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1. Introduction

Friedman and Washington study a distribution on finite abelian p-groups G of
rank at most d in [12]. In particular, a finite abelian p-group G of rank r ≤ d
is chosen with probability

Pd(G) =
1

|Aut(G)|

(
d∏

i=1

(1 − 1/pi)

) (
d∏

i=d−r+1

(1 − 1/pi)

)
. (1.1)

Let λ = (λ1, . . . , λr) with λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 be a partition. A finite
abelian p-group G has type λ if

G ∼= Z/pλ1Z × · · · × Z/pλrZ.

Note that r is equal to the rank of G.
There is a correspondence between measures on the set of integer parti-

tions and on isomorphism classes of finite abelian p-groups. Let L denote the
set of isomorphism classes of finite abelian p-groups. Given a measure ν on
partitions, we get a corresponding measure ν′ on L by setting ν′(G) = ν(λ),
where G ∈ L is the isomorphism class of finite abelian p-groups of type λ. We
analogously define a measure on partitions given a measure on L. When G is a
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finite abelian group of type λ, we write |Aut(λ)| for |Aut(G)|, and from Page
181 of [19]

|Aut(λ)| = p
∑

(λ′
i)

2 ∏
i

(1/p)mi(λ). (1.2)

The notation used in (1.2) is standard, and we review it in Sect. 1.2.
We introduce and study a more general distribution on integer partitions

and on finite abelian p-groups G of rank at most d. We choose a partition λ
with r ≤ d parts with probability

Pd,u(λ) =
u|λ|

p
∑

(λ′
i)

2 ∏
i(1/p)mi(λ)

d∏
i=1

(1 − u/pi)
d∏

i=d−r+1

(1 − 1/pi). (1.3)

This gives a distribution on partitions for all real p > 1 and 0 < u < p. We
can include p as an additional parameter and write P p

d,u(λ). For clarity, we will
suppress this additional notation except in Sect. 3. When p is prime, we can
interpret (1.3) as a distribution on L. When p is not prime, it does not make
sense to talk about automorphisms of a finite abelian p-group, but in this case
we can take (1.2) as the definition of |Aut(λ)|.

The main goal of this paper is to investigate combinatorial properties of
the family of distributions of (1.3). We begin by noting six interesting special-
izations of this measure.

• Setting u = 1 in Pd,u recovers Pd.
• We define a distribution P∞,u by

lim
d→∞

Pd,u(λ) = P∞,u(λ) =
u|λ|

|Aut(λ)|
∏
i≥1

(1 − u/pi).

It is not immediately clear that this limit defines a distribution on par-
titions, but this follows from the sentence after Proposition 2.1, from
Theorem 2.2, or from Theorem 5.3, taking μ to be the trivial partition.
For 0 < u < 1, this probability measure arises by choosing a random
non-negative integer N with probability P (N = n) = (1 − u)un, and
then looking at the z − 1 piece of a random element of the finite group
GL(N, p). See [13] for details.

• Note that

P∞,1(λ) =
1

|Aut(λ)|
∏
i≥1

(1 − 1/pi).

This is the measure on partitions corresponding to the usual Cohen–
Lenstra measure on finite abelian p-groups [5]. It also arises from studying
the z − 1 piece of a random element of the finite group GL(d, p) in the
d → ∞ limit [13], or from studying the cokernel of a random d× d p-adic
matrix in the d → ∞ limit [12].

• Let w be a positive integer and λ a partition. The w-probability of λ,
denoted by Pw(λ), is the probability that a finite abelian p-group of type
λ is obtained by the following three-step random process:



Random Partitions and Cohen–Lenstra Heuristics 297

– Choose randomly a p-group H of type μ with respect to the measure
P∞,1(μ).

– Then, choose w elements g1, . . . , gw of H uniformly at random.
– Finally, output H/〈g1, . . . , gw〉, where 〈g1, . . . , gw〉 denotes the group

generated by g1, . . . , gw.

From Example 5.9 of Cohen and Lenstra [5], it follows that Pw(λ) is a
special case of (1.3):

Pw(λ) = P∞,1/pw(λ). (1.4)

• We now mention two analogues of Proposition 1 of [12] for rectangular
matrices. Let w be a non-negative integer. Friedman and Washington do
not discuss this explicitly, but using the same methods as in [12] one can
show that taking the limit as d → ∞ of the probability that a randomly
chosen d × (d + w) matrix over Zp has cokernel isomorphic to a finite
abelian p-group of type λ is given by P∞,1/pw(λ). See the discussion
above Proposition 2.3 of [25].
Similarly, Tse considers rectangular matrices with more rows than columns
and shows that P∞,1/pw(λ) is equal to the d → ∞ probability that a ran-
domly chosen (d + w) × d matrix over Zp has cokernel isomorphic to
Z

w
p ⊕ G, where G is a finite abelian p-group of type λ [23].

• In Sect. 3, we see that the measure on partitions studied by Bhargava,
Kane, Lenstra, Poonen and Rains [1], arising from taking the cokernel of
a random alternating p-adic matrix is also a special case of Pd,u. Taking
a limit as the size of the matrix goes to infinity gives a distribution
consistent with heuristics of Delaunay for Tate–Shafarevich groups of
elliptic curves defined over Q [6].

A few of these specializations have received extensive attention in prior
work:

• When p is an odd prime, Cohen and Lenstra conjecture that P∞,1 models
the distribution of p-parts of class groups of imaginary quadratic fields
and P∞,1/p models the distribution of p-parts of class groups of real
quadratic fields [5]. Theorem 6.3 in [5] gives the probability that a group
chosen from P∞,1/pw has given p-rank. For any n odd, they show that
the average number of elements of order exactly n of a group drawn
from P∞,1 is 1, and that this average for a group drawn from P∞,1/p

is 1/n [5, Sect. 9]. Delaunay generalizes these results in Corollary 11
of [7], where he computes the probability that a group drawn from P∞,u

simultaneously has specified pj-rank for several values of j. Delaunay and
Jouhet compute averages of even more complicated functions involving
moments of the number of pj-torsion points for varying j in [8].

The distribution of 2-parts of class groups of quadratic fields is not
modeled by P∞,u and several authors have worked to understand these
issues. Motivated by work of Gerth [15,16], Fouvry and Klüners study
the conjectural distribution of pj-ranks and moments for the number of
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torsion points of C2
D, the square of the ideal class group of a quadratic

field [11].
• Delaunay [7] and Delaunay and Jouhet [8] prove analogues of the results

described in the previous paragraphs for groups drawn from the n → ∞
specialization of the distribution we study in Sect. 3. In [9], they prove
analogues of the results of Fouvry and Klüners [11] for this distribution.

1.1. Outline of the Paper

In Sect. 2, we interpret Pd,u in terms of Hall–Littlewood polynomials and use
this interpretation to compute the probability that a partition chosen from
Pd,u has given size, given number of parts, or given size and number of parts.
In Theorem 2.2, we give an algorithm for producing a partition according to
the distribution Pd,u.

In Sect. 3, we show how a measure studied in [1] that arises from dis-
tributions of cokernels of random alternating p-adic matrices is given by a
specialization of Pd,u. In Sect. 4, we briefly study a measure on partitions that
arises from distributions of cokernels of random symmetric p-adic matrices that
is studied in [4,24]. We give an algorithm for producing a partition according
to this distribution.

In Sect. 5, we combinatorially compute the moments of the distribution
Pd,u for all d and u. These moments were already known for the case d =
∞, u = 1, and our method is new even in that special case. We also show
that in many cases these moments determine a unique distribution. This is a
generalization of a result of Ellenberg, Venkatesh, and Westerland [10], that
the moments of the Cohen–Lenstra distribution determine the distribution,
and of Wood [25], that the moments of the distribution Pw determine the
distribution.

1.2. Notation

Throughout this paper, when p is a prime number we write Zp for the ring of
p-adic integers.

For a ring R, let Md(R) denote the set of all d × d matrices with entries
in R and let Symd(R) denote the set of all d × d symmetric matrices with
entries in R. For an even integer d, let Altd(R) denote the set of all d × d
alternating matrices with entries in R (that is, matrices A with zeros on the
diagonal satisfying that the transpose of A is equal to −A).

For groups G and H, we write Hom(G,H) for the set of homomorphisms
from G to H, Sur(G,H) for the set of surjective homomorphisms from G to
H, and Aut(G) for the set of automorphisms of G. If G is a finite abelian
p-group of type λ and H is a finite abelian p-group of type μ, we sometimes
write |Sur(λ, μ)| for |Sur(G,H)|.

For a partition λ, we let λi denote the size of the ith part of λ and mi(λ)
denote the number of parts of λ of size i. We let λ′

i denote the size of the
ith column in the diagram of λ (so λ′

i = mi(λ) + mi+1(λ) + · · · ). We also let
n(λ) =

∑
i

(
λ′

i
2

)
. We generally use r or r(λ) to denote the number of parts of

λ. We use |λ| = n to say that λ is a partition of n, or equivalently
∑

λi = n.
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We let nλ(μ) denote the number of subgroups of type μ of a finite abelian
p-group of type λ. For a finite abelian group G, the number of subgroups
H ⊆ G of type μ equals the number of subgroups for which G/H has type μ
[19, Eq. (1.5), Page 181].

We also let

(x)i = (1 − x)(1 − x/p) · · · (1 − x/pi−1).

So

(1/p)i = (1 − 1/p) · · · (1 − 1/pi).

With this notation, (1.3) is equivalent to

Pd,u(λ) =
u|λ|(u/p)d

p
∑

(λ′
i)

2 ∏
i(1/p)mi(λ)

(1/p)d

(1/p)d−r(λ)
.

We use some notation related to q-binomial coefficients, namely:

[n]q =
qn − 1
q − 1

= 1 + q + · · · + qn−1;

[n]q! = [n]q[n − 1]q · · · [2]q;(
n

j

)
q

=
[n]q!

[j]q! [n − j]q!
.

Finally if f(u) is a power series in u, we let Coef. un in f(u) denote the
coefficient of un in f(u).

2. Properties of the Measure Pd,u

To begin we give a formula for Pd,u(λ) in terms of Hall–Littlewood polynomials.
We let Pλ denote a Hall–Littlewood polynomial, defined for a partition λ =
(λ1, . . . , λn) of length at most n by

Pλ(x1, . . . , xn; t) =
1

vλ(t)

∑
w∈Sn

w

⎛
⎝xλ1

1 · · · xλn
n

∏
i<j

xi − txj

xi − xj

⎞
⎠ ,

where

vλ(t) =
∏
i≥0

mi(λ)∏
j=1

1 − tj

1 − t
,

the permutation w ∈ Sn permutes the x variables, and we note that some
parts of λ may have size 0. For background on Hall–Littlewood polynomials,
see Chapter 3 of [19].

Proposition 2.1. For a partition λ with r ≤ d parts,

Pd,u(λ) =
d∏

i=1

(1 − u/pi) ·
Pλ(u

p , u
p2 , . . . , u

pd , 0, . . . ; 1
p )

pn(λ)
.
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Proof. From Page 213 of [19],

d∏
i=1

(1 − u/pi) ·
Pλ(u

p , u
p2 , . . . , u

pd , 0, . . . ; 1
p )

pn(λ)

is equal to

u|λ| ∏d
i=1(1 − u/pi)∏

i(1/p)mi(λ)

(1/p)d

p|λ|+2n(λ)(1/p)d−r
.

Since |λ| + 2n(λ) =
∑

(λ′
i)

2, this is equal to (1.3), and the proposition
follows. �

The fact that
∑

λ Pd,u(λ) = 1 follows from Proposition 2.1 and the iden-
tity of Example 1 on Page 225 of [19]. It is also immediate from Theorem
2.2.

There are two ways to generate random partitions λ according to the
distribution Pd,u. The first is to run the “Young tableau algorithm” of [13],
stopped when coin d comes up tails. The second method is given by the fol-
lowing theorem.

Theorem 2.2. Starting with λ′
0 = d, define in succession

d ≥ λ′
1 ≥ λ′

2 ≥ · · ·
according to the rule that if λ′

i = a, then λ′
i+1 = b with probability

K(a, b) =
ub(1/p)a(u/p)a

pb2(1/p)a−b(1/p)b(u/p)b
.

Then, the resulting partition is distributed according to Pd,u.

Proof. One must compute

K(d, λ′
1)K(λ′

1, λ
′
2)K(λ′

2, λ
′
3) · · · .

There is a lot of cancellation, and (recalling that λ′
1 = r), what is left is:

(u/p)d(1/p)du
|λ|

(1/p)d−rp
∑

(λ′
i)

2 ∏
i(1/p)mi(λ)

.

This is equal to Pd,u(λ), completing the proof. �

The following corollary is immediate from Theorem 2.2.

Corollary 2.3. Choose λ from Pd,u. Then, the chance that λ has r ≤ d parts
is equal to

ur(1/p)d(u/p)d

pr2(1/p)d−r(1/p)r(u/p)r
.

Proof. From Theorem 2.2, the sought probability is K(d, r). �
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The u = 1 case of this result appears in another form in work of Stanley
and Wang [22]. In Theorem 4.14 of [22], the authors compute the probability
Zd(p, r) that the Smith normal form of a certain model of random integer
matrix has at most r diagonal entries divisible by p. Setting u = 1 in Corol-
lary 2.3 gives Zd(p, r) − Zd(p, r − 1). This expression also appears in [3] where
the authors study finite abelian groups arising as Zd/Λ for random sublattices
Λ ⊂ Z

d; isolating the prime p and the i = r term in Corollary 1.2 of [3] gives
the u = 1 case of Corollary 2.3.

The next result computes the chance that λ chosen from Pd,u has size n.

Theorem 2.4. The chance that λ chosen from Pd,u has size n is equal to

un

pn

(u/p)d(1/p)d+n−1

(1/p)d−1(1/p)n
.

Proof. By Proposition 2.1, the sought probability is equal to

∑
|λ|=n

Pd,u(λ) = (u/p)d

∑
|λ|=n

Pλ(u
p , u

p2 , . . . , u
pd , 0, . . . ; 1

p )

pn(λ)

= (u/p)d

∑
|λ|=n

un
Pλ( 1p , 1

p2 , . . . , 1
pd , 0, . . . ; 1

p )

pn(λ)

= un(u/p)d Coef.un in
∑

λ

Pλ(u
p , u

p2 , . . . , u
pd , 0, . . . ; 1

p )

pn(λ)

= un(u/p)d Coef.un in
1

(u/p)d

=
un

pn

(u/p)d(1/p)d+n−1

(1/p)d−1(1/p)n
.

The fourth equality used Proposition 2.1 and the fact that Pd,u defines a
probability distribution, and the final equality used Theorem 349 of [17]. �

Theorem 2.5. The probability that λ chosen from Pd,u has size n and r ≤
min{d, n} parts is equal to

un(u/p)d(1/p)d

pr2(1/p)d−r(1/p)r

(1/p)n−1

pn−r(1/p)r−1(1/p)n−r
.

Proof. From the definition of Pd,u, one has that

∑
λ′
1=r

|λ|=n

Pd,u(λ) =
∑
λ′
1=r

|λ|=n

un(u/p)d(1/p)d

|Aut(λ)|(1/p)d−r

= un(u/p)d

∑
λ′
1=r

|λ|=n

(1/p)d

|Aut(λ)|(1/p)d−r
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= un(u/p)d Coef. un in
∑
λ′
1=r

u|λ|(1/p)d

|Aut(λ)|(1/p)d−r

= un(u/p)d Coef. un in
1

(u/p)d

∑
λ′
1=r

Pd,u(λ)

= un(u/p)d Coef. un in
1

(u/p)d

ur(1/p)d(u/p)d

pr2(1/p)d−r(1/p)r(u/p)r

=
un(u/p)d(1/p)d

pr2(1/p)d−r(1/p)r
Coef. un−r in

1
(u/p)r

=
un(u/p)d(1/p)d

pr2(1/p)d−r(1/p)r

(1/p)n−1

pn−r(1/p)r−1(1/p)n−r
.

The fifth equality used Corollary 2.3, and the final equality used Theorem 349
of [17]. �

In the rest of this section, we give another view of the distributions given
by (1.1) and (1.3). When p is prime, Eq. (19) in [20] implies that

Pd(λ) =
1

p|λ|d

(
λ1∏
i=1

pλ′
i+1(d−λ′

i)

(
d − λ′

i+1

λ′
i − λ′

i+1

)
p

)
d∏

i=1

(1 − 1/pi). (2.1)

Comparing this to the expression for Pd(λ) given in (1.1) shows that

1
p|λ|d

(
λ1∏
i=1

pλ′
i+1(d−λ′

i)

(
d − λ′

i+1

λ′
i − λ′

i+1

)
p

)
=

1
|Aut(λ)|

(
d∏

i=d−r+1

(1 − 1/pi)

)
.

(2.2)

A direct proof is given in Proposition 4.7 of [3]. Therefore, we get a second
expression for Pd,u(λ),

Pd,u(λ) =
u|λ|

p|λ|d

(
λ1∏
i=1

pλ′
i+1(d−λ′

i)

(
d − λ′

i+1

λ′
i − λ′

i+1

)
p

)
d∏

i=1

(1 − u/pi). (2.3)

We give a combinatorial proof of (2.2) that applies for any real p > 1, so (2.3)
applies for any p > 1 and 0 < u < p.

Proof of Equation (2.2). It is sufficient to show that for a partition λ with
r ≤ d parts

|Aut(λ)|
(

λ1∏
i=1

pλ′
i+1(d−λ′

i)

(
d − λ′

i+1

λ′
i − λ′

i+1

)
p

)
= p|λ|d

r−1∏
j=0

(1 − p−d+j). (2.4)
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Clearly
λ1∏
i=1

pλ′
i+1(d−λ′

i)

(
d − λ′

i+1

λ′
i − λ′

i+1

)
p

= pd(|λ|−λ′
1)−

∑
i λ′

iλ
′
i+1

∏
i

(
d − λ′

i+1

λ′
i − λ′

i+1

)
p

= pd(|λ|−λ′
1)−

∑
i λ′

iλ
′
i+1

[d]p!
[d − λ′

1]p![λ
′
1 − λ′

2]p![λ
′
2 − λ′

3]p! · · ·

= pd(|λ|−λ′
1)−

∑
i λ′

iλ
′
i+1

(p − 1)λ′
1 [d]p!

[d − λ′
1]p!p

∑
i (

λ′
i−λ′

i+1+1
2 ) ∏

i(1/p)mi(λ)

=
pd(|λ|−λ′

1)(p − 1)λ′
1 [d]p!

[d − λ′
1]p!p

1
2 [

∑
i(λ

′
i)

2+(λ′
i+1)

2+λ′
i−λ′

i+1]
∏

i(1/p)mi(λ)

=
pd(|λ|−λ′

1)p(λ
′
1)

2/2(p − 1)λ′
1 [d]p!

[d − λ′
1]p!pλ′

1/2
· 1
p

∑
i(λ

′
i)

2 ∏
i(1/p)mi(λ)

.

Since λ′
1 = r, Eq. (1.2) implies that the left-hand side of (2.4) is equal to

pd|λ|−dr+r2/2−r/2(p − 1)r[d]p!
[d − r]p!

= pd|λ|−dr+r2/2−r/2(pd − 1) · · · (pd−r+1 − 1),

which simplifies to the right-hand side of (2.4). �

We now use the alternate expression of (2.3) to give an additional proof
of Theorem 2.4 in the case when p is prime. The zeta function of Zd is defined
by

ζZd(s) =
∑

H≤Zd

[Zd : H]−s,

where the sum is taken over all finite index subgroups of Zd. It is known that

ζZd(s) = ζ(s)ζ(s − 1) · · · ζ(s − (d − 1))

=
∏
p

(
(1 − p−s)−1(1 − p−(s−1))−1 · · · (1 − p−(s−(d−1)))−1

)
, (2.5)

where ζ(s) denotes the Riemann zeta function, and the product is taken over
all primes. See the book of Lubotzky and Segal for five proofs of this fact [18].

Second Proof of Theorem 2.4 for p prime. From (2.3), we need only prove

∑
|λ|=n

un

pnd

(
λ1∏
i=1

pλ′
i+1(d−λ′

i)

(
d − λ′

i+1

λ′
i − λ′

i+1

)
p

)
=

un

pn

(1/p)d+n−1

(1/p)d−1(1/p)n
. (2.6)

Let λ∗ = (λ1, . . . , λ1), where there are d entries in the tuple. The discus-
sion around Eq. (19) in [20] says that the term in parentheses of the left-hand
side of (2.6) is equal to the number of subgroups of a finite abelian p-group
of type λ∗ that have type λ, nλ∗(λ), which is also equal to the number of
subgroups Λ ⊂ Z

d such that Z
d/Λ is a finite abelian p-group of type λ.
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After some obvious cancelation, we need only show that∑
|λ|=n

nλ∗(λ) =
pn(d−1)(1/p)d+n−1

(1/p)d−1(1/p)n
.

The left-hand side is the number of subgroups Λ ⊂ Z
d such that Z

d/Λ has
order pn. This is the p−sn coefficient of ζZd(s). Using (2.5), this is equal to

Coef. p−sn in (1 − p−s)−1(1 − p−(s−1))−1 · · · (1 − p−(s−(d−1)))−1

= Coef. xn in (1 − x)−1(1 − px)−1(1 − p2x)−1 · · · (1 − pd−1x))−1.

By Theorem 349 of [17], this is equal to

pn(d−1)(1/p)d+n−1

(1/p)d−1(1/p)n
,

and the proof is complete. �

3. Cokernels of Random Alternating p-Adic Matrices

In this section, we consider a distribution on finite abelian p-groups that arises
in the study of cokernels of random p-adic alternating matrices. We show that
this is a special case of the distributions P p

d,u.
Let n be an even positive integer and let A ∈ Altn(Zp) be a random

matrix chosen with respect to additive Haar measure on Altn(Zp). The cokernel
of A is a finite abelian p-group of the form G ∼= H × H for some H of type
λ with at most n/2 parts, and is equipped with a nondegenerate alternating
pairing [ , ] : H × H 
→ Q/Z. Let Sp(G) be the group of automorphisms of H
respecting [ , ]. Let r be the number of parts of λ, and |λ|, n(λ), mi(λ) be as
in Sect. 1.2.

Lemma 3.1. Let n be an even positive integer and A ∈ Altn(Zp) be a ran-
dom matrix chosen with respect to additive Haar measure on Altn(Zp). The
probability that the cokernel of A is isomorphic to G is given by

PAlt
n,p (λ) =

∏n
i=n−2r+1(1 − 1/pi)

∏n/2−r
i=1 (1 − 1/p2i−1)

p|λ|+4n(λ)
∏

i

∏mi(λ)
j=1 (1 − 1/p2j)

. (3.1)

Proof. Formula (6) and Lemma 3.6 of [1] imply that the probability that the
cokernel of A is isomorphic to G is given by∣∣Sur(Zn

p , G)
∣∣

|Sp(G)|
n/2−r∏

i=1

(1 − 1/p2i−1)|G|1−n.

We can rewrite this expression in terms of the partition λ. Clearly |G| =
p2|λ|. Proposition 3.1 of [5] implies that since G has rank 2r,

|Sur(Zn
p , G)| = p2n|λ|

n∏
i=n−2r+1

(1 − 1/pi).
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An identity on the bottom of Page 538 of [7] says that

|Sp(G)| = p|λ|p2
∑

i(λ
′
i)

2 ∏
i

mi(λ)∏
j=1

(1 − 1/p2j)

= p4n(λ)+3|λ| ∏
i

mi(λ)∏
j=1

(1 − 1/p2j).

Putting these results together completes the proof. �

The next theorem shows that (3.1) is a special case of (1.3).

Theorem 3.2. Let n be an even positive integer. For any partition λ,

P p2

n/2,p(λ) = PAlt
n,p (λ).

Proof. Rewrite (1.3) as:

u|λ| ∏d
i=1(1 − u/pi)

∏d
i=d−r+1(1 − 1/pi)

p2n(λ)+|λ| ∏
i

∏mi(λ)
j=1 (1 − 1/pj)

.

Replacing d by n/2, u by p, and p by p2 gives∏n/2
i=1(1 − 1/p2i−1)

∏n/2
i=n/2−r+1(1 − 1/p2i)

p4n(λ)+|λ| ∏
i

∏mi(λ)
j=1 (1 − 1/p2j)

.

On comparing with (3.1), we see that it suffices to prove
n/2∏
i=1

(1 − 1/p2i−1)
n/2∏

i=n/2−r+1

(1 − 1/p2i)

=
n∏

i=n−2r+1

(1 − 1/pi)
n/2−r∏

i=1

(1 − 1/p2i−1).

To prove this equality, note that when each side is multiplied by

(1 − 1/p2)(1 − 1/p4) · · · (1 − 1/pn−2r),

each side becomes (1/p)n. �

4. Cokernels of Random Symmetric p-Adic Matrices

Let A ∈ Symn(Zp) be a random matrix chosen with respect to additive Haar
measure on Symn(Zp). Let r be the number of parts of λ. Theorem 2 of [4]
shows that the probability that the cokernel of A has type λ is equal to

P Sym
n (λ) =

∏n
j=n−r+1(1 − 1/pj)

∏	(n−r)/2

i=1 (1 − 1/p2i−1)

pn(λ)+|λ| ∏
i≥1

∏�mi(λ)/2�
j=1 (1 − 1/p2j)

. (4.1)

Note that P Sym
n (λ) = 0 if λ has more than n parts. As in earlier sections, when

p is prime (4.1) has an interpretation in terms of finite abelian p-groups, but
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defines a distribution on partitions for any p > 1. This follows directly from
Theorem 4.1 below.

Taking n → ∞ gives a distribution on partitions where λ is chosen with
probability

P Sym
∞ (λ) =

∏
i odd (1 − 1/pi)

pn(λ)+|λ| ∏
i≥1

∏�mi(λ)/2�
j=1 (1 − 1/p2j)

. (4.2)

The distribution of (4.2) is studied in [24], where Wood shows that it arises
as the distribution of p-parts of sandpile groups of large Erdős–Rényi random
graphs. Combinatorial properties of this distribution are considered in [14],
where it is shown that this distribution is a specialization of a two-parameter
family of distributions. It is unclear whether the distribution of (4.1) also sits
within a larger family.

The following theorem allows one to generate partitions from the measure
(4.1) and is a minor variation on Theorem 3.1 of [14].

Theorem 4.1. Starting with λ′
0 = n, define in succession n ≥ λ′

1 ≥ λ′
2 ≥ · · ·

according to the rule that if λ′
l = a, then λ′

l+1 = b with probability

K(a, b) =
∏a

i=1(1 − 1/pi)

p(b+1
2 ) ∏b

i=1(1 − 1/pi)
∏�(a−b)/2�

j=1 (1 − 1/p2j)
.

Then, the resulting partition with at most n parts is distributed according to
(4.1).

Proof. It is necessary to compute

K(n, λ′
1)K(λ′

1, λ
′
2)K(λ′

2, λ
′
3) · · ·

There is a lot of cancelation, and (recalling that λ′
1 = r), what is left is:∏n

j=1(1 − 1/pj)∏�(n−r)/2�
j=1 (1 − 1/p2j)

1

pn(λ)+|λ| ∏
i≥1

∏�mi(λ)/2�
j=1 (1 − 1/p2j)

.

So to complete the proof, it is necessary to check that∏n
j=1(1 − 1/pj)∏�(n−r)/2�

j=1 (1 − 1/p2j)
=

n∏
j=n−r+1

(1 − 1/pj)
	(n−r)/2
∏

i=1

(1 − 1/p2i−1).

This equation is easily verified by breaking it into cases based on whether n−r
is even or odd. �

The following corollary is immediate.

Corollary 4.2. Let λ be chosen from (4.1). Then, the chance that λ has r ≤ n
parts is equal to ∏n

j=r+1(1 − 1/pj)

p(r+1
2 ) ∏�(n−r)/2�

j=1 (1 − 1/p2j)
.

Proof. By Theorem 4.1, the sought probability is equal to K(n, r). �
Taking n → ∞ in this result recovers Theorem 2.2 of [14], which is also

Corollary 9.4 of [24].
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5. Computation of H-Moments

We recall that L denotes the set of isomorphism classes of finite abelian p-
groups and that a probability distribution ν on L gives a probability dis-
tribution on the set of partitions in an obvious way. Similarly, a measure on
partitions gives a measure on L, setting ν(G) = ν(λ) when G is a finite abelian
p-group of type λ. When G,H ∈ L we write |Sur(G,H)| for the number of
surjections from any representative of the isomorphism class G to any repre-
sentative of the isomorphism class H.

Let ν be a probability measure on L. For H ∈ L, the H-moment of ν is
defined as: ∑

G∈L
ν(G)|Sur(G,H)|.

When H is a finite abelian p-group of type μ, this is∑
λ

ν(λ)|Sur(λ, μ)|.

The distribution ν gives a measure on partitions and we refer to this quantity
as the μ-moment of the measure. For an explanation of why these are called
the moments of the distribution, see Sect. 3.3 of [4].

The Cohen–Lenstra distribution is the probability distribution on L for
which a finite abelian group G of type λ is chosen with probability P∞,1(λ).
One of the most striking properties of the Cohen–Lenstra distribution is that
the H-moment of P∞,1 is 1 for every H, or equivalently, for any finite abelian
p-group H of type μ, ∑

λ

P∞,1(λ)|Sur(λ, μ)| = 1.

There is a nice algebraic explanation of this fact using the interpretation of
P∞,1 as a limit of the Pd,1 distributions given by (1.1) (see for example [21]).

Lemma 8.2 of [10] shows that the Cohen–Lenstra distribution is deter-
mined by its moments.

Lemma 5.1. Let p be an odd prime. If ν is any probability measure on L for
which ∑

G∈L
ν(G)|Sur(G,H)| = 1

for any H ∈ L, then ν = P∞,1.

Our next goal is to compute the moments for the measure Pd,u; see The-
orem 5.3 below. Our method is new even in the case P∞,1.

There has been much recent interest in studying moments of distributions
related to the Cohen–Lenstra distribution and showing that these moments
determine a unique distribution [2,24,25]. At the end of this section, we add
to this discussion by proving a version of Lemma 5.1 for the distribution Pd,u.

The following lemma counts the number of surjections from G to H.
Recall that nλ(μ) is the number of subgroups of type μ of a finite abelian
group of type λ.
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Lemma 5.2. Let G,H be finite abelian p-groups of types λ and μ, respectively.
Then

|Sur(G,H)| = |Sur(λ, μ)| = nλ(μ)|Aut(μ)|.
For a proof, see Page 28 of [27]. The main idea is that |Sur(G,H)| is the

number of injective homomorphisms from Ĥ to Ĝ, where these are the dual
groups of H and G, respectively. The image of such a homomorphism is a
subgroup of Ĝ of type μ.

The distributions Pd,u are defined for all p > 1. It is not immediately
clear what the μ-moment of this distribution should mean when p is not prime,
since |Sur(λ, μ)| is defined in terms of surjective homomorphisms between finite
abelian p-groups. In (1.2), we saw how to define |Aut(λ)| in terms of the parts
of the partition λ and the parameter p, even in the case where p is not prime.
Similarly, Lemma 5.2 gives a way to define |Sur(λ, μ)| in terms of the parameter
p and the partitions λ and μ even when p is not prime. We first define |Aut(μ)|
using (1.2), and then note that nλ(μ) is a polynomial in p that we can evaluate
for any p > 1.

Theorem 5.3. The μ-moment of the distribution Pd,u is equal to{
u|μ|(1/p)d

(1/p)d−r(μ)
, if r(μ) ≤ d,

0, otherwise.

Here, as above, r(μ) denotes the number of parts of μ.

Proof. Clearly, we can suppose that r(μ) ≤ d. By Lemma 5.2, the μ-moment
of the distribution Pd,u is equal to∑

λ

Pd,u(λ)|Sur(λ, μ)| = |Aut(μ)|
∑

λ

Pd,u(λ)nλ(μ).

Let nλ(μ, ν) be the number of subgroups M of G so that M has type μ
and G/M has type ν. This is a polynomial in p (see Chapter II Sect. 4 of [19]).
Then by Proposition 2.1, the μ-moment becomes

|Aut(μ)|
d∏

i=1

(1 − u/pi) ·
∑

λ

Pλ(u
p , u

p2 , . . . , u
pd , 0, . . . ; 1

p )

pn(λ)

∑
ν

nλ(μ, ν).

Reversing the order of summation, this becomes

|Aut(μ)|
d∏

i=1

(1 − u/pi) ·
∑

ν

∑
λ

Pλ(u
p , u

p2 , . . . , u
pd , 0, . . . ; 1

p )

pn(λ)
nλ(μ, ν).

From Sect. 3.3 of [19], it follows that for any values of the x variables

∑
λ

nλ(μ, ν)
Pλ(x; 1

p )

pn(λ)
=

Pμ(x; 1
p )

pn(μ)

Pν(x; 1
p )

pn(ν)
.
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Specializing xi = u/pi for i = 1, . . . , d and 0 otherwise, it follows that the
μ-moment of Pd,u is equal to

|Aut(µ)|
d∏

i=1

(
1 − u

pi

)
·
∑
ν

Pμ(
u
p
, u

p2 , . . . ,
u
pd , 0, . . . ;

1
p
)Pν(

u
p
, u

p2 , . . . ,
u
pd , 0, . . . ;

1
p
)

pn(μ)pn(ν)

= |Aut(µ)|
Pμ(

u
p
, u

p2 , . . . ,
u
pd , 0, . . . ;

1
p
)

pn(μ)

∑
ν

d∏
i=1

(
1 − u

pi

)
Pν(

u
p
, u

p2 , . . . ,
u
pd , 0, . . . ;

1
p
)

pn(ν)
.

By Proposition 2.1, this is equal to

|Aut(μ)|
Pμ(u

p , u
p2 , . . . , u

pd , 0, . . . ; 1
p )

pn(μ)
.

By pages 181 and 213 of [19], this simplifies to

u|μ|(1/p)d

(1/p)d−r(μ)
.

�

Remark. • The exact same argument proves the analogous result for the
distribution P∞,u.

• Setting d = ∞ and u = 1/pw (with w a positive integer) gives the distri-
bution (1.4), and in this case Theorem 5.3 recovers Lemma 3.2 of [26].

• The argument used in the proof of Theorem 5.3 does not require that p
is prime.

We use Theorem 5.3 to determine the expected number of p�-torsion
elements of a finite abelian group H drawn from Pd,u. Let T� be defined by

T�(H) = |H[p�]| = |{x ∈ H : p� · x = 0}|.
The number of elements of H of order exactly p� is T�(H) − T�−1(H).

For a finite abelian p-group H, let rpk(H) denote the pk-rank of H, that
is,

rpk(H) = dimZ/pZ

(
pk−1H/pkH

)
.

If H is of type λ, then rpk(H) = λ′
k, the number of parts of λ of size at least

k. The number of parts of λ of size exactly k is λ′
k − λ′

k+1. It is clear that

T�(H) = prp(H)+rp2 (H)+···+r
p� (H) = pλ′

1+λ′
2+···+λ′

� .

Theorem 5.4. Let p be a prime, � be a positive integer, and 0 < u < p. The
expected value of T�(H) for a finite abelian p-group H drawn from Pd,u is

(u� + u�−1 + · · · + u)(1 − p−d) + 1.

The expected value of T�(H) − T�−1(H) is u�(1 − p−d).

Remark. • The exact same argument proves the analogous result for the
distribution P∞,u.

• Taking d = ∞, u = p−w recovers a result of Delaunay, the first part
of Corollary 3 of [7]. Delaunay’s result generalizes work of Cohen and
Lenstra for P∞,1 and P∞,1/p [5].
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• Theorem 5.3 can likely be used to compute moments of more complicated
functions involving T�(H) giving results similar to those of Delaunay and
Jouhet [8]. We do not pursue this further here.

Lemma 5.5. Let H be a finite abelian p-group of type λ and let � ≥ 1. Then

#Hom(H,Z/p�
Z) = pr

p� (H)+r
p�−1 (H)+···+rp(H) = pλ′

1+λ′
2+···+λ′

� = T�(H).

Proof. Suppose

H ∼= Z/pλ1Z × · · · × Z/pλrp(H)Z,

and consider the particular generating set for H

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , erp(H) = (0, . . . , 0, 1).

Note that ei has order pλi .
A homomorphism from H to Z/p�

Z is uniquely determined by the images
of e1, . . . , erp(H). When λi ≥ � there are p� choices for the image of ei. If
1 ≤ λi ≤ �, there are pλi choices for the image of ei. Therefore, the total
number of homomorphisms is

p�λ′
�+(�−1)(λ′

�−1−λ′
�)+···+1·(λ′

1−λ′
2).

�

Proof of Theorem 5.4. We compute the expected value of

#Hom(H,Z/p�
Z) − #Hom(H,Z/p�−1

Z)

and apply Lemma 5.5 to complete the proof.
Let H be a finite abelian p-group drawn from Pd,u. Every element of

Hom(H,Z/p�
Z) is either a surjection, or surjects onto a unique proper sub-

group of Z/p�
Z. Every proper subgroup of Z/p�

Z is contained in the unique
proper subgroup of Z/p�

Z that is isomorphic to Z/p�−1
Z. Therefore

#Sur(H,Z/p�
Z) = #Hom(H,Z/p�

Z) − #Hom(H,Z/p�−1
Z).

Lemma 5.5 implies T�(H) − T�−1(H) = #Sur(H,Z/p�
Z). Applying Theo-

rem 5.3, noting that T0(H) = 1 for any H, completes the proof. �

We close this section by proving a version of Lemma 5.1 for the distri-
bution Pd,u. The proof of Lemma 8.2 from [10] carries over almost exactly to
this more general setting.

Theorem 5.6. Suppose that p > 1 and 0 < u < p are such that

1
(u/p)d

=
d∏

i=1

(1 − u/pi)−1 < 2. (5.1)

If ν is any probability measure on the set of partitions for which

∑
λ

ν(λ)|Sur(λ, μ)| =

{
u|μ|(1/p)d

(1/p)d−r(μ)
, if r(μ) ≤ d,

0, otherwise,
(5.2)

then ν = Pd,u.
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Remark. • When p is prime this result has an interpretation in terms of
probability measures on L.

• The exact same argument proves the analogous result for the distribution
P∞,u.

• The expression on the left-hand side of (5.1) decreases in p and in u.
Setting d = ∞, u = 1 and noting that this inequality holds for all p ≥ 3
gives Lemma 5.1.

• Similarly, setting d = ∞, u = 1/pw (with p prime and w a positive
integer) gives Proposition 2.3 of [25].

• Theorem 5.6 only applies when 1/(u/p)d < 2. Results of Wood imply
that the moments determine the distribution in additional cases where p
is prime, for example when p = 2, d = ∞, and u = 1. See Theorem 3.1
in [26] and Theorem 8.3 in [24].

Proof. The assumption gives, for every μ

|Aut(μ)|ν(μ) +
∑
λ
=μ

|Sur(λ, μ)|ν(λ) =

{
u|μ|(1/p)d

(1/p)d−r(μ)
, if r(μ) ≤ d,

0, otherwise.
(5.3)

Since the second term on the left-hand side of (5.3) is non-negative, for r(μ) >
d we have |Aut(μ)|ν(μ) = 0, so ν(μ) = 0.

Now suppose that r(μ) ≤ d. Our goal is to show that

ν(μ) =
u|μ|(u/p)d

|Aut(μ)|
(1/p)d

(1/p)d−r(μ)
.

By Theorem 5.3, in the particular case ν = Pd,u, (5.3) is equal to

u|μ|(u/p)d(1/p)d

(1/p)d−r(μ)
+

∑
λ
=μ

r(λ)≤d

u|λ|(u/p)d
|Sur(λ, μ)|
|Aut(λ)|

(1/p)d

(1/p)d−r(λ)
=

u|μ|(1/p)d

(1/p)d−r(μ)
.

This gives∑
λ
=μ

r(λ)≤d

u|λ| |Sur(λ, μ)|
|Aut(λ)|(1/p)d−r(λ)

=
u|μ|

(1/p)d−r(μ)

(
1

(u/p)d
− 1

)
.

Let

β =
(1/p)d−r(μ)

u|μ|
∑
λ
=μ

r(λ)≤d

u|λ| |Sur(λ, μ)|
|Aut(λ)|(1/p)d−r(λ)

=
1

(u/p)d
− 1.

It is enough to show that

|Aut(μ)|ν(μ) = u|μ| (1/p)d

(1/p)d−r(μ)

1
β + 1

. (5.4)

By assumption, |β| < 1, so we verify (5.4) by showing that |Aut(μ)|ν(μ) is
bounded by the alternating partial sums of the series

u|μ| (1/p)d

(1/p)d−r(μ)

1
β + 1

= u|μ| (1/p)d

(1/p)d−r(μ)
(1 − β + β2 − · · · ).



312 J. Fulman and N. Kaplan

Equation (5.3) implies that

|Aut(μ)|ν(μ) ≤ u|μ|(1/p)d

(1/p)d−r(μ)
.

For any λ with r(λ) ≤ d, this gives

ν(λ) ≤ u|λ|(1/p)d

|Aut(λ)|(1/p)d−r(λ)
.

Using this bound in (5.3) gives

|Aut(μ)|ν(μ) = u|μ| (1/p)d

(1/p)d−r(μ)
−

∑
λ
=μ

r(λ)≤d

|Sur(λ, μ)|ν(λ)

≥ u|μ| (1/p)d

(1/p)d−r(μ)
−

∑
λ
=μ

r(λ)≤d

u|λ| |Sur(λ, μ)|
|Aut(λ)|

(1/p)d

(1/p)d−r(λ)

=
u|μ|(1/p)d

(1/p)d−r(μ)
− u|μ|(1/p)d

(1/p)d−r(μ)
β

=
u|μ|(1/p)d

(1/p)d−r(μ)
(1 − β).

Similarly, for any λ with r(λ) ≤ d, this gives

ν(λ) ≥ u|λ|

|Aut(λ)|
(1/p)d

(1/p)d−r(λ)
(1 − β).

Using this bound in (5.3) gives

|Aut(μ)|ν(μ) = u|μ| (1/p)d

(1/p)d−r(μ)
−

∑
λ
=μ

r(λ)≤d

|Sur(λ, μ)|ν(λ)

≤ u|μ| (1/p)d

(1/p)d−r(μ)
−

∑
λ
=μ

r(λ)≤d

u|λ| |Sur(λ, μ)|
|Aut(λ)|

(1/p)d

(1/p)d−r(λ)
(1 − β),

which implies

|Aut(μ)|ν(μ) ≤ u|μ| (1/p)d

(1/p)d−r(μ)
− u|μ| (1/p)d

(1/p)d−r(μ)
β(1 − β)

= u|μ| (1/p)d

(1/p)d−r(μ)
(1 − β + β2).

Continuing in this way completes the proof. �
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