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1 Introduction

It appears to be widely believed that one can obtain smooth asymptotically anti-de Sitter

(AdS) solutions of general relativity with a negative cosmological constant by taking C∞

initial data satisfying the constraints on a spacelike surface, and choosing an arbitrary C∞

conformal metric on the timelike boundary at infinity. (If matter fields are present, one

expects to be able to freely choose suitable boundary data for them as well as initial data.)

However, this is incorrect. Mathematical relativists have shown that there are an infinite

number of conditions that must be satisfied at the corner where the initial data surface hits

the asymptotic boundary [1–3].1 If we label the initial data surface t = 0, these conditions

determine all time derivatives of the boundary conformal metric (and boundary data for

the matter fields) at t = 0. If the boundary data is analytic, it is completely determined by

the initial data. There is still freedom in choosing boundary data, but it cannot be analytic.

In this note we explain why these conditions exist, discuss some consequences, and

give a simple example to illustrate them. To keep the discussion as simple as possible, we

consider the case without matter, and focus mostly on four spacetime dimensions. The

need for an infinite number of corner conditions can already be seen in the simple case of

the two dimensional wave equation on a half line (see figure 1). If u = x−t and v = x+t are

null coordinates on Minkowski spacetime, and we are given initial data φ(x, t = 0) = f(x)

and φ̇(x, t = 0) = 0 for x < 0, then the solution in the domain of dependence is simply

φ(u, v) = [f(u) + f(v)]/2. The value of the field on the boundary φ(x = 0, t) for t > 0,

depends on f(v) for v > 0 which is arbitrary except for the fact that f(v) needs to be

smooth at v = 0. This means that all time derivatives of φ at (x = 0, t = 0) are determined

in terms of space derivatives at this point.

We can see a similar effect in general relativity for asymptotically AdS solutions as

follows. Consider smooth initial data on a complete spacelike surface. This consists of the

spatial metric gij and extrinsic curvature kij satisfying the constraints

R− kijkij + k2 = 2Λ, Dj(k
ij − kgij) = 0, (1.1)

1If the solution is not required to be smooth, there are only a finite number of conditions [2]. This is

discussed in section 3.
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v = 0

Figure 1. Configuration for solving the two-dimensional wave equation with initial data on a half

line. Shaded is the future domain of dependence of the initial data. To obtain the solution outside

of this domain of dependence requires additional data such as data on the boundary (x = 0, t > 0),

which are subject to corner conditions if the full solution needs to be smooth.

where R is the three dimensional scalar curvature, Di is the three dimensional covariant

derivative, and k is the trace of kij . Assuming2 gtt = −N2 and gti = 0 (i.e. the shift is zero

and the lapse is N) the evolution equations are

ġij = −2Nkij , k̇ij = N(Rij + kkij − 2kimk
m
j − Λgij)−DiDjN, (1.2)

where a dot denotes ∂/∂t. These equations determine the second time derivative of gij at

every point in terms of the initial data. Taking a time derivative of these equations, one

obtains an expression for the third time derivative in terms of initial data. Continuing in

this way, all time derivatives of gij at t = 0 can be expressed in terms of the initial data.

This is true at each point in space. We can therefore take the limit as the point approaches

the boundary at infinity. If we conformally rescale by an appropriate conformal factor, all

time derivatives of the boundary metric at t = 0 are completely fixed.

In general, these time derivatives can depend on the choice of conformal factor and

choice of coordinates. One can discuss the corner conditions in terms of conformally invari-

ant quantities [1–3], however there are many situations of interest where a preferred con-

formal frame is picked out by symmetries. (An example is given in the next section.) The

coordinate freedom in the metric can be dealt with as follows. In any conformal frame, one

can introduce coordinates so the boundary metric takes the form ds2∂ = −dt2 + qijdx
idxj .

To ensure that t agrees with an asymptotic time coordinate in the bulk, we choose the

lapse to asymptotically approach 1/Ω where Ω2 is the conformal factor used to attach the

conformal boundary. The net result is that all time derivatives of qij at t = 0 are fixed by

the initial data.

This does not contradict the usual picture of the domain of dependence of an asymp-

totically AdS spacelike surface, which shows that initial data at t = 0 cannot determine

the boundary metric at any t > 0. There is still freedom to modify the boundary metric,

but not in an arbitrary way. It must involve nonanalytic functions whose time derivatives

at t = 0 are all fixed. It is important to note that these corner conditions involve more

2This simple choice is sufficient for our purposes of computing time derivatives, but it is not ideal for

actual evolution since the equations are not strongly hyperbolic.
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�Choose smooth initial data

�Evolve to its
domain of dependence

�Take large r limit
and rescale (corner conditions)

�Choose smooth
boundary data
satisfying the

corner conditions

�Obtain full
smooth solution

(a) Initial boundary value problem.

�Choose
smooth
boundary
metric

�Choose
smooth
boundary
stress
tensor
satisfying
constraints

� If the expansion converges, the
asymptotic metric is then determined

(b) Pure boundary value problem.

Figure 2. (a) Recipe for obtaining smooth bulk solutions given initial data and boundary data.

(b) If the Fefferman-Graham expansion converges, one can obtain the asymptotic bulk solution

from the boundary metric and boundary stress tensor.

than just a few leading corrections to the asymptotic metric. Higher order time derivatives

are related to higher order spatial derivatives of the initial data, so all powers of 1/r are

involved (see figure 2a).3

One consequence of these corner conditions is that one cannot take initial data for an

asymptotically AdS solution with a time dependent boundary metric, and ask how it would

evolve with a static boundary metric. A simple example is the AdS analog of Witten’s

“bubble of nothing” [4]. A double analytic continuation of the usual Schwarzschild AdS

solution yields (setting the AdS radius to one)

ds2 =

(
r2 + 1− M

r

)
dχ2 +

(
r2 + 1− M

r

)−1
dr2 + r2(−dt2 + cosh2 t dφ2). (1.3)

The χ coordinate is periodic and its period is chosen so that the circle it generates smoothly

pinches off at r = r0 where gχχ(r0) = 0. The spacetime only exists for r ≥ r0. Rescaling

by r−2 and taking the limit r →∞ one sees that the metric on the boundary at infinity is

(conformal to) a product of a circle and two dimensional de Sitter spacetime. Now consider

the time symmetric initial data for this solution at t = 0. With the given boundary metric,

this satisfies all the corner conditions.4 Suppose one wants to take the same initial data

and evolve it with a static boundary metric. The corner conditions show this is impossible.

We will return to this example in the last section and discuss how close one can come to

realizing this solution.

3Even though the evolution equations (1.2) involve two derivatives of N , once a conformal frame is

chosen the remaining gauge freedom in choosing N does not contribute to the time derivatives of the

asymptotic metric.
4This answers the question in [3] for a nontrivial example which satisfies all corner conditions.
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A variety of results in general relativity involve initial data with asymptotic boundary

conditions formulated in terms of powers of 1/r. An important example is the positive

energy theorem. Typically, the behavior of the first few terms are specified, but the sub-

leading terms are arbitrary. One might get the impression that the subleading terms have

no significant effects. This is incorrect. Another consequence of the corner conditions is

that initial data sets which differ only in their subleading terms cannot be evolved with

the same boundary metric. We will present an example of this in the next section.

Following the pioneering work of Chesler and Yaffe [5], much of the numerical work on

time dependent holography has used initial data specified on an ingoing null surface which

starts on a cross-section of the boundary. This initial data is not subject to an infinite

number of corner conditions. The difference can already be seen in the two dimensional

wave equation on a half line x < 0. If u = x − t and v = x + t are null coordinates on

Minkowski spacetime, and one is given smooth initial data φ(u, v = 0) = f(u) for u < 0

and smooth boundary data φ(x = 0, t) for t > 0, the only constraint is f(0) = φ(0, 0). If

this is satisfied, there is always a smooth solution φ(u, v) = f(u) + g(v) in the region u < 0

and v > 0 where g(ξ) = φ(x = 0, ξ)− f(−ξ).
In holography, one often starts with pure AdS and adds time dependent sources on the

boundary, or makes the boundary metric depend on time in the future. If the sources (or

metric) turn on at t = 0 with any power of t, the boundary data will not be smooth, and

the bulk solution will not remain smooth. By causality, the lack of smoothness can only

affect the region of the bulk to the causal future of the co-dimension two t = 0 surface on

the boundary. However one can take initial data on the ingoing null surface originating

at t = 0 and expect to obtain a smooth solution to its future (because the boundary data

is smooth for t > 0 and we do not have an infinite number of corner conditions). This

indicates that the lack of smoothness in this case is confined to the null surface.

Another way to avoid the corner conditions is to start with a static solution and modify

the freely specifiable part of the initial data in a compact region. The corner conditions

will then be satisfied with the same static boundary metric. For time symmetric initial

data in AdS, one can take the conformal metric on the initial surface to be freely specified,

and then solve the constraint (1.1) for the conformal factor (with kij = 0) [6].

So far, we have been discussing the initial value problem with boundary data. It

is interesting to compare this to the purely “boundary value problem”, where only the

boundary data are given. In this case, it is instructive to use the usual Fefferman-Graham

expansion [7, 8]. If we write the asymptotic metric in the form

ds2 =
1

z2
[dz2 + gµν(z, x)dxµdxν ], (1.4)

and expand

gµν(z, x) =

∞∑
n=0

γ(n)µν z
n, (1.5)

then it is known that in 3+1 dimensions, γ
(1)
µν = 0 and γ

(2)
µν is fixed in terms of the curvature

of the boundary metric γ
(0)
µν . The next term, γ

(3)
µν , is not determined and represents the

expectation value of the boundary stress tensor 〈Tµν〉 = (3/16πG) γ
(3)
µν [9, 10]. If both the
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boundary metric and the boundary stress tensor are known for all t, then all terms in the

expansion (1.5) are determined. This series is known to converge in a neighborhood of

the boundary for analytic data, but may not converge for general smooth data. Figure 2b

illustrates this situation. (When the series converges, regularity in the interior is often

used to fix γ
(3)
µν in terms of γ

(0)
µν .) Here, corner conditions are not usually discussed simply

because there is no corner anymore. However, at any point on the boundary, those relations

between spatial derivatives and time derivatives of the metric are still valid. While the time

derivatives were obtained from the spatial derivatives in the discussion of corner conditions,

here it is the other way around: the boundary data and their time derivatives are used to

determine the spatial derivatives of the metric at this point and thus the coefficients of the

expansion in powers of z. In fact, we can think of this as a radial evolution system. The

fact that γ
(3)
µν needs to be divergence free and traceless, is a consequence of the constraint

equations for this system.

Before we discuss our example, we review an important aspect of the Fefferman-

Graham expansion [8]. Starting with (1.4) and (1.5), Fefferman and Graham set ρ = z2 and

write down a set of second order differential equations for gµν(ρ, x). When the boundary

dimension d is odd, they show that there is a power series solution in integer powers of ρ.

This solution is uniquely determined by the boundary metric γ
(0)
µν . This class of solutions

all have zero energy since there is no zd term in the expansion.

Solutions with nonzero energy can be obtained by adding a ρd/2 term to the expansion.

But since the equations only involve ρ and ∂/∂ρ, the next integer power of ρ term that

can be affected is ρd. This is because we need to combine two ρd/2 terms to affect an

integer power, and the highest derivative terms in the equations take the form g′′ + g′2

(where a prime denotes ∂/∂ρ). This implies that in 3 + 1 dimensions, the γ
(4)
µν term in the

expansion (1.5) is determined entirely by γ
(0)
µν , and is not affected by the choice of γ

(3)
µν .

Suppose we are given γ
(0)
µν but not γ

(3)
µν , and we are asked to choose initial data on a spacelike

surface. This argument shows that, in addition to the usual initial data constraints, the

O(z), O(z2) and O(z4) terms are further constrained (in fact completely fixed). These are

part of the corner conditions. This part also applies to data on an ingoing null surface.

2 Example

In this section, we illustrate the corner conditions with an example. We start with a simple

vacuum solution known as the AdS soliton [11]

ds2 = −r2dt2 +

(
r2 − M

r

)
dχ2 +

(
r2 − M

r

)−1
dr2 + r2dφ2. (2.1)

This metric is static and the boundary geometry is flat. To keep the metric smooth at

r = r0 ≡ M1/3 where gχχ = 0, χ must be periodic with period ∆χ = 4π/3r0. We will

choose to compactify φ as well with period 2π. So the boundary is a static torus.

Now we ask what happens to the boundary metric if we take soliton initial data on

a constant t surface and modify it. It is clear from (1.3) that if we replace the r2 −M/r

factors by r2 +1−M/r the φ circle on the boundary becomes time dependent and expands

– 5 –
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exponentially.5 Instead, we want to modify the soliton initial data by a higher order term

in 1/r and ask what happens to the boundary. To do this, it is convenient to consider a

class of time-symmetric initial data

ds2|t=0 = α(r)dχ2 +
dr2

α(r)β(r)
+ r2dφ2, (2.2)

which has to satisfy the constraint

(4α′ + 2rα′′)β + (2α+ rα′)β′ = 12r. (2.3)

Since there is only one equation on two functions, we can choose α(r) freely and determine

β(r) up to a constant. This form of the initial data can describe solutions where the χ

circle pinches off or one where it does not, depending on whether α(r) vanishes somewhere.

If it does pinch off at some positive r, then the interior can be made smooth by choosing

the period of χ appropriately.

To be specific, we will choose

α(r) = r2 +
a1
r

+
a2
r2
. (2.4)

Solving (2.3) for β yields the asymptotic solution

β(r) = 1 +
b3
r3

+
b4
r4

+ · · · . (2.5)

The coefficient b3 is not fixed by the constraint equation and represents the free parameter

in the solutions to this first order ODE. Since the leading term in α is r2, if b3 6= 0, we

have effectively made an O(1/r) change in the initial data. Since we want our modification

to be strictly higher order, we will set b3 = 0. b4 and all higher order coefficients in β

are then fixed in terms of a1 and a2, which are the two parameters which label this class

of solutions. These two coefficients will be chosen so that α(r0) = 0 for some positive

radius r0, but otherwise they are not constrained. An explicit solution for β can be written

down in terms of an integral of exponentials of α, α′, and α′′, but it appears difficult to

express the integral in terms of elementary functions. One can either evaluate the integral

numerically, or simply solve (2.3) numerically.

It is clear that under evolution, the boundary metric cannot stay static. In terms of

Fefferman-Graham coordinates, z = (1/r)[1 − a1/6r3 + O(r−4)], we have made an O(z4)

change in the initial data. As reviewed at the end of the previous section, if the boundary

metric remained flat, both the O(z2) and O(z4) terms in the expansion of the solution

would have to vanish. We now compute the time dependence induced by this simple

change to the initial data.

To describe evolution off the surface, we promote the coefficients to functions of time

and add a gtt component to the metric. In a neighborhood of this initial spatial surface

(t = 0), we write

ds2 = G(r, t)dt2 +A(r, t)dχ2 +
dr2

A(r, t)B(r, t)
+ r2F (t)dφ2. (2.6)

5We are fixing our conformal frame by demanding that the χ circle remains constant.
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Note that we have used diffeomorphism freedom in r and t to set grt = 0 and gφφ = r2F (t).

Since we are interested in the asymptotic form of the solution, we expand

A(r, t) = r2 +A0(t) +
A1(t)

r
+
A2(t)

r2
+ · · · , (2.7)

B(r, t) = B0(t) +
B1(t)

r
+
B2(t)

r2
+
B3(t)

r3
+
B4(t)

r4
+ · · · , (2.8)

G(r, t) = −r2 +G0(t) +
G1(t)

r
+
G2(t)

r2
+ · · · , (2.9)

F (0) = 1, A(r, 0) = α(r), B(r, 0) = β(r), (2.10)

where the leading order term in G(r, t) is fixed using residual diffeomorphism freedom in

t. The general four-dimensional metric with U(1)2 symmetry can be described by three

functions of (r, t). It may seem odd that our metric has three functions of (r, t), and in

addition a function F (t). However, F (t) can be viewed as taking the place of the time

dependence in the leading order term in A(r, t). We have required this to be just r2 so we

can use 1/r2 as our conformal rescaling to a boundary metric with constant size χ circles.

The boundary metric is simply

ds2 = −dt2 + dχ2 + F (t)dφ2. (2.11)

The vacuum Einstein equations can then be used to determine the time derivatives

of the metric, including the boundary metric component F (t). To do this, we expand the

Einstein equations in powers of 1/r and require it to vanish at each order. Then we take

time derivatives of Einstein equations and do the same. Taking more time derivatives of the

Einstein equations allows computation of higher time derivatives of the metric components.

See table 1 for the results up to 12 time derivatives. Since our initial data is time symmetric,

an odd number of time derivatives of any quantity vanishes, so only an even number of time

derivatives appear in the table. Note that only the top left half of each section of the table

are filled. This is related to how the values are calculated in practice, as A(r) is expanded

only to a finite order and the (n + 2)-th time derivatives of the O(1/rm) coefficients are

related to the n-th time derivatives of the O(1/rm+2) coefficients in general. More entries

can of course be calculated if we expand A(r, t) to higher powers of 1/r to compute higher-

power coefficients of Einstein equations. As expected, all time derivatives vanish if a2 = 0.

To the order shown in the table, derivatives of the function F (t) at t = 0 are completely

determined by the initial data, and this will continue to higher orders. This illustrates the

corner conditions discussed in the previous section. Note that the derivatives of F (t) grow

very rapidly. This shows that F (t), if analytic, would grow much faster than et. The Taylor

series begins

F (t) = 1 +
1

3
a2t

4 +
11

105
a22t

8 +
11

2520
a21a2t

10 +
21482

467775
a32t

12 + · · · . (2.12)

If we view F (t) as a function of τ = t2, one finds that derivatives with respect to τ are still

growing, suggesting that F (t) is growing faster than et
2
. It is surprising that a subleading

change in the initial data causes such a dramatic change in the boundary geometry. The

– 7 –
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0 2 4 6 8 10 12

F 1 0 8 a2 0 4224 a22 15840 a21a2 21997568 a32

G0 0 0 0 0 0 0

G1 0 0 −50 a1a2 0 −172228 a1a
2
2

G2 0 0 0 0 0

G3 0 5 a1a2 0 93114 a1a
2
2/5

G4 0 52 a22/3 135 a21a2 271168 a32 /3

G5 15 a1a2/28 0 123321 a1a
2
2/70

G6 4 a22/5 13 a21a2/16 53456 a32/15

G7 0 4601 a1a
2
2/252

G8 −21 a21a2/40 868 a32/25

G9 −2393 a1a
2
2/1760

G10 −8 a32/9

A0 0 4 a2 0 1312 a22 7920 a21a2 6544384 a32

A1 a1 0 100 a1a2 0 365456 a1a
2
2

A2 a2 0 344 a22 1980 a21a2 1717504 a32

A3 0 10 a1a2 0 187728 a1a
2
2/5

A4 0 16 a22 85 a21a2 262976 a32/3

A5 0 0 31632 a1a
2
2/35

A6 0 −9 a21a2/4 20864 a32/15

A7 0 -117 a1a
2
2/35

A8 0 0

A9 0

A10 0

B0 1 0 0 0 0 0 0

B1 0 0 0 0 0 0

B2 0 0 0 0 0 0

B3 0 0 50 a1a2 0 172228 a1a
2
2

B4 a2 0 344 a22 1980 a21a2 1717504 a32

B5 0 15 a1a2 0 275343 a1a
2
2/5

B6 0 32 a22 315 a21a2/2 511552 a32/3

B7 − a1a2/4 0 31023 a1a
2
2/14

B8 a22/5 −21 a21a2/2 23248 a32/5

B9 0 −19 a1a
2
2/20

B10 a21a2/16 192 a32/5

B11 −13 a1a
2
2/160

B12 a32/45

Table 1. Time derivatives of the solution (2.6) at t = 0. The number of time derivatives is listed

at the top of each column.
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fact that the time dependence of F (t) begins with a t4 term is expected, since a t2 term

would produce nonzero spacetime curvature at t = 0. This would require a nonzero z2

term in a Fefferman-Graham expansion, and our initial data does not contain such a term.

Another interesting feature of this table is that to the order calculated, it appears that

A2(t) = B4(t) and G1(t) = −B3(t).

A constant rescaling of the boundary metric (2.11) will rescale the proper time and

hence all time derivatives. But this also rescales the proper length of the χ circle. So the

expansion (2.12) is valid in the conformal frame in which the length of the χ circle is given

by regularity in the interior of the bulk solution with the given a1, a2. This is part of a

general scaling symmetry of our solution (2.6). The metric is invariant under

r = λr̃, (t, χ, φ) = (t̃, χ̃, φ̃)/λ, (A,G) = λ2(Ã, G̃), (B,F ) = (B̃, F̃ ). (2.13)

If we define the dimension of a quantity to be the power of λ that it acquires under this

transformation, then a1 has dimension three and a2 has dimension four. Noting that each

time derivative adds one to the dimension, one can check that the entries in table 1 all

have the correct dimension.

It is also interesting to investigate the energy of these solutions. At first sight, it might

seem that the initial data (2.2) with α given by (2.4) and b3 = 0 would have the same

energy as the AdS soliton (with a1 = −M), since we have not changed the O(z3) term in

the Fefferman-Graham expansion, so they have the same stress tensor. However, the stress

tensor needs to be integrated over the boundary volume to give the energy. Recall that

the periodicity of χ is chosen to make the interior smooth. In fact, it needs to be

∆χ =
4π

α′(r0)
√
β(r0)

. (2.14)

Therefore, the energy should be compared to an AdS soliton that has the same size circles

on the boundary. Imposing this condition requires that a1 increase with |a2| (see figure 3).

Since a1 is the energy density and the volume of space is now the same, this shows that the

new solutions always have greater energy than the soliton. This is expected since it was

conjectured in [11] that the soliton minimizes the energy with these boundary conditions. In

fact, for initial data with U(1)2 symmetry, like the cases we are considering, this conjecture

has recently been proven [12]. Note that nothing unusual happens in figure 3 when a1 = 0.

At this point, the stress tensor vanishes, showing this solution has the same energy as pure

AdS. However, the AdS soliton has less energy than pure AdS, so the solution with a1 = 0

and a2 < 0 still represents a nontrivial excitation above the soliton ground state.

3 Discussion

We have discussed the corner conditions required for smooth asymptotically AdS gravi-

tational solutions. However, we should emphasize that analogous conditions apply to all

hyperbolic equations where additional data is required to extend solutions beyond the

initial domain of dependence.
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a₁

-1

-0.75

-0.5

-0.25

0

a₂
-10 -8 -6 -4 -2 0 2

Figure 3. Numerically computed curve in the parameter space of a1 and a2 that corresponds to

fixing the periodicity of χ to be 4π/3, which agrees with the AdS soliton with M = 1. Corresponding

curves for other periodicities can be easily obtained using the scaling symmetry (2.13). Since the

energy is proportional to a1, this shows that it is minimized at the AdS soliton.

In the introduction we mentioned that one cannot take initial data for the solution (1.3)

and evolve it with a static boundary metric. But there is an interesting physics question

related to this. First note that the interpretation of (1.3) as a “bubble of nothing” in AdS is

ambiguous. Asymptotically the two circles parameterized by χ and φ are on equal footing.

If one views the (r, φ) plane as a base, and the χ circle as a fiber over each point, then it

looks like there is a hole in the (r, φ) plane, which expands out. This is the idea behind a

“bubble of nothing”. However, one can also choose to view the (r, χ) plane as a base, and

the φ circle as a fiber, in which case there is no hole. The invariant statement is that there

is a minimal circle at r = r0 and constant t which expands forever.6

It is natural to ask if this is only possible because one of the two circles on the boundary

is also becoming large. To satisfy the corner conditions the boundary metric must look like

S1 × dS2 near t = 0, but away from t = 0 we can stop the second circle from expanding

and keep the boundary metric static to the future. (This change must be made in a

smooth but nonanalytic way.) What will the evolution look like? The minimal circle will

start to expand since inside the domain of dependence, the evolution is independent of the

boundary conditions at infinity. But when it knows that the boundary is static, will it still

become arbitrarily large, or will it reach a maximum and contract? It would be interesting

to study this solution changing the boundary conditions a short time ε after t = 0, and

taking the limit ε→ 0.

If one satisfies only the first p corner conditions, the solution cannot be any smoother

than Cp. But it might be much less regular. It was shown in [2] that in 3 + 1 dimensions,

6In asymptotically flat spacetime, there is no ambiguity since the χ circle approaches a constant size at

infinity while the φ circle grows. So only the (r, φ) plane is asymptotically flat.
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the solution will be at least Cq where q < (p − 15)/2. The authors stress that they have

not tried to maximize q, but no better result seems to exist in the literature.

What are the consequences of this loss of regularity for holography?7 The best un-

derstood examples of holography relate string theory with asymptotically AdS boundary

conditions to a dual field theory. Physicists are often happy to assume all fields are smooth

(C∞) and not worry about the difference between, e.g., C7 and C11 solutions. But the

existence of the corner conditions means that there are situations of interest with smooth

initial data and smooth boundary data, where the resulting solution will not be smooth.

Note that this is different from the case discussed in section 1 where the boundary data

itself was not smooth. In general relativity, as long as the solution is C2 (so the curvature

is well defined), this does not seem to matter. However string theory is different. The usual

Einstein equations arise as just the leading term in the classical equations of motion. There

are higher order α′ corrections that involve higher powers and derivatives of the curvature.

If the bulk solution is smooth with curvature below the string scale, these higher order

corrections can be taken into account with small perturbations to the original solution.

However, if the solution is not smooth, at some point these higher order corrections may

diverge, indicating that the leading solution is not close to an exact classical string theory

solution everywhere.

By causality, the violation of the corner conditions cannot affect the solution inside

the domain of dependence. With smooth initial data, this will remain smooth, and close

to an exact string solution. The key question is what happens outside this domain of

dependence. It is likely that the lack of smoothness will be concentrated on an ingoing null

shock wave that originates where the corner conditions are violated. If so, violating the

corner conditions would just produce a milder version of the gravitational shock waves [13]

that have been extensively studied in the context of holography (see, e.g., [14–16]). In some

cases one can argue that all α′ corrections to the shock wave vanish since the curvature

is null [17]. In this case the solution everywhere could remain close to an exact string

solution. However if the lack of smoothness propagates inside the future of the corner,

then there will likely be large stringy corrections, and the leading order solution given by

general relativity cannot be trusted there. It is clearly of interest to settle this question.

What about the dual field theory? Quantum field theory states can be defined at one

moment of time, i.e., on one spacelike surface. This is clear in a Schrödinger representation

and realized in path integral definitions of states. In holography, the bulk state should

correspond to a state in the dual QFT. One expects that given a quantum state at t = 0,

one can evolve with any time dependent metric one chooses. One also expects that if an

initial state is dual to semiclassical initial data for the bulk geometry, the evolved state

will continue to be dual to the semiclassical bulk. This is clearly in tension with the corner

conditions. In light of this, it is important to remember that many operators of interest

cannot be defined unless one is given the spacetime in a neighborhood of the t = 0 surface.

For example, in four dimensions, the expectation value of the trace of the stress energy

operator involves the square of the curvature and two derivatives of the curvature. So

7We thank Henry Maxfield and Don Marolf for discussions on this question.
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the stress tensor cannot be defined just knowing the initial metric on a spacelike surface.

One requires knowledge of at least four derivatives of the metric off the surface. This is

relevant since the Hamiltonian which evolves the state is constructed from the stress tensor.

The corner conditions suggest that there is a connection between the state and these time

derivatives, at least for semiclassical states. Clarifying this connection may lead to a deeper

understanding of holography.
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