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Abstract

The margins of an expanding range are predicted to be challenging environments for
adaptation. Marginal populations should often experience low effective population sizes
(Ne) where genetic drift is high due to demographic expansion and/or census population

size is low due to unfavorable environmental conditions. Nevertheless, invasive species



demonstrate increasing evidence of rapid evolution and potential adaptation to novel
environments encountered during colonization, calling into question whether significant
reductions in Ne are realized during range expansions in nature. Here we report one of
the first empirical tests of the joint effects of expansion dynamics and environment on
effective population size variation during invasive range expansion. We estimate
contemporary values of Ne using rates of linkage disequilibrium among genome-wide
markers within introduced populations of the highly invasive plant Centaurea solstitialis
(yellow starthistle) in North America (California, USA), and within native Eurasian
populations. As predicted, we find that Ne within the invaded range is positively
correlated with both expansion history (time since founding) and habitat quality (abiotic
climate). History and climate had independent additive effects with similar effect sizes,
indicating an important role for both factors in this invasion. These results support
theoretical expectations for the population genetics of range expansion, though whether
these processes can ultimately arrest the spread of an invasive species remains an

unanswered question.

Introduction
Adaptation is expected to be a critical component of how species respond to novel
environmental conditions, such as those encountered during colonization and range

expansion (Mayr 1963; Kirkpatrick & Barton 1997; Griffith & Watson 2006; Colautti &

Barrett 2013; Bock et al. 2015; Hamilton et al. 2015). At the same time, it has been

suggested that colonizing species might experience small population sizes that limit the
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ability of founding populations to respond to natural selection (Elam et al. 2007;

Dlugosch et al. 2015; Gonzalez-Martinez et al. 2017; Welles and Dlugosch 2018). Small

population sizes could result from both founder events and maladaptation to novel
environments. A failure to adapt under these conditions could slow or limit range

expansion and contribute to the formation of range limits (Bridle and Vines 2007; Eckert

et al. 2008; Sexton et al. 2009; Polechova and Barton 2015; Polechova 2018). These

effects are currently an active area of theoretical and experimental research (Gilbert et

al. 2017; Szics et al. 2017a; Szlcs et al. 2017b), but empirical observations of the

dynamics of population size and its influence on evolution during ongoing range

expansions is scant (Ramakrishnan et al. 2010; Wootton and Pfister 2015).

Population genetic models predict that deleterious alleles may become fixed during
range expansion due to the strong effects of genetic drift during colonization (Lehe et al.

2012; Peischl et al. 2013; Peischl et al. 2015), ultimately resulting in failure to

adapt(Henry et al. 2015; Polechova and Barton 2015; Polechova 2018). Range

expansions are expected to involve a series of founding events (repeated sampling
events) as new populations establish beyond the current range boundary, resulting in
reduced effective population size (Ne) and increased sampling effects as the range

boundary advances (Le Corre & Kremer 1998; Excoffier 2004; Slatkin & Excoffier 2012).

In particular, low N at the leading edge can cause random alleles, including deleterious
mutations, to ‘surf’ to high frequency regardless of patterns of selection (Travis et al.

2007:; Excoffier and Ray 2008: Excoffier et al. 2009; Hallatschek and Nelson 2010:

Moreau et al. 2011; Peischl et al. 2013). This can create an ‘expansion load’ of
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deleterious alleles at the wave front, although beneficial mutations can also surf to high

frequency and aid in local adaptation (Peischl et al. 2013; Peischl et al. 2015). The

effects of range expansion on adaptation have been empirically observed with greatest
detail in bacterial culture, where manipulative experiments have shown that the strength
of genetic drift is key to determining whether allele surfing promotes or hinders

adaptation (Hallatschek and Nelson 2010; Gralka et al. 2016; Bosshard et al. 2017).

Environmental conditions should also shape Ne during range expansion via their impact
on population (census) size and demography. If leading edge environments are different
than those experienced by source populations, then founding genotypes will not be pre-
adapted and are likely to experience lower absolute fithess. Unfavorable conditions and
low fithess may lead to lower abundance and/or fluctuations in population size, reducing

Ne relative to larger or more stable populations (Wright 1938; Crow & Morton 1955;

Kimura & Crow 1963; Frankham 1996). In a rare empirical example, Micheletti & Storfer

(2015) found that streamside salamander (Ambystoma barbouri) populations on the
periphery of the range were also on the margins of their climatic niche and tended
toward lower Ne. Similarly, peripheral populations of the North American annual plant
Arabidopsis lyrata possess greater genetic load and appear to exist at their ecological,

and perhaps evolutionary limits (Willi et al. 2018). These studies address a set of long-

debated hypotheses proposing that range limits form in part because they consist of

ecologically and/or genetically marginal populations (Kirkpatrick & Barton 1997; Phillips

2012; Chuang & Peterson 2016), which lack the capacity to acquire adaptations that are

necessary to support further expansion (i.e. the ‘central-marginal’, ‘center-periphery’
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and ‘abundant center’ hypotheses: (Sagarin and Gaines 2002; Eckert et al. 2008;

Pironon et al. 2015). Importantly, all of these hypotheses share the prediction that

colonization will be associated with reduced response to selection for ecological
reasons without requiring additional population genetic changes caused by expansion
alone. The relative importance of these two factors (environment and expansion) for
shaping Ne at range margins is unknown, but both have the potential to reduce

opportunities for local adaptation.

Although Ne has long been used as a fundamental measure of the scale of genetic drift

in populations (Wright 1931; Robertson 1960; Kimura and Crow 1963; Kimura 1964;

Ohta 1992; Charlesworth 2009), little is known about how Ne changes during the

process of range expansion. Most empirical population-level estimates come from the
field of conservation genetics, where Ne is used to infer the potential for genetic drift to

exacerbate the decline of threatened populations (Lynch et al. 1995; Frankham 1996;

Sung et al. 2012). These studies have demonstrated that Ne can be highly variable

within species, sensitive to local demography and modes of reproduction, and poorly

predicted by census size (Frankham 1995; Turner et al. 2002; Palstra and Ruzzante

2008). For example, in recovering Chinook salmon (Orcorhynchus tshawytscha)

populations, Shrimpton and Heath (2003) found up to a three-fold difference in both N,

and its ratio with census size across spawning sites. While low Ne is generally expected
in declining populations, many of the same demographic factors are likely to affect Nein

founding populations (Allendorf and Lundquist 2003; Colautti et al. 2017).
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Despite the potential obstacle low Ne might pose to adaptation, many species --
including large numbers of invaders -- have been successful at colonization and show

evidence of adaptive evolution during range expansion (Rice and Mack 1991; Dlugosch

and Parker 2008: Linnen et al. 2009; Colautti and Barrett 2013; Vandepitte et al. 2014;

Colautti and Lau 2015; Li et al. 2015). Additionally, detailed studies of range expansion

have found evidence of serial founding events and associated increases in genetic drift

(Ramakrishnan et al. 2010; Gracia et al. 2013; White et al. 2013; Pierce et al. 2014

Peischl et al. 2018), and it is notable that few invasions appear to have expanded

beyond the fundamental niches of their native range (Petitpierre et al. 2012; Tingley et
al. 2014). Taken together, it appears that adaptive evolution might be achievable in
many invading species, but that perhaps expansion load and ecological mismatch may
act, either independently or in concert, to prevent expansion in some cases. An
understanding of how founding dynamics and marginal environments shape Ne in
individual wave front populations is needed to connect theoretical expectations to

observed patterns of successful range expansion.

Here we estimate contemporary N. for populations of the obligately outcrossing annual
plant Centaurea solstitialis (yellow starthistle) across its invasion of California (USA) and
its native range in Eurasia. In California, C. solstitialis was initially introduced in the mid
19th century into the San Francisco Bay area as a contaminant of alfalfa seed (Gerlach

1997; DiTomaso et al. 2006). Colonization by C. solstitialis resulted in a weak genetic

bottleneck that is characterized by reduced private allele richness but no change in total

allelic richness, nucleotide diversity, or observed heterozygosity (Barker et al. 2017). By
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the mid 20th century, the species was rapidly expanding through California’s Central
Valley and Sierra Nevada foothill grasslands, and the current leading edge of this
invasion lies above 4000 m in elevation along the west side of the Sierra Nevada

Mountains (Pitcairn et al. 2006). In the North American invasion, habitat quality is often

linked to the climatic environment, with warmer and drier habitats frequently supporting

the densest C. solstitialis populations (Pitcairn et al. 2006; Swope and Parker 2010).

During expansion, C. solstitialis has crossed climatic gradients that are largely
independent in direction from the pathway of colonization (Fig. 1), allowing us to
quantify the influence of both climatic environment and expansion history (time since

founding) on estimates of Ne across populations.

We used Restriction-site Associated DNA sequencing (RADseq) to estimate
contemporary Ne in C. solstitialis populations sampled at a single time point. In addition
to testing for the joint influence of expansion dynamics and climatic conditions on Ne in
this system, we explored solutions for general problems associated with using large
genome-wide marker data sets to estimate Ne. Linkage disequilibrium Ne (LD-Ne) is a
powerful method for inferring contemporary Ne from single time sampled data, and does

so by utilizing the frequency of statistical linkage across loci (Waples and Do 2008;

Gilbert and Whitlock 2015). This method requires that loci segregate independently of

each other, and while RADseq is widely used to produce population genetic datasets in

non-model systems (Narum et al. 2013; Catchen et al. 2017), it is likely to violate this

assumption of independence, resulting in biased calculations of Ne.
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We used marker resampling and rarefaction approaches to improve inferences of
variation in Ne across populations. We tested for effects of expansion history (time since
founding) and habitat quality (climatic environment) on rarified Ne estimates, and
compared these values to those from populations in the native range. We also explored
whether estimates of genetic diversity could predict values of Ne, given that non-
equilibrium population dynamics may in the short term decouple contemporary Ne from

its expected long term effects on genetic variation (e.g. Nei et al. 1975; Varvio et al.

1986; Alcala et al. 2013; Epps and Keyghobadi 2015). By testing for evidence of

historical and ecological effects on Ne, our goal is to shed light on the factors shaping

fundamental parameters of evolution during colonization and range expansion.

Materials and Methods

Study Species

Yellow starthistle (Centaurea solstitialis) is an obligately outcrossing, diploid annual
plant, native to a broad region of Eurasia. Plants grow as basal rosettes with a deep
taproot, then bolt and produce up to several hundred flowering heads (capitula), which
can collectively produce thousands of small (under 2mg) seeds per individual (Graebner

et al. 2012; Hierro et al. 2012). Reproduction is by seed only (there is no clonal

reproduction), and seeds are either unadorned (outer florets) or have a small (2mm)
bristle-like pappus that appears to be better adapted for animal (including human)

dispersal than for wind dispersal (Roche 1992; Gerlach 1997; Sun and Ritland 1998).

Over 80% of seeds germinate within the first year, and while seeds can remain viable
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within the soil for up to ten years, most natural seed banks appear to be depleted in

three years without new input (Joley et al. 1992; Callihan et al. 1993; Benefield et al.

2001).

Seeds of C. solstitialis were introduced to the Americas as a contaminant of alfalfa seed
(Gerlach 1997), and have formed dense invading populations in mediterranean and

semi arid grasslands of North and South America (DiTomaso et al. 2006). Invading

populations are persistent and difficult to control (Aslan et al. 2009; Matzek and Hill

2012). Genotypes from invaded regions have evolved larger seeds, larger biomass,
faster growth rates, shorter time to flowering, and greater reproductive output than those

from the Eurasian native range (Eriksen et al. 2012; Widmer et al. 2007; Dlugosch et al.

2015). Invading populations in the Americas achieve densities that are more than an

order of magnitude higher than those in the native range (Uygur et al. 2004; Andonian

et al. 2011).

The first recorded introduction of C. solstitialis in North American occurred in the San

Francisco Bay area of California, USA in 1869 (Pitcairn et al. 2006). Records indicate a

subsequent expansion eastward into the Central Valley of California, then southward to
San Diego, northward to southern Oregon, and further East to the Sierra Nevada

mountains where the expansion remains active (Gerlach 1997; DiTomaso et al. 2006).

There are also additional invading populations in the interior Pacific Northwest, but

previous genetic work indicates that these are the product of separate introductions,
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and the California invasion is composed of a single expansion of genotypes originally

from western Europe (Barker et al. 2017). Our work focuses on the California invasion.

Within California, coastal populations (closest to the initial introduction) are composed of
smaller plants and reach densities that are an order of magnitude lower than those in

the Central Valley and Sierra Nevadas (Swope and Parker 2010; Swope et al. 2017).

Seed addition studies indicate that coastal populations are near carrying capacity
despite their lower densities, while Central Valley and Sierra Nevada populations are

seed limited and have the capacity to achieve higher densities (Swope and Parker

2010). Multiple biocontrol agents have been introduced to California, but have only been
effective at controlling population growth in low density coastal populations, where a
small decrease in vital rates has a large effect on population growth (Swope et al.
2017). In the Central Valley and Sierra Nevadas, compensatory growth and high plant
densities limit the impact of biocontrol, and density dependent reproduction in C.
solstitialis results in seed production that is independent of individual density across

sites (Swope and Parker 2010).

Genomic Data
Genome-wide markers for C. solstitialis in this study were sampled from single

nucleotide polymorphisms in double-digest RADseq (ddRADseq; (Peterson et al. 2012),

previously published by Barker and colleagues (Barker et al. 2017; Dryad

doi:10.5061/dryad.pf550). All sequences were obtained from C. solstitialis individuals
germinated in the laboratory from wild collected seed. Seeds were sampled in 2008

from maternal plants along a linear transect in each population, with >1m separation

10
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between individuals. Populations included at least 14 individuals each grown from
different maternal plants, from 12 invading populations in California and seven native
populations in Europe (451 individuals total; Table S1). Sampled populations spanned

the extent of the Californian invasion (Fig 1e).

Briefly, sequence data published by Barker and colleagues (2017) were generated as

follows. Genomic DNA was extracted with a modified CTAB protocol (Webb and Knapp

1990) and fragmented using Pstl and Mse1 restriction enzymes. Samples were
individually barcoded, cleaned and size selected for fragments between 350 and 650
bp. Size selected fragments were amplified through 12 PCR cycles and sequenced on
an lllumina HiSeq 2000 or 2500 platform (lllumina, Inc., San Diego, CA USA) to
generate 100 bp paired-end reads. Reads were de-multiplexed with custom scripts and

cleaned with the package SNOWHITE 2.0.2 (Dlugosch et al. 2013) to remove primer

and adapter contaminants. Barcode and enzyme recognition sequences were removed
from individual reads, and bases with phred quality scores below 20 were clipped from
the 3’ end. Reads were trimmed to a uniform length of 76 base pairs. The R2 (reverse)
reads from the data set were removed due to variable quality, and all analyses in this

study were conducted using R1 (forward) reads only.

We used the denovo_map.pl pipeline in STACKS 1.20 (Catchen et al. 2011; Hohenlohe

et al. 2011) to identify putative alleles within individuals, allowing a maximum of two
nucleotide polymorphisms when merging stacks (-M parameter in STACKS), a

maximum of two alleles per locus (-X), and a minimum coverage depth of five (-m). A
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catalog of loci and single nucleotide polymorphisms (SNPs) was generated across
individuals, allowing two polymorphisms (-n) between individuals within a stack. The
population.pl module in STACKS was used to calculate the population level nucleotide

diversity (1J) (Nei & Li 1979; Allendorf 1986). We restricted our analyses to loci that were

sequenced in 80% of individuals within a population and in 90% of all populations (-r

and -p parameters respectively).

Estimates of Ne
We used SNPs identified by STACKSs to calculate Ne for each population using a
method based on linkage disequilibrium among loci with a correction for missing data

(Waples & Do 2008) implemented in the program NeEstimator v.2.01 (Do et al. 2014).

This method derives estimates of Ne from the frequency of statistical linkage among loci
and has been shown to be one of the best predictors of Ne (hereafter LD-Ne) for

markers sampled at a single time point (Gilbert & Whitlock 2015; Wang 2016; Waples

2016). The LD-Ne method is not strongly influenced by the total genetic diversity in the

sample (Charlesworth 2009; Do et al. 2014), making it particularly well suited to

analyses of invading populations where low genetic diversity might arise from founder
effects unrelated to the number of individuals currently reproducing in the population.
We used a minimum allele frequency threshold of 0.05 for including a locus in the
analyses, which was the lowest threshold that did not result in excessive loss of loci and

infinite estimates of Ne at some study sites.
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The ddRADseq dataset consisted of thousands of SNPs across the genome, 622 of
which passed our screening requirements. Some of these loci were located in the same
RAD 76bp sequence, and we expect that these and many others do not segregate
independently in our data set, either due to physical proximity or the influence of
selection on multi-locus allele combinations (C. solstitialis has a genome size of

850Mbp, distributed across eight chromosomes (Bancheva & Greilhuber 2005; Widmer

et al. 2007). We generated an initial estimate of Ne using one randomly sampled locus
from each sequence (Table S1). To minimize the likelihood of our estimates including
physically linked loci, we re-sampled random sets of 20 polymorphic SNPs from unique
sequences to obtain distributions of LD-N, estimates for each population. We chose to
use 20 loci because this is typical of previous studies that have estimated LD-Ne

(England et al. 2006; Waples 2006 ; Waples & Do 2008; Gilbert & Whitlock 2015), and it

is highly conservative relative to our genome size and chromosome number (Bancheva

and Greilhuber 2006; Gaut et al. 2007; Widmer et al. 2007). Substantial increases in

locus sampling would require a genetic map for C. solstitialis to ensure loci were not in
physical linkage. Each population was resampled 30,000 times. Sampling distributions
were generally lognormal and spanned at least four orders of magnitude (Supporting
Information Fig. S1). We used median values from these distributions to identify the

median estimate.

We observed a strong, positive effect of the number of individuals sampled in each
population on median LD-Ne (F1,17=9.36, P=0.007). Unequal sampling has been shown

to decrease the accuracy of LD-Ne estimates (England et al. 2006; Waples 2006), and
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NeEstimator implements a corrective algorithm to address this problem (Do et al. 2014).

To account for persistent sampling effects, we produced rarefaction curves of median
Ne estimated by subsampling different numbers of individuals (10 to the maximum
number available per population) after marker resampling. As above, each marker
resampling consisted of 30,000 N, estimates with 20 loci. Median estimates did not
asymptote at our maximum sampling effort and increased linearly (see Results). We fit
a linear mixed model with random intercept and slopes implemented in the Lme4

package in R (Bates et al. 2014) to obtain population specific functions which describe

the relationships between the number of individuals sampled in each population and
median LD-Ne values. The estimated slope and intercepts for each population were
extracted from the model and used to calculate rarefied Ne for each population at a
standard value of 10 individuals (our minimum rarefaction size). We explored the
relationship between rarified Ne and measures of genome-wide marker variation using
nucleotide diversity ([7) at variable sites, as calculated in STACKS. We used linear
regression to predict [1 from Ne among invading populations, and among native

European populations for comparison.

Effects of Expansion History and Climate on Ne
We tested for an effect of population age since founding on the rarified N, of invading
populations. We estimated the date of colonization for each population by searching the

Jepson Online Herbarium (http://ucjeps.berkeley.edu/) for records of C. solstitialis in

California since its first record in 1869. For each sampling location, we used the earliest

date on record for the county, or for an adjacent county when the sampling location was
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closer to older collection records there. These dates were subtracted from the year of
our seed collections (2008) to produce values of population age used in subsequent
analyses. Using herbaria records to assign population ages in this manner may not
represent the true population age because of the time between population founding and
the first records of the population. Nevertheless, C. solstitialis has a relatively well-
documented invasion history in California (858 specimens on record, 577 records with
GPS data, 61 records prior to 1930 in the Jepson Herbarium), and our population age
estimates are in line with historical reconstructions of a general pattern of expansion out
from initial establishment in the San Francisco Bay area first to the Central Valley and

then to the North, East, and South (Gerlach 1997; DiTomaso et al. 2006; Pitcairn et al.

2006).

We also tested for the influence of the climatic environment on rarefied Ne in both
invading and native populations. Increasingly severe droughts reduce fecundity and

density in invading C. solstitialis populations (Sheley and Larson 1994; Swope and

Parker 2012), implicating a role for climatic variation in demographic performance. To
quantify the climatic gradients that might be most relevant to C. solstitialis ecology, we
used principal component (PC) axes of climatic variation across C. solstitialis collection
sites in North America and Europe, as previously identified by Dlugosch and colleagues
(2015a; Supporting Information Fig. S1). This PCA was performed on CliMond variables

at 18.5 x 18.5 km resolution (Kriticos et al. 2012), extracted from a spatially thinned set

of occurrence records from western North America (185 records) and Eurasia (372

records). CliMond data were chosen for this analysis because they are available
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worldwide, and because they include variables that vary strongly across the range of C.

solstitialis (particularly solar radiation;(Dlugosch et al. 2015a)). The full CliMond dataset

(35 variables) included many strongly correlated climatic variables across the range of
C. solstitialis, and these were reduced to seven representative variables (Supporting
Information Fig. S1). The first two PC axes explained over 72% of variation in these

variables (Dlugosch et al. 2015a). Larger values along the first PC climate axis (PC1)

generally indicate sites with higher temperatures and lower seasonality in total solar

radiation. Larger PC2 values indicate lower annual precipitation and greater seasonality
in temperature. Greater seasonal variation in temperature has been shown to be related
to ecologically important traits (plant size and drought tolerance) in C. solstitialis in both

the native and invaded ranges (Dlugosch et al. 2015a).

To quantify the contributions of both population age and climatic environment to
variation in rarified Ne for the invaded range, we used a general linear model with Ne as
the dependent variable and population age, climate PC1, climate PC2, and their
interactions as explanatory variables. We constructed a separate model of rarified Ne in
native range populations using only PC1 and PC2 as variables, since no information
about population age is available for the native range. We used model decomposition
and F-scores to identify the best fit model. To explore the relative effect of each variable
and their interactions on N, effect sizes were calculated as partial eta-squared values,
which partition the total variance in a dependent variable among all independent

variables (analogous to R? in multiple regression), using the best fit linear model with

the function ‘etasq’ in the R package ‘heplots’ version 1.3-1 (Fox et al. 2008). Partial-eta

squared values are standardized for differences in magnitude of the independent
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variables. We also tested for an overall difference in the rarified Ne of invading and
native populations using a Wilcoxon signed-rank test and a Monte Carlo exact test

implemented with the ‘coin’ package in R (Hothorn et al. 2006). All statistical analyses

were conducted in R version 3.4.1 (R Core Team 2017).

Results

Estimates of LD-Ne varied widely depending on which set of 20 loci were subsampled
(Supporting Information Fig. S2). Distributions of subsampled LD-N. estimates spanned
at least four orders of magnitude within each population. Distributions peaked strongly
around median estimates (Supporting Information Fig. S2). Median estimates of LD-Ne
prior to rarefaction varied from 19.5 to 38.5 across the California invasion (Supporting
Information Table S1). In general, estimates were higher in central and northern
California and decreased to the East and South (Fig. 1). In native populations, median
Ne estimates ranged from 16.2 to 42.7, with three populations with lowest LD-N, located
on the western side of the range in Spain (Fig. 1). Median estimates were consistently
lower than estimates based on all sequences, and differed in rank order among

populations (Supporting Information Table S1).

We found a strong association between median LD-N, and the number of individuals
sampled across our populations (r?a¢=0.32, F1,17= 9.36, P=0.007). Rarefaction sampling
produced positive relationships between LD-Ne and the number of individuals
resampled within each population (Fig. 2). Slopes in the linear mixed model ranged from

~0.11 to 1.19. Importantly, rarefaction removed the significant effect of sampling effort
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on Ne values (rarefied Ne vs. total sample size; r?aq=0.12, F1,17=3.47, P=0.08).
Rarefaction fits predicted a consistent rank order of LD-Ne among populations, with
differences among populations being the smallest in magnitude at our minimum
sampling of 10 individuals (Supporting Information Fig S3). Therefore, we expect our
rarified Ne index to be conservative for tests of relationships between Ne and

explanatory variables.

Both climate and population age predicted rarified Ne in invading populations. The best
fit linear model (Full model: r?.qj=0.46, F@4,8=4.09, P=0.0493) included significant,
additive effects of population age and PC2 (Fig. 3; Table 1). Population age and PC2
were both positively correlated with rarified Ne values, indicating that Ne is largest in
older populations and habitats with more temperature seasonality and lower
precipitation. Age and PC2 were not significantly correlated (F1,10=2.42, P=0.15), and
the model did not violate linear model assumptions of normality and no autocorrelation
in the residuals (Supporting Information Fig. S4). PC2 had a greater influence on rarified
Ne values than age, based on its larger standardized effect size (Table 1), although this
difference was small. In contrast, rarified Ne of native range populations was not
predicted by either climatic PC variable (Full model: r?aqj=0.2314, F2,4=1.90, P=0.23)

(Interactions: PC1: P=0.13, PC2: P=0.20).

Invading populations included a narrower range of rarified Ne values, nested within the

distribution observed for native populations (Supporting Information Fig S5), and there

was no significant difference between rarified Ne values in the native and invaded
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ranges (Wilcoxon signed rank test: W = 43, P = 0.97; Monte-Carlo one-way exact test:
P =0.93). Nucleotide diversity (1) also did not differ between the native and invaded
ranges (r?a¢i=0.-0.04, F3,15=0.78, P=0.55; region term: t2,15=-1.5, P=0.15 ). There was
no significant relationship between [ and N, in invading populations (r?a¢=-0.037,
F1,10=0.59, P=0.46) and there was a positive, marginally significant relationship
between [ and N in native populations (r?aq=0.43, F(1,5=5.45, P=0.067), despite a

smaller number of sampled populations from this range (Supporting Information Fig S6).

Discussion

Here we report empirical evidence for the joint effects of both range expansion and
climatic environment on contemporary Ne in natural populations. We produced rarified
estimates of LD-N. across 12 populations in the invaded range of C. solstitialis and
found a significant positive relationship between population age and Ne, a finding in line
with theoretical expectations for the population genetics of expanding populations

(Hallatschek et al. 2007; Excoffier & Ray 2008; Excoffier et al. 2009; Moreau et al. 2011;

Lehe et al. 2012; Peischl et al. 2013; Peischl et al. 2015). We also found evidence that

spatial variation in climatic conditions had a significant impact on Ne which was
independent of population age. The effects of range expansion and climate were similar
in magnitude in our study system, suggesting that both of these factors have been
important for shaping evolutionary outcomes in invading populations (though their
relative impact should be expected to vary across different scales of time and

environment (e.g. the effect of age over time may diminish or the effect of climate may
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vary over both space and time) (Wegmann et al. 2006; Excoffier and Ray 2008; Gilbert

et al. 2017).

We emphasize that our rarified LD-Ne values do not reflect a ‘true’ Ne value for the
populations in our study. Rather, rarified estimates here represent relative values of Ne,
and are useful for comparisons among populations. We expect asymptotic LD-Ne values
for these populations to be larger, because we observed no asymptote with rarefaction
for any of the populations in our study. However, our maximum estimates are similar to
values reported in other plant and animal species using the same approach (e.g.

Shrimpton & Heath 2003: Cover et al. 2008: Wang et al. 2013: Alvarez et al. 2015). We

note the LD-Ne estimation method itself also has a tendency to underestimate known

values of Ne in simulations (Gilbert & Whitlock 2015), such that the true number of

breeding individuals is likely higher than an asymptotic estimate.

Our resampling revealed that Ne estimates in C. solstitialis vary by at least four orders of
magnitude when different sets of loci are used. This variation is expected given that
particular sets of loci will capture different effects of physical linkage, history of

selection, and chance sampling effects (Daly et al. 2001; Remington et al. 2001; Flint-

Garcia et al. 2003). Resampling allowed us to leverage many combinations of loci

across the genome to identify a well defined peak in the distribution of Ne estimates. A
resampling approach is likely to be generally useful for RAD-seq and other popular
methods used to generate genome-wide marker datasets, particularly where a complete

reference genome is not available to determine the physical arrangement of loci.
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After accounting for population and marker sampling, we found a significant effect of

population age on differences in Ne across invading populations. Rarefied Neg estimates

were lower in younger populations, which fits with expectations that a subset of

individuals will contribute to range expansion (Excoffier & Ray 2008) and that genetic

drift will be larger at the leading edge (Lehe et al. 2012; Peischl et al. 2013; Peischl et

al. 2015). Estimates of contemporary Ne from C. solstitialis invading populations were
within the distribution that we observed among native populations, which suggests that
this species did not experience a large initial genetic bottleneck during its introduction to
California, nor exceptionally low Ne during range expansion (relative to values observed
in native populations). This lack of evidence for a strong genetic bottleneck is in line with
models of historical demography by Barker and colleagues (2017), who inferred little
reduction in Ne and maintenance of genetic diversity during the colonization of the
Americas by C. solstitialis. In general, introduced species often lack strong genetic

bottlenecks (Dlugosch & Parker 2008; Uller & Leimu 2011; Dlugosch et al. 2015b), and

our results demonstrate that species which avoid genetic bottlenecks at introduction
may still experience significant declines in Ne during range expansion. Importantly,
invading populations of C. solstitialis in California are an order of magnitude higher in

density than native populations (Uygur et al. 2004; Andonian et al. 2011), indicating that

the fraction of the census population that is contributing to the evolutionary effective

population in the invasion is much lower than in the native range.

We also observed an independent positive relationship between climatic PC2 and Ne of

invading C. solstitialis populations, consistent with an impact of habitat suitability on Ne.

21


https://paperpile.com/c/zi8I5C/TU3q4
https://paperpile.com/c/zi8I5C/TU3q4
https://paperpile.com/c/zi8I5C/4arq+EcBb+VXpa
https://paperpile.com/c/zi8I5C/4arq+EcBb+VXpa
https://paperpile.com/c/zi8I5C/4arq+EcBb+VXpa
https://paperpile.com/c/zi8I5C/fuFH
https://paperpile.com/c/zi8I5C/fuFH
https://paperpile.com/c/zi8I5C/bzp32+xwkD2+ql5W
https://paperpile.com/c/zi8I5C/bzp32+xwkD2+ql5W
https://paperpile.com/c/zi8I5C/z3Oe6+lBJcF
https://paperpile.com/c/zi8I5C/z3Oe6+lBJcF

High PC2 values reflect greater variation in seasonal temperatures and lower total
annual precipitation, which typify areas of especially high C. solstitialis density in

California (Dlugosch et al. 2015a). Previous studies in this system have proposed that

C. solstitialis success stems from a lack of effective competitors in more drought prone

habitats (Dlugosch et al. 2015a), due in part to the extensive conversion of these

habitats to rangeland (Menke 1989; Stromberg and Griffin 1996). Other studies within

the California invasion, however, have found that water availability (both naturally

occurring and experimentally manipulated) is strongly and positively correlated with C.

solstitialis density and fecundity (Enloe et al. 2004; Morghan & Rice 2006; Hulvey &

Zavaleta 2012; Eskelinen & Harrison 2014), suggesting that fitness should be highest in

wetter areas. Our results are most consistent with the landscape pattern of abundant C.
Solstitialis in drier areas, and might therefore reflect differences in human land use and
the availability of native competitors across the invaded range. An underlying
relationship between N and land use in the invasion could also explain why we did not
find the same relationship with climate in the native range. Alternatively, native
populations are more likely to be locally adapted, which could disrupt any relationships
between climatic patterns, habitat quality, and Ne, particularly at the large geographic

scale of our sampling in the native range.

Differences in rarified Ne among invading populations were not predicted by nucleotide
diversity (7). Nonequilibrium populations such as the invasions here are unlikely to have
had sufficient time to reach equilibrium diversity at a given Ne, and will also have been

changing in size over time (Nei et al. 1975; Alcala et al. 2013; Epps & Keyghobadi

22


https://paperpile.com/c/zi8I5C/kT8LW
https://paperpile.com/c/zi8I5C/kT8LW
https://paperpile.com/c/zi8I5C/kT8LW
https://paperpile.com/c/zi8I5C/kT8LW
https://paperpile.com/c/1NUdLu/8DH9+bVS9
https://paperpile.com/c/1NUdLu/8DH9+bVS9
https://paperpile.com/c/zi8I5C/7IlxC+ZecIC+IwNoR+4WXdr
https://paperpile.com/c/zi8I5C/7IlxC+ZecIC+IwNoR+4WXdr
https://paperpile.com/c/zi8I5C/7IlxC+ZecIC+IwNoR+4WXdr
https://paperpile.com/c/zi8I5C/I7VN+F8QU+creg
https://paperpile.com/c/zi8I5C/I7VN+F8QU+creg

2015). Notably, we did find a marginally significant positive relationship between [ and
Ne in native range populations (despite a smaller population sample size), which have
had more time to stabilize in population size and reach mutation-drift equilibrium.
Moreover, rare alleles contribute important equilibrium genetic variation (Luikart et al.
1998) and native C. solstitialis populations have been previously shown to harbor more

rare alleles than invading populations in North America (Barker et al. 2017). There is

also a tendency for RAD-seq to underestimate [ in more diverse genomes (Arnold et al.

2013; Cariou et al. 2016), although given the loss of rare alleles from invading

populations, we might expect this to affect native populations more strongly than

invading populations.

Our results support the prediction that both range expansion and habitat quality can
increase the genetic drift experienced by leading edge populations. There is particular
interest in whether these effects can hinder adaptation, slow further colonization, and

establish static range boundaries (Bosshard et al. 2017; Lehe et al. 2012; Peischl et al.

2013:; Peischl et al. 2015; Marculis et al. 2017:; Birzu et al. 2018). Recent studies have

demonstrated a link between differences in historical values of Ne and differences in

efficacy of selection across species (e.g. (Slotte et al. 2010; Jensen & Bachtrog 2011;

Strasburg et al. 2011), and both theoretical and experimental studies of bacteria have

shown that the process of range expansion can reduce contemporary Ne and impose

limits to adaptation and further colonization at the expansion front (Hallatschek &

Nelson 2010: Lehe et al. 2012; Gralka et al. 2016; Peischl et al. 2013; Peischl et al.

2015). Natural populations of Arabidopsis lyrata demonstrate some of these effects,
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with greater genetic load in range edge populations associated with a lack of adaptation

along an environmental cline (Willi et al. 2018). Limits to range expansion are expected

to be sensitive to the specifics of evolutionary parameters in natural populations,
including the magnitudes of Ne and selection, the amount and scale of gene flow across

the expansion, and the genetic architecture of adaptive variation (Hallatschek & Nelson

2010; Lehe et al. 2012; Peischl et al. 2013; Peischl et al. 2015; Gralka et al. 2016).

The expansion ecology of C. solstitialis in California does not support the existence of
maladapted edge populations. Populations of C. solstitialis close to the range edge can

achieve higher densities than older, more interior populations (Swope et al. 2017),

which runs counter to expectations of high genetic load. Additionally, evolution of
increased growth and earlier flowering appears to be enhancing the invasiveness of C.

solstitialis (Dlugosch et al. 2015a), suggesting that reduced Ne at the range edge has

not created a barrier to adaptation and further expansion. Additional studies are needed
to test for quantitative connections between expansion dynamics and the role of
adaptation in this system, including detailed analyses of dispersal patterns (included

biased dispersal of particular phenotypes, (Shine et al. 2011), trait and fitness

differences, and demographic performance across populations. The availability of
adaptive variation and the degree to which this is a limiting factor in species invasions is

an active area of debate (Ellstrand & Schierenbeck 2000; Rius & Darling 2014: Bock et

al. 2015), and should be particularly relevant to the colonization of habitats requiring
significant niche evolution. The results reported here emphasize that an understanding

of the evolutionary mechanisms that generate boundaries to range expansion in natural
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populations will require evaluating evidence not only for the availability of adaptive

variation (Dlugosch et al. 2015a), but also for an effective response to selection.
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TABLES and FIGURES

Table 1. Individual effects for the best fit linear model explaining rarefied effective
population size (Ne) in invading populations of C. solstitialis, as a function of climatic
principal component variables (PC1, PC2) and population age (Age).

Standard Effect
Effect Coefficient  Error t-value p-value Size
-0.66
PC1 1.45 0.483 0.528 0.052
2.50
PC2 -0.39 0.438 0.011 0.579
3.31
Age 0.03 0.012 0.037 0.439
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Fig 1. The distribution of rarefied effective population size (Ne), climatic principal
component (PC) gradients, and population age (in years) across C. solstitialis

populations in Eurasia and California. In all panels, circles indicate sampled populations
with a diameter proportional to Ne. PC1 is positively correlated with annual temperature

and temperature of the driest quarter and negatively correlated with seasonal

differences in total radiation in the native (A) and invaded (C) ranges. PC2 is positively

correlated with seasonal differences in temperature and negatively correlated with
annual precipitation and seasonal differences in precipitation in the native (B) and
invaded (D) ranges. In the California invasion, population age (E) reflects a history of
expansion beginning in the San Francisco Bay area and expanding first to the North
and then to the South and East of the state. Abbreviations in (E) correspond to
populations in Table S1.
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Fig 3. Rarefied Ne values are predicted by the second principal component (PC2) of
climatic variability (A) and population age (B) in invading C. solstitialis populations.
Rarefied Ne is positively correlated with PC2, for which larger values represent lower
annual precipitation and greater seasonality in temperature (P=0.011), and with
population age (P = 0.037). Lines show linear model fits and shading indicates the 95%
confidence interval. Points represent partial residuals after accounting for other
variables in the linear model.
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SUPPORTING INFORMATION

Table S1. Population information for C. solstitialis used in this study, including
population abbreviations, county (USA) or country of origin, latitude and longitude, and
number of individuals sampled. For invasive populations, the estimated date of first
record based on collections from the Jepson Herbarium and corresponding population
age at time of collection in 2008 is provided. Effective population size (Ne) estimates are
given for the median across 30,000 subsamples of 20 loci, rarified Ne standardized to its
value at 10 individuals, and the N, of the full dataset based on one randomly selected
locus from each sequence without subsampling or rarefaction.

Invading Populations

Individuals All sequences Date of First
Population County Latitude Longitude Median N, Rarefied N,

sampled Ny Collection
LY Madera 36,9162 -119.79249 21 28.5 18.01587 43.7 1963 53
DA Contra Costa 3786526 -121.97785 18 33.9 18.78175 123 1934 &2
GIL Santa Clara 3703373 -121.53674 0 334 18.90542 39.4 1935 El
LEB Kern 34.82736 -118.87097 19 4.1 16.90731 172.4 1347 69
MAR Marin 38019  -122.8058 135 21 17.37218 49.4 1s92 124
ORO Butte 3945358 -121.68788 17 21 18.55231 80.7 1532 &
RB Tehama 40.27083 -122.37104 0 385 19.54413 93.1 1509 107
SIE El Dorado 38.7B1617 -120.41639 18 0 1648769 20.1 1972 44
TRI Maripasa 3746178 -119.79218 16 19.5 16.81183 130.5 19337 19
UKI Mendocing 39.16363 -123.22705 14 20 1646251 289 1521 95
VET Callaveras 3809996 -120.58947 16 17 19.48889 75 1936 &0
YRE Siskiyou 4169161 -122.63988 18 343 19.69115 161.1 1962 L
Native Populations
Population Country Latitude Longitude Indlviduals Median N, Rarefied N, All sequences

Sampled N,
BL24 Bulgaria 43.382222 28457667 16 9.3 19.00644 69.2
CAN Spain 4100033 -4.89718 1% 23.9 17.25559 26.2
CAZ France 43. 74842 3.77081 20 42.7 20433935 229.3
CUE Spain 40.12545 -2.1385 15 16.2 15.79074 4.9
Rols Romania 44.124733  28.634183 19 30.9 18.65582 80.5
SaL Spain 40.99003  -5.65856 20 s 16.89143 45
TK23 Turkey 41.7531233  27.247883 18 il.a 18.87271 131.8
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Fig S1. CliMond variables contributing to PC axes. Among the 35 climatic variables

in the CliMond dataset, many were found to be strongly correlated across the global

distribution of C. solstitialis, and these were previously reduced to the seven
representative variables shown, including variables related to temperature (TEMP)

precipitation (PPT) and solar radiation (RAD). All analyses and figure modified from

Dlugosch et al. 2015a
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Fig S2. Histograms of log1o transformed N. estimated from 20 subsampled SNP loci in
16 individuals from three C. solstitialis populations. Shown are native (CAN) and
invading (TRI and RB) populations with relatively low (TRI), moderate (CAN) and high
(RB) median Ne values. Vertical blue lines indicate median values. Negative and infinite
estimates of Ne were removed from all analyses.
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describes variation in Ne as an additive function of population age, climatic PC1, and

climatic PC2.

1.0

1.5

45



]
o

=t
O

Rarefied Ne
%o

—
~J

16

Invading Native

Fig S5. Distributions of rarefied Ne for native European (N=7) and invading California
(N=12) populations of C. solstitialis.

46



' Invading

\

0.07

0.06

0.05

0.04

0.03

0.02

) T T T T T

T T
16.5 17.0 17.5 18.0 18.5 19.0 19.5

0.07 Native

Nucleotide Diversity

0.06

1

L

0.05

0.04

16.0 17.0 18.0 19.0 20.0

Rarefied Ne

Fig S6. The relationship between rarefied Ne and nucleotide diversity (1) in invading
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relationship with rarefied Ne (bottom). Shading represent 95% confidence intervals.
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