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1. Introduction

Friedman and Washington study a distribution on finite abelian p-groups G of
rank at most d in [12]. In particular, a finite abelian p-group G of rank r < d
is chosen with probability
1 d d
Pu(@) = —— (T[1 = 1/p") a-1p]). @
e\ i

Let A = (A1,...,A.) with Ay > Ay > -+ > A\, > 1 be a partition. A finite
abelian p-group G has type \ if

G=Z/pMTL x - x L/p* L.

Note that r is equal to the rank of G.

There is a correspondence between measures on the set of integer parti-
tions and on isomorphism classes of finite abelian p-groups. Let £ denote the
set of isomorphism classes of finite abelian p-groups. Given a measure v on
partitions, we get a corresponding measure v/ on L by setting v/'(G) = v()),
where G € L is the isomorphism class of finite abelian p-groups of type A\. We
analogously define a measure on partitions given a measure on £. When G is a
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finite abelian group of type A, we write |Aut(\)| for |[Aut(G)|, and from Page
181 of [19]

[Aut(N)] = p= " T /P, v (12)

The notation used in (1.2) is standard, and we review it in Sect. 1.2.

We introduce and study a more general distribution on integer partitions
and on finite abelian p-groups G of rank at most d. We choose a partition A
with r < d parts with probability

’LL'M d d

Pd,u()‘) = pz(/\;p Hi(l/p)mi( H(l - u/pl) H (1 - 1/pi)' (1'3)

A) =1 i=d—r+1

This gives a distribution on partitions for all real p > 1 and 0 < u < p. We
can include p as an additional parameter and write Pg «(A). For clarity, we will
suppress this additional notation except in Sect. 3. When p is prime, we can
interpret (1.3) as a distribution on £. When p is not prime, it does not make
sense to talk about automorphisms of a finite abelian p-group, but in this case
we can take (1.2) as the definition of |Aut(\)].

The main goal of this paper is to investigate combinatorial properties of
the family of distributions of (1.3). We begin by noting six interesting special-
izations of this measure.

e Setting v =1 in P, recovers P,.
e We define a distribution P, by

wlM .
Jim Pyu(A) = Poou(M) = TAwio] L H — u/ph).
It is not immediately clear that this limit defines a distribution on par-
titions, but this follows from the sentence after Proposition 2.1, from
Theorem 2.2, or from Theorem 5.3, taking u to be the trivial partition.
For 0 < u < 1, this probability measure arises by choosing a random
non-negative integer N with probability P(N = n) = (1 — u)u", and
then looking at the z — 1 piece of a random element of the finite group
GL(N,p). See [13] for details.
e Note that

Py 1(N) -1
1 |Aut |H /).

This is the measure on partitions corresponding to the usual Cohen—
Lenstra measure on finite abelian p-groups [5]. It also arises from studying
the z — 1 piece of a random element of the finite group GL(d,p) in the
d — oo limit [13], or from studying the cokernel of a random d x d p-adic
matrix in the d — oo limit [12].

e Let w be a positive integer and A a partition. The w-probability of A,
denoted by P, ()), is the probability that a finite abelian p-group of type
A is obtained by the following three-step random process:
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— Choose randomly a p-group H of type p with respect to the measure
Poo,1(1)-

— Then, choose w elements g1, ..., g, of H uniformly at random.

— Finally, output H/{g1, ..., gw), where (g1, ..., gw) denotes the group
generated by g1, ..., Guw-

From Example 5.9 of Cohen and Lenstra [5], it follows that P, (\) is a
special case of (1.3):

Py(A) = Poo 1/pw (A). (1.4)

e We now mention two analogues of Proposition 1 of [12] for rectangular
matrices. Let w be a non-negative integer. Friedman and Washington do
not discuss this explicitly, but using the same methods as in [12] one can
show that taking the limit as d — oo of the probability that a randomly
chosen d x (d + w) matrix over Z, has cokernel isomorphic to a finite
abelian p-group of type M is given by P i/ (A). See the discussion
above Proposition 2.3 of [25].

Similarly, Tse considers rectangular matrices with more rows than columns
and shows that P, 1/, () is equal to the d — oo probability that a ran-

domly chosen (d + w) x d matrix over Z, has cokernel isomorphic to

Zy @© G, where G is a finite abelian p-group of type A [23].

e In Sect. 3, we see that the measure on partitions studied by Bhargava,
Kane, Lenstra, Poonen and Rains [1], arising from taking the cokernel of
a random alternating p-adic matrix is also a special case of Py ,. Taking
a limit as the size of the matrix goes to infinity gives a distribution
consistent with heuristics of Delaunay for Tate—Shafarevich groups of
elliptic curves defined over Q [6].

A few of these specializations have received extensive attention in prior
work:

e When p is an odd prime, Cohen and Lenstra conjecture that P, ; models
the distribution of p-parts of class groups of imaginary quadratic fields
and P, 1/, models the distribution of p-parts of class groups of real
quadratic fields [5]. Theorem 6.3 in [5] gives the probability that a group
chosen from P, i/~ has given p-rank. For any n odd, they show that
the average number of elements of order exactly n of a group drawn
from P 1 is 1, and that this average for a group drawn from P/,
is 1/n [5, Sect. 9]. Delaunay generalizes these results in Corollary 11
of [7], where he computes the probability that a group drawn from Py ,,
simultaneously has specified p?-rank for several values of j. Delaunay and
Jouhet compute averages of even more complicated functions involving
moments of the number of p/-torsion points for varying j in [8].

The distribution of 2-parts of class groups of quadratic fields is not
modeled by P, and several authors have worked to understand these
issues. Motivated by work of Gerth [15,16], Fouvry and Kliiners study
the conjectural distribution of p’/-ranks and moments for the number of
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torsion points of C%, the square of the ideal class group of a quadratic
field [11].

e Delaunay [7] and Delaunay and Jouhet [8] prove analogues of the results
described in the previous paragraphs for groups drawn from the n — oo
specialization of the distribution we study in Sect. 3. In [9], they prove
analogues of the results of Fouvry and Kliiners [11] for this distribution.

1.1. Outline of the Paper

In Sect. 2, we interpret P, in terms of Hall-Littlewood polynomials and use
this interpretation to compute the probability that a partition chosen from
P4, has given size, given number of parts, or given size and number of parts.
In Theorem 2.2, we give an algorithm for producing a partition according to
the distribution Pg,.

In Sect. 3, we show how a measure studied in [1] that arises from dis-
tributions of cokernels of random alternating p-adic matrices is given by a
specialization of P, ,. In Sect. 4, we briefly study a measure on partitions that
arises from distributions of cokernels of random symmetric p-adic matrices that
is studied in [4,24]. We give an algorithm for producing a partition according
to this distribution.

In Sect. 5, we combinatorially compute the moments of the distribution
Py, for all d and u. These moments were already known for the case d =
o0, v = 1, and our method is new even in that special case. We also show
that in many cases these moments determine a unique distribution. This is a
generalization of a result of Ellenberg, Venkatesh, and Westerland [10], that
the moments of the Cohen—Lenstra distribution determine the distribution,
and of Wood [25], that the moments of the distribution P, determine the
distribution.

1.2. Notation

Throughout this paper, when p is a prime number we write Z, for the ring of
p-adic integers.

For a ring R, let My(R) denote the set of all d x d matrices with entries
in R and let Sym,(R) denote the set of all d x d symmetric matrices with
entries in R. For an even integer d, let Alty(R) denote the set of all d x d
alternating matrices with entries in R (that is, matrices A with zeros on the
diagonal satisfying that the transpose of A is equal to —A).

For groups G and H, we write Hom(G, H) for the set of homomorphisms
from G to H, Sur(G, H) for the set of surjective homomorphisms from G to
H, and Aut(G) for the set of automorphisms of G. If G is a finite abelian
p-group of type A and H is a finite abelian p-group of type u, we sometimes
write |Sur(, p)| for |Sur(G, H)|.

For a partition A, we let \; denote the size of the i*® part of A\ and m;(\)
denote the number of parts of A of size i. We let X, denote the size of the
ith column in the diagram of A (so A, = m;(\) +m1(A) + -+ ). We also let
n(A) =3, (”\21) We generally use r or 7(\) to denote the number of parts of
A. We use |A\| =n to say that A is a partition of n, or equivalently > \; = n.



Random Partitions and Cohen—Lenstra Heuristics 299

We let ny(u) denote the number of subgroups of type p of a finite abelian
p-group of type A. For a finite abelian group G, the number of subgroups
H C G of type p equals the number of subgroups for which G/H has type u
[19, Eq. (1.5), Page 181].

We also let

(2)i = (1 —a)1—a/p)-- (L —z/p' ).
So

(1/p)i=(1—1/p)--- (1 —=1/p").

With this notation, (1.3) is equivalent to

 dP(u/p) (1/p)a
P = S L (U)o (Uphario

We use some notation related to g-binomial coefficients, namely:

n

]y = qq:1 =1l4q+ - +q"h
(]! = [nlgln —1]q- -~ [2)g;

Finally if f(u) is a power series in u, we let Coef. u™ in f(u) denote the
coefficient of v in f(u).

2. Properties of the Measure P, ,

To begin we give a formula for Py ,, () in terms of Hall-Littlewood polynomials.
We let Py denote a Hall-Littlewood polynomial, defined for a partition A\ =
(A1,...,An) of length at most n by

Z A T; —tx;

w xll ...‘rﬁ" 7‘] s
2 —117]'

wESy, i<j

PA(Il,...,xn;t): m

where

w =TT TT 5=
i>0 j=1

the permutation w € S, permutes the x variables, and we note that some
parts of A may have size 0. For background on Hall-Littlewood polynomials,
see Chapter 3 of [19].

Proposition 2.1. For a partition A with r < d parts,

d . P)\(Ev%w w%an vl)
Fau) = ] ] —u/pt) - == S

i=1
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Proof. From Page 213 of [19],

8=
N

d U U u .
PA(E7P,...,F70

H(l - u/pi) : pn()\)

i=1

is equal to
T A —w/p) (/)
[LA/P)miny  pPPF2N(/p)ay

Since |[A| + 2n(\) = Y (\))?, this is equal to (1.3), and the proposition
follows. O

The fact that ), Py..()\) = 1 follows from Proposition 2.1 and the iden-
tity of Example 1 on Page 225 of [19]. It is also immediate from Theorem
2.2.

There are two ways to generate random partitions A according to the
distribution P,,,. The first is to run the “Young tableau algorithm” of [13],
stopped when coin d comes up tails. The second method is given by the fol-
lowing theorem.

Theorem 2.2. Starting with A = d, define in succession
d>N > Xy > -
according to the rule that if \j = a, then X, = b with probability

u’(1/p)a(u/p)a
PP (1/p)a—s(1/p)u(u/p)s

Then, the resulting partition is distributed according to Py,,.

K(a,b) =

Proof. One must compute
There is a lot of cancellation, and (recalling that A} = r), what is left is:

(u/p)a(1/p)aul!
(1/P)a—rp=C0" TL,(L/D) s (n)

This is equal to Py, (\), completing the proof. O

The following corollary is immediate from Theorem 2.2.

Corollary 2.3. Choose X\ from Pgy,. Then, the chance that A\ has r < d parts
s equal to

u"(1/p)a(u/p)a
P (1/p)a—r(1/p)r(u/p),

Proof. From Theorem 2.2, the sought probability is K(d,r). (]
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The u =1 case of this result appears in another form in work of Stanley
and Wang [22]. In Theorem 4.14 of [22], the authors compute the probability
Zq(p,r) that the Smith normal form of a certain model of random integer
matrix has at most r diagonal entries divisible by p. Setting v = 1 in Corol-
lary 2.3 gives Zq(p,r) — Za(p,r — 1). This expression also appears in [3] where
the authors study finite abelian groups arising as Z¢/A for random sublattices
A C 7% isolating the prime p and the i = r term in Corollary 1.2 of [3] gives
the u = 1 case of Corollary 2.3.

The next result computes the chance that A chosen from Py, has size n.

Theorem 2.4. The chance that A chosen from Py, has size n is equal to

" (u/p)a(1/p)atn—1 .

P (1/p)a—1(1/p)n

Proof. By Proposition 2.1, the sought probability is equal to

Py(%, %, %o...;l)
p’ ’p P
= w:n
PA(la%w"v%)()v 71)
n p’pP P p
= u/p)da U
@i 3 Sk
P/\(!u%y "7%707 71)
_.n n P’ P p p
= u"(u/p)q Coef.u™ in E}\ ey
1

=u"(u/p)q Coef.u™ in

_ u” (u/p)a(1/P)d+n—1

P (1/p)a-1(1/p)n
The fourth equality used Proposition 2.1 and the fact that Py, defines a
probability distribution, and the final equality used Theorem 349 of [17]. O
<

(u/p)a

Theorem 2.5. The probability that A chosen from P;, has size n and r
min{d,n} parts is equal to

u"(u/p)a(1/p)a (1/p)n—1
pr2 (1/p)d77“(1/p)r pn_r(l/p)r—l(l/p)n—r .

Proof. From the definition of P, ,,, one has that

u/p (1/p)a
2 Faul) Z A0/

Aj=r
[A=n |>\\

1/p)
= u'(u/p)a Z AutON)[(1/p) 0

\/\I—n
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ul(1/p)a
tAI(A/P)a—r

= u"(u/p)g Coef. u™ in m Z Pywu(N)
1 u” (1/p)a(u/p)a
(w/p)a ™ (1/p)a—r(1/p)r(u/p);
u(w/p)a(l/pa e gy L
P (1/p)a—r(1/p)r ' (u/p)r
u"(u/p)a(l/p)a (1/p)n—1
P (1/p)a—r(1/p)r " (1/P)r—1(1/P)n—r

The fifth equality used Corollary 2.3, and the final equality used Theorem 349
of [17]. O

=u"(u/p)q Coef. u" in Z |A

=u"(u/p)q Coef. u" in

In the rest of this section, we give another view of the distributions given
by (1.1) and (1.3). When p is prime, Eq. (19) in [20] implies that

, d
Pd(>\) p&ld <H A1 (d=X] )(;i, );\l/-i-l ) > H(l _ 1/]91) (21)

1+1
Comparing this to the expression for Py(A) given in (1.1) shows that

1 (& d— X, d
I )‘:, 1(‘1_)‘;) i+1 _
Y <Hp ’ ()\’ Y )) |Aut ( II a-up )

i=1 i+1 =d—r+1
(2.2)

A direct proof is given in Proposition 4.7 of [3]. Therefore, we get a second
expression for Py, (A),

u| \ d .
Py T <Hp e (d=X; )Gl, A;,“) )H(l—u/pz)- (2.3)

i+1 i=1

We give a combinatorial proof of (2.2) that applies for any real p > 1, so (2.3)
applies for any p > 1 and 0 < u < p.

Proof of Equation (2.2). Tt is sufficient to show that for a partition A with
r < d parts

A
T v gy [d =N, _

|Aut()))| <pr,.+1(d /\i)()\ )\’H) ) |>\\dH d+i) (2.4)
i=1

i+1
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Clearly
A1
HpA;Jrl(d*)\;) d— )\;-‘rl
. N Ny
=1 7 P
Y : d— X,
— A=A - ZIAL&HH(X X+1>
i i+1
= AN =2 AN [d}p!
(4= NIV = AL, — N,
PN =N =5, XA, (p — 1) [d],!
N—=Xf 41
[d = X T2 O ) TL (P, vy
PN (p — 1) !
[d Ny |p2[2 (A2 1) A=A ] ILL/D)mn
A ROD /2 (5 1)V (], ]

[d — Xl]p!p)‘/l/Q ' pZi(/\QV Hi(l/p)ml(A)
Since A} = r, Eq. (1.2) implies that the left-hand side of (2.4) is equal to
pd\/\|—dr+r2/2—r/2(p _ 1)r[d]p!
[d — 7!
which simplifies to the right-hand side of (2.4). O

— o 2 — —
_ pd|)\\ dr+r</2 7"/2(pd _ 1) . d—r+1 1)’

“(p

We now use the alternate expression of (2.3) to give an additional proof
of Theorem 2.4 in the case when p is prime. The zeta function of Z% is defined
by

Ca(s) = S (2% H) ™,
H<74

where the sum is taken over all finite index subgroups of Z%. Tt is known that
Cza(s) = C(s)C(s — 1) : ~~¢(s —(d—1))
= H ( (1— Y1—p G-yt 1 _p—(s—(d—l)))—l) : (2.5)

where ((s) denotes the Riemann zeta function, and the product is taken over
all primes. See the book of Lubotzky and Segal for five proofs of this fact [18].

Second Proof of Theorem 2.4 for p prime. From (2.3), we need only prove

M ,
3 U;; prgﬁ(d—xg)(d/ >\1/+1> _u" (1/p)atn (2.6)
— "\ Ai = A P (1/p)a-1(1/p)n’
|A|=n =1

Let A* = (\1,..., A1), where there are d entries in the tuple. The discus-
sion around Eq. (19) in [20] says that the term in parentheses of the left-hand
side of (2.6) is equal to the number of subgroups of a finite abelian p-group
of type A* that have type A, nx«(A), which is also equal to the number of
subgroups A C Z< such that Z?/A is a finite abelian p-group of type .
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After some obvious cancelation, we need only show that

n _ P (/P)asn
|>\Z—n )\*()\)_ (1/p)d_1(1/p)n '

The left-hand side is the number of subgroups A C Z? such that Z%/A has
order p™. This is the p~*" coefficient of (z4(s). Using (2.5), this is equal to
Coef. p=*™ in (1 — p=*) (1 — p~(=D)=1... (1 = p~(s=(d=1))=1

= Coef. 2" in (1 —2) (1 —pz) (1 = p?2)~ ' (1 — p@~ta)) "t
By Theorem 349 of [17], this is equal to

" (1/p)agn—1
(1/p)a—1(1/p)n

and the proof is complete. O

3. Cokernels of Random Alternating p-Adic Matrices

In this section, we consider a distribution on finite abelian p-groups that arises
in the study of cokernels of random p-adic alternating matrices. We show that
this is a special case of the distributions Pp

Let n be an even positive integer and let A € Alt,(Z,) be a random
matrix chosen with respect to additive Haar measure on Alt,,(Z,). The cokernel
of A is a finite abelian p-group of the form G = H x H for some H of type
A with at most n/2 parts, and is equipped with a nondegenerate alternating

pairing [, |: H x H — Q/Z. Let Sp(G) be the group of automorphisms of H
respecting [, ]. Let r be the number of parts of A, and |A|, n(X), m;(\) be as
in Sect. 1.2.

Lemma 3.1. Let n be an even positive integer and A € Alt, (Z,) be a ran-
dom matriz chosen with respect to additive Haar measure on Alt,(Z,). The
probability that the cokernel of A is isomorphic to G is given by

T oy (1= 1/ T (1 — 1/p% )
pAERO LI 0= 1/p)

Proof. Formula (6) and Lemma 3.6 of [1] imply that the probability that the
cokernel of A is isomorphic to G is given by

Alt _
Pn,p ()‘> -

(3.1)

n/2—r
|Sur(Z!, G R
= I a-1pr e

We can rewrite this expression in terms of the partition A. Clearly |G| =
p?IM. Proposition 3.1 of [5] implies that since G has rank 27,
n

Sur(Zp, @) =p>M [ —1/p").

1=n—2r+1
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An identity on the bottom of Page 538 of [7] says that

mi ()

Sp(G)] = pHp? =" TT T (@ - 1/0)
i =1

mi(A)

P+ H H 1/,

Putting these results together completes the proof. O
The next theorem shows that (3.1) is a special case of (1.3).

Theorem 3.2. Let n be an even positive integer. For any partition \,

P20 = PO,

Proof. Rewrite (1.3) as:
WM (= w/p) Ty (1 — L/p')
P2+, Hmz(/\)( —1/p9)
Replacing d by n/2, u by p, and p by p? gives
50— 1p DI, (= 1/p%)
pr LT (= 1/p%)

On comparing with (3.1), we see that it suffices to prove

n/2 n/2
[[a-1p*Y JI a-1/p*)
=1 i=n/2—r+1
n n/2—r
= I a-ww) IT a-1p* .
1=n—2r+1 i=1

To prove this equality, note that when each side is multiplied by

(1=1/p) (A= 1/ph) - (1= 1/p"72"),
each side becomes (1/p),. O

4. Cokernels of Random Symmetric p-Adic Matrices

Let A € Sym,,(Z,) be a random matrix chosen with respect to additive Haar
measure on Sym, (Z,). Let  be the number of parts of A. Theorem 2 of [4]
shows that the probability that the cokernel of A has type A is equal to

H] —n— ,_H(l — 1/pJ) HT(n r)/21( 1/p2i71)
pr(A)+IA| H HLmL >\)/2J( ~1)p%) .

Note that PSY™()\) = 0 if A has more than n parts. As in earlier sections, when
p is prime (4.1) has an interpretation in terms of finite abelian p-groups, but

PSY™(A) = (4.1)
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defines a distribution on partitions for any p > 1. This follows directly from
Theorem 4.1 below.

Taking n — oo gives a distribution on partitions where A is chosen with
probability

Posoym()\) _ Hi odd (1 ‘_Al/sz) — (4'2)
prNFNTT HJLZ( VR (1 —1/p)
The distribution of (4.2) is studied in [24], where Wood shows that it arises
as the distribution of p-parts of sandpile groups of large Erdés—Rényi random
graphs. Combinatorial properties of this distribution are considered in [14],
where it is shown that this distribution is a specialization of a two-parameter
family of distributions. It is unclear whether the distribution of (4.1) also sits
within a larger family.
The following theorem allows one to generate partitions from the measure
(4.1) and is a minor variation on Theorem 3.1 of [14].

Theorem 4.1. Starting with X = n, define in succession n > \| > X, >
according to the rule that if \j = a, then \j,; = b with probability

Ha 1(1_1/pi)
K(a,b) = — i —.
(o?) pUSDTI (— 1/p) TIH 72 (1 — 1/p%)

Then, the resulting partition with at most n parts is distributed according to
(4.1).

Proof. Tt is necessary to compute
K (n, ) K (A, ) K (A5, Ag) -+
There is a lot of cancelation, and (recalling that A} = r), what is left is:
[T (1—1/p7) 1
T2 00— 1/p20) pr N T, T (- 1/0%0)

So to complete the proof, it is necessary to check that

n _ j n [(n—r)/2]
N | RV § RVt

— 2 N
HJL(:nl m/ J(l - 1/p2]) j=n—r+1
This equation is easily verified by breaking it into cases based on whether n—r
is even or odd. O

The following corollary is immediate.

Corollary 4.2. Let A be chosen from (4.1). Then, the chance that X\ has r <n
parts is equal to

H;L r+1( - 1/pj)
(7+1) Hl' n— r)/?] 1/p2])
Proof. By Theorem 4.1, the sought probability is equal to K (n,r). O

Taking n — oo in this result recovers Theorem 2.2 of [14], which is also
Corollary 9.4 of [24].
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5. Computation of H-Moments

We recall that £ denotes the set of isomorphism classes of finite abelian p-
groups and that a probability distribution v on L gives a probability dis-
tribution on the set of partitions in an obvious way. Similarly, a measure on
partitions gives a measure on £, setting v(G) = v(A) when G is a finite abelian
p-group of type A\. When G, H € L we write |Sur(G, H)| for the number of
surjections from any representative of the isomorphism class G to any repre-
sentative of the isomorphism class H.

Let v be a probability measure on L. For H € L, the H-moment of v is
defined as:

> v(@)[Swr(G, H)|.

Gel
When H is a finite abelian p-group of type p, this is

S v [Sur(A, )l
A
The distribution v gives a measure on partitions and we refer to this quantity
as the p-moment of the measure. For an explanation of why these are called
the moments of the distribution, see Sect. 3.3 of [4].

The Cohen-Lenstra distribution is the probability distribution on £ for
which a finite abelian group G of type A is chosen with probability P 1(A).
One of the most striking properties of the Cohen—Lenstra distribution is that
the H-moment of Py ; is 1 for every H, or equivalently, for any finite abelian
p-group H of type pu,

ZPool ‘SUI')\/J/)‘ L.

There is a nice algebraic explanatlon of this fact using the interpretation of
P, 1 as a limit of the P, ; distributions given by (1.1) (see for example [21]).

Lemma 8.2 of [10] shows that the Cohen—Lenstra distribution is deter-
mined by its moments.

Lemma 5.1. Let p be an odd prime. If v is any probability measure on L for
which

> v(G)|Sur(G, H)| =1

GeLl
forany H € L, then v = Py 1.

Our next goal is to compute the moments for the measure Py, ; see The-
orem 5.3 below. Our method is new even in the case Py ;.

There has been much recent interest in studying moments of distributions
related to the Cohen—Lenstra distribution and showing that these moments
determine a unique distribution [2,24,25]. At the end of this section, we add
to this discussion by proving a version of Lemma 5.1 for the distribution Py,

The following lemma counts the number of surjections from G to H.
Recall that ny(u) is the number of subgroups of type u of a finite abelian
group of type A.
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Lemma 5.2. Let G, H be finite abelian p-groups of types A and p, respectively.
Then

[Sur(G, H)| = [Sur(h, )] = na () Aut(p)|.

For a proof, see Page 28 of [27]. The main idea is that |Sur(G, H)| is the
number of injective homomorphisms from H to é, where these are the dual
groups of H and G, respectively. The image of such a homomorphism is a
subgroup of G of type p.

The distributions Py, are defined for all p > 1. It is not immediately
clear what the g-moment of this distribution should mean when p is not prime,
since [Sur(A, )| is defined in terms of surjective homomorphisms between finite
abelian p-groups. In (1.2), we saw how to define |Aut())| in terms of the parts
of the partition A and the parameter p, even in the case where p is not prime.
Similarly, Lemma 5.2 gives a way to define [Sur(\, )| in terms of the parameter
p and the partitions A and p even when p is not prime. We first define |Aut(u)|
using (1.2), and then note that ny(x) is a polynomial in p that we can evaluate
for any p > 1.

Theorem 5.3. The p-moment of the distribution Py, is equal to
ulkl .
(1/19)(;7/1:()5)’ if r(p) <d
0, otherwise.

Here, as above, r(u) denotes the number of parts of .

Proof. Clearly, we can suppose that r(u) < d. By Lemma 5.2, the y-moment
of the distribution P, is equal to

ZPdu )[Sur(A, p)| = |Aut(p ZPdu

Let ny(u, ) be the number of subgroups M of G so that M has type u
and G/M has type v. This is a polynomial in p (see Chapter IT Sect. 4 of [19]).
Then by Proposition 2.1, the y-moment becomes

d Py(

Aut(u) TT( —u/p)- >

i=1 A p

u u
p7p2’ .

*d\’—‘

Zn)\ Ma

Reversing the order of summation, this becomes

0,5 1)

d
[Aut ()| [T = w/p') ZZ ’ (f) — (1, v).

From Sect. 3.3 of [19], it follows that for any values of the x variables
1) Pulws ) Poas )

'p

Z”A H v n(A) T T )

’d\:




Random Partitions and Cohen—Lenstra Heuristics 309

Specializing z; = u/p’ for i = 1,...,d and 0 otherwise, it follows that the
p-moment of Py, is equal to

PH(%:%:' 7%7037%)P’/(%la%a077%)

d
u N Y p2
ol TT (1= %) P P
1];[1 pt 2’/: pn(y,)pn(u)

uu u 1 d U u u L1
:|Aut('u‘)|P/»"(p’p‘za"'zpdzov"'vp)ZH (1_ u)P,/(p7p2""’ptl707"’7p)-

v oi=1

By Proposition 2.1, this is equal to

u u 1
g HEE )
By pages 181 and 213 of [19], this simplifies to
ultl(1/p)a
(L/P)a—r(u)
O
Remark. e The exact same argument proves the analogous result for the

distribution P 4.

e Setting d = oo and u = 1/p™ (with w a positive integer) gives the distri-
bution (1.4), and in this case Theorem 5.3 recovers Lemma 3.2 of [26].

e The argument used in the proof of Theorem 5.3 does not require that p
is prime.

We use Theorem 5.3 to determine the expected number of p‘-torsion

elements of a finite abelian group H drawn from Py ,,. Let T; be defined by
T,(H) = Hp']| = {z € H:p" -2 = 0}].

The number of elements of H of order exactly p’ is Ty(H) — Ty_1(H).

For a finite abelian p-group H, let 7, (H) denote the pF-rank of H, that
is,

Tpr (H) = dimgpz (pkle/pkH) )

If H is of type A, then r,« (H) = A}, the number of parts of A of size at least
k. The number of parts of A of size exactly & is A}, — Aj.,;. It is clear that

Ty(H) = p'rF 42 (F)+trye () M2t hy

Theorem 5.4. Let p be a prime, { be a positive integer, and 0 < u < p. The
expected value of Ty(H) for a finite abelian p-group H drawn from Py, is

(' +u" w1 —p )+ 1
The expected value of Ty(H) — Ty—1(H) is u’(1 —p~9).

Remark. e The exact same argument proves the analogous result for the
distribution P 4.
e Taking d = oo, u = p~" recovers a result of Delaunay, the first part
of Corollary 3 of [7]. Delaunay’s result generalizes work of Cohen and
Lenstra for Py 1 and Py, 1/, [5].

w



310 J. Fulman and N. Kaplan

e Theorem 5.3 can likely be used to compute moments of more complicated
functions involving Ty (H ) giving results similar to those of Delaunay and
Jouhet [8]. We do not pursue this further here.

Lemma 5.5. Let H be a finite abelian p-group of type A and let £ > 1. Then
#HOIH(H, Z/pZZ) _ p’r’pe (H)+Tpe—1(H)+"'+’r’p(H) _ p>‘,1+>‘/2+"'+)‘2 _ Tg(H)

Proof. Suppose
HZZ/pMT x - x L[pre 7,
and consider the particular generating set for H
e1 =(1,0,...,0), e2 = (0,1,0,...,0), ..., e ) = (0,...,0,1).

Note that e; has order p*:.

A homomorphism from H to Z/p’Z is uniquely determined by the images
of e1,...,e, (). When \; > £ there are p’ choices for the image of e;. If
1 < X\ < ¢, there are p choices for the image of e;. Therefore, the total
number of homomorphisms is

et E=D e =X+ 1 (A =2)

Proof of Theorem 5.4. We compute the expected value of
#Hom(H,Z/p'Z) — #Hom(H,Z/p'~'Z)

and apply Lemma 5.5 to complete the proof.

Let H be a finite abelian p-group drawn from Pg,. Every element of
Hom(H,7Z/p'Z) is either a surjection, or surjects onto a unique proper sub-
group of Z/p'Z. Every proper subgroup of Z/p‘Z is contained in the unique
proper subgroup of Z/p’Z that is isomorphic to Z/p’~'Z. Therefore

#Sur(H,Z/p*Z) = #Hom(H, Z/p*Z) — #Hom(H, Z/p* 7).
Lemma 5.5 implies Ty(H) — Ty_1(H) = #Sur(H,Z/p’Z). Applying Theo-
rem 5.3, noting that Ty(H) = 1 for any H, completes the proof. O

We close this section by proving a version of Lemma 5.1 for the distri-
bution Pg;,. The proof of Lemma 8.2 from [10] carries over almost exactly to
this more general setting.

Theorem 5.6. Suppose that p > 1 and 0 < u < p are such that

d
1 .
——— =[] —up) " <2 5.1
s = - (5.1)
If v is any probability measure on the set of partitions for which
ul“‘(l/p)d .
S v)[Sur(y )| = { W T T S (5.2)
X 0, otherwise,

then v = Py,
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Remark. e When p is prime this result has an interpretation in terms of
probability measures on L.

e The exact same argument proves the analogous result for the distribution
Pso .-

e The expression on the left-hand side of (5.1) decreases in p and in w.
Setting d = co, u = 1 and noting that this inequality holds for all p > 3
gives Lemma 5.1.

e Similarly, setting d = oo, u = 1/p* (with p prime and w a positive
integer) gives Proposition 2.3 of [25].

e Theorem 5.6 only applies when 1/(u/p)g < 2. Results of Wood imply
that the moments determine the distribution in additional cases where p
is prime, for example when p = 2, d = oo, and u = 1. See Theorem 3.1
in [26] and Theorem 8.3 in [24].

Proof. The assumption gives, for every p

w1 /p)a
‘Aut(u)ly(u) + Z |Sur()\’/1,)‘]/()\) e { (1/I7)d—1v(“)7 if 7’(,“4) S da (53)
Nrn 0, otherwise.

Since the second term on the left-hand side of (5.3) is non-negative, for r(u) >
d we have |Aut(u)|v(p) =0, so v(p) =0.
Now suppose that () < d. Our goal is to show that

0 = ull(u/p)a  (1/p)a
|Aut(u)| (1/p)d—r(u).

By Theorem 5.3, in the particular case v = Py, (5.3) is equal to
lul 1 A 1 Iul(1
WU 5~ i SO (e

(1/P)a—r(u) = [Awt(N)] (1/P)a—ry  (1/P)aru)
r(N)<d

v

This gives

RN [Sur(A, p)| _ ul L
Z [Aut(N[(1/P)a—rxy  (1/P)d=r(w) ((U/p)d 1>-

_ (/P)a—r SEI LN | R S
= Z |Aut(N[(1/p)a—rny  (u/p)a L
r(N)<d

It is enough to show that

|Aut ()| () = ul® (1/p)a 1

(1/P)a—r(uy B+1
By assumption, || < 1, so we verify (5.4) by showing that |Aut(u)|v(p) is
bounded by the alternating partial sums of the series

e /a1 (Upa ,
(1/P)a—r(w) B+1 (/D) dr(u) (1-p+8 ).

(5.4)
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Equation (5.3) implies that

U'”'(l/p)d
|Aut(p)|v () < v

For any A with r(\) < d, this gives

y u(1/p)a
N < Ry

Using this bound in (5.3) gives

(1/p)a

" v(p) = 227
|Aut(p)|v (1) (1/P)d=r(w)

Z [Sur(A, p)|v(A)

AF
r(N)<d
1/p)a [Sur(A, )| (1/p)a
> il R Y
(1/P)a—r(n) gﬁ; [Aut(N)| (1/p)a—r(r)
rN)<d

_ M (/p)a - uM(1/p)a
(1/p)d r(u) (1/p)d—r(u)
/)

= 1-0).
= Wi
Similarly, for any A with r(\) < d, this gives
ul! (1/p)a
V() > —0).
2 Rt Wi
Using this bound in (5.3) gives
(1
(Aut() ) = b =P S gy ()
(1/p)a— r(p) N
r(N)<d
1/p)a [Sur(A, p)| — (1/p)a
<l /P W 9,
Uiy 22 " B U)arin
r(\)<d
which implies
(1/p)a (1/p)a
Aut(p)|v(p) < ul —_— 61 -0
‘ ( )| ( ) (1/p)d77‘(u) (1/p)d7r(;4) ( )
. (1/p)a _ 2
=y ——=—(1 -5+ 5°).
(1/p)d77‘(p,) ( )
Continuing in this way completes the proof. O
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