy'(Q),
T St
with a hidden constant that is independent of T', v, and h.
Proof. This is shown, for instance, in [33, formula (3.2)]. O

We now show stability on weighted spaces.

Proposition 6.6 (Weighted stability). Let p € (1,00) and w € A,. A quasilocal
Fortin operator is stable in W (w, Q).

Proof. The proof is, essentially, a combination of a scaling argument and the defi-
nition of the class A,. Let v € Wé’p (w,§2). Since VF, v is a polynomial

IV Fviz(2)] < ][ VFuwv|de VzeT.
T

Therefore,

p
”V]:hVHII),P(MQ): Z /|V]-'hv(z)|pwdz§ Z / (7[ |V]:hv|dx) wdz.
’ T v \Jr

TET, TeD,
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The local stability of Lemma 6.5 yields

p
VFV oo S /(][ Vv dx> wdz.
97 em s X [ (£ 19

TEI,

Now

P
(7[ |Vv|d:v> < Lw'(ST)p_l/ |Vv|Pwdz,
St S|P Sr

which then implies that

”V]:hVHip(wﬂ) N Z
TEI,

w(T)w'(Sr)P~*

S [ 9vPede S Bl 19V 0

T

where, in the last step, we used the shape regularity of .7, the fact that w € Ay,
and the finite overlapping property of stars. O

We conclude by recalling a standard result, in this context known as the Fortin
criterion [19, Lemma 4.19]: If (6.1) holds and there is a stable Fortin operator,
then (3.2) holds uniformly in h. Notice that in view of the results of Proposition
6.6, a quasilocal Fortin operator is stable in weighted spaces. This result allows for
a rich variety of examples, provided we content ourselves to deal with a sufficiently
high polynomial degree. For instance, in [27, Section 3], such a quasilocal Fortin
operator is constructed for:

e Any order Taylor Hood pair if d = 2. Section 6.2 had already treated the
lowest order case in dimensions d = 2 and d = 3.

e Taylor Hood pairs with at least cubic velocities for d = 3. The lowest order
case, in three dimensions, was already discussed in Section 6.2.

e The two-dimensional conforming Crouzeix—Raviart pair; each component
of the velocity, locally, belongs to P(7T") @ B(T'), while the pressure is dis-
continuous and local in Py (7).

In addition, we can also consider spaces such that the velocity, locally, belongs to
P, (T")¢, while the pressure consists of piecewise constants; see [33, Remark 3.4].

We must remark, however, that our main interest in considering weighted spaces
is to be able to handle singular data in the Stokes problem. This, in turn, implies
that we do not expect the solution to possess much regularity. The approximation
power of higher order elements then is lost.

APPENDIX A. PROOF OF (4.3)

Although not original, for the sake of readability, here we present a proof of the
first estimate in (4.3). We will follow [12, Theorem 3.1] and [30] to show that, for
any x € (),

hAw(z)
/Q (|z — 2|2 + (kh)?2)(d+A)/2 dz S Mw(w).

We begin, for a fixed x € €2, by partitioning the integration into points “near”

and “far” from it:
hrw(z)
dz=N+F
/Q<|x—z|2+<nh>2><d+k>/2 ATh
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where

A
hw(z) dz < L / w(z)dz < Mw(zx)
|z—z|<h

N =
lo—zj<n (|2 = 2[2 + (Kh)2)(d+N/2 72~ hd

and

hAw(z) hAw(z)
Al F= dz < — = dz.
( ) /|w—z>h (|1‘ - Z|2 + (‘%h)z)(dJr)\)/z o /a:—z|>h |.23 - Z|d+)\ ‘

Now we follow [30, Lemma (b)] and [13, Lemma 7.9] and introduce a dyadic de-
composition of the last integral in (A.1). We write

w wlz
/ ) g d Z/ ( 2t+A dz
lz—z|>h |.’II - Z| h2k <|z—z|<h2kt1 “/I‘. - ‘

Ard N oo —A(k+1)
<2 h™ E d
2k+1) /hzk<|xz<h2k+1w(z) :

o0 5—A(k+1)

< 9AHdp=A / d
Z h2k+1)d |x—z\gh2k+1w(z) z

< h M Muw(x) Zr“kﬂ) < h M Muw(z),

k=0

where, in the last step, we used that since A > 0 the series converges.
A combination of the estimates obtained for N and F' is (4.3).
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