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Abstract

We describe a star cluster formation model that includes individual star formation from self-gravitating,
magnetized gas, coupled to collisional stellar dynamics. The model uses the Astrophysical Multi-purpose Software
Environment to integrate an adaptive-mesh magnetohydrodynamics code (FLASH) with a fourth order Hermite
N-body code (ph4), a stellar evolution code (SeBa), and a method for resolving binary evolution (multiples).
This combination yields unique star-formation simulations that allow us to study binaries formed dynamically from
interactions with both other stars and dense, magnetized gas subject to stellar feedback during the birth and early
evolution of stellar clusters. We find that for massive stars, our simulations are consistent with the observed
dynamical binary fractions and mass ratios. However, our binary fraction drops well below observed values for
lower mass stars, presumably due to unincluded binary formation during initial star formation. Further, we observe
a buildup of binaries near the hard-soft boundary that may be an important mechanism driving early cluster
contraction.

Key words: binaries: general – galaxies: star clusters: general – magnetohydrodynamics (MHD) – methods:
numerical – stars: formation
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1. Introduction

The study of star cluster formation through simulations is a

nonlinear physical problem with a wide range of scales.
Clusters form from turbulent, magnetized molecular clouds that

are parsecs across, yet the individual star-formation process

happens at scales of a single au or less (Mac Low &
Klessen 2004). Further complicating the issue, star formation

contains a complex feedback loop in which stars forming in

one epoch affect proximal regions of current and future star
formation through radiation, winds and supernova feedback.

The gravitational contraction of molecular clouds, star forma-

tion, stellar evolution, dynamical binary formation, and cluster
assembly and virialization all take place on timescales of

1–10Myr. Resolving the relevant physical processes on all size

and timescales is computationally challenging. As a result,
approximations for star formation are used that include sink

particles representing entire clusters (Gatto et al. 2017),

simplified stellar feedback (Dale et al. 2014), or softened
gravitational dynamics for stars (Federrath et al. 2010), or

simulations neglect important dynamical agents such as

magnetic fields (Rosen et al. 2016) in order to make the
problem tractable.

In this study we describe numerical methods to resolve the

dynamics of the stars and gas in order to study the formation of

star clusters from gas collapse. This includes coupling of the
magnetohydrodynamics (MHD) code FLASH (Fryxell et al.

2000), the N-body code ph4 (McMillan et al. 2012), and the

stellar evolution code SeBa (Portegies Zwart & Verbunt 1996)
using the Astrophysical MUlti-purpose Software Environment

(AMUSE; Pelupessy et al. 2013), and implementation of a
subgrid model for the formation of individual stars from sink
particles. Since we focus on cluster formation and evolution as
opposed to individual star formation, we have chosen to use the
initial mass function (IMF) as an input rather than a result of
our simulations. To accomplish this, we sample a Kroupa IMF
(Kroupa 2001) using a Poisson process, but still individually
form each star in a way that conserves mass both locally and
globally.
The natural environment to develop these methods is

AMUSE, as the original intention in the development of AMUSE
was to allow for the coupling of different astrophysical codes
for multiphysics simulations (Portegies Zwart et al. 2013).
Further, multiple N-body and stellar evolution codes already
exist in AMUSE, allowing us to change methods as needed. For
example we could switch between SeBa or MESA (Paxton
et al. 2011) for stellar evolution depending on the level of detail
desired and computational cost acceptable. This allows us to
represent the stars in FLASH, ph4, and SeBa as a single data
structure that can be modified by any of the above codes,
followed by propagation of the updated information to all other
running codes. Interfacing FLASH into the AMUSE environ-
ment allows us to couple the gravitational potentials computed
by FLASH and ph4 using a gravity bridge (see Section 2)
directly using code in Python without major rewrites of
either code.
In addition to interfacing FLASH with AMUSE, we have also

made several additions to FLASH itself. For the heating
and cooling of the gas we have modified the methods for
atomic heating and cooling of Joung & Mac Low (2006) and
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Ibáñez-Mejía et al. (2016) with the molecular and dust cooling
methods of Seifried et al. (2011), which themselves are based
on Neufeld et al. (1995). To do this we have added our
own model of heating from the photoelectric effect to dust
using either the calculations from Wolfire et al. (2003) or
Weingartner & Draine (2001), which can be chosen with a
parameter switch. Finally, to solve for the both the degree of
ionization and temperature of the gas as well as the dust
temperature we have implemented our own integrators based
on well known methods.

We reserve a detailed examination of these modifications to
a subsequent paper, where we will also detail modifications we
have made to include feedback from individual stars. In this
work, we focus on the coupling of gravity between FLASH and
ph4 using a gravity bridge.

In Section 2 we explain the concept of a gravity bridge and
how we implement it, while in Section 2.2 we verify our
implementation. In Section 3 we describe our method for
introducing star particles in regions of high gas density, and for
handling binary or higher-order systems in Section 4. We
define a demonstration problem in Section 5, and describe
dynamical binary formation occurring in our models in
Section 6. Finally, we summarize our results in Section 7.

2. Gravity Bridge

2.1. Implementation

Central to our implementation is the requirement to have
fully collisional N-body dynamics calculated for stars evolving
in gas-rich regions. To allow for physical interaction between
the gas in FLASH and the stars in an N-body code, we
implement a gravity bridge (Fujii et al. 2007) between the
two codes. The method is a “kick-drift-kick,” leapfrog-type
integration scheme with roots in the symplectic map method
used by Wisdom & Holman (1991) to integrate the motions of
planets in the solar system. In Wisdom & Holman (1991), the
planets followed an analytic Kepler orbit around the Sun while
being perturbed periodically by each other’s gravitational
acceleration. The scheme was extended by Fujii et al. (2007) to
integrate a star cluster subject to tidal effects inside a parent
galaxy. While the method has previously been used to couple
gas in smoothed particle hydrodynamics to stars contained in
an N-body code (e.g., Pelupessy & Portegies Zwart 2012), we
have for the first time implemented this method with an
Eulerian, adaptive mesh refinement (AMR) grid code. Here we
briefly describe the AMUSE bridge method, following Fujii
et al. (2007).

If we define the equation of evolution for our solution f (q(t),
p(t); t) in terms of the Poisson bracket

{ } ( )=
df

dt
f H, , 1

where H is the Hamiltonian of the system, and define an

evolution operator DH

{ · } ( )= = HD
d

dt
, , 2H

the formal solution for f (t) is

( ) ( ) ( )+ D = Df t t e f t . 3tDH

Yoshida (1990) noted that if H (and therefore DH) is separated
into kinetic and potential energy terms, H=K(p)+U(q)

(with coordinates q and momenta p), and DK and DU are defined
as in Equation (2), then the exponential in Equation (3) can be
approximated as

( )( )=D D +e e 4tD t D DH K U

( ) ( )= + DD

=

e e e O t , 5t

k

l
a D b D n
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k K k U

for suitable l, n, and constants ak, bk. In the simplest case,

l=2, n=2, a1=a2=1/2, b1=1, and b2=0, and the

total evolution of f (t) becomes a second order integration

scheme upon Taylor expansion
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We immediately recover the familiar kick–drift–kick formula-

tion of the leapfrog integrator, as

{ } ˙ ( )= = = =D q q H
p

m
q v, 8U i i U

i

i
i i

{ } ( )= = -  = =D p p H m V F m a, , 9K i i K i K g i g

and the evolution of the system reduces to

( ) ( )¢ = + Dv v a x t
1

2
10i i i

( )¢ = + ¢Dx x v t 11i i i

( ) ( )¢ = ¢ + ¢ Dv v a x t
1

2
. 12i i i

Wisdom & Holman (1991) noted that the Hamiltonian of a
system comprising two or more coupled subsystems can
alternatively be split into a set of secular evolution terms
describing the internal evolution of each subsystem and
perturbation terms consisting of delta functions, representing
the interactions between the subsystems. Following Wisdom &
Holman (1991) and Fujii et al. (2007), we split our Hamiltonian
for each system into a sum of terms, DK and DD, representing,
respectively, the kick due to the external perturbation and the
drift due to internal (unperturbed) evolution. Regardless of the
split, the Yoshida (1990) decomposition (Equation (5)) still
applies, and the evolution of the system can be described by a
scheme of the same form as Equation (7).
In our simulations, the subsystems are the stars (modeled

using ph4) and the gas (modeled using FLASH), so DK is
computed for the stars using the gravitational acceleration due
to the gas, and for the gas using the gravitational acceleration
due to the stars. For the drift operators, instead of deriving the
drift from the Hamiltonian as was done in Equation (8), we use
each subsystem’s internal integration scheme as shown in
Figure 1. This means we now also introduce any error from the
internal schemes (fourth order for ph4 and second order for
FLASH) to the formally symplectic integration of the bridge,
but we gain the ability to couple the codes gravitationally. This
error is found to be generally small, even for fairly large bridge
timesteps (see Section 2.2). Our integration scheme for stars is

( )¢ = +
D

v v
t
akick

2
13s s g s,0 ,0 ,0

ph4( ) ( )¢ = ¢ Dx v x v tdrift , , , 14s s s s,1 ,1 ,0 ,0

2
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( )= ¢ +
D

v v
t
akick

2
, 15s s g s,1 ,1 ,1

where ag s is the gravitational acceleration on the stars due to

the gas. The stars receive an initial velocity kick from the gas,

then drift alone, then get a final velocity kick from the gas. The

same considerations lead to a similar procedure for the gas:

( )¢ = +
D

v v
t
a

2
16g g s g,0 ,0 ,0

FLASH( ) ( )¢ = ¢ Dx v x v t, , , 17g g g g,1 ,1 ,0 ,0

( )= ¢ +
D

v v
t
a

2
, 18g s s g,1 ,1 ,1

where as g is the gravitational acceleration on the gas due to

the stars.
At each bridge step, the gravitational acceleration due to gas

in each cell of the MHD code on the stars ag s is calculated at
the locations of each star in ph4, and the gravitational
acceleration of each star on the gas as g is calculated at each
cell site in FLASH. For obtaining the gravitational acceleration
of the gas in FLASH, we use the first order finite differences
of the potential calculated by the FLASH multigrid solver
(Ricker 2008). For the acceleration of the particles on the gas,
we initially used the acceleration directly from ph4. However,
testing showed that combining two different methods for stars
on gas and gas on stars led to violations of Newton’s Third
Law. We have therefore included a cloud in cell mapping of the
stellar masses onto the grid itself followed by the same
multigrid potential and acceleration solution method, allowing
us to use the same solver in both bridge directions to properly
conserve momentum during the interactions.

The method averages the gravitational acceleration of one
code on the other over the bridge time step, so the error in the
bridge depends on the time step Δt. Testing with different
timesteps has shown that Δt∼tff /100 is accurate enough to
pass the tests presented in the next section, where tff is the

minimum freefall time in the simulation, although in practice
we set bridge timesteps much smaller than this, generally
~ Dt2.5 h, where Δth is the hydro time step. Runs at this time
step still mean that each code is taking numerous steps
independently, making the whole simulation more efficient
overall. Also, because the two codes drift independently, they
can in principle be evolved in parallel for another improvement
in speed.

2.2. Verification

To test the gravity bridge we perform the test used by
Federrath et al. (2010) for sink particles when they were first
incorporated into FLASH. This consists of embedding three
particles at different radii on circular orbits centered on a cloud of
gas. The gas does not evolve and acts as a static potential. This
tests the actual interaction between gas and particles, unlike
imposing a background static potential without representation on
the grid. The density of the gas varies as

( ) ( )( ) ( )r r=r r r r , 19o o
2

where ( )r = ´ - -r 3.82 10 g cmo
18 3 and = ´r 5 10 cmo

16 ,

which implies a gas mass of roughly 3 M inside ro. The three

particles are placed at distances of 1016 cm, 2×1016 cm, and

3×1016 cm from the center of the gas cloud and have masses

10−10
M such that the interparticle gravity is very small

compared to that of the gas. Each particle starts with a

translational velocity for circular orbits

( ( ) ) ( )= = -v GM r r 895 m s , 201 2 1

which we lower by 2.3%, 1.1%, and 0.8%, respectively, to

account for the non-singular nature of gravity on the grid at the

origin (Federrath et al. 2010).
To check energy conservation we integrated ten orbits of the

innermost particle to compare against Federrath et al. (2010),
with the result shown in Figure 2. Our integration appears to
close the orbits as well as the integration in Federrath et al.
(2010), which used a second order leapfrog scheme. However
their integration produced larger errors in the outermost orbit,
while ours shows the most error in the innermost orbit.
Federrath et al. (2010) attributed the error in the outer orbit to
the finite effects of the grid (deviations from spherical
symmetry) at the edges of the grid. Our model does not show
this effect strongly as the density drops smoothly to the edge of
the computational domain, while in the Federrath test the cloud
has a sharp edge at ∼4×1015 cm where the density changes
by three orders of magnitude.
Although the orbits in Figure 2 are well closed, they do

oscillate slightly about the proper path. This is more clearly
seen in a plot of the fractional radial error (Figure 3). The
resulting energy error, shown in Figure 4, never rises above
∼2%. The larger radius error in the inner orbit corresponds to
the larger angular distance covered by the inner particle
between kicks, which in this test case were delivered at fixed
time intervals ∼10 yr. The expected stability of symplectic
integrators is evident, and the energy error does not grow
noticeably with time.

3. Stellar Implementation

Our model of stars and star formation includes two
components: sink particles that form from and accrete Jeans
unstable gas, and star particles that represent main-sequence

Figure 1. The bridge scheme implemented in AMUSE using FLASH for
hydrodynamics, ph4 for N-body, and SeBa for stellar evolution.

3

The Astrophysical Journal, 887:62 (12pp), 2019 December 10 Wall et al.



objects formed from these sink particles (and hence from their
accreted Jeans unstable gas). This leads to a natural division in
our numerical model of stars between how we sample the gas
to form stars and how we capture the feedback from these stars
on the gas. In Section 3.1 we describe our star-formation
process, and then in Section 3.2 we briefly describe our stellar
feedback implementation, leaving the details to a future paper
focused specifically on this topic.

3.1. Star Formation

Capturing the range of scales in simulations is one of the
core challenges to overcome in conducting studies of star

cluster formation and the ISM in general. In order to account
for the effects of the surrounding medium, including its large
scale turbulence, magnetic fields, and feedback, simulation
boxes need to have sizes of tens to hundreds of parsecs.
However in order to properly capture star formation for stars as
small as a solar mass, including binary star formation,
simulations need to be able to resolve the Jeans length λJ

( ) ( )l p r= c G , 21J s
2 1 2

which is on the order of or below a single au at high densities.

(Recent work does suggest that perhaps only hundreds of au

need be resolved; Sadavoy & Stahler 2017.)
To resolve the Jeans length in pure Eulerian hydrodynamics,

λJ must be resolved by at least four grid cells (Truelove et al.
1997), while in MHD at least six cells per Jeans length are
needed to resolve Alfvén waves (Heitsch et al. 2001), and as
many as 32 cells per Jeans length would be needed to properly
resolve self-consistent formation of magnetic fields through the
microturbulent dynamo (Federrath et al. 2011). These require-
ments generally set the physical scales of the simulation, with
the computational expense increasing with dynamical range.
Many authors overcome this difficulty when simulating star

formation in large clouds by adding so called sink particles that
represent entire clusters, essentially truncating the small scales.
Clusters are created from Jeans unstable gas that is collected in
sink particles (Bate et al. 1995; Krumholz et al. 2004; Federrath
et al. 2010) on the grid (Dale et al. 2014; Gatto et al. 2017).
This method requires taking random samples from the IMF,
which in turn requires that enough gas be collected that the
high-mass end of the IMF can be sampled appropriately. This
typically means that around 100 M to 150 M must be
collected in a sink particle, which once sampled for a cluster
population becomes a single point source for all of the cluster’s
feedback.
The second difficulty in modeling star formation comes from

the effects of feedback at the protostellar and pre-main-
sequence phases. During the protostellar disk phase, accretion
luminosity reduces fragmentation (Krumholz et al. 2007;
Bate 2009; Peters et al. 2010, 2011). This luminosity, along

Figure 2. Orbital paths of three test particles after ten orbits in an isothermal
density profile where the gravitational acceleration of the particles is due to the
bridge.

Figure 3. Fractional absolute error in orbital radius of three test particles.

Figure 4. Fractional energy error of the three test particles.

4
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with protostellar jet driving, is expected to reduce the efficiency
of envelope accretion (Matzner & McKee 2000). All of these
will have an effect on the final main-sequence star that results.
Generally, these effects are replaced by a local star-formation
efficiency parameter òsfe, usually on the order of 0.1–0.5, which
represents the fraction of gas that survived the accretion
process from the stars initial outer gas envelope (e.g., Padoan
et al. 2014).

We avoid this difficulty by sampling the IMF directly to
obtain the zero-age main-sequence mass.

Instead of sampling an IMF directly after collecting mass, we
choose instead to take a Poisson sampling of the number of
stars in a given mass bin in the IMF for any given star-forming
region, as proposed by Sormani et al. (2017),

( ) ! ( )l= l-P n e n , 22i i
n

i
i i

where l = á ñf M mi i i , M is the total mass for a specific sample,

á ñm is the average mass in the ith bin for the total range of the

IMF sampled over, fi is the fraction of the total mass in the ith

bin for the IMF range, and n is the number of stars for a specific

sampling for which the probability P is returned.
The idea of Poisson sampling for mass values has been used

before to choose from the IMF (Elmegreen 1997). It has the
added mathematical benefit that even when sampling one star at
a time the sum of all the samples will always reproduce the
parent sample, because the product of the subset Poisson
distributions of ni, nj with mean values λi, λj is equal to the
Poisson distribution of the entire set N with the mean being
λi+λj:

( ) ( ∣ ) ( )å l l=
=

P N P n n, , 23
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l l
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e

n
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i
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i
n

i

j

n

j0

i

i

j

j

( )

!
( )

l l
=

+ l l+

N
e , 25

i j
N

i j

from the binomial theorem.
On the face of it, it would seem that the same considerations

of having enough mass to sample each mass bin appropriately
would apply to our Poisson sampling as well (see for example
Sormani et al. 2017), as even an input of 1 M of gas can result
in an unphysical 20 M star, even if we lack enough mass in
the simulation to create it. Suggestions to overcome this
difficulty in star-formation methods have been to violate local
mass conservation by sampling from all sink particles at once,
or to simply sample all gas over a given density threshold
throughout the simulation (Fujii & Portegies Zwart 2015).

Instead, we invert this process. We use the sink particle
routines of Federrath et al. (2010) in FLASH to identify star-
forming regions. Every time a sink particle forms because a
region has become Jeans unstable, we create a list of stellar
masses for that sink particle by sampling the IMF with our
Poisson process for a total of 104 M of stars before the sink
accretes any gas. The number of stars from the Poisson
sampling in each mass bin is returned, and then we randomly
sample from the Kroupa (2001) IMF in each bin to give actual
masses to every star, with the sampled mass bracketed between
0.08 and 150 M . We choose a minimum mass of 0.08Me for
the IMF. We then randomize the entire list of stars created.
Once the sink particle obtains enough mass to create the first

star in the list, this star is removed from the list and placed into
the simulation, after which the sink must then gather enough
mass for the second star in the list.
This method allows us to form particles star by star, without

any violation of mass conservation. Each particle can take on
the local momentum, mass, and velocity of the sink at the time
of formation. Also if a massive star forms, it has the chance to
shut down local (or non-local) star formation in the simulation
by preventing further accretion, allowing the effects of
feedback on star formation to be properly analyzed. Further-
more, becaused stars are formed individually, gravitational
interactions between stars and with the surrounding gas can lead
to binary formation and stellar ejections that can have important
dynamical effects on the clusters and their surrounding natal gas
clouds.
Each gas-gathering sink particle has an accretion radius of

2.5 times the smallest grid cell, to capture the local flow for
accretion of the gas (Federrath et al. 2010). Since this is the best
resolved location we have for star formation, star particles are
placed randomly within this radius using an isothermal
spherical density profile (Binney & Tremaine 2011). This
allows some stars to form on the edges of these regions, but
with smaller probability. We sample the velocity for the star
from a Gaussian profile centered on the sink velocity, using the
local gas sound speed as the variance. Figure 5 is the resulting
mass distribution for a typical small cloud (103 M ) run using
this method.

3.2. Stellar Feedback

Stellar feedback in our simulations occurs in the form of
radiation, winds, and supernovae from stars with masses
greater than 7 M . Radiation is followed using a modified
version of FERVENT (Baczynski et al. 2015), which is a long
characteristic ray-tracing method (Wise & Abel 2011). We
follow ionizing and non-ionizing ultraviolet radiation down to

Figure 5.Mass function of stars from run M3f presented in the Results section.
The Kroupa IMF is shown for comparison, normalized to the same number of
total stars as in the simulation, here 1100.

5
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5.6 eV for heating of the gas, as well as including the
momentum of the radiation absorbed by the gas. For stellar
winds, we implement a momentum-conserving injection of
radiation line-driven winds directly into the gas, using mass
loading as a proxy for cooling of the hot shocked stellar winds
by thermal conduction. Finally, for supernovae we implement
directly the resolution-dependent energy-injection method of
Simpson et al. (2015). All three methods have been bench-
marked against standard tests such as D-type front evolution
(Spitzer 1978), the analytic solution of an OB-type stellar wind
bubble (Weaver et al. 1977), and the evolution of a supernova
remnant (Draine 2011; Haid et al. 2016).

Feedback is restricted to our star particles; we do not include
protostellar feedback during the time a sink particle is accreting
mass. Once the sink has enough mass to make the final target
main-sequence star, a star particle is placed into the simulation
with this main-sequence mass. These star particles are maintained
as a separate list from the sink particles during the runs. Feedback
modifies the star particle’s mass throughout the simulation due to
mass loss via winds and supernovae, and the type and strength of
feedback are updated during the run based on each star particle’s
current stellar mass as it evolves.

4. Multiple Stars

The formation of close binaries and higher-order systems
with short orbital periods requires reduction of the time step to
a fraction of the periods for accurate dynamical solutions. This
prevents further integration of the solution due to the extreme
computational expense. Normally, in N-body codes, the
solution to this problem is to introduce a specialized treatment
of close encounters, through regularization of the equations of
motion (Aarseth & Zare 1974) or some other approximate
treatment of close encounters (Portegies Zwart et al. 1999).
Several of the N-body modules in AMUSE have the ability to
incorporate such treatments, but for a general and minimally
intrusive solution within the AMUSEframework, we prefer to
handle close encounters using an external module, as we now
describe.

The basic simplification in the approach we use is that the
N-body code manages only the centers of mass of stable
multiple systems. These include binaries, stable hierarchical
triples according to the Mardling (2008) criterion, or higher-
order multiple systems in which the Mardling criterion applied
to the outermost orbits indicates stability. Close encounters are
resolved using the multiples module (Portegies Zwart &
McMillan 2019), which keeps track of the internal structure of
all multiple systems and manages interactions between them.
To operate with this module, an N-body code must be modified
to detect close encounters and return immediately to the top-
level AMUSEscript controlling the simulation, where appro-
priate means are taken to resolve the encounter. Such
functionality is straightforward to add, and is applied at the
end of every N-body step.

In our case, the ph4 N-body module checks for pairs of
particles that satisfy the stopping conditions that (1) they are
approaching, (2) they have separations less than twice the sum
of their effective dynamical diameters (a tunable parameter set
at runtime to be 100 au for all stars and twice the semimajor
axis for a binary), and (3) they are relatively unperturbed, in the
sense that the maximum perturbation due to any other star is
small. Specifically, if the bound stars have masses m1 and m2

and semimajor axis a, our criterion is that the tidal perturbation

due to any other star (of mass mp and distance d from the binary
center of mass) must be less than some factor γp times the force
between the two stars:

( ) ( )
( )g

-
-

+
<

m m

d a

m m

d a

m m

a4
. 26

p p
p

1

2

2

2

1 2

2

In the runs reported here we chose γp=0.02.
Once the stopping condition is triggered, any internal

structure in the two interacting particles is restored, and the
entire subsystem is moved to a separate code designed for
small-N encounters, aptly named smallN (Hut et al. 1995;
McMillan & Hut 1996). The smallN code models the
encounter as a scattering experiment, terminating when the
system has resolved itself into a collection of mutually
unbound single stars or stable multiples (as just defined). The
internal structure of the stable multiples is saved, their centers
of mass are placed back in the N-body code, and the integration
continues. In this way, arbitrarily complex hierarchical
configurations can form and interact, and their dynamical
histories can easily be monitored. Wide binaries—bound pairs
that are projected to become strongly perturbed at the
apocenter, by the criterion in Equation (26)—are not treated
in the center of mass approximation, but are simply broken up
into components and returned to the N-body code. This
treatment of multiples is unusual in the N-body community, but
similar implementations are widely used in Monte Carlo
models of cluster dynamics (Chatterjee et al. 2010; Hypki &
Giersz 2013). The multiples treatment in AMUSE is an
elaboration of an approach originally developed and tested by
Tanikawa & Fukushige (2009).
Currently, the internal structure of a multiple is simply frozen

until its next close encounter. Secular internal evolution or
perturbations due to encounters too wide to trigger a stopping
condition are not included. Binaries on wide or strongly
perturbed orbits are not merged into their center of mass; instead,
their components are returned directly to the N-body code. We
note that, although ph4evolves only the centers of mass of
multiple star systems, for all feedback and bridge calculations the
individual component stars are used directly.

5. Demonstration Problem

As a demonstration of our method, we simulate star formation
in turbulent spheres of gas. For gas dynamics in FLASH we use
the unsplit MHD solver (Lee 2013) with third order piecewise
parabolic method reconstruction (Colella & Woodward 1984)
and the Harten–Lax–an Leer discontinuous Riemann solver

Table 1

Parameters for Each of the Four Runs Described here Including Mass M, Total
Number of Stars Ns at End of Run tend when Analysis was Performed, Time at
First Star-forming Event tsf, the Cell Size Δx at Maximum Refinement and the

Domain Size D

Runa M ( M ) Ns tsf (Myr) tend (Myr) Δx (pc) D (pc)

M3 103 1100 2.86 4.38 0.01 10

M3f 103 1062 2.31 3.90 0.02 10

M4f 104 589 7.76 9.14 0.05 12

M5f 105 1144 15.38 17.82 0.2 110

Note. Note that M3 and M3f used different random turbulent patterns initially,

explaining their different values of tsf.
a
Runs ending in “f” include radiation, winds, and supernovae.
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(Miyoshi & Kusano 2005), while for solving Poisson’s equation
for gravity we use the multigrid solver of Ricker (2008). We
include feedback in these runs from radiation, winds, and
supernovae that we will describe in a subsequent paper, as the
results we describe here are not strongly affected by the feedback.
We initialize the density field with the commonly used, initially
spherically symmetric, Gaussian gas distribution of Bate et al.
(1995), while the velocity field is generated with a turbulent
Kolmogorov velocity spectrum (R. Wünsch 2015, personal
communication) for the dense gas. Magnetic fields in all runs are
initialized at 3 μG uniformly pointing in along the z-axis, after
which they evolve to be consistent with expectations for fields in
star-forming regions. We leave analysis of these fields to the
same future work where we will analyze stellar feedback, where
the effects of the fields are more apparent. All runs have eight

levels of AMR refinement with the exception of M3f, which has
seven, with refinement triggered by the Jean’s criterion described
in Federrath et al. (2010). All the runs except M3V2 have all
three stellar feedback methods (winds, radiation, and supernovae)
switched on, although no run has yet to experience a supernova
event.
We use total masses of M=103, 104, and 105 M and

Gaussian density profiles with variance ro=5, 10, and 50 pc,
respectively. These length scales are chosen to roughly match
the average density scales of clouds of these masses (Stahler
& Palla 2008). Note this means the larger clouds have
significantly longer freefall times. Outside of the sphere the
density is chosen to roughly match the ISM density for a
containing medium based on the size and density of the sphere
itself (i.e., for the 103 M sphere, with higher density, the

Figure 6. Projected number density along the z-axis for runs (a) M3, (b) M3f, (c) M4f, and (d) M5f at the last data file from each run. The area of the circles
representing stars are proportional to their mass, while the locations of sink particles are shown by white star symbols. Feedback is most effective in run (b) where
multiple feedback stars have sunk together to the center of the cluster and in (d) due to the 97 M star in the center of the image. An animation of the evolution leading
up to the snapshot shown in (d) is available. The video begins at t=15.0 Myr and ends at t=17.53 Myr. The real time duration of the video is 41 s.

(An animation of this figure is available.)
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containing medium was assumed to be cold neutral medium,

while for the 105 M sphere the containing medium is warm

and ionized). Then, the temperatures are chosen to keep the

sphere and containing medium in pressure equilibrium. The

physical grid domain sizes D, listed in Table 1, are ∼1.3–1.5

times the Gaussian width r0 in each case. All models reported

here were initialized with a virial ratio of kinetic to potential

energy of 0.2. We choose this initially low virial parameter to

ensure quick cloud collapse even before all of the turbulence

decays within a freefall time (Mac Low et al. 1998). As expected

our spheres rapidly collapse into filamentary structures and begin

forming stars (see Figure 6).

The four models we analyze are the current snapshots of our

first runs, listed in Table 1 and shown in Figures 6 and 7. Note

that although M5f is both more massive and significantly older,

it also contains a 97 M star that is shutting down star

formation in a large volume. Therefore the number of stars is

comparable to the much younger star-forming regions in other

runs. The larger runs have larger minimum cell sizes, because

all runs have the same number of refinement levels, but they

also have more individual filaments and cluster forming

regions. Finally we note that simulations of this nature are in

general highly stochastic, and therefore only predictable in a

statistical sense.

Figure 7. Projected number density along the y-axis for runs (a)M3, (b)M3f, (c)M4f, and (d)M5f at the last data file from each run. These images are zoomed out by
a factor of ∼2 compared to Figure 6 to better show the overall structure. (a) and (c) have fully collapsed and merged, while (b) is in the process of merging two
subclusters, and (d) is still scattered. (d) also shows signs of partial disruption as the cloud was destroyed above and right of the 97 M star, causing many cluster
members to become unbound.
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6. Binaries

Given the collisional nature of our coupled code, the
possibility exists of dynamical binary formation by interactions
between stars and with the gas. By a dynamical binary, we
mean two stars that are gravitationally bound and able to
survive for at least tens or hundreds of orbits. Note that
dynamical binaries can be, and indeed often are, disrupted by
stellar encounters. Indeed, massive binaries in a system are
routinely destroyed by the single, most massive binary in a
stellar cluster (Fujii & Portegies Zwart 2011).

We identify binaries in our simulation data using the same
perturbation criterion used by multiples (Section 4), except
that in the data analysis pass we loosen the criterion by
increasing the value of γp. As a guide for choosing γp, we
consider cases in which all three stars have equal mass. Then
for ratios d/a=2, 5, and 10, inverting Equation (26) gives γp
∼3.0, 0.14, and 0.016, respectively. For the preliminary
analysis presented here, we chose γp=3.0. We note that, in
previous work, binaries and multiple systems were generally
identified simply by finding gravitationally bound objects, with
no reference to possible nearby (or distant but massive)
perturbing objects (Bate 2012; Krumholz et al. 2012).

In all four runs examined here, binaries formed, yielding a
total of 85 binaries. The multiplicity fraction for these binaries

( )=
+

f
B

S B
27bin

for each mass bin is shown in Figure 8, where B is the total

number of binary systems, and S is the total number of single

stars. For comparison we include observations of fbin compiled

by Duchêne & Kraus (2013). We note that binaries identified in

our simulations would also be identified in observational

surveys, such as Gaia DR2, that contain all the phase space

information. Such surveys can be used to determine binary

membership through calculation of binding energy from

separations in parallax, proper motions and radial velocity

(Jiménez-Esteban et al. 2019).
The lack of low-mass binaries is due to the fact that we do

not include any primordial binaries as we form stars, nor do we
have high enough resolution to capture the gas dynamics that
may lead to primordial binary formation, such as core
fragmentation at small scales (Bate 2012). Figure 9 shows that
in absolute numbers, most binaries are close to 1 M , with a
steep decline for more massive stars following the IMF. We
have no binaries containing a primary star with mass below

M0.1 , although our IMF goes down to 0.08 M in all runs.
The value of fbin at the massive end appears remarkably

consistent with observations, despite our neglect of primordial
binaries. Indeed, as can be seen in Figure 10, all of our massive

Figure 8. Fraction of all stars in binaries by stellar mass. Our simulations
produce massive binaries at a rate consistent with observations, but very few
low-mass binaries. The mass errors shown are the bin widths, while the fbin
error is given by the Poisson statistical error Ns

−1/2.

Figure 9. Number of stars in binaries, binned by stellar mass.

Figure 10. Histogram of binaries binned by radius.
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binaries have separations r 1 au, consistent with a dynamical
formation scenario. This agrees with observations that show
the majority of massive stars occur in hierarchical systems
consisting of tight, presumably primordial, binaries orbiting on
wide orbits consistent with the dynamical binaries formed in
our systems (Karl et al. 2018).

For binaries consisting of a primary mass Mp and secondary
mass Ms, the mass ratio q=Ms/Mp, is shown in Figure 11.
Comparing with observations in our mass range, we find our q
distribution consistent with Kouwenhoven et al. (2005), with a
large peak for q<0.2 followed by a power-law drop.
Kouwenhoven et al. (2005) find that for a power-law
distribution of f (q) ∝ q− γ that γ∼0.3, while Shatsky &
Tokovinin (2002) find values between 0.3 and 0.5. We also
calculate γ by fitting a power law to the cumulative distribution
function of the q distribution, with the result being between
both of these values at γ=0.45±0.01 and shown in
Figure 12. It is interesting to note that both our data and
Kouwenhoven et al. (2005) appear to have moderate peaks near
q∼0.5 and q>0.8. To test the robustness of the peaks in our
histogram, we also examine the data sing kernel density
estimation. The multi-modal appearance of the data is evident
in all three methods. The width of the bins for the histogram
was calculated with the method described by Doane (1976),
which works well for small data sets and does not assume the
data is strictly Gaussian. For the kernel density estimation we
use the cross validation technique of leaving out one data point
for computing the bandwidth σ of the Gaussian. We uniformly
sample σ from 10−3 to 1 for each rotation through all the data,
comparing the mean integrated square error of each fit with the
full data set, to find the appropriate bandwidth.

With fully collisional N-body dynamics, we expect to see a
separation of our binaries into hard and soft regimes following
the Heggie–Hills law (Hills 1975; Heggie 1975). For an
average effective cluster thermal energy of

( )s= á ñNkT m , 28v
3

2

1

2

2

and a binary energy of

( )=x
Gm m

a2
, 29

1 2

with soft binaries having x/kT  1 and hard binaries having

x/kT  1, the separation between the two types grows with

time. In our runs, we indeed see distinct hard and soft

populations well separated by a boundary at σv∼3 kms−1,

the stellar velocity dispersion averaged across all four runs, as

shown in Figure 13. It also appears that the soft binaries

accumulate near the hard/soft boundary, which should be an

important energy sink for the clusters as these binaries are

disrupted. Gas dynamical friction could drive binaries to build

up in this way, after which they could be disrupted near the

Figure 12. (Upper panel) Cumulative distribution function of mass ratios
showing our fit to the data for γ∼0.45. (Lower panel) Our fit, as well as the fit
from (Kouwenhoven et al. 2005) of γ∼0.33 as well as γ=0.5 for reference.

Figure 11. Mass ratio of the primary to the secondary for the 77 binaries we
have found in our runs so far. Also shown are several lines of constant mass
ratio q for comparison.
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maximal soft binary energy and thereby drive the entire cluster

to contract (Leigh et al. 2014). Higher resolution runs will be

needed to confirm if this effect occurs at the smallest binary

separations.

7. Summary

In this work we have coupled the Eulerian MHD code
FLASH with stellar evolution and collisional N-body dynamics
using the ph4 and SeBa codes in the AMUSE software
framework. We then used AMUSE to couple the two gravity
calculations using a gravity bridge to allow for interaction
between the gas and stars, allowing us to simulate open cluster
formation and early evolution in spherical, turbulent clouds of
masses 103–105Me.

We have examined the binary populations produced in our
demonstration runs. Despite not injecting any primordial binary
population from core or disk fragmentation, we find a large
number of wide binaries with properties that suggest they
formed by interaction with the gas.

We find that the mass ratios of these binaries appear
consistent with observations, and that the binary fraction of
massive binaries is close to that observed. The lack of low-
mass or tight binaries that we find suggests that those
populations are predominantly produced by primordial core
or disk fragmentation, but that the wide hierarchical multiple
systems in which massive stars occur may be formed by this
dynamical mechanism acting on primordial binaries. We find
well separated hard and soft binary populations as predicted by
the Heggie–Hills Law, with evidence of a buildup of soft
binaries near the boundary between the groups. Our results
suggest that the hitherto little considered interaction of stars
with gas during the early evolution of stellar clusters, while
their natal gas remains present, may explain much of the wide
binary and multiple population, particularly for the most
massive stars.

With publication of this work we make public our interface
for the FLASH code in the AMUSE framework, in order to allow
reproduction of this work. We hope our interface inspires
others to use the coupling ideas behind this work in ways we
might never consider ourselves, in the spirit of scientific
discovery. The interface can be found within the FLASH

directory of the AMUSE code (www.AMUSEcode.org) at
https://github.com/AMUSEcode/AMUSE. Specific imple-
mentation details are available from the first author upon
request.

We acknowledge M. Davis, C. Federrath, S. Glover, A. Hill,
J. Moreno, and E. Pellegrini for useful discussions, and A. van
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Stiftung. R.S.K. acknowledges support from the Deutsche
Forschungsgemeinschaft (DFG) via SFB 881 “The Milky Way
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