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We prove that in any Hausdorff space, the Rothberger game is equivalent to the 
k-Rothberger game, i.e. the game in which player II chooses k open sets in each 
move. This result follows from a more general theorem in which we show these 
games are equivalent to a game we call the restricted Menger game. In this game
I knows immediately in advance of playing each open cover how many open sets
II will choose from that open cover. This result illuminates the relationship between 
the Rothberger and Menger games in Hausdorff spaces. The equivalence of these 
games answers a question posed by Aurichi, Bella, and Dias [1], at least in the 
context of Hausdorff spaces.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Let X be a topological space. Let O denote the collection of open covers of X. The Menger game [8] on 
X is the two-player game where at each round n ∈ ω of the game player I first plays an open cover Un ∈ O
of X, and player II responds by playing a finite subset 

{
U0

n, . . . , Ukn−1
n

}
of Un. Player II wins the run of the 

game if X =
⋃

n

⋃
i<km

U i
n. We denote the Menger game by Gfin(O, O). The notation reflects the facts that

I is playing from O, II is trying to build an element of O, and II is picking a finite subset from I’s moves at 
each round. The Rothberger game [2], G1(O, O), on X is the game where player I plays at round n an open 
cover Un ∈ O and player II plays a single Un ∈ Un. Again, player II wins the run of the game iff X =

⋃
n Un. 

The k-Rothberger game Gk(O, O) is the variation of the Rothberger game where player II plays k sets from 
I’s cover at each round. A natural extension of this is the game Gf(O, O) where f : ω → ω \ {0}. In this 
game, at each round n player II plays f(n) sets from player I’s move Un. A still further extension of the 
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games is the restricted Menger game G∗
fin(O, O), which we define precisely below, where player II decides 

at the start of each round n how many sets he will get to choose from I’s play Un. It is clear that

∀f II wins Gf (O, O) ⇔ ∀k II wins Gk(O, O) ⇔ II wins G1(O, O) ⇒

⇒ ∃k II wins Gk(O, O) ⇒ ∃f II wins Gf (O, O) ⇒ II wins G∗
fin(O, O)

Our main result, Theorem 2.2, is that for all T2 spaces X, the above games are all equivalent. Recall 
two games are said to be equivalent if whenever one of the players has a winning strategy in one of the 
games, then that same player has a winning strategy in the other game. We note that the equivalence of the 
above games for arbitrary spaces is no stronger than the equivalence for T0 spaces (by considering the T0
quotient of an arbitrary space). On the other hand, it is well known that the full Menger game Gfin(O, O)
is not equivalent to the above mentioned games. For example, player II wins the Menger game on R, or 
any σ-compact space, while I has a winning strategy in G1(O, O) on R (I can easily play to ensure that 
λ(

⋃
Un) < ε, where λ denotes Lebesgue measure, for any given ε > 0).

The games mentioned above are closely related to selection principles on the space X. These types of 
covering games and selection principles were extensively studied by Scheepers and others, see for example 
[7], [6]. Recall that X has the Menger property, denoted Sfin(O, O), if whenever {Un}n∈ω is a sequence 
of open covers of X, then there is a sequence {Fn}n∈ω, where each Fn is a finite subset of Un, such that 
X =

⋃
n ∪Fn. Similarly, X has the Rothberger property, denoted S1(O, O), if whenever {Un}n∈ω is a sequence 

of open covers of X, then there is a sequence Un ∈ Un such that X =
⋃

n Un. There are two theorems which 
relate the games with the corresponding selection principles. One theorem, due to Hurewicz [4] (see also 
[7]), says that for any space X the selection principle Sfin(O, O) (i.e., X having the Menger property) is 
equivalent to I not having a winning strategy in Gfin(O, O). Another theorem, due to Pawlikowski [5], says 
that for any space X the selection property S1(O, O) (i.e., X having the Rothberger property) is equivalent 
to I not having a winning strategy in G1(O, O). The equivalence of Sk(O, O) (where k ∈ ω) and S1(O, O)
was shown in [3] and noted by the authors of [1].

The Rothberger game G1(O, O), for any space X, has a dual version called the point-open game. In this 
game, I plays at each round n a point xn ∈ X, and II then plays an open set Un with xn ∈ Un. Player I wins 
the run of the game iff X =

⋃
n Un. A theorem of Galvin [2] says that (for any X) these games are dual, that 

is, one of the players has a winning strategy in one of the games iff the other player has a winning strategy 
in the other game. A natural variation of the point-open game is the finite-open game, where I plays at each 
round n a finite set Fn ⊆ X, and II plays an open set Un with Fn ⊆ Un. Player I again wins the run iff 
X =

⋃
n Un. It is easy to see that for any X that the point-open game is equivalent to the finite-open game.

Using these dual games (specifically the finite-open game) simplifies the presentation of our main result. 
This observation was noted by R. Dias, whom we thank.

2. Equivalence of restricted Menger and Rothberger games

We define a variation of the Menger game which we call the restricted Menger game, denoted by G∗
fin(O, O)

(Fig. 1). The rounds of this game are as in the Menger game except that at the start of round n player
II will make an initial move, which must be a positive integer kn, which is a declaration of how many open 
sets II intends to select this round. As in the Menger game, I will then play an open cover Un ∈ O, and
II will then respond by choosing kn of the sets from Un, which we denote U0

n, . . . , Ukn−1
n . Player II wins the 

run of the game iff X =
⋃

n

⋃
i<kn

U i
n.

For the remainder of the paper we work in the base theory ZFC.
In general, one does not expect the games G1(O, O), G∗

fin(O, O) to be determined as they are not Borel 
games A ⊆ Zω played on some set Z (with Z having the discrete topology; the determinacy of such Borel
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G∗
fin(O, O)
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{Ui
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1}i<k1 k2
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2}i<k2
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Fig. 1. An illustration of the game G∗
fin(O, O).

games is a fundamental theorem of Martin). In fact, even assuming determinacy axioms (which contradict 
AC) such as AD or the stronger axiom ADR of real-game determinacy, these games are not necessarily 
determined. Galvin [2] showed assuming ZFC + CH that there is a subspace of R for which the game 
G1(O, O) is not determined (one can take a Luzin set). Todorčević [9] showed just in ZFC that there is 
a space (a T4 space) for which G1(O, O) is not determined. We refer the reader to [9] and the references 
therein for a more complete history and discussion.

The assumption of the determinacy of the game G1(O, O), in fact, essentially trivializes our main result 
as the next fact shows.

Fact 2.1. Let X be a topological space and assume the game G1(O, O) is determined. Then the game G1(O, O)
is equivalent to the restricted Menger game G∗

fin(O, O).

Proof. If II wins G1(O, O) then clearly II wins G∗
fin(O, O). The alternative, since G1(O, O) is determined, 

is that I wins G1(O, O). The first part of the proof of Theorem 2.2 below shows that I then has a winning 
strategy in G∗

fin(O, O). �
The following theorem is our main result.

Theorem 2.2. Let X be a T2 space. Then the restricted Menger game G∗
fin(O, O) is equivalent to the Roth-

berger game G1(O, O).

Proof. It is clear that if I wins G∗
fin(O, O) then I wins G1(O, O). It is also clear that if II wins G1(O, O), 

then II wins G∗
fin(O, O).

If I wins G1(O, O), then by [5], X does not satisfy the selection principle S1(O, O). Thus, there is a 
sequence {Vn} of open covers of X such that there is no sequence Vn ∈ Vn with X =

⋃
n Vn. Then I has a 

winning strategy in G∗
fin(O, O) by playing as follows. If II first plays the integer k0, then I plays the common 

refinement U0 = V0 ∧· · ·∧Vk0−1 = {V0 ∩ V1 ∩ · · · ∩ Vk0−1 : V0 ∈ V0, V1 ∈ V1, · · · Vk0−1 ∈ Vk0−1}. II will end 
the round by picking k0 of the sets U0

0 , . . . , Uk0−1
0 from U0. Player I continues in this manner, i.e. playing 

for instance in round 1, a refinement U1 of the covers {Vk0 , Vk0+1, . . . , Vk0+k1−1}. Because each of the open 
covers Un refines a block of covers from {Vn}, there is a sequence Vn ∈ Vn with 

⋃
n

⋃i
n U i

n ⊆
⋃

n Vn. Since ⋃
n Vn �= X, I has won this run of G∗

fin(O, O).
Assume now that II has a winning strategy τ in G∗

fin(O, O). We let τ(U0, . . . , Un) denote the response of 
τ when I plays open covers U0, . . . , Un (we are suppressing II’s moves according to τ in this notation). So, 
τ(U0, . . . , Un) is a finite subset of Un. We let τ ′(U0, . . . , Un) denote the integer that τ plays at the start of the 
next round, immediately after τ(U0, . . . , Un) was played. By ∪τ(U0, . . . , Un) we mean the union of the (finitely 
many) open sets in τ(U0, . . . , Un). Note that according to this notation |τ(U0, . . . , Un)| = τ ′(U0, . . . , Un−1).

We define a strategy σ for I in the finite-open game on X. We begin by explicitly describing σ on the 
first round. Let k∅ = τ ′(∅) be τ ’s first (integer) move in G∗

fin(O, O). Define

C∅ =
⋂

∪τ(U).

U∈O
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The next Lemma is the only point in the proof where we use the assumption that X is T2.1

Lemma 2.3. |C∅| ≤ k∅.

Proof. Suppose towards a contradiction that x0, . . . , xk∅
are k∅ + 1 distinct points in C∅. Since X is T2, 

there are open sets U0, . . . , Uk∅
in X with xi ∈ Ui for all i ≤ k∅ and with the {Ui} pairwise disjoint. For 

each x ∈ X \ {xi}i≤k∅
let Ux be an open set containing x such that Ux is disjoint from a neighborhood 

of {xi}i≤k∅
(using T2 again). Let U = {Ux : x /∈ {xi}i≤k∅

} ∪ {Ui}i≤k∅
, so U is an open cover of X. τ(U)

consists of k∅ of the sets from U . There is an i ≤ k∅ such that Ui /∈ τ(U). Then xi /∈ ∪τ(U), a contradiction 
to xi ∈ C∅. �

Then let σ’s first move in the finite-open game be C∅. Say II responds with V0. Before we continue, we 
need to define some auxiliary sets which correspond to the position (C∅, V0). If V0 was legal, then we note 
that X \ V0 ⊆ X \ C∅, and thus for each x ∈ X \ V0, there is some U ∈ O such that x ∈ X \ ∪τ(U). These 
sets form an open cover of X \ V0, which is a closed subspace of X, and thus is Lindelöf, and so we fix 
{U(m)(V0)}m∈ω = {U(m)}m∈ω such that {X \ ∪τ(U(m))}m∈ω is a cover of X \ V0.

To define σ in subsequent rounds, we need to dovetail various moves on subsequences, using the previously 
defined open covers Us for s ∈ ω<ω, and for this purpose we fix any bijection ϕ : ω<ω → ω with the property 
that if s ⊆ t then ϕ(s) ≤ ϕ(t). For s ∈ ω<ω we let lh(s) denote the length of s. Now in general, suppose 
we are at round n in the finite-open game, and the moves C0, V0, . . . , Cn−1, Vn−1 have been played, where 
|Ci| = ki for i < n. Assume in addition that for each j < n we have defined open covers Uϕ−1(j)�m for all 
m ∈ ω (which depend on the Vj played thus far). Furthermore, assume that the Cj, Vj , Uϕ−1(j)�m for j < n

satisfy the following. Let s = ϕ−1(j), then:

1. Cj =
⋂

U∈O ∪τ(Us�1, Us�2, . . . , Us�lh(s), U).
2. {X \ ∪τ(Us�1, Us�2, . . . , Us�lh(s), Us�m)}m∈ω is a cover of X \

⋃
i≤lh(s) Vϕ(s�i).

Note that property (2) for j is possible since the space X\
⋃

i≤lh(s) Vϕ(s�i) is Lindelöf and X\
⋃

i≤lh(s) Vϕ(s�i) ⊆
X \

⋃
i≤lh(s) Cϕ(s�i), and using property (1) for the Ci for i ≤ j.

We define σ’s response to this position, and the necessary sets Ut�m, in a similar manner to the base 
step. Let t = ϕ−1(n) and define σ’s response to be

Cn =
⋂

U∈O
∪τ(Ut�1, Ut�2, . . . , Ut�lh(t), U),

which clearly maintains property (1). Note also that Cn is finite, and in fact has size at most |Cn| ≤
τ ′(Ut�1, . . . , Ut�lh(t)), by the same proof of Lemma 2.3.

Similarly to the base step, define {Ut�m}m∈ω to be a countable collection of open covers such that 
{X \ ∪τ(Ut�1, Ut�2, . . . , Ut�lh(t), Ut�m)}m∈ω covers X \

⋃
i≤lh(t) Vϕ(t�i). Of course, this uses the fact that 

X \
⋃

i≤lh(t) Vϕ(t�i) is Lindelöf and that it is contained in X \Cn. This completes the definition of σ. To show 
that σ is winning, we suppose that C0, V0, C1, V1, . . . is a full run of the finite-open game which is consistent 
with σ. Note that since this run is consistent with σ, we can recover the tree of open covers {Us}s∈ω<ω

associated to this run which satisfies the properties (1) and (2) above. Suppose that X �=
⋃

n Vn, and let 
x ∈ X \

⋃
n Vn. In particular, x ∈ X \ V0. Now we use property (2) to obtain i0 such that x /∈ ∪τ(U(i0)). In 

general, supposing we have i0, i1, . . . , in−1 where x /∈ ∪τ(U(i0), . . . U(i0,...,ik)) for any k < n, then use the fact 
that x ∈ X \

⋃
s⊆ϕ−1(n) Vϕ(s) and property (2) to obtain in so that x /∈ ∪τ(U(i0), . . . , U(i0,...,in−1), U(i0,...,in)). 

1 The fact that X is T2 is necessary for the proof of the following lemma. For instance, consider N with the co-finite topology, 
then for any function f which selects k open sets from an open cover, we have that the set C =

⋂
U∈O ∪f(U) = N which clearly 

has more than k elements.
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This builds a branch through the tree of open covers {Us}s∈ω<ω , associated to this run, which has the 
property that x is not in any of the closures of τ ’s moves in response to this branch. This contradicts the 
assumption that τ was a winning strategy. �
Corollary 2.4. For any T2 space X and any f : ω → ω\{0}, the games G1(O, O) and Gf (O, O) are equivalent.

In particular, we have the following corollary which answers Problem 4.5 of [1] for T2 spaces.

Corollary 2.5. For any T2 space X and any n ∈ ω, the games G1(O, O) and Gn(O, O) are equivalent.

3. Open questions

A natural question is whether we can drop the assumption that X is T2 from the hypothesis of Theo-
rem 2.2. In fact, the authors of [1] originally asked if for any topological space the games G1(O, O) and 
G2(O, O) are equivalent. Our Theorem 2.2 shows these games are equivalent for any T2 space, but the T2
assumption seems necessary for the argument.

We are not aware of any space (with no assumptions on the space) for which these games are not 
equivalent. As we noted in Fact 2.1, the determinacy of the game G1(O, O) gives the equivalence of these 
games. However, since the determinacy of these games is not guaranteed in ZF, it is possible even that the 
equivalence for arbitrary spaces is independent of ZF.

Question 3.1. Can we weaken the hypotheses of Theorem 2.2 from T2 to T1, or even remove it entirely? 
That is, can we prove in ZFC that the games G1(O, O) and G∗

fin(O, O) are equivalent for any space X?

One possibility for a negative answer to Question 3.1 would be to construct in ZFC a space for which 
the games are not equivalent (in this case the game G1(O, O) is not determined, and II must win the other 
game). It is also possible that the existence of a space for which the games are not equivalent is independent 
of ZFC. So we ask:

Question 3.2. Is it consistent with ZFC that there is a space X for which the games G1(O, O) and G2(O, O)
are not equivalent? Is the existence of such a space consistent with ZF? In particular are the games equivalent 
in models of determinacy?
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