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move. This result follows from a more general theorem in which we show these
games are equivalent to a game we call the restricted Menger game. In this game
I knows immediately in advance of playing each open cover how many open sets
IT will choose from that open cover. This result illuminates the relationship between

Keywords:

Covering games the Rothberger and Menger games in Hausdorff spaces. The equivalence of these
Rothberger game games answers a question posed by Aurichi, Bella, and Dias [1], at least in the
Menger game context of Hausdorff spaces.
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1. Introduction

Let X be a topological space. Let O denote the collection of open covers of X. The Menger game [8] on
X is the two-player game where at each round n € w of the game player I first plays an open cover U,, € O
of X, and player II responds by playing a finite subset {US, cee U,’j“_l} of U,,. Player I wins the run of the
game if X = J,, U, U\.. We denote the Menger game by Gin (O, O). The notation reflects the facts that
I is playing from O, II is trying to build an element of O, and II is picking a finite subset from I's moves at
each round. The Rothberger game [2], G1(O,O), on X is the game where player I plays at round n an open
cover U, € O and player II plays a single U,, € U,. Again, player IT wins the run of the game iff X = J,, Uy.
The k-Rothberger game G (O, O) is the variation of the Rothberger game where player II plays k sets from
I's cover at each round. A natural extension of this is the game G (O, O) where f: w — w \ {0}. In this
game, at each round n player II plays f(n) sets from player I's move U,,. A still further extension of the
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games is the restricted Menger game G§,(O,O), which we define precisely below, where player II decides
at the start of each round n how many sets he will get to choose from I's play U,,. It is clear that

Vf II wins G;(O, O) < Vk II wins Gi(O, O) < II wins G1(0,0) =
= Jk II wins Gx(0, O) = 3f II wins G¢(O, O) = 1II wins G;,(0, O)

Our main result, Theorem 2.2, is that for all 75 spaces X, the above games are all equivalent. Recall
two games are said to be equivalent if whenever one of the players has a winning strategy in one of the
games, then that same player has a winning strategy in the other game. We note that the equivalence of the
above games for arbitrary spaces is no stronger than the equivalence for Tj spaces (by considering the Tj
quotient of an arbitrary space). On the other hand, it is well known that the full Menger game Gy, (O, O)
is not equivalent to the above mentioned games. For example, player II wins the Menger game on R, or
any o-compact space, while I has a winning strategy in G1(O,O) on R (I can easily play to ensure that
AMUUn) < g, where A denotes Lebesgue measure, for any given € > 0).

The games mentioned above are closely related to selection principles on the space X. These types of
covering games and selection principles were extensively studied by Scheepers and others, see for example
[7], [6]. Recall that X has the Menger property, denoted Sgn(O,Q), if whenever {U,}ne, is a sequence
of open covers of X, then there is a sequence {F,}necw, where each F,, is a finite subset of U, such that
X =J,, UF,. Similarly, X has the Rothberger property, denoted S; (O, O), if whenever {U,, },,c., is a sequence
of open covers of X, then there is a sequence U,, € U,, such that X = |J,, Uy. There are two theorems which
relate the games with the corresponding selection principles. One theorem, due to Hurewicz [4] (see also
[7]), says that for any space X the selection principle Sg,(O,O) (i.e., X having the Menger property) is
equivalent to I not having a winning strategy in Gg,(O, O). Another theorem, due to Pawlikowski [5], says
that for any space X the selection property S1(O, O) (i.e., X having the Rothberger property) is equivalent
to I not having a winning strategy in G1(O, O). The equivalence of Si(O, O) (where k € w) and S1(0, O)
was shown in [3] and noted by the authors of [1].

The Rothberger game G1(0O, O), for any space X, has a dual version called the point-open game. In this
game, I plays at each round n a point x,, € X, and II then plays an open set U,, with x,, € U,,. Player I wins
the run of the game iff X = (J,, Up. A theorem of Galvin [2] says that (for any X) these games are dual, that
is, one of the players has a winning strategy in one of the games iff the other player has a winning strategy
in the other game. A natural variation of the point-open game is the finite-open game, where I plays at each
round n a finite set F,, C X, and II plays an open set U,, with F,, C U,. Player I again wins the run iff
X =U,, Uy. It is easy to see that for any X that the point-open game is equivalent to the finite-open game.

Using these dual games (specifically the finite-open game) simplifies the presentation of our main result.
This observation was noted by R. Dias, whom we thank.

2. Equivalence of restricted Menger and Rothberger games

We define a variation of the Menger game which we call the restricted Menger game, denoted by G, (O, O)
(Fig. 1). The rounds of this game are as in the Menger game except that at the start of round n player
IT will make an initial move, which must be a positive integer k,,, which is a declaration of how many open
sets II intends to select this round. As in the Menger game, I will then play an open cover U,, € O, and
IT will then respond by choosing k,, of the sets from U,,, which we denote U?, ..., Uk»~1, Player II wins the
run of the game iff X =J,, U, UL.

For the remainder of the paper we work in the base theory ZFC.

In general, one does not expect the games G1(0, O), G, (O, O) to be determined as they are not Borel
games A C Z% played on some set Z (with Z having the discrete topology; the determinacy of such Borel
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I Uo U, Us

Gin(0,0)

I ko {Ustick, 1k {UiYick, 1k2 {UsYi<k,

Fig. 1. An illustration of the game G§, (O, O).

games is a fundamental theorem of Martin). In fact, even assuming determinacy axioms (which contradict
AC) such as AD or the stronger axiom ADg of real-game determinacy, these games are not necessarily
determined. Galvin [2] showed assuming ZFC 4+ CH that there is a subspace of R for which the game
G1(0,0) is not determined (one can take a Luzin set). Todoréevié¢ [9] showed just in ZFC that there is
a space (a Ty space) for which G1(O, Q) is not determined. We refer the reader to [9] and the references
therein for a more complete history and discussion.

The assumption of the determinacy of the game G1(O, O), in fact, essentially trivializes our main result
as the next fact shows.

Fact 2.1. Let X be a topological space and assume the game G1(O, O) is determined. Then the game G1(O, O)
is equivalent to the restricted Menger game G§,(O,O).

Proof. If II wins G1(O, O) then clearly II wins G}, (O, O). The alternative, since G1(O, O) is determined,
is that I wins G1(O, Q). The first part of the proof of Theorem 2.2 below shows that I then has a winning
strategy in G§,(0,0). O

The following theorem is our main result.

Theorem 2.2. Let X be a Ty space. Then the restricted Menger game G (O, O) is equivalent to the Roth-
berger game G1(O, Q).

Proof. It is clear that if I wins G (O, O) then I wins G1(O, O). It is also clear that if II wins G1(O, O),
then IT wins G§,(O, O).

If T wins G1(0, ), then by [5], X does not satisfy the selection principle §;(O,O). Thus, there is a
sequence {V,} of open covers of X such that there is no sequence V,, € V,, with X = Un V... Then I has a
winning strategy in G, (O, O) by playing as follows. If II first plays the integer ko, then I plays the common
refinement Uy = VoA AVgo—1 = {VonNVin---NVy—1 2 Vo €Vo, Vi € V1, Vig—1 € Vigy—1}. I will end
the round by picking ko of the sets U, ..., Uéﬂo*l from Uy. Player I continues in this manner, i.e. playing
for instance in round 1, a refinement U, of the covers {Vi,, Vko+1, - - - » Vko+k,—1}- Because each of the open
covers U, refines a block of covers from {V, }, there is a sequence V,, € V,, with |J,, U; Ul CU,, Va. Since
U,, Vi # X, I has won this run of G§, (O, O).

Assume now that IT has a winning strategy 7 in G§,(0, Q). We let 7(Up, . ..,U,) denote the response of
7 when I plays open covers Uy, .. .,U, (we are suppressing II’s moves according to 7 in this notation). So,
T(Uo, - . . ,Uy) is a finite subset of U,,. We let 7/ (U, . .. ,U,) denote the integer that 7 plays at the start of the
next round, immediately after (U, . . . ,U, ) was played. By Ur(Uo, . . . ,U,,) we mean the union of the (finitely
many) open sets in 7(Up, . ..,Uy). Note that according to this notation |7(Up, ..., U,)| = 7' U, ..., Un-1).

We define a strategy o for I in the finite-open game on X. We begin by explicitly describing ¢ on the
first round. Let kg = 7/(&) be 7’s first (integer) move in Gf, (O, O). Define

Co = [ Ur).
Ueo
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The next Lemma is the only point in the proof where we use the assumption that X is 75."
Lemma 2.3. |Cy| < kg.

Proof. Suppose towards a contradiction that xg,...,zr, are ky + 1 distinct points in Cy. Since X is Tb,
there are open sets Uy, ..., U, in X with a; € U; for all i < kg and with the {U;} pairwise disjoint. For
each z € X \ {z;}i<k, let U, be an open set containing x such that U, is disjoint from a neighborhood
of {z;}i<k, (using Ty again). Let U = {U,: = ¢ {z;}i<ky } U {Ui}i<ky, S0 U is an open cover of X. 7(U)

consists of kg of the sets from U. There is an ¢ < kg such that U; ¢ 7(U). Then z; ¢ Ur(U), a contradiction
toz; € Cy. «

Then let ¢’s first move in the finite-open game be Cg. Say 11 responds with Vj. Before we continue, we
need to define some auxiliary sets which correspond to the position (Cg, Vo). If Vy was legal, then we note
that X \ V) C X \ Cg, and thus for each z € X \ Vo, there is some U € O such that z € X \ Ur(U). These
sets form an open cover of X \ Vp, which is a closed subspace of X, and thus is Lindeldf, and so we fix
{Um) (Vo) mew = {Um) }mew such that {X \ UT(Upm)) fmew is a cover of X\ V4.

To define o in subsequent rounds, we need to dovetail various moves on subsequences, using the previously
defined open covers U for s € w<*, and for this purpose we fix any bijection ¢: w<* — w with the property
that if s C ¢ then ¢(s) < ¢(t). For s € w<“ we let lh(s) denote the length of s. Now in general, suppose
we are at round n in the finite-open game, and the moves Cy, Vy, ..., C,_1, V1 have been played, where
|Ci| = k; for i < n. Assume in addition that for each j < n we have defined open covers U,-1j)~,, for all
m € w (which depend on the Vj played thus far). Furthermore, assume that the Cj, V;,U,-1(jy~m for j <n

satisfy the following. Let s = »~1(j), then:

1. C] = nZ/{GO UT(Z/{SHJ/{S[Q, P ,L{S“h(s),u),
2. {X\UT(Usp1,Usta, - - ,Uspin(s)s Us~m ) fmew 18 a cover of X\ Uiglh(s) Vio(sti)-

Note that property (2) for j is possible since the space X\Uiglh(s) Vis(stiy is Lindeléf and X\Uiglh(s) Vio(stiy €
X\ Uiglh(s) Ciy(s}i), and using property (1) for the C; for i < j.

We define ¢’s response to this position, and the necessary sets U;~,,, in a similar manner to the base
step. Let t = ¢~ !(n) and define o’s response to be

C, = ﬂ Ut (Usp1,Uspa,s - - - Uiy, U),
Ueo

which clearly maintains property (1). Note also that C,, is finite, and in fact has size at most |C,| <
7' (Ust1, - . ., Uppn) ), by the same proof of Lemma 2.3.

Similarly to the base step, define {U;~,,}mew to be a countable collection of open covers such that
{X N\ Ur(Uspr, Uz, - - - Uspinge) s Up~m) Fmew covers X\ Uiglh(t) Vo(triy- Of course, this uses the fact that
X\Uiglh(t) Vis(¢1i) is Lindelof and that it is contained in X \ C,,. This completes the definition of o. To show
that ¢ is winning, we suppose that Cy, Vy, C1, Vi,... is a full run of the finite-open game which is consistent

with o. Note that since this run is consistent with o, we can recover the tree of open covers {Us}scw<e
associated to this run which satisfies the properties (1) and (2) above. Suppose that X # (J,, V5, and let
r € X\ U, V. In particular, z € X \ Vo. Now we use property (2) to obtain ig such that x ¢ Ut (U;,)). In
general, supposing we have ig, i1, ...,i,—1 Where x & UT(Uiy), - . -Ug,,...ip)) for any & < n, then use the fact
that z € X'\ Usggrl(n) Vis(s) and property (2) to obtain i, so that x & UT(Uxg), -+ sUg,....in_1)>Ulio,...in))-

! The fact that X is Ty is necessary for the proof of the following lemma. For instance, consider N with the co-finite topology,

then for any function f which selects k open sets from an open cover, we have that the set C = (., Uf(U) = N which clearly
has more than k elements.
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This builds a branch through the tree of open covers {Us}scw<w, associated to this run, which has the
property that z is not in any of the closures of 7’s moves in response to this branch. This contradicts the
assumption that 7 was a winning strategy. 0O

Corollary 2.4. For any Ty space X and any f: w — w\{0}, the games G1(O, O) and G;(O, O) are equivalent.
In particular, we have the following corollary which answers Problem 4.5 of [1] for T3 spaces.
Corollary 2.5. For any Ts space X and any n € w, the games G1(0,0) and G,,(O,O) are equivalent.

3. Open questions

A natural question is whether we can drop the assumption that X is T5 from the hypothesis of Theo-
rem 2.2. In fact, the authors of [1] originally asked if for any topological space the games G1(O, Q) and
G2(0,0) are equivalent. Our Theorem 2.2 shows these games are equivalent for any T space, but the T
assumption seems necessary for the argument.

We are not aware of any space (with no assumptions on the space) for which these games are not
equivalent. As we noted in Fact 2.1, the determinacy of the game G1(O, Q) gives the equivalence of these
games. However, since the determinacy of these games is not guaranteed in ZF, it is possible even that the
equivalence for arbitrary spaces is independent of ZF.

Question 3.1. Can we weaken the hypotheses of Theorem 2.2 from 75 to T3, or even remove it entirely?
That is, can we prove in ZFC that the games G1(O, O) and G§ (O, O) are equivalent for any space X?

One possibility for a negative answer to Question 3.1 would be to construct in ZFC a space for which
the games are not equivalent (in this case the game G1(0O, O) is not determined, and IT must win the other

game). It is also possible that the existence of a space for which the games are not equivalent is independent
of ZFC. So we ask:

Question 3.2. Ts it consistent with ZFC that there is a space X for which the games G1(O, O) and G2(0O, O)
are not equivalent? Is the existence of such a space consistent with ZF? In particular are the games equivalent
in models of determinacy?
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