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Abstract
Recently, Peeva and the second author constructed irreducible projective varieties with
regularity much larger than their degree, yielding counterexamples to the Eisenbud–Goto
Conjecture. Their construction involved two new ideas: Rees-like algebras and step-by-step
homogenization. Yet, all of these varieties are singular and the nature of the geometry of
these projective varieties was left open. The purpose of this paper is to study the singularities
inherent in this process. We compute the codimension of the singular locus of an arbitrary
Rees-like algebra over a polynomial ring. We then show that the relative size of the singular
locus can increase under step-by-step homogenization. To address this defect, we construct
a new process, we call prime standardization, which plays a similar role as step-by-step
homogenization but also preserves the codimension of the singular locus. This is derived
from ideas of Ananyan and Hochster and we use this to study the regularity of certain smooth
hyperplane sections of Rees-like algebras, showing that they all satisfy the Eisenbud–Goto
Conjecture, as expected. Along the way, we prove a somewhat surprising characterization
of Rees-like algebras of Cohen–Macaulay ideals. In a similar vein, while Rees-like algebras
are almost never Cohen–Macaulay and never normal, we fully characterize when they are
seminormal, weakly normal, and, in positive characteristic, F-split.

Keywords Rees-like algebra · Regularity · Seminormal · F-split · Singular locus

Mathematics Subject Classification 13D02 · 13A35 · 14J17

The second author was supported by a grant from the Simons Foundation (576107, JGM) and NSF grant
DMS-1900792.

B Jason McCullough
jmccullo@iastate.edu

Paolo Mantero
pmantero@uark.edu

Lance Edward Miller
lem016@uark.edu

1 Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, USA

2 Department of Mathematics, Iowa State University, Ames, IA 50011, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-020-02524-6&domain=pdf


P. Mantero et al.

1 Introduction

Given a nondegenerate, embedded projective variety X over an algebraically closed field k
corresponding to a homogeneous prime ideal P ⊆ S = k[x1, . . . , xn], the Eisenbud–Goto
conjecture predicts an estimate on the Castelnuovo–Mumford regularity of X :

reg(X) ≤ deg(X) − codim(X) + 1,

or equivalently

reg(S/P) ≤ deg(S/P) − ht(P). (1)

Equation (1) fails for arbitrary schemes, that is, when P is not prime. A interesting con-
struction introduced by the second author and Peeva [18] produced the first examples of
projective varieties failing this bound by producing from a known embedded scheme with
large regularity, a new projective variety embedded in a much larger space which also has
large regularity. This reinforces the need to control the singularities of X to ensure optimal
estimates for its regularity; in particular, the Eisenbud–Goto conjecture remains open for
arbitrary smooth projective varieties or even some mildly singular varieties. There are many
cases where the conjecture does hold including the case of curves [10], smooth surfaces in
characteristic 0 [15,22], and certain 3-folds in characteristic 0 [23]. See also related work of
Kwak–Park [14] and Noma [20]. There are also classes of mildly singular surfaces for which
Eq. (1) holds, see [19].

The process in [18] of constructing the examples of projective varieties failing Eq. (1)
involves two major steps. The first step is the construction of the Rees-like algebra, which
defines a subvariety of a weighted projective space. Specifically, given a homogeneous ideal
I in a polynomial ring S over a field k, the Rees-like algebra of I is the non-standard graded
k-algebra RL(I ) := S[I t, t2] ⊆ S[t].

The second step,which applies to anyhomogeneous ideal in a non-standard gradedpolyno-
mial ring, produces an associated ideal in amuch larger polynomial ring called its step-by-step
homogenization. Unlike the usual homogenization of an ideal which defines the projective
closure of an affine variety, the step-by-step homogenization produces a much larger variety;
however, it preserves graded Betti numbers and primeness for nondegenerate primes, making
it sufficient to produce the counterexamples to Eq. (1).

Thus far, explicit understanding of the geometry of the processes involved in both of
these two steps is lacking. It was proved in [18] that Rees-like algebras are not Cohen–
Macaulay but further structure of their singularities is not known. Moreover, the step-by-step
homogenization used in [18] can increase the relative size of the singular locus. The goal of
this paper is to better understand the behavior of the singularities and the size of the singular
locus after taking each of these two steps. First, we compute the Jacobian of the Rees-like
algebra explicitly leading to a complete description of the reduced subscheme structure of
the singular locus of the associated affine variety.

Theorem A (Theorem 2) Suppose I is a homogeneous ideal in a polynomial ring over a
perfect field k with char(k) �= 2. Set X = Spec(RL(I )). Then there is a bijection between
the irreducible components of the singular locus of X and those of Proj(S/I ). Moreover, its
codimension in X is

codimX (Sing X) = ht(I ).

One advantage of our explicit understanding of the Jacobian is that it allows one to push
Theorem A farther. In particular, we give a sample of how to expand this in Theorem 2.5,
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where S is replaced by the coordinate ring of a smooth, non-degenerate projective variety.
(In this case, further technical conditions on the presentation matrix of I are needed; see also
Example 2).

Now we turn our attention to the second major idea in [18], namely step-by-step homog-
enization. Unfortunately, step-by-step homogenization does not preserve the relative size of
the singular locus, see Example 3. We introduce a new notion called prime standardization,
based on the idea of prime sequences introduced by Ananyan and Hochster in [1]. We show
that the codimension of the singular locus of an arbitrary variety is preserved after applying
a certain prime standardization.

Theorem B (Corollary 1) Suppose I is a homogeneous ideal in a polynomial ring over an
algebraically closed field k with char(k) �= 2. There is a prime standardization of the defining
prime ideal of the Rees-like algebra RL(I ) such that the irreducible components of the
singular locus of the resulting projective variety Y and those of the scheme defined by I are
in bijection. Moreover, its codimension in Y is

codimY (Sing Y ) = ht(I ).

While the varieties produced in [18] are highly singular, it is natural to consider the
possibility of smooth hyperplane sections of those varieties. Using the above results and
working over characteristic 0 fields, we exploit Bertini style arguments to show that the
resulting smooth varieties satisfy Eq. (1). Along the way, we prove a characterization of
Rees-like algebras of Cohen–Macaulay ideals I solely in terms of the singular locus of
Rees-like algebras. More precisely, we prove the following:

Theorem C (Theorem 5, Corollary 2) If X is an embedded projective scheme defined by a
homogeneous ideal I , then there is a regular sequence of general hyperplane sections of
a prime standardization of the Rees-like algebra of I which is smooth if and only if X is
arithmetically Cohen-Macaulay. Moreover, all such varieties satisfy Eq. (1).

Note that the varieties corresponding to Rees-like algebras of Cohen–Macaulay ideals are not
themselves Cohen–Macaulay- far from it. In fact, a Rees-like algebra is Cohen–Macaulay
if and only if the ideal in question is principal. Thus these examples are not covered by the
known Cohen–Macaulay case of the Eisenbud–Goto Conjecture (see [5, Corollary 4.15]).

In Sect. 5,we proceed with our qualitative study of the singularities of Rees-like algebras.
Namely, we address weak normality and seminormality of Rees-like algebras. In contrast to
the case of Rees algebras, the characterization is simple and somewhat surprising, asRL(I )
being weakly or seminormal is equivalent to the ideal I being radical.

Theorem D (Corollary 4) Suppose k is a field with char(k) �= 2 and S is a polynomial ring
over k. For a homogeneous S-ideal I , I is radical if and only if its Rees-like algebraRL(I )
is seminormal if and only if RL(I ) is weakly normal.

The rich source of weakly normal Rees-like algebras indicates that the Rees-like construc-
tion should be well-behaved with respect to Frobenius splittings. We prove the following
characterization of F-split Rees-algebras.

Theorem E (Theorem 9) Suppose k is a field with char(k) > 2 and I is a radical ideal in a
polynomial ring S over k. The ring S/I is F-split if and only if RL(I ) is F-split.
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2 Singular locus of the Rees-like algebra

We start by establishing our conventions used through the paper. Unless otherwise stated, k
is a field and S = k[x1, . . . , xn] is a standard graded polynomial ring. We reserve the type
face A,M, . . . for matrices. For a specific matrix M, the notation It (M) denotes the ideal
of t × t-minors. We reserve bold letters F•,D•, . . . for chain complexes of modules with
differentials dF• , dD• , . . . Whenever there is a specified system of generators g1, . . . , gt for an
ideal H , we simply write Jac(H) for the Jacobian matrix Jac(g1, . . . , gt ) (e.g. in Theorem 1).

Fix a homogeneous S-ideal I with choice of generators I = ( f1, . . . , fm). The Rees-
like algebra of I is the algebra S[I t, t2] ⊆ S[t], where t is a new variable. We denote the
Rees-like algebra by RL(I ). It has an explicit presentation as a quotient of a non-standard
graded polynomial ring over S, namelyRL(I ) ∼= T /RLP(I ) where T := S[y1, . . . , ym, z]
has grading defined by deg yi = deg fi + 1 and deg z = 2; RLP(I ) is then a homogeneous
ideal of T . The usefulness of Rees-like algebras lies in the detailed understanding of the
kernel, RLP(I ), of the map of k-algebras T → RL(I ) given by yi �→ fi t and z �→ t2 as
summarized in the following theorem.

Theorem 1 (McCullough and Peeva [18, Theorem 1.6, Proposition 2.9]) Let S =
k[x1, . . . , xn] be a standard graded polynomial ring over a field k and let I = ( f1, . . . , fm)

be a homogeneous ideal of S. The ideal RLP(I ) is the sum RLP(I )syz + RLP(I )gen with
generators

RLP(I )syz =
{
r j :=

m∑
i=1

ci j yi

∣∣∣∣∣
m∑
i=1

ci j fi = 0

}
and

RLP(I )gen = {yi y j − z fi f j | 1 ≤ i, j ≤ m}.
Moreover,

1. The maximal degree of a minimal generator of P is

maxdeg(P) = max

{
1 + maxdeg

(
SyzS1 (I )

)
, 2

(
maxdeg(I ) + 1

)}
.

2. The multiplicity or degree of T /RLP(I ) is

deg(T /RLP(I )) = 2
m∏
i=1

(
deg( fi ) + 1

)
.

3. The Castelnuovo–Mumford regularity, the projective dimension, the depth, the codimen-
sion, and the dimension of T /RLP(I ) are:

– reg(T /RLP(I )) = reg(S/I ) + 2 + ∑m
i=1 deg( fi )

– pd(T /RLP(I )) = pd(S/I ) + m − 1
– depth(T /RLP(I )) = depth(S/I ) + 2
– ht(RLP(I )) = m
– dim(T /RLP(I )) = n + 1.

In the previous theorem, maxdeg(M) denotes the maximal degree of an element in a minimal
system of generators of a module M .

Our study of the singular locus of aRees-like algebraRL(I ) is based on an explicit descrip-
tion of the Jacobian matrix Jac(RLP(I )) via computing a block decomposition. Some of the
blocks will be submatrices of the Jacobians of the ideals ( f1, . . . , fm)2 (resp. (y1, . . . , ym)2)
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consisting of rows using only partials corresponding to the variables x1, . . . , xn (resp.
y1, . . . , ym). Specifically,

– denote by Jacx
(
( f1, . . . , fm)2

)
the Jacobian matrix of ( f1, . . . , fm)2 with respect to

x1, . . . , xn , and
– denote by Jacy

(
(y1, . . . , ym)2

)
the Jacobian matrix of (y1, . . . , ym)2 with respect to

y1, . . . ym .

Another block is described by a minimal free resolution F• of ( f1, . . . , fm). Specifically,
denote by dF1 := dF1 ( f ) = (ci j ) the first differential in F, i.e., the matrix whose columns are
the first syzygies of the fi . Finally, let A = (akj ), where akj := ∂xk r j = ∑m

i=1 ∂xk (ci j )yk .
With this notation, we may describe the Jacobian Jac(RLP(I )).

Proposition 1 Using the notation above, up to reordering of the columns and rows, the
Jacobian matrix of RLP(I ) has a block decomposition

Jac(RLP(I )) =

generators in RLP(I )syz generators in RLP(I )gen⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∂xi A −zJacx (( f1, . . . , fm)2)

∂y j dF1 Jacy((y1, . . . , ym)2)

∂z 0 − fi f j

,

where A = (
∂xi r j

)
using the notation above.

Proof We order the rows as follows. The first n rows correspond to ∂xi for i = 1, . . . , n, the
next m rows correspond to ∂yi for i = 1, . . . ,m, and the last row corresponds to ∂z . The first
b = rank(F1) columns correspond to the minimal generators r1, . . . , rb in the setRLP(I )syz
described in Theorem 1. The following

(m+1
2

)
columns correspond to the generators in the

set RLP(I )gen.
For the blocks within the first b columns, writing r j = ∑m

i=1 ci j yi for some 1 ≤ j ≤ b,
by linearity we have

∂xk r j =
m∑
i=1

∂xk (ci j yi ) =
m∑
i=1

∂xk (ci j )yi ,

and clearly ∂yk r j = ∑m
i=1 ∂yk (ci j yi ) = ck j and ∂zr j = ∑m

i=1 ∂z(ci j yi ) = 0.
For the blocks concerning the last

(m+1
2

)
columns, set bi j := yi y j − z fi f j for 1 ≤ i ≤

j ≤ m. The following calculations finish the proof:

∂xk bi j = ∂xk (yi y j ) − ∂xk (z fi f j ) = −z∂k( fi f j ),

∂yk bi j = ∂yk (yi y j ) − ∂yk (z fi f j ) = ∂yk (yi y j ), and

∂zbi j = ∂z(yi y j ) − ∂z(z fi f j ) = − fi f j .

Example 1 Let I = (x1, x2) ⊆ k[x1, x2] and RL(I ) be its Rees-like algebra with defining
ideal

RLP(I ) = (−y1x2 + x1y2, y21 − zx21 , y1y2 − zx1x2, y22 − zx22 ).
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The Jacobian Jac(RLP(I )) is the following matrix with 4 columns and 5 rows.

Jac(RLP(I )) =

−y1x2 + x1y2 y21 − zx21 y1y2 − zx1x2 y22 − zx22⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

∂x1 y2 −2x1z −x2z 0
∂x2 −y1 0 −x1z −2x2z
∂y1 −x2 2y1 y2 0
∂y2 x1 0 y1 2y2
∂z 0 −x21 −x1x2 −x22

With this explicit description of the Jacobian in Proposition 1, we determine in Theorem 2
the codimension of the singular locus of the affine cone associated to the Rees-like algebra
of any ideal I when 2 is a unit. (See e.g. [4, Theorem 16.19].) Interestingly, this number only
depends on the height of I and the minimal number of generators of I . Recall, by Theorem 1,
ht(RLP(I )) = μ(I ).

Theorem 2 Let k be a perfect field with char(k) �= 2. Set S = k[x1, . . . , xn]. Let I =
( f1, . . . , fm) be a be a non-zero homogeneous, proper ideal with minimal primesMin(I ) =
{p1, . . . , pr }. The singular locus of RL(I ) is defined by the image of

J =
(
p1 + (y)

)
∩

(
p2 + (y)

)
∩ · · · ∩

(
pr + (y)

)
⊂ S[y, z].

In particular,

– there is a one-to-one correspondence between Min(I ) andMin(J ), and
– ht(J ) = μ(I ) + ht(I )

Proof Let T = S[y, z]. By the Jacobian criterion, the image of

J := √
RLP(I ) + Im(Jac(RLP(I ))

defines the singular locus in RL(I ).
By Theorem 1,

RLP(I ) ⊆ I + (y) ⊆
⋂
i

(
pi + (y)

)
,

thus to prove that J = ⋂
i

(
pi + (y)

)
it suffices to show that

√
Im(Jac(RLP(I )) =⋂

i

(
pi + (y)

)
, i.e.

Min(Im(Jac(RLP(I )))) = {pi + (y) | i = 1, . . . , r}.
First we handle the case m = 1. Suppose I = ( f ) is principal. We have that RLP(I ) =

(y2 − z f 2). Thus

I1(Jac(RLP(I ))) = (
f ∂x1( f ), . . . , f ∂xn ( f ), f 2, 2y

)
.

The minimal primes of J = √
I1(Jac(RLP(I )) = √

( f , y) = √
( f ) + (y) are exactly

{pi + (y)}, where pi are the minimal primes of I = ( f ). For the remainder of the proof we
assume that m ≥ 2.

We use the notation of Proposition 1 for the Jacobian matrix Jac(RLP(I )). First note that
there are no containments among the set of primes of the form pi + (y) as clearly there are
no containments among the ideals pi and these ideals are transversal with the ideal (y). To
prove that Min(J ) = {pi + (y) | i = 1, . . . , r} we start by showing that J ⊂ pi + (y) for
all 1 ≤ i ≤ r . Fix an arbitrary such i and invoke Proposition 1 to observe that
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– all entries of A and Jacy((y1, . . . , ym)2) lie in (y1, . . . , ym),

– all entries of the block matrices−zJacx (( f1, . . . , fm)2) and (− fi f j ) lie in ( f1, . . . , fm).

Thus, any m-minor of Jac(RLP(I )) involving one of the last
(m+1

2

)
columns or one of the

rows corresponding to ∂x j or ∂z is contained in I + (y) ⊆ pi + (y). The remainingm-minors

generate Im(ci j ), which is contained in
√
I ([3, Theorem 2.1(b)]) and thus in pi ⊆ pi + (y) .

For the converse, let q be a prime ideal containing J = √
Im(Jac(RLP(I ))). By Proposi-

tion 1, q contains the ideal of m-minors Im(Jacy((y1, . . . , ym)2)) and so it contains the ideal
(2ym1 , 2ym2 , . . . , 2ymm ). Since q is prime and char(k) �= 2, then (y1, . . . , ym) ⊆ q.

To finish the proof we show that q contains one of the pi ’s. The ideal ( f1, f2, . . . , fm)2 ·
Im−1(ci j ) is the ideal generated by allm-minors determined by the last row, (m−1) of them
rows corresponding to ∂yk , (m −1) of the first b columns (corresponding to the generators in
RLP(I )syz), and one column among the last

(m+1
2

)
(corresponding to one of the generators

in RLP(I )gen). As such, we have

( f1, f2, . . . , fm)2 · Im−1(ci j ) ⊆ Im(Jac(RLP(I ))).

Since (ci j ) = (dF1 ), by [3, Theorem 2.1(b)] we have
√
I = √

Im−1(ci j ), thus taking radical
of both sides in the above inclusion, and noticing that the radical of the left-hand side is
simply

√
I and the radical of the right-hand side is J , we finally obtain

p1 ∩ p2 ∩ · · · ∩ pr = √
I =

√
( f1, f2, . . . , fm)2 · √

I ⊆ J ⊆ q.

Therefore, q contains one of the pi . This concludes the proof. �
When S is a polynomial ring over a field, there are more conceptual proofs of Theorem 2.

Specifically, K. E. Smith noted in preliminary discussions with us that as S[I t, t2] has a
smooth normalization given by S[t], the singularities are relatively mild and defined by the
conductor ideal, which can be shown to be I + I t . However, our explicit approach to the
Jacobian also gives similar results for Rees-like algebras of ideals in quotients of polynomial
rings. As an example, analogous arguments to those proving Theorem 2 can be used to prove
the following result where the ground ring S is not regular.

Theorem 3 Let S = C[x1, . . . , xn]/p, where p is a non-degenerate homogeneous prime ideal
with Proj(S) smooth. Let I be a homogeneous S-ideal.

If the presentation matrix of I as an S-ideal contains no linear forms, then the singular
locus of RL(I ) = S[y1, . . . , ym, z]/Q is defined by the image of

J = (x1, . . . , xn) ∩
(
p1 + (y)

)
∩

(
p2 + (y)

)
∩ · · · ∩

(
pr + (y)

)
⊂ S[y, z].

Proof Write I = ( f1, . . . , fm)S, then RL(I ) = S[I t, t2] ∼= T /Q where T =
S[y1, . . . , ym, z]. By [18], the T -ideal Q is generated by RLP(I )syz + RLP(I )gen as in
the case of the polynomial ring, where

RLP(I )syz =
{
r j :=

m∑
i=1

ci j yi |
m∑
i=1

ci j fi = 0 in S

}
and

RLP(I )gen = {yi y j − z fi f j | 1 ≤ i, j ≤ m}.
Let S′ = C[x] and letmS′ = (x)S′ be its homogeneous maximal ideal. For every i, j , let c′

i j
be any lifting of ci j to S′[y1, . . . , ym] = C[x, y] and let f ′

j be any lifting of f j to S′. Then
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r ′
j = ∑m

i=1 c
′
i j yi is a lifting of r j to C[x, y]. We then clearly have RL(I ) ∼= T ′/Q′, where

T ′ = C[x, y, z] and
Q′ = (r ′

1, . . . , r
′
b) +

(
yi y j − z f ′

i f
′
j | 1 ≤ i ≤ j ≤ m

)
+ p.

Observe that ht(Q′) = ht(p) + ht(RLP(I )) = ht(p) + m.
Let d ′

1 be the matrix whose entries are the c′
i j and let A′ be matrix whose (i, j)-entry is∑m

k=1(∂xi c
′
k j )yk . With the above choice of generators of Q, the Jacobian matrix of Q′ is

M =

generators of RLP(I )1 generators of RLP(I )1 generators of p⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∂xi A′ −zJacx (( f ′
1, . . . , f ′

m)2) Jacx (p)

∂y j d ′
1 Jacy((y1, . . . , y2m) 0

∂z 0 − f ′
i f

′
j 0

Let p1, . . . , pr be the minimal primes of I in S and p′
1, . . . , p

′
r be the minimal primes of

I + p in S′ = C[x]. Let J ′ = Iht(p)+m(M) ⊆ T ′ so that J = J ′T .
To prove the statement we show that J ′ = mS′T ′ ∩ ⋂m

i=1(p
′
i + (y)).

To prove J ′ ⊂ mS′T ′ ∩ ⋂m
i=1(p

′
i + (y)), we first show that J ′ ⊆ mS′T ′. Since p is

non-degenerate, then all entries of Jacx (p) are contained inmS′T ′. The assumption on the pre-
sentation matrix implies that also all entries of A are contained inmS′T ′; then all entries ofM
are contained inmS′T ′ except the ones in them rows of themiddle block Jacy((y1, . . . , ym)2).
Thus every (ht(p)+m)-minor ofM contains a rowwhose entries lie inmS′T ′, so it is contained
in mS′T ′.

We then prove that J ′ ⊆ p′
i + (y) for every i = 1, . . . , r . After reducing the

entries of M modulo p′
i + (y) the only possibly non-zero blocks left are Jacx (p) and d ′

1,
thus Iht(p)+m(M) = ∑m

i=1 Ii (d
′
1)Iht(p)+m−i (Jacx (p)) modulo p′

i + (y1, . . . , ym). By [4,
Thm 16.19(b)] rank(Jacx (p)) = ht(p), thus Iht(p)+m−i (Jacx (p)) = (0) except when i = m,
thus Im+ht(p)(M) = Im(d ′

1)Iht(p)(Jacx (p)) modulo p′
i + (y1, . . . , ym), and then to prove that

Iht(p)+m(M) ⊆ p′
i +(y) it suffices to show Im(d ′

1) ⊆ p′
i +(y)—this is proved as in Theorem 2.

Now to prove J ′ ⊃ mS′T ′ ∩ ⋂m
i=1(p

′
i + (y)), observe that there are no irredundant terms

in the intersectionmS′T ′ ∩⋂m
i=1(p

′
i + (y)). Since all these ideals are prime and J ′ is radical,

it suffices to show that every prime ideal q′ containing J ′ must contain at least an element of
{p′

i + (y) | i = 1, . . . , r} ∪ {mS′T ′}.
Since

Iht(p)(Jacx (p)) · Im(d ′
1) ⊆ √

Iht(p)+m(M) = J ′,

and since
√
Iht(p)(Jacx (p)) = mS′T ′, then

mS′T ′ ·
√
Im(d ′

1) ⊆
√
mS′T ′ ·

√
Im(d ′

1) =
√
Iht(p)(Jacx (p)) · Im(d ′

1) ⊆ √
J ′ = J ′

If mS′T ′ ⊆ q′ we are done. Otherwise, since q′ is prime we have
√
Im(d ′

1) ⊆ q′. Moreover,

since q′ contains J ′, then p ⊆ q′. Thus

I + p ⊆ p + √
I = p +

√
Im(d ′

1) ⊆ q′,
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and then
r⋂

i=1

p′
i = √

I + p ⊆ √
q′ = q′.

Since q′ is prime, then one of the p′
i is contained in q

′. Moreover, looking at the (ht(p) +m)-
minors of M we see that also

Im(Jacy((y1, . . . , ym)2)) · Iht(p)Jacx (p) ⊆ J ′ ⊆ q′.

As above, sincemS′T ′
� qwe deduce that Im(Jacy((y1, . . . , ym)2)) ⊆ q′ and taking radicals

we obtain (y1, . . . , ym) ⊆ q′.
We have then showed that either mS′T ′ ⊆ q′ or p′

i + (y1, . . . , ym) ⊆ q′ for some i =
1, . . . , r . This concludes the proof. �

In Theorem 3, the assumption on the presentation matrix of I is needed, as the following
example illustrates.

Example 2 Assume char(k) �= 2 and let S = k[x1, x2, x3]/(x21 − x2x3) and I = (x1, x2)S.
Observe that I has the linear syzygies (x2,−x1) and (x1,−x3). The singular locus ofRL(I )
has only one minimal prime, which is (x1, x2, y1, y2).

Proof As in the statement of Theorem 1, one hasRL(I ) ∼= k[x1, x2, x3, y1, y2, z]/Q, where

Q = (x1y2 − x2y1, x1y1 − x3y2, y
2
1 − x21 z, y1y2 − x1x2z, y

2
2 − x22 z, x

2
1 − x2x3).

Then, the Jacobian matrix of Q over k[x1, x2, x3, y1, y2, z] is

M =

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

∂x1 y2 y1 −2x1z −x2z 0 2x1
∂x2 −y1 0 0 −x1z −2x2z −x3
∂x3 0 −y2 0 0 0 −x2
∂y1 −x2 x1 2y1 y2 0 0
∂y2 x1 −x3 0 y1 2y2 0
∂z 0 0 −x21 −x1x2 −x22 0

and set J = √
I3(M). It easy to check that J ⊆ (x1, x2, y1, y2).

Conversely, let q ∈ Min(J ). Notice that

det

⎛
⎝ y2 −2x1z 2x1
x1 0 0
0 −x21 0

⎞
⎠ = −2x41 ∈ J .

Similarly, 2x42 ∈ J . Since char(k) �= 2, then x1, x2 ∈ √
J ⊆ q . Moreover,

det

⎛
⎝−2x1z −x2z 2x1

2y1 y2 0
0 y1 0

⎞
⎠ = 4x1y

2
1 ∈ J .

Similarly, x2y21 , x3y
2
1 , x2y

2
1 , x2y

2
2 , and x3y22 lie in J . Thus one has an inclusion (y21 , y

2
2 )

(x1, x2, x3) ⊆ J .
Now assume by contradiction that (y1, y2) � q. One then has (x1, x2, x3) ⊆ q. Reducing

the entries ofMmodulo (x1, x2, x3) one sees that (2y31 , 2y
3
2 ) ⊆ q. This shows that (y1, y2) ⊆√

J ⊆ q , which is a contradiction. �
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3 standardizations

The usual way to homogenize a non-homogeneous prime ideal I ⊂ k[x1, . . . , xn] is by
adjoining a new variable, say w, and homogenizing all terms of all elements of the ideal by
multiplying by the appropriate power of w to make the element homogeneous. This corre-
sponds to taking the projective closure of V (I ) inP

n
k . Thus the resulting homogeneous ideal is

prime but this process does not preserve the structure of free resolution of the corresponding
ideal. An alternate method of constructing standard graded analogues of non-standard graded
prime ideals, called step-by-step homogenization in [18, Theorem 4.5], preserves primeness
for nondegenerate prime ideals and graded Betti numbers at the expense of adding many
more variables. For each variable x with deg(x) = d > 1, one appends a new variable u,
sets deg(u) = deg(x) = 1 and replaces every instance of x with xud−1. As the role of this
process is to transform a non-standard graded ring into a standard graded one, we refer to it
as a standardization.

Definition 1 Suppose T is a positively graded polynomial ring over a field k. A standard-
ization of T is a graded, flat map ( )std : T → T std of graded k-algebras, where T std is a
standard graded polynomial ring over k. For an ideal I = ( f1, . . . , fm) ⊆ T , write I std for
the T std-ideal ( f std1 , . . . , f stdm ).

Thus step-by-step homogenization is a standardization that has the additional property that
for any nondegenerate prime ideal Q of T , the ideal Qstd is also prime. Any standardization
will thus increase the number of variables and thereby increase the dimension of the singular
locus of the corresponding varieties. However, it is desirable that the codimension of the
singular locus is preserved. Unfortunately, step-by-step homogenization does not preserve
it.

Example 3 Let Q = I2

[
x y z
u v w

]
⊂ S = k[u, v, w, x, y, z], with the non-standard grading

given by setting

deg(x) = deg(y) = deg(z) = 2 and deg(u) = deg(v) = deg(w) = 1.

Consider the step-by-step standardization given by the ring map

S → Sstd := k[u, v, w, x1, x2, y1, y2, z1, z2]
sending x �→ x1x2, y �→ y1y2, and z �→ z1z2. The image of Q is

Qstd = (x1x2v − y1y2u, x1x2w − z1z2u, y1y2w − z1z2v).

One may easily verify that ht(Q) = 2, ht(Qstd) = 2, and ht(I2(Jac(Q))) = 6 yet
I2(Jac(Qstd)) has height 5. One can also build examples of Rees-like algebras whose singular
locus codimension fails to be preserved in a similar fashion.

We adapt work of Ananyan and Hochster to define new standardizations that preserve
the relative size of the singular locus. Following [1], we define a sequence of elements
g1, . . . , gt ∈ S to be a prime sequence provided (g1, . . . , gt ) is a proper ideal, gi /∈
(g1, . . . , gi−1) for all 1 ≤ i ≤ t , and S/(g1, . . . , gi ) is a domain for all 1 ≤ i ≤ t . Clearly
any prime sequence is a regular sequence. The following near converse is implicit in their
work.
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Lemma 1 Let S be a standard graded polynomial ring and let g1, . . . , gt in S be a homoge-
neous regular sequence of elements of positive degree. If the ideal I = (g1, . . . , gt ) is prime,
then g1, . . . , gt is a prime sequence. Moreover, any permutation of g1, . . . , gt is a prime
sequence.

Proof Proceed by contradiction and set Ii = (g1, . . . , gi ). Pick i maximal so that Ii is not
prime, so i < t . Pick homogeneous elements a and b in S� Ii with ab ∈ Ii and with deg(ab)
minimal. Since Ii+1 is prime, without loss of generality we may assume a ∈ Ii+1. Writing
a = ∑i+1

j=1 s j g j , we have

bsi+1gi+1 = b(a −
i∑

j=1

s j g j ) ∈ Ii .

Since g1, . . . , gt is a regular sequence, bsi+1 ∈ Ii . Also deg(bsi+1) < deg(ab). By the
minimality assumption, this gives si+1 ∈ Ii and hence a ∈ Ii , which is a contradiction. �

The usefulness of this idea is contained in the following result, which is essentially the
content of [1, Cor. 2.9, Prop. 2.10].

Proposition 2 (Ananyan and Hochster) Assume k is algebraically closed and let S =
k[x1, . . . , xn]. Suppose g1, . . . , gt is a homogeneous prime sequence in S and set R =
k[g1, . . . , gt ]. Suppose I ⊂ R is a homogeneous ideal.

1. The ideals I and I S have the same graded Betti numbers.
2. For p ∈ Spec(R), p ∈ Ass(R/I ) if and only if pS ∈ Ass(S/I S).
3. In particular, if I is prime, then I S is prime.
4. If I = q1 ∩ · · · ∩ qr is any primary decomposition of I , then q1S∩ · · · ∩ qr S is a primary

decomposition of I S.

Homogeneous prime sequences give rise to standardizations and we make the following
definition.

Definition 2 Suppose T is a positively graded polynomial ring. A prime standardization
of T is a standardization ( )std : T → T std such that for every prime ideal P ⊆ T , Pstd is
prime.

To see the connection with prime sequences, we note the following:

Proposition 3 Let T = k[x1, . . . , xn] be a positively graded polynomial ring and
( )std : T → T std a standardization. Let gi := xstdi . Then ( )std is a prime standardiza-
tion if and only if g1, . . . , gn is a prime sequence.

Proof The “if” direction follows fromProposition 2. For the “only if” direction, suppose ( )std

is a prime standardization. For every 1 ≤ i ≤ t , by Proposition 2(3) we have (g1, . . . , gi ) =
(x1, . . . , xi )std is a prime ideal; thus, by Lemma 1, g1, . . . , gn is a prime sequence. �

By our definition, step-by-step homogenization is not a prime standardization since non-
linear monomials do not form a prime sequence. This is why step-by-step homogenization
only works for non-degenerate primes. We now show that there is always a choice of prime
standardization that, unlike step-by-step homogenization, preserves the codimension of the
singular locus of any ideal.
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Construction 1 Let T = k[t1, . . . , tn] be a positively graded polynomial ring over an alge-
braically closed field k with deg(ti ) = di ∈ Z+. Set

W = {wi, j,� | 1 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ � ≤ di },

a set of new variables. Set T std := k[W ] and let Fi = ∑n
j=0

∏di
�=1 wi, j,� ∈ T std, where we

define deg(wi, j,�) = 1 for all i, j, �. Define the graded map of rings ( )std : T → T std by
setting tstdi = Fi . Since each Fi is irreducible, say by Eisenstein’s criterion, and since the
variables appearing in Fi are disjoint from those of Fj for i �= j , it follows from Lemma 1
that F1, . . . , Fn form a prime sequence.

Note that if one merely wants to create a prime standardization, fewer terms will suffice.
The extra terms in our chosen prime standardization are necessary for the conclusion of
Theorem 4.

Example 4 Let T = k[x1, x2, x3], where deg(xi ) = i for i = 1, 2, 3. The ideal I =
(x21 − x2, x31 − x3) of T is then homogeneous. The prime standardization I std of I from
Construction 1 is then generated by the following two elements

f = (w1,0,1 + w1,1,1 + w1,2,1 + w1,3,1)
2

− (w2,0,1w2,0,2 + w2,1,1w2,1,2 + w2,2,1w2,2,2 + w2,3,1w2,3,2),

g = (w1,0,1 + w1,1,1 + w1,2,1 + w1,3,1)
3 − (w3,0,1w3,0,2w3,0,3

+w3,1,1w3,1,2w3,1,3 + w3,2,1w3,2,2w3,2,3 + w3,3,1w3,3,2w3,3,3).

By convention, we set the height of the unit ideal to be ht((1)) = ∞.

Lemma 2 For the standardization defined in Construction 1, the ideal(
∂

wi, j,�
(Fi ) | 0 ≤ j ≤ n, 1 ≤ � ≤ di

)

has height at least n + 1 for all 1 ≤ i ≤ m.

Proof If some di = 1, then ∂wi, j,k (Fi ) = 1 and we are done. Else the generators of the form
∂

∂wi, j,1
(Fi ) = ∏di

�=2 wi, j,k for 0 ≤ j ≤ n constitute a regular sequence, as they are expressed

in disjoint sets of variables. �

We say that an ideal is unmixed if all its associated primes have the same height.

Theorem 4 Let T be a positively graded polynomial ring over an algebraically closed field
k, let I be any homogeneous unmixed ideal of T . Assume char(k) �= 2. Denote by ( )std the
prime standardization in Construction 1.

For X = Proj(T /I ) and Xstd = Proj(T std/I std),

codimX (Sing X) = codimXstd(Sing Xstd)

and there is a bijection betweenMin(Sing(I )) and the minimal primes of Sing(I std) of height
at most dim(T ).
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Proof We first prove the case where char(k) = 0. Write T = k[x1, . . . , xn−1, y]. By
induction we may focus on the case where we replace a single variable y of degree d by
F = ∑n

j=0
∏d

�=1 w j,k and leave all other variables fixed. Let I = (g1, . . . , gs) be a homo-

geneous ideal of T and let I std denote the ideal generated by the images Gi = gstdi of the gi
under the map

( )std : T → T std = k[z1, . . . , zn − 1, w0,1, . . . , wn,d ]
defined by xi �−→ zi and y �−→ F . Let c = ht(I ). By Lemma 2(3) we know that c = ht(I std)
as well. By the Jacobian criterion, Sing(X) and Sing(X std) are defined, up to radical, by
Ic(Jac(I )) and Ic(Jac(I std)), respectively. Write

Jac(g1, . . . , gs) =

g1 g2 . . . gs⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

∂z1 ∂z1(g1) ∂z1(g2) . . . ∂z1(gs)
∂z2 ∂z2(g1) ∂z2(g2) . . . ∂z2(gs)
...

...
...

∂zn−1 ∂zn−1(g1) ∂zn−1(g2) . . . ∂zn−1(gs)
∂y ∂y(g1) ∂y(g2) . . . ∂y(gs)

Let E be the row vector (∂y(g1) ∂y(g2) . . . ∂y(gs)) and let D be the (n − 1) × s submatrix
of Jac(g1, . . . , gs) obtained by removing E from Jac(g1, . . . , gs) so that

Jac(I ) =
(
D
E

)
.

By the chain rule, the Jacobian matrix of I std is

Jac(G1, . . . ,Gs) =

⎛
⎜⎜⎜⎜⎜⎝

Dstd

∂w0,1(F) · Estd
∂w0,2(F) · Estd

...

∂wn,d (F) · Estd

⎞
⎟⎟⎟⎟⎟⎠ ,

whereDstd and Estd are obtained by applying ( )std to every entry ofD and E, and ∂wi, j (F)·Estd
is the scalar product of ∂wi, j (F) and Estd.
Claim. One has

Ic(Jac(I std)) = Ic(Dstd) + (∂w0,1(F), . . . , ∂wn,d (F)) · Ic((Jac(I ))std).

Proof of Claim. Write Estd = (e1, . . . , es). Let H be a c-minor of Jac(I std). Observe that H
is obtained by taking at least two of the last (n + 1)d rows. In particular, we have

H = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

∂w j,� (F)e1 ∂w j,� (F)e2 . . . ∂w j,� (F)es
...

...

∂w j ′,�′ (F)e1 ∂w j ′,�′ (F)e2 . . . ∂w j ′,�′ (F)es
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= ∂w j,� (F)∂w j ′,�′ (F) det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...
...

e1 e2 . . . es
...

...

e1 e2 . . . es
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Therefore, every non-zero c × c minor of Jac(I std) involves at most one of the last (n + 1)d
rows, or equivalently,

Ic(Jac(I std)) =
n∑
j=0

d∑
�=1

Ic

(
Dstd

∂w j,� (F) · Estd
)

. (2)

Observe that if H is a c× c minor of

(
Dstd

∂w j,� (F) · Estd
)
not involving the last row, then H ∈

Ic(Dstd), while if H involves the last row of the above matrix, then H = ∂w j,� (F) · det(Θ),

whereΘ is a c by c submatrix of

(
Dstd

Estd

)
that involves the last row. Since ∂w j,� (F)Ic(Dstd) ⊆

Ic(Dstd), we can write

Ic

(
Dstd

∂w j,� (F) · Estd
)

= Ic(Dstd) + ∂w j,� (F) · Ic
(
Dstd

Estd

)
.

Substituting the above in Eq. (2) for every i , we obtain

Ic(Jac(I std)) = Ic(Dstd) + ∑n
j=0

∑d
�=1

(
∂w j,� (F) · Ic

(
Dstd

Estd

))

= Ic(Dstd) + (∂w0,1(F), . . . , ∂wn,d (F)) · Ic
(
Dstd

Estd

)
= Ic(Dstd) + (∂w0,1(F), . . . , ∂wn,d (F)) · Ic((Jac(I ))std)

proving the claim. �
LetMin(Ic(Jac(I )) = {p1, . . . , pr }be theminimal primes in T of Sing(I ). ByLemma2(2)

each pstdi is prime.We claim that {pstdi | i = 1, . . . , r} are theminimal primes of Ic(Jac(I std))
of height at most n. To this end, we first observe that Ic(Jac(I std)) ⊆ pstdi —this follows from
the claim and the fact that pstdi contains both Ic(Dstd) and Ic(Jac(I )std).

Next, we show that any prime containing Ic(Jac(I std)) has either height at least n + 1 or
it contains one of the pstdi . This will conclude the proof.

So, let q be a minimal prime ideal with Ic(Jac(I std)) ⊆ q. By the claim,

(∂w0,1(F), . . . , ∂wn,d (F)) · Ic((Jac(I ))std) ⊆ q.

If (∂w0,1(F), . . . , ∂wn,d (F)) ⊆ q, by Lemma 2, ht(q) ≥ n + 1 > dim(T ). If
(∂w0,1(F), . . . , ∂wn,d (F)) � q, then, since q is a prime ideal, the ideal q contains√

(Ic(Jac(I )))std = √
Ic((Jac(g1, . . . , gs))std) = pstd1 ∩ pstd2 ∩ · · · ∩ pstdr , where the right-

most equality follows by Lemma 2(4). Then q contains one of the pstdi . It follows that each of
the pstdi is a minimal prime of Ic(Jac(I std)) and these are the only minimal primes of height
at most n = dim(T ).

When char(k) = p > 0, the Jacobian criterion states that the singular locus of I is
defined, up to radical, by I + Ic(Jac(I )). The proof follows by a similar argument with the
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following differences: let {p1, . . . , pr } be the minimal primes of I + Ic(Jac(I )); in the last
part of the proof, we let q be a prime ideal containing I std + Ic(Jac(I std)), and after finding
that (Ic(Jac(I )))std ⊆ q we have

I std + (Ic(Jac(I )))std = (I + Ic(Jac(I )))std ⊆ q,

thus q contains a minimal prime of (I + Ic(Jac(I )))std. �
We now apply the preceding theorem to the defining prime ideal of the Rees-like algebra

of a homogeneous ideal. Combining it with Theorem 2 we obtain:

Corollary 1 Let RLP(I ) ⊂ T be the defining prime ideal of RL(I ) for some homogeneous
ideal I ⊂ S = k[x1, . . . , xn] and suppose k is algebraically closed and char(k) �= 2.

Using the standardization from Construction 1, RLP(I )std is a nondegenerate, homo-
geneous prime ideal in a standard graded polynomial ring T std which defines a projective
variety X such that codimX (Sing X) = ht(I ).

4 Application: smooth hyperplane sections

It is natural to ask if Rees-like algebras and standardizations are sufficient to give a smooth
counterexample to the Eisenbud–Goto conjecture. We exploit the work so far to settle this
in the negative. More precisely, we show that a nonzero, homogeneous ideal I ⊂ S is
Cohen–Macaulay if and only if a prime standardization of its Rees-like algebra RL(I ) has
a hyperplane section that is both smooth and preserves the original graded Betti numbers.
The rest follows by giving a sufficient bound on the regularity of Cohen–Macaulay ideals.
For simplicity of exposition, the reader may focus only on the prime standardization from
Construction 1.

We note that the defining ideal of a Rees-like algebra (or its prime standardization) is only
Cohen–Macaulay when I is principal; thus the majority of the smooth varieties considered
in this section are not arithmetically Cohen–Macaulay.

Theorem 5 Let k be an algebraically closed field with char(k) = 0, and let S =
k[x1, . . . , xn], and let I be a proper homogeneous S-ideal. Let X ⊆ P

N denote the pro-
jective variety corresponding to the prime standardization from Construction 1 applied to
the Rees-like algebra of I . The following two conditions are equivalent:

(i) There exists a regular sequence of general hyperplane sections of X such that the resulting
variety is smooth;

(ii) S/I is Cohen–Macaulay.

Proof Set I = ( f1, . . . , fm) ⊂ S = k[x1, . . . , xn]. Let RLP(I ) be the defining prime
ideal of RL(I ) and let T → T std be the prime standardization defined in Construc-
tion 1. By Bertini’s theorem (cf. [9, Chapter 0.H]), we may factor out a regular sequence of
depth(T std/RLP(I )std)−1 general linear forms and preserve both the graded Betti numbers
ofRLP(I )std and primeness. Doing so reduces both the dimension of the associated projec-
tive variety and that of its singular locus by depth(T std/RLP(I )std) − 1. Thus one obtains
a smooth variety if and only if one has

depth(R/RLP(I )std) − 1 > dim(Sing Proj(T std/RLP(I )std)),

or equivalently

dim(T std) − depth(R/RLP(I )std) + 1 < ht(J ) + 1,
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where J is the defining ideal of Sing Proj(T std/RLP(I )std) in T std. By Corollary 1, ht(J ) =
m + ht(I ). By the Auslander–Buchsbaum theorem, Theorem 1 and Proposition 2 one has

dim(T std) − depth(R/RLP(I )std) = pd(R/RLP(I )std) = pd(S/I ) + m − 1.

Thus, the above inequality holds if and only if

pd(S/I ) + m < ht(I ) + m + 1

or equivalently pd(S/I ) ≤ ht(I ), which occurs if and only if S/I is Cohen–Macaulay. �
We recall that among all Cohen–Macaulay ideals I generated by forms of fixed degrees,

complete intersections have the largest regularity.

Lemma 3 (cf. Huneke et. al. [12, 3.1]) Let S = k[x1, . . . , xn] and I be a homogeneous
S-ideal such that S/I is Cohen-Macaulay. If di = deg( fi ), then reg(S/I ) ≤ ∑m

i=1(di − 1).

The main result of this section depends on the following elementary lemma whose proof
is left to the reader.

Lemma 4 Let d1, . . . , dm be positive integers,

m∑
i=1

(di + 1) ≤
m∏
i=1

(di + 1).

Here we show that any of the smooth hyperplane sections of Rees-like varieties described
above satisfy the Eisenbud–Goto Conjecture [6]. These provide many examples of smooth
non-Cohen–Macaulay varieties satisfying the conjecture.

Corollary 2 Let k be an algebraically closed field with char(k) = 0. Let I = ( f1, . . . , fm) ⊂
S = k[x1, . . . , xn] be a homogeneous ideal such that S/I is Cohen–Macaulay. For any
regular sequence of general hyperplane sections that cut out from the prime standardization
in Construction 1 of the Rees-like prime of I a smooth variety, Eq. (1) is satisfied.

Proof Set di = deg( fi ) and set T std to be the quotient of T std by depth(T std/RLP(I )std)−1
general linear forms. Similarly setRLP(I )std to beRLP(I )T std. Ifm = 1, thenRLP(I )std

is a hypersurface and the claim holds. If m ≥ 2, then

reg(T std/RLP(I )std)

= reg(T std/RLP(I ))

= reg(S/I ) + 2 +
m∑
i=1

di by Theorem 1

≤
m∑
i=1

(di − 1) + 2 +
m∑
i=1

di by Lemma 3

≤ 2
m∑
i=1

di since m ≥ 2

≤ 2
m∏
i=1

(di + 1) − m by Lemma 4
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= deg(T std/RLP(I )std) − ht(RLP(I )std) by Theorem 1

= deg(T std/RLP(I )std) − ht(RLP(I )std).

�

5 Seminormality and weak normality

Rees-like algebras are domains, hence they satisfy Serre’s conditions (R0) and (S1). However,
it is easy to check that they are never normal (see Proposition 4 below). When I = ( f ) is a
hypersurface,RLP(I ) = (y2− z f 2) fails Serre’s condition (R1), however it satisfies Serre’s
condition (Si ) for all i .

In contrast, we show that whenever ht(I ) > 1, the ideal RLP(I ) satisfies (R1) but not
(S2). First, let us recall the following equivalent form of Theorem 2.

Theorem 6 Let k be a perfect field with char(k) �= 2 and let S be a polynomial ring over k.
For any nonzero, proper ideal I ⊂ S, the Rees-like algebraRL(I ) satisfies Serre’s condition
(Rh−1), where h = ht(I ), and does not satisfy Serre’s condition (Rh).

Proposition 4 For any nonzero, proper ideal I ⊂ S, the Rees-like algebra RL(I ) is not
normal.

Proof Since RL(I ) is a domain, we show that RL(I ) is not integrally closed in its field

of fractions. For any 0 �= f ∈ I we have t = f t2

f t ∈ Frac(RL(I )), and it follows that

Frac(RL(I )) = S(t) = Frac(S[t]). Clearly t /∈ RL(I ) = S[I t, t2] and t satisfies the monic
polynomial equation X2 − t2 ∈ RL(I )[X ]. Thus RL(I ) is not integrally closed and its
integral closure is S[t]. �
Corollary 3 If ht(I ) > 1, then RL(I ) does not satisfies Serre’s condition (S2).

We turn our attention then to alternate forms of normality, namely weak normality and
seminormality. We quickly review these notions, but for a more thorough treatment, consult
[27].

Definition 3 For a finite extension A ⊂ B of reduced rings, a subextension A ⊂ C ⊂ B is
subintegral provided it is integral, induces a bijection on spectra, and an isomorphism on
residue fields at all points. It is called weakly subintegral provided one only asks for purely
inseparable extensions of residue fields.

In any extension A ⊂ AN of a ring into its normalization, there is a unique largest
subextension A ⊂ ASN ⊂ AN which is subintegral and one says that A is seminormal
provided that A = ASN. Similarly, there is a unique largest subextension which is weakly
subintegral A ⊂ AWN ⊂ AN andwe say that A isweakly normal if A = AWN.Consequently
all normal rings are seminormal and all seminormal rings are weakly normal; in characteristic
0 weakly normal and seminormal are equivalent properties.

A prototypical example of a seminormal ring which is not normal is the pinch point
k[x, xt, t2] ∼= k[x, y, z]/(y2 − zx2), where char(k) �= 2. This ring corresponds to the Rees-
like algebra a single linear form.We show that quite often, Rees-like algebras are seminormal
and weakly normal. To do this, we exploit the following useful criteria.

Theorem 7 For a reduced ring A,
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1. [16, Proposition 1.4] A is seminormal if and only if for a fixed pair of relatively prime
integers 0 < r < s, when b ∈ AN satisfies br ∈ A and bs ∈ A then b ∈ A,

2. [28, Theorem 1] if the characteristic of A is p > 0, then A is weakly normal if for each
b ∈ AN such that bp ∈ A then b ∈ A.

For the remainder of this section, set S = k[x1, . . . , xn] to be a polynomial ring and
I a homogeneous ideal in S. Our next goal illustrates the general theme of characterizing
geometric properties of the Rees-like algebra of I in terms of algebraic properties of I . Recall
the normalization of RL(I ) is S[t].
Theorem 8 With the notation as above, the following are equivalent:

1. I is radical,
2. for every odd integer σ > 1, for every b ∈ S[t], if bσ ∈ RL(I ) then b ∈ RL(I ),
3. there are two coprime integers, r and s both greater than 1 such that for every b ∈ S[t],

if br ∈ RL(I ) and bs ∈ RL(I ), then b ∈ RL(I ).
4. there is an odd integerσ > 1 such that for every b ∈ S[t], if bσ ∈ RL(I ) then b ∈ RL(I ),

Proof The implications (2) �⇒ (3) �⇒ (4) are clear. We first prove (4) �⇒ (1). Assume
a ∈ S and an ∈ I for some n ∈ Z+. If r ∈ Z+ with σ r ≥ n, then aσ r ∈ I . Thus
(at)σ

r ∈ RL(I ). By assumption (4) it follows that at ∈ RL(I ) = S[I t, t2], and so a ∈ I .
The theorem follows by showing that (1)�⇒ (2). Fix an odd integer σ > 1 and assume I is

radical. Let b ∈ S[t] be an element such that bσ ∈ RL(I ), we need to show that b ∈ RL(I ).
We consider the grading on S[t] given by deg(t) = 1 and deg( f ) = 0 for every f ∈ S. Write
b = ∑r

j=1 b j t i j with b j ∈ S, for integers 0 ≤ i1 < i2 < . . . < is and elements b j ∈ S.
Claim. We may assume b j /∈ I for any j .

To prove the claim, observe that if d ∈ I , then dtk ∈ RL(I ) = S[I t, t2] for every k ≥ 1.
Now, assume b j ∈ I for some j . Expand

(b − b j t
i j )σ = bσ +

σ∑
h=1

(
σ

h

)
bσ−hbhj t

hi j .

Since b j ∈ I , each
(
σ
h

)
bσ−hbhj ∈ I and thus

(
σ
h

)
bσ−hbhj t

hi j ∈ S[I t, t2] for every 1 ≤ h ≤ σ .

It follows that bσ ∈ S[I t, t2] if and only if (b−b j t i j )σ ∈ S[I t, t2]. Wemay then decompose
b = b̃ + c̃ where b̃ = ∑

b j t i j with each b j /∈ I and c̃ = ∑
b j t i j with each b j ∈ I . By

the above, bσ ∈ S[I t, t2] if and only if b̃σ ∈ S[I t, t2] and b ∈ S[I t, t2] if and only if
b̃ ∈ S[I t, t2]. By replacing b by b̃ we can assume b j /∈ I for any j , proving the claim.

It suffices to show that each i j is even, because then b ∈ S[t2] ⊂ S[I t, t2]. We proceed by
induction on the number r ≥ 1 of homogeneous components of b. If r = 1, then b = b1t i1 .
Assume by contradiction that i1 is odd. Since bσ = bσ

1 t
i1σ ∈ S[I t, t2] and i1σ is odd, then

bσ
1 ∈ I . Since I is radical, this implies b1 ∈ I , yielding a contradiction. Therefore i1 ∈ 2Z.
Next, assume r > 1. Assume by contradiction one of the i j is odd, we let u = min{ j |

i j is odd }. Observe that bσ−1
1 buti1(σ−1)+iu is the homogeneous component of smallest odd

degree of bσ ∈ S[I t, t2], thus it lies in S[I t, t2]. Since i1(σ −1)+ iu is odd, then b
σ−1
1 bu ∈ I

and so (b1bu)σ−1 ∈ I . Since I is radical, we obtain b1bu ∈ I . Now consider

d = bub = b1but
i1 + b2but

i2 + . . . + b2ut
iu + . . .

Set e := d −b1buti1 . Since b1bu ∈ I , by the proof of the claim it follows that eσ ∈ S[I t, t2].
By induction, it follows that e ∈ S[I t, t2]. Since b1buti1 ∈ S[I t, t2] too, then d ∈ S[I t, t2],
so every homogeneous component of d lies in S[I t, t2]. In particular, the homogeneous
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component of degree iu , i.e. b2ut
iu lies in S[I t, t2]. Since iu is odd, then b2u ∈ I , since I is

radical, bu ∈ I which is a contradiction. �
Remark 1 One must work with odd integers in Theorem 8. If σ is even and b = t ∈ S[t] one
has b2 ∈ S[I t, t2] but b /∈ S[I t, t2].

Combining Theorems 7 and 8, one has the following immediate corollary.

Corollary 4 Let k be a field with char(k) �= 2 and let S a polynomial algebra over k. A
homogeneous ideal I is radical if and only if its Rees-like algebra RL(I ) is seminormal
which happens if and only if RL(I ) is weakly normal.

One should notice that the analogous statement forRees algebras does not hold. Indeed, the
following is an example of a radical ideal I whose Rees Algebra R[I t] is not seminormal.
This example was found with the help of the Macaulay2 Seminormalization package of
Serbinowski and Schwede [11,24].

Example 5 Let k be a field and S = k[x, y, z]. Let
p = (y4 − x3z, xy3 − z3, x4 − yz2)

be the ideal defining the monomial curve k[v9, v10, v13]. Then

p = I2

(
z −y x

−y3 x3 −z2

)
.

By [25, p. 309], p is not normal; that is, not all powers of p are integrally closed and thus
the Rees algebra R(p) = S[pt] is not a normal ring. We show next that R(p) is not even
seminormal.

Write p1 = y4 − x3z, p2 = xy3 − z3, and p3 = x4 − yz2. Now set

f = x2(p2t)(p3t) + z(p1t)2

y
= (x7y2 − 3x3y3z2 + x2z5 + y7z)t2 ∈ Frac(S[pt]).

Since no product of two monomial terms among the generators of p divides x2z5, it follows
that f /∈ S[pt]. However, we verify below that f 2, f 3 ∈ S[pt]. Indeed,

f 2 = (−yp31 p3 + x2 p1 p
3
3 + yp42 − zp32 p3 + xzp43)t

4 ∈ p4t4 ⊆ S[pt],
and

f 3 = (−zp51 p3 + zp21 p
4
2 + 3xzp21 p2 p

3
3 + z2 p1 p2 p

4
3 + x3 p22 p

4
3)t

6 ∈ p6t6 ⊆ S[pt].
By Theorem 7, we see that R(p) is not seminormal. However, since p is prime, RL(p) =
S[pt, t2] is seminormal by Corollary 4.

In positive characteristic, F-split rings are weakly normal, so in view of Corollary 4 one
may hope to find a fairly large class of ideals I for which RL(I ) is F-split. As such from
this point forward, for simplicity, we fix a perfect ground field k and all rings and fields
considered for the rest of this section are F-finite. We also identify the Frobenius map with
the inclusion S ⊂ S1/p into a choice of p-th roots of elements of S from a fixed algebraic
closure.

Theorem 9 Suppose char(k) = p > 2 and I is a radical ideal in S. The ring S/I is F-split
if and only if RL(I ) is F-split.
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Proof Assume that S/I is F-split. Every splitting of S/I is induced by a splitting ϕ : S1/p →
S of S with ϕ(I 1/p) ⊂ I . Next, we consider RL(I ) = S[I t, t2] as a graded subring of S[t].
Define ψ : S[t]1/p → S[t] by writing f ∈ S[t]1/p as f = ∑

a1/pi t i/p and setting

ψ( f ) =
∑

i ≡ 0 (mod p)

ϕ(a1/pi )t
i
p .

Clearly this is S-linear and ψ(t · f ) = tψ( f ) for each f ∈ S[t]1/p . Thus ψ is S[t]-
linear, whence RL(I )-linear. Moreover ψ is surjective because ψ(1) = 1. We show that
the ψ(RL(I )1/p) ⊆ RL(I ). This will show that ψ |RL(I ) is an F-splitting of RL(I ). Let

f = ∑
a1/pi t i/p ∈ RL(I )1/p , so ai ∈ S for every even i and ai ∈ I for every i odd. To prove

ψ( f ) ∈ RL(I ) we need to show that if i
p is an odd integer, then ϕ(a1/pi ) ∈ I . This follows

since i
p being odd implies that i is odd. Thus we have a1/pi ∈ I 1/p and so ϕ(a1/pi ) ∈ I .

Conversely, assume RL(I ) is F-split. We may assume without loss of generality that
ψ : RL(I )1/p → RL(I ) is a splitting which is graded of degree 0. Denote byψ0 : S1/p → S
the restriction of ψ to the degree 0 part of RL(I ). This is clearly S-linear and surjective, so
it suffices to see that ψ0(I 1/p) ⊂ I . By RL(I )-linearity, for a ∈ I we have

at2ψ0(a
1/p) = ψ(a1/p · at2) = atψ(a1/pt).

As RL(I ) is a domain, we have ψ0(a1/p)t = ψ(a1/pt). Since ψ is graded, ψ(a1/pt) ∈ I t ,
so ψ0(a1/p)t ∈ I t and then ψ0(a1/p) ∈ I , as desired. �
Acknowledgements The authors thank Mark Johnson for many valuable discussions and the anonymous
referees for helpful comments that improved the presentation of this paper.
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