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1 Introduction

Since the boundary of an asymptotically anti-de Sitter (AdS) spacetime is timelike, one

must specify a (conformal) metric on this boundary as well as initial data to determine a

solution to Einstein’s equation. The solution will be smooth only if it satisfies an infinite set

of compatibility conditions between the initial data and boundary data. This requirement

is in addition to the usual constraint equations on the initial data, and takes the form of

corner conditions that must be satisfied on the co-dimension two surface where the initial

data surface hits the conformal boundary [1–3].

These corner conditions arise for the following reason. Given initial data for Einstein’s

equation, the evolution equations determine the second time derivative of the spatial metric.

Higher time derivatives can be computed by taking derivatives of the evolution equations.

The net result is that all time derivatives of the spatial metric can be computed at each

point on the initial data surface. Taking the limit as the point goes to spatial infinity,

one obtains all time derivatives of the boundary metric at the initial time. To obtain a

smooth solution in the bulk, the boundary metric must be compatible with these time

derivatives. There is still freedom to choose a smooth (nonanalytic) boundary metric, but

if the boundary metric is analytic, it is uniquely determined by the initial data through

these corner conditions.

In this paper we explore the consequences of requiring that the boundary metric is

analytic. We investigate what boundary dynamics is generated by perturbations of well
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known bulk solutions. For simplicity, we consider vacuum solutions to Einstein’s equation

(with a negative cosmological constant) in D dimensions, and assume D − 2 translation

(and reflection) symmetries. We will compactify these directions into a torus TD−2. In this

case, there is a natural conformal frame for the boundary metric in which the size of one

circle is kept fixed. It is also natural to let t be proper time along the curves orthogonal

to the torus. For example, in D = 4 the boundary metric can be put into the form:

ds2|bdy = −dt2 + dχ2 + F (t)dφ2. (1.1)

Since F (t) measures the ratio of the size of two circles, it is conformally invariant.

We will consider static solutions and perturb the metric on a t = 0 surface keeping the

(D − 1)-dimensional scalar curvature equal to 2Λ, where Λ is the cosmological constant.

Setting the extrinsic curvature to zero, we satisfy the constraints and obtain time symmetric

initial data for a nearby solution. We write the full time dependent evolution in a convenient

gauge and expand all metric functions in powers of 1/r (with time dependent coefficients),

where 1/r2 is the conformal factor that results in the boundary metric (1.1). We then solve

Einstein’s equation and its time derivatives order by order in 1/r. This determines the time

derivatives of all the coefficients in the expansion, evaluated at t = 0. In particular, we

obtain time derivatives of F (t). In principle, all time derivatives can be determined this

way, however in practice, we only compute a finite number of them. In several cases these

time derivatives indicate that F (t) grows rapidly suggesting an instability.

We start with the four-dimensional planar black hole, and add a perturbation that

vanishes at infinity faster than M/r. We then use the corner conditions to compute the

first 20 time derivatives of F (t). This Taylor series indicates exponential growth of F (t), so

a small finite change in the initial data produces a huge change in the boundary dynamics.

In fact, an a2/r
2 perturbation of the black hole appears to result in F (t) > ea2t

4
. The

fact that higher powers of a2 appear in the time derivatives shows that this is a nonlinear

instability.

At first sight, this instability might seem to contradict a recent proof of the stability of

the four-dimensional planar AdS black hole [4]. However this proof applies to perturbations

on an ingoing null surface anchored at the boundary. This characteristic data does not

determine time derivatives of the boundary metric, so one does not have to impose an

infinite set of corner conditions to obtain smooth solutions. The proof in [4] assumes the

usual static boundary metric. The difference is illustrated in figure 1.

This instability is very different from other instabilities that have been found for AdS

black holes, such as the superradiant instabilities of rotating black holes [5]. The latter

result from perturbations scattering off a black hole with increased amplitude and then

bouncing off infinity and scattering off the black hole repeatedly. It arises for any smooth

boundary metric. The instability we discuss here requires an analytic boundary metric

and can be found from a local calculation in a neighborhood of the corner where the initial

data surface hits the boundary at infinity. It cannot arise in any spherically symmetric

solution since there is no conformally invariant dynamics on the boundary. There is always

a conformal frame in which the boundary metric is a static cylinder R× SD−2.
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Figure 1. Two different ways of perturbing the AdS black hole. The red horizontal line at t = 0 is

where our perturbed initial data will be, whereas the purple dashed line (an ingoing null surface)

is where the perturbation in [4] lies.

After investigating the four dimensional black hole, we then perturb other solutions in

four and higher dimensions. For the six dimensional planar black hole, we find a similar

instability. In fact, in this case there is evidence that the boundary metric becomes singular

in finite time. We also extend the instability results to the Poincare patch of pure AdS

(in both four and six dimensions). For the AdS soliton, the evidence for an instability

is inconclusive. In five dimensions, we do not find an analogous instability for either the

planar black hole or global AdS. In fact, in this case, the boundary seems to be unchanged

by any power series perturbation.

In the next three sections we consider examples in four, five, and six dimensions re-

spectively. In the last section we provide some insight into this instability and mention

some open problems.

2 4D examples

2.1 Planar black hole

In this subsection, we investigate perturbations to the four-dimensional planar AdS

black hole:

ds2 = −
(
r2 − M

r

)
dt2 +

(
r2 − M

r

)−1

dr2 + r2(dχ2 + dφ2). (2.1)

We have chosen to periodically identify χ and φ with periods ∆χ and ∆φ so the trans-

lationally invariant perturbations we will consider have finite energy, but the dynamical

results are independent of this compactification. The boundary of this solution has topol-

ogy S1 × S1 ×R, or T 2 ×R. Taking a constant-t slice gives a spacelike hypersurface with

the metric given by the last three terms in (2.1). We will perturb this initial data and

study its time evolution.
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Consider a family of time-symmetric initial data of the form:

ds2|t=0 =
dr2

α(r)β(r)
+ α(r)dχ2 + r2dφ2. (2.2)

Due to time symmetry, the extrinsic curvature is zero and the momentum constraint is

automatically satisfied. The only non-trivial constraint is then the Hamiltonian constraint

(2α+ rα′)β′ + (4α′ + 2rα′′)β = 12r. (2.3)

We can choose α(r) freely and solve this equation for β(r). The planar black hole (2.1)

corresponds to α(r) = r2 and β(r) = 1 −M/r3. Since a small perturbation should not

change the leading asymptotic behavior of (2.1), we consider

α(r) = r2 +
a2

r2
, (2.4)

which fixes β(r) to be

β(r) =
e

a2
4 r4

r3

[
c1 +

3 a
3/4
2 Γ

(
−3

4 ,
a2

4 r4

)
8
√

2

]
(2.5)

up to the integration constant c1, where Γ(a, z) is the incomplete gamma function.

As explained in the introduction, the corner conditions will be used to determine the

boundary evolution. For this purpose, it is sufficient to express β(r) as a power series near

r =∞. Since Γ
(
−3

4 , z
)
∝ z−3/4 for small z, we get

β(r) = 1 +
c1 +

3 a
3/4
2 Γ(− 3

4)
8
√

2

r3
+
a2

r4
+ · · · (2.6)

≡ 1 +
b3
r3

+
a2

r4
+ · · · , (2.7)

where we have defined a more convenient constant b3, and Γ(z) is the Euler gamma function.

For this to be a “subleading” perturbation to the black hole metric, we need to set b3 = −M
so that the perturbed initial metric becomes

ds2|t=0,perturbed =

(
r2 − M

r
+

2a2

r2
+ · · ·

)−1

dr2 +
(
r2 +

a2

r2

)
dχ2 + r2dφ2. (2.8)

This change in the metric is bounded outside the event horizon, and vanishes as a2 goes

to zero. So it is a valid (nonlinear) perturbation to the black hole geometry.

With this perturbed initial metric, we are ready to see what happens as it evolves. We

will do this in a particular coordinate system, but the result is coordinate independent.

We will use diffeomorphism invariance to (locally) put the metric in the form

ds2 = G(r, t) dt2 +
dr2

A(r, t)B(r, t)
+A(r, t) dχ2 + r2F (t) dφ2, (2.9)

F (0) = 1, A(r, 0) = α(r), B(r, 0) = β(r), (2.10)
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where grt = 0 and gφφ = r2F (t) are our gauge conditions. As explained in the introduction,

we then expand G(r, t), A(r, t) and B(r, t) as power series of 1/r:

A(r, t) = r2 +
∞∑
n=0

An(t)

rn
, B(r, t) =

∞∑
n=0

Bn(t)

rn
, G(r, t) = −r2 +

∞∑
n=0

Gn(t)

rn
. (2.11)

These three functions describe the general metric with our symmetries. Setting gφφ=r2F (t)

instead of gφφ = r2 allows us to remove the time dependence in the leading term in A(r, t).

Residual gauge freedom to reparametrize time on the boundary has been used to fix the

leading term in G(r, t) to be −r2. Metric components proportional to r cannot appear as

a consequence of Einstein’s equation evaluated near the boundary. We have used this fact

preemptively.

Rescaling (2.9) by 1/r2 and using (2.11) yields the boundary metric

ds2|bdy = −dt2 + dχ2 + F (t)dφ2, (2.12)

so F (t) controls the boundary evolution. Notice that B0(t) is free in our ansatz, but

Einstein’s equation sets B0(t) = 1 for all t. This means grr = 1/r2 to leading order, so

that z = 1/r to leading order, where z is the standard Fefferman-Graham radial coordinate

in which

ds2 =
1

z2

[
dz2 +

( ∞∑
n=0

γ(n)
µν (x)zn

)
dxµdxν

]
. (2.13)

This means that we can also obtain eq. (2.12) by writing the metric in Fefferman-Graham

coordinates and extracting γ
(0)
µν .

Imposing Einstein’s equation and its time derivatives and solving them order by order

in powers of 1/r allow us to obtain time derivatives of all the functions including F (t).

(For more details see [6].) The first 20 time derivatives of F (t) have been calculated:

F (t) = 1 +
1

3
a2t

4 +
11

105
a2

2t
8 +

73

1260
M2a2t

10 +
21482

467775
a3

2t
12 +

1887

21560
M2a2

2t
14

+

(
39541905M4a2 + 70796224a4

2

)
t16

2724321600
+

437831897

4086482400
M2a3

2t
18

+

(
29268111459375M4a2

2 + 10234594085504a5
2

)
t20

593970216840000
+O(t22) (2.14)

≈ 1 + 0.33 a2t
4 + 0.10 a2

2t
8 + 0.058M2a2t

10 + 0.046 a3
2t

12 + 0.088M2a2
2t

14

+
(
0.015M4a2 + 0.026 a4

2

)
t16 + 0.11M2a3

2t
18

+
(
0.049M4a2

2 + 0.017 a5
2

)
t20 +O(t22). (2.15)

Only even powers of t appear since our initial data was time symmetric. The structure of the

terms can be understood from a simple scaling argument [6]. Notice that the metric (2.9)
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Figure 2. Mass-independent contributions to F (n)(T )|T=0 plotted against n for the perturbation

given by eq. (2.4) (black dots) and for a reference function Fref(T ) = eT (green diamonds). Since

the mass-dependent terms are all positive, this gives a lower bound on the growth of F (T ) if the

pattern displayed in the figure continues. This suggests that the function will grow at least at fast

as ea2t
4

.

is invariant under

r = λr̃, (t, χ, φ) = (t̃, χ̃, φ̃)/λ, (A,G) = λ2(Ã, G̃), (B,F ) = (B̃, F̃ ). (2.16)

If we define the dimension of a quantity to be the power of λ that it acquires under this

transformation, then M has dimension three and a2 has dimension four. Noting that t has

dimension −1, each term in (2.14) has dimension zero as required for F .

A remarkable feature of this expansion is that all the coefficients are positive (for

a2 > 0). So we can get a lower bound to the growth of F (t) by focussing on the terms

that are independent of M . These terms can be written as a power series in T ≡ a2t
4. To

compare with eT , we compute derivatives of F with respect to T at T = 0 (to 2 decimal

places) and find:

F (T = 0) = 1.00, F (1)(T )|T=0 = 0.33,

F (2)(T )|T=0 = 0.21, F (3)(T )|T=0 = 0.28,

F (4)(T )|T=0 = 0.62, F (5)(T )|T=0 = 2.07.

(2.17)

We can plot F (n)(T )|T=0 against n. Figure 2 shows how it compares to the function

eT . Although the first few derivatives are less than one, the last one we have computed is

larger than one and they appear to be increasing, suggesting that F (t) will grow at least

like ea2t
4
. If we compute derivatives of F with respect to T̃ =

√
a2t

2, we get:

F (T̃ = 0) = 1.00, F (2)(T̃ )|T̃=0 = 0.66,

F (4)(T̃ )|T̃=0 = 2.51, F (6)(T̃ )|T̃=0 = 33.06,

F (8)(T̃ )|T̃=0 = 1048, F (10)(T̃ )|T̃=0 = 62527.

(2.18)
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clearly showing that F (t) is growing much faster than cosh(
√
a2t

2). This is a nonlinear in-

stability since the higher powers of a2 only arise due to nonlinearities in Einstein’s equation.

We now consider perturbations that fall off faster than a2/r
2. The above dimension

counting argument shows that adding a perturbation a3/r
3 to α(r) will induce powers of

a3t
5 in the expansion of F . But since only even powers of t can appear in the evolution of

time symmetric data, only two terms will be nonzero in the first 20 time derivatives. So

we will instead add an a4/r
4 term next. However, after that we will turn on multiple ai’s,

including odd i. These coefficients can combine to give many non-zero cross-terms in the

expansion of F (t), and we will examine their signs. Before doing that, we turn on a single

ai at a time.

Replacing eq. (2.4) with

α(r) = r2 +
a4

r4
, (2.19)

and solving the constraint (2.2), we obtain

β(r) = c1
r12

(2r6 − a4)5/2
+

4r12
2F1

(
2, 5

2 ; 7
2 ; 1− 2r6

a4

)
5a2

4

, (2.20)

where 2F1(a, b; c; z) is the hypergeometric function. We again expand this in a power series

in 1/r:

β(r) = 1 +
−3π

√
a4

4
√

2
+ c1

4
√

2

r3
+

2a4

r6
+ · · · ≡ 1 +

b3
r3

+
2a4

r6
+ · · · . (2.21)

So, setting b3 = −M as before, our initial data describes another perturbation of the

black hole.

Using the same coordinate system and notation as before, we again compute the first

20 time derivatives of F (t):

F (t) = 1 +
a4t

6

5
+

(
4915M2a4 + 4728a2

4

)
t12

46200

+

(
24593045M4a4 + 160990052M2a2

4 + 55433856a3
4

)
t18

571771200

= 1 + 0.20a4t
6 +

(
0.11M2a4 + 0.10a2

4

)
t12

+
(
0.043M4a4 + 0.28M2a2

4 + 0.097a3
4

)
t18 +O(t22).

(2.22)

Notice that all the terms are again positive, and the terms independent of M appear in

the dimensionless combination T = a4t
6. The first few derivatives of F with respect to

T can be computed and are slightly less than one. Even though these derivatives are less

than one, they are growing and likely to exceed one. If so, F will grow faster than ea4t
6
. If

one computes derivatives with respect to τ ≡ a
1/3
4 t2 and focuses on terms containing only

powers of a4, we have

F (τ)|τ=0 = 1.00, F (3)(τ)|τ=0 = 1.20,

F (6)(τ)|τ=0 = 73.68, F (9)(τ)|τ=0 = 35181.6,
(2.23)

clearly showing a rapid growth.
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To summarize, for both a2/r
2 and a4/r

4 perturbations in α(r) to the planar black hole,

we find a rapid growth of the size of one circle relative to the other in the boundary metric

(and in the asymptotic region).

More generally, we have also studied perturbations given by

α(r) = r2 +
9∑

n=1

(a2n

r2n
+
a2n+1

r2n+1

)
(2.24)

and computed the first twenty time derivatives of F (t). (We could have included higher

order terms in this expansion but they would not contribute to the first 20 derivatives.)

Remarkably, for positive a2n and negative a2n+1, all 133 terms in F (t) are positive including

cross-terms involving two or more ai’s. There is thus a large class of unstable perturbations.

2.2 Pure AdS: Poincare patch

To investigate perturbations to the Poincare patch of pure AdS, we can simply take our

results for the planar AdS black hole and set M to zero. However, there is an important

difference. A pivotal feature of the black hole is the existence of a horizon. We have

used this fact to turn on ai individually while keeping the perturbation small outside the

horizon. Indeed, a perturbation like 1/rn for positive n blows up near the origin. This was

not a problem for the black hole, but a neighborhood of r = 0 is now part of our initial

data. If we want our perturbation to die off at the origin, we will have to choose it more

carefully. Since our instability only depends on the asymptotic behavior of the initial data,

one could modify the initial data by hand in the interior in a smooth but not analytic way

so that it vanishes near the Poincare horizon. But since the boundary is required to be

analytic, one might ask if there is an analytic perturbation that is unstable.

For an analytic perturbation to the initial data, keeping all ai positive will obviously

make α(r) diverge at small r. Making all ai negative, on the other hand, will give α(r) = 0

for some finite r. Therefore, a finite perturbation everywhere necessitates a mixture of

positive and negative ai terms in the asymptotic expansion. Fortunately, for our generic

perturbation (2.24), having all terms of F (t) being positive precisely requires a mixture

of two signs. Although a growing F (t) does not by itself suggest an instability, we have

seen that having a2/r
2 and a4/r

4 terms already leads to growth faster than exponential,

and other terms will only enhance this instability. Finite functions having positive a2n and

negative a2n+1 are easy to construct. One simple example is

α(r) = r2 +
Ae−1/r

r2
, (2.25)

for a small parameter A. This shows that Poincare patch of AdS is unstable under an

analytic perturbation with analytic boundary condition.

2.3 Soliton

In this subsection we consider the AdS soliton [7, 8] which is expected to have the lowest

energy among solutions with T 2 × R boundary topology. This has been proven recently

– 8 –
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for time symmetric initial data with U(1)D−2 symmetry [9], which is just what we are

considering. Of course having minimum energy does not preclude instabilities associated

with adding small finite perturbations. So we now ask whether this ground state exhibits

the same type of instability as the black hole.

The metric is a double analytic continuation of that of the planar black hole:

ds2 = −r2dt2 +

(
r2 − M

r

)−1

dr2 +

(
r2 − M

r

)
dχ2 + r2dφ2. (2.26)

The effect of perturbing this solution was carried out in [6] to 12 orders in t. Here we

extend the calculation to higher orders.

The calculation for the soliton is almost exactly the same as that for the black hole.

In fact, the results for both can be obtained in one single calculation, with

α(r) = r2 +
a1

r
+
a2

r2
, β(r) = 1 +

b3
r3

+ · · · , (2.27)

setting a1 = 0, b3 = −M for the black hole and a1 = −M , b3 = 0 for the soliton only after

the computation is complete. Note that the terms containing only powers of a2 would be

exactly the same as before, because these terms can be obtained by setting M = 0 in both

cases so that the two problems become identical. The terms containing powers of M will

however be different, as M arises from different parts of the metric in each case. The first

16 terms of the Taylor series for F (t) are:

F (t) = 1 +
1

3
a2t

4 +
11

105
a2

2t
8 +

11

2520
M2a2t

10 +
21482

467775
a3

2t
12 (2.28)

+
102937

20180160
M2a2

2t
14 +

(
−39555M4a2 + 17699056a4

2

)
t16

681080400
+O(t18). (2.29)

Notice the minus sign in the M dependent coefficient of t16. Since M is finite and fixed

while a2 should be taken arbitrarily small to be considered a perturbation, the order t16

term is negative overall. Furthermore, notice that whatever sign we choose for a2, this ex-

pansion will contain both positive and negative terms. Thus, we cannot conclude anything

about the growth of F (t) from this expansion. An a4/r
4 perturbation also gives negative

terms. Therefore, at least for a2 and a4 perturbations, we cannot conclude that there is

an instability.

We now mention a subtlety for the soliton that is not present in the case of black

holes. For the unperturbed soliton to have no conical singularity where α(r) = 0, we need

to choose the correct period for the χ circle. However, with the correct period chosen for

the unperturbed soliton, a generic perturbation will lead to a conical singularity where the

perturbed α equals zero. As the change in the metric will be small, a small change in

the period of the χ circle can be employed to restore smoothness. We always include the

necessary change in the period as part of our definition of the perturbation.

– 9 –
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3 5D examples

3.1 Planar black hole

Given evidence for an instability in four dimensions, a natural question to ask is what hap-

pens in other dimensions. In three dimensions, the boundary metric is always conformal to

a static cylinder, so there is no analogous instability. We therefore consider higher dimen-

sions. We will first look at the five-dimensional case and then move on to six dimensions

in the next section.

The unperturbed metric for a 5D planar black hole in AdS is given by

ds2 = −
(
r2 − M

r2

)
dt2 +

(
r2 − M

r2

)−1

dr2 + r2(dχ2 + dφ2 + dψ2). (3.1)

Now we have three circles, so we can perturb the solution in several ways. One option

is to perturb one of the circles as before by adding subleading terms to the metric, while

keeping the T 2 symmetry for the remaining two circles. In other words, we start with the

perturbed initial data

ds2|t=0 =
dr2

α(r)β(r)
+ α(r) dχ2 + r2(dφ2 + dψ2),

α(r) = r2 +

∞∑
n=3

an
rn
,

(3.2)

where each an can be independently zero or non-zero. Note that we start from n = 3

because the mass term is of order 1/r2. Now β(r) is again obtained by solving the initial

data constraint, and the integration constant is chosen to match the mass term to that of the

unperturbed metric. To obtain the time dependence, we again write the metric in the form

ds2 = G(r, t) dt2 +
dr2

A(r, t)B(r, t)
+A(r, t) dχ2 + r2F (t)(dφ2 + dψ2), (3.3)

and again compute time derivatives of F . We find that they all vanish, i.e.,

F (t) = 1 +O(t14). (3.4)

This is strong evidence that F = 1 to all orders, so our perturbation does not induce any

time dependence on the boundary in five dimensions.

Alternatively, we can perturb a 2-torus and study its effect on the third circle. A T 2

symmetric perturbation can be written as

ds2|t=0 =
dr2

α(r)β(r)
+ α(r)(dχ2 + dφ2) + r2 dψ2,

α(r) = r2 +

∞∑
n=3

an
rn
,

(3.5)

which evolves to (by choosing the gauge similarly)

ds2 = G(r, t) dt2 +
dr2

A(r, t)B(r, t)
+A(r, t)(dχ2 + dφ2) + r2F (t) dψ2. (3.6)
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Again, we find that the circle does not grow: F (t) = 1+O(t14). Breaking this T 2 symmetry

and choosing two independent perturbations for two circles results in the same answer,

F (t) = 1 +O(t8), where higher orders have not been calculated.

It thus seems that five dimensions is very different from four dimensions, at least in

the case of planar black holes. Adding perturbations that are powers of 1/r do not affect

the boundary at all. Since our choice for the perturbation appears quite generic, it may

be tempting to conclude that no perturbation can affect the boundary in 5D. However,

the Fefferman-Graham expansion of solutions in 5D contains logarithmic terms which are

not present in even dimensions. One might thus want to include logarithmic terms in the

initial data perturbation and see whether they induce a time dependence on the boundary.

We will give an argument in section 5 that they do.

3.2 Pure AdS: global

We next consider perturbations of global AdS5.1 The unperturbed global AdS5 solution

can be written using the following metric,

ds2 = −g(r)dt2 + dr2/a(r) + h(r)(dθ2 + sin2 θ dφ2) + f(r)(dχ+ cos θ dφ)2,

g(r) = a(r) = r2 + 1,

h(r) = f(r) = r2/4.

(3.7)

Now we perturb the initial data (restricting to time-symmetric initial data as before) so that

f(r) = r2/4 (unchanged),

h(r) = r2/4 +
Ar4

B + r6
,

(3.8)

which determines a(r) through a first-order ODE (the initial data constraint 4R = 2Λ),

which we solve numerically. Expanding in powers of 1/r yields

h(r) =
r2

4
+
A

r2
− AB

r8
+
AB2

r14
− AB3

r20
+O(1/r26). (3.9)

For small r, using regularity at the origin to fix the integration constant,

a(r) = 1 +

(
1− 8A

B

)
r2 +O(r4), (3.10)

which, upon solving the ODE, gives the integration constant, C, in the large-r expansion

a(r) = r2 + 1 +
C

r2
+O(1/r4). (3.11)

Figure 3 shows the numerically determined relation between A and C, where B is fixed to 1.

1We cannot do a similar analysis of global AdS4 without breaking the spherical symmetry and keeping

only a single Killing field. In five dimensions we can keep enhanced symmetry even after breaking spherical

symmetry.
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Figure 3. Relation between the free parameter, A, in the perturbation (3.8) with B = 1, and the

constant, C, in the asymptotic expansion of a(r) (3.11).

Now for the evolution, we use a gauge similar to the previous ones, and write

ds2 =G(r, t)dt2+
dr2

A(r, t)
+H(r, t)(dθ2+sin2 θdφ2)+

r2

4
F (t)(dχ2+cosθdφ)2,

G(r, t) =−r2+

∞∑
n=0

Gn(t)

rn
,

A(r, t) =Ab(t)r
2+

∞∑
n=0

An(t)

rn
,

H(r, t) =
r2

4
+
∞∑
n=0

Hn(t)

rn
.

(3.12)

The boundary evolution of the function A(r, t), i.e., the function Ab(t) is found to be

Ab(t) = 1 +O(t12), (3.13)

so, as before, we can use the usual Fefferman-Graham radial coordinate to determine the

boundary metric. This is equivalent to using 1/r2 as the conformal rescaling factor to

obtain the conformal metric at the boundary. The only possible change in the boundary

metric comes from F (t). It is given by

F (t) = 1 +O(t12). (3.14)

So, up to this order, the corner conditions predict a static boundary metric if it is analytic.

This is just like the 5D black hole. Although we have chosen a specific form of pertur-

bation (3.8), it is likely that the boundary would remain static under more general power

series perturbations. Again, this should change if log terms are included. See Discussion

section for an argument.
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4 6D examples

4.1 Planar black hole

The six dimensional planar black hole is similar to (3.1) with the T 3 replaced by T 4 and

M/r2 replaced by M/r3. In analogy to the 5D case, we can (a) perturb one circle and

calculate the response of the remaining T 3, (b) perturb a symmetric T 2 and calculate

the response of the other symmetric T 2, or (c) perturb a symmetric T 3 and calculate the

response of the remaining circle. In each case, we choose an ansatz similar to those of the

previous examples and consider a perturbation of the form

α(r) = r2 +
a4

r4
+
a6

r6
. (4.1)

For case (a), we have

F (t) = 1− a4t
6

5
− 3a6t

8

35
− a

2
4t

12

2310
− 1791a4a6t

14

175175
−
(

3169M2a4

420420
+

103a2
6

15925

)
t16+· · · ; (4.2)

For case (b), we have

F (t) = 1− a4t
6

5
− 3a6t

8

35
− 109a2

4t
12

5775
− 7543a4a6t

14

175175
−
(

3169M2a4

420420
+

67a2
6

3185

)
t16+· · · ; (4.3)

For case (c), we have

F (t) = 1− a4t
6

5
− 3a6t

8

35
− 431a2

4t
12

11550
− 2659a4a6t

14

35035
−
(

3169M2a4

420420
+

81a2
6

2275

)
t16+· · · . (4.4)

In each case, the prefactors of a2
4t

12 and a2
6t

16 are now both negative, and as a result these

terms contribute negatively to the evolution regardless of the signs of a4 and a6. This is

quite different from the four dimensional case: for these two perturbations we do not see

evidence for an exponential growth.

However a shrinking circle can also indicate an instability since it is only the ratio of

the size of the two circles that is conformally invariant. To explore this, we turn on a more

general perturbation given by

α(r) = r2 +
7∑

n=2

(a2n

r2n
+
a2n+1

r2n+1

)
, (4.5)

where n starts at 2 because we want perturbations to be more subleading than the mass

term (order 1/r3). Surprisingly, after computing 16 derivatives of F (t), all time dependent

terms (there are 16 of them) are negative for positive a2n and negative a2n+1. This occurs

in all three cases (a,b,c) above. This suggests that for this class of perturbations F (t) will

monotonically decrease to zero. When F = 0, the boundary metric develops a singularity

where (a) the 3-torus, (b) the 2-torus, or (c) the circle shrinks to a point.

If F indeed vanishes in finite time, we could choose another conformal frame in which

the shrinking torus is kept fix but the remaining circles expand. In this frame, the evolution

would look very similar to the four dimensional case, however we would know that the

expanding circles actually diverge in finite time. That might also be the case for the four

dimensional solutions if the Taylor series fails to converge at a finite time.
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4.2 Pure AdS: Poincare patch

As before, we can simply set M = 0 and obtain results for the Poincare patch of AdS6.

Just like the Poincare patch of AdS4, we will need to choose perturbations that die off near

r = 0. This requires mixed signs in the series expansion of α(r). In 6D, we now have the

statement that all time dependent terms are negative for positive a2n and negative a2n+1

(up to the order we have calculated). We can for example choose a function like

α(r) = r2 +
Br−1/r

r4
, (4.6)

where B is a small parameter indicating the size of our perturbation. This would give a

singularity when F (t) = 0 as in the black hole example above.

4.3 Soliton

Like in section 2.3, we can obtain the results for the soliton easily. Adding −M/r3 to

eq. (4.5) and setting b5 = 0, we obtain F (t) for the soliton in each of the three cases.

Surprisingly, in all cases (a,b,c), we again find that all time dependent terms are negative

for a2n > 0 and a2n+1 < 0. However the term with the wrong sign in four dimensions was

proportional to M4a2, and the analogous term in six dimensions would be M4a4. Since

M now has dimension five under the scaling (2.16), this has dimension 26 and would not

show up until we reach t26 terms in the Taylor expansion. Thus we should probably not

conclude anything about the stability of the AdS soliton in six dimensions.

5 Discussion

We have studied small but finite perturbations of several static asymptotically AdS solu-

tions of Einstein’s equation. Assuming that the boundary metric is analytic, it is completely

determined by the perturbed initial data due to corner conditions that all smooth solu-

tions must obey. In five dimensions, the boundary metric remained static, but in both four

and six dimensions, the boundary metric becomes dynamical. For the planar black hole,

we have found evidence for an asymptotic instability, where the size of one circle grows

rapidly relative to the other. In six dimensions, it appears that this can lead to a curvature

singularity in finite time. (This might also be true in four dimensions.) This instability

extends to the Poincare patch of pure AdS in both four and six dimensions. It is not clear

if it also applies to the AdS soliton in these dimensions.

How can we understand this instability? The linear terms in our expansions for the time

dependence of the boundary metric have a simple explanation. Linear metric perturbations

act like a massless scalar field. So consider the Poincare patch in D dimensions

ds2 =
1

z2

[
−dt2 + dxidx

i + dz2
]
, (5.1)

where i = 1, · · · , D − 2. Translationally invariant solutions of ∇2Φ = 0 satisfy

Φ̈ = Φ′′ +
2−D
z

Φ′. (5.2)
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So if we expand

Φ =

∞∑
n=0

cn(t)zn, (5.3)

the coefficients must satisfy

c̈n−2 = n(1 + n−D)cn. (5.4)

The familiar modes of a massless scalar in AdSD are proportional to zD−1 asymptotically.

Setting n = D−1 in (5.4) we see that this does not trigger any time dependence in the other

terms, and it is consistent to keep Φ = 0 on the boundary z = 0. However, if higher order

terms are nonzero at t = 0, they will trigger time dependence in the lower order terms. If

this continues down to c0, then Φ(z = 0) becomes time dependent. This does not happen

for odd D, since D−1 is even and (5.4) relates coefficients differing by two, so even if cD−1

becomes time dependent, there is no time dependence in the lower order even terms.

For even D, the situation is very different. Now, if cn 6= 0 for any even integer n

larger than D − 1, eq. (5.4) implies time dependence in all lower order even coefficients

including c0. In D = 4 for example, c4 6= 0 implies c0 = −c4t
4/3, and c6 6= 0 implies

c0 = −c6t
6/5. For D = 6, c6 6= 0 implies c0 = c6t

6/5, and c8 6= 0 implies c0 = 3c8t
8/35.

These coefficients agree exactly with the linear terms in the expansions for F (t) with the

translation an = −cn+2. (The sign is unimportant for a linear perturbation.)

Returning to odd dimensions, consider adding a term c̃D−1z
D−1 ln z to the expan-

sion (5.3). Then one finds c̈D−3 = (D−1)c̃D−1. This implies a nonzero c̈0. Hence log terms

in the perturbation will generate time dependence on the boundary in odd dimensions.

Given this simple explanation for why a power law fall off in z (or 1/r) produces a

power law growth in t on the boundary, the surprise lies in the fact that the nonlinearities

of general relativity appear to enhance this to (at least) an exponential growth. We stress

that only the asymptotic initial data (and all its derivatives) are needed to generate this

instability.

Physically, one can avoid this asymptotic instability by either not using an analytic

boundary metric or allowing bulk solutions that are not smooth. In the first case, one can

take a boundary metric which satisfies all the corner conditions at t = 0, but then modify

it in a smooth but nonanalytic way so that it becomes static. In the second case, one can

insist on a static boundary metric everywhere and violate the corner conditions at t = 0.

This results in a null gravitational “shock wave” of lower differentiability in the solution.

We close with some open questions. Of course, the main one is to confirm the existence

of this nonlinear instability and understand it better. Here are some others:

1. Does global AdS in four and six dimensions exhibit this instability? (This requires

breaking more symmetry.)

2. Does the AdS soliton exhibit this instability? (We have seen in four dimensions that

the mass terms can act to slow down the growth, but they may not be sufficient to

stop it.)

3. What does the nonlinear instability look like in odd dimensions with log terms in the

initial data?
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4. We have only considered vacuum solutions. How do matter fields (with analytic

boundary data) affect this instability?

5. In the context of holography, does this instability have any implications for the dual

gauge theory?
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