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SOFT ROBOTS

Optical lace for synthetic afferent neural networks
Patricia A. Xu', A. K. Mishra’, H. Bai', C. A. Aubin’, L. Zullo?3, R. F. Shepherd*#

Whereas vision dominates sensing in robots, animals with limited vision deftly navigate their environment using
other forms of perception, such as touch. Efforts have been made to apply artificial skins with tactile sensing to
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robots for similarly sophisticated mobile and manipulative skills. The ability to functionally mimic the afferent sensory
neural network, required for distributed sensing and communication networks throughout the body, is still missing.
This limitation is partially due to the lack of cointegration of the mechanosensors in the body of the robot. Here,
lacings of stretchable optical fibers distributed throughout 3D-printed elastomer frameworks created a cointegrated
body, sensing, and communication network. This soft, functional structure could localize deformation with sub-
millimeter positional accuracy (error of 0.71 millimeter) and sub-Newton force resolution (~0.3 newton).

INTRODUCTION

Many biological systems have adapted to functionally interact with
the external environment by developing an entwined brain-to-body
relationship. This complex arrangement allows the latter to perceive
the world and the former to interpret it in a closed-loop manner. As
robots become more physically complex and cognitively advanced,
we can take inspiration from animal nervous systems to create the
necessary groundwork for controlling robotic artifacts. Through sight,
hearing, smell, taste, touch, and even interpretation of magnetic and
electric fields, animals and plants feel a sense of exteroception. Pro-
prioception, knowledge of position and state of their own body
parts, is achieved through some combination of these sensory organs
as well; animals, in particular, use vibrations and forces felt through
mechanoreceptors under skin (1) and through deformation and stress
measurements within muscles and tendons (2, 3). From this infor-
mation, they perform complex tasks, such as maneuvering when blind
or altering their behavior when injured.

Presently, autonomous robots mainly use visual and tactile de-
tectors placed at end effectors for exteroception (4) and sensors at
joints and the center of mass for proprioception (4) to complete
complex tasks. A more distributed sensor network, as in the neural
circuitry of animals, would allow robots to interact at higher tactile
resolutions and to measure mechanical damage (i.e., bent or broken limbs)
accumulated over time. The importance of distributed, volumetric
sensing is even more pronounced in the field of soft robotics, where
every part of the machine deforms. In these robots, the stretchable
sensors distributed throughout the body have only recently been used
for feedback control (4-12).

These stretchable sensors typically use electrical properties [e.g.,
resistance (4, 13), capacitance (14, 15), voltage (16), and current (17)]
in planar arrays (or “skins”) to localize surface deformations (17-21).
Compared with electricity, light carries information faster and with
higher data densities through changes in intensity, phase, polariza-
tion, or wavelength (22). It can also be carried in multiple directions
simultaneously and is less susceptible to electromagnetic interference
(22). As a result, optical sensors provide an excellent alternative to
electrical ones (7, 23-28). Optical skins have used light loss through
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bent fibers (29-31), fiber Bragg gratings (24), and frustrated total
internal reflection (32-35) to measure planar shape change but have
not been used to directly measure complex, volumetric deformation
due to their two-dimensional (2D) fabrication limitations. Stretch-
able light guides sensitive to tensile strain and external forces through
Beer’s law can be easily embedded into a volume but lack the spatial
differentiation of skins (7, 23, 25-28). The optical sensor network
that we present here uses an entirely different principle—frustrated
total internal reflection—to measure deformation through light
coupled from the physical interaction of neighboring light guides
(Fig. 1A, left). By measuring these coupling interactions, we can dif-
ferentiate between simultaneous multiple and singular deformations
throughout a volume.

Here, we introduce a platform, which we call optical lace (OL),
for creating arbitrary 3D grids of soft, stretchable light guides for
spatially continuous deformation sensing (Fig. 1A). This 3D sensory
array provided functions similar to those of the afferent neural network
in organisms. We distributed these light guide networks throughout
the volume of a 3D-printed soft scaffold. To determine the exten-
sive capabilities of this system, we performed mechanical analysis,
optical simulation, x-ray imaging, and sensor characterization of our
system. We concluded with devices composed of OL that show (i)
exteroception that can locate multiple finger presses simultaneously and
(ii) proprioception that monitors volumetric structural deformation.

RESULTS

System design

Using a commercially available high-resolution, rapid 3D-printing
technique [continuous liquid interface production (CLIP) (36);
Carbon M1], we created a scaffold from elastomeric material (EPU 40;
fig. S1; see the “System fabrication” section in Materials and Methods)
to house a four-cored OL (Fig. 1B, left). We labeled the network as
OL, 3, where the notation “1,3” represents one powered input core
and three unpowered output cores. Because the 3D-printed struc-
tural framework we created is of variable stiffness (to demonstrate
arbitrary deformable interfaces), we co-designed the OL; 3 to be at
the top of the scaffold, where it is softest (Fig. 1B, right), so force can
be best transferred to the sensor in the exteroceptive case.

Our demonstrative structure deformed through the bending and
buckling of the struts in a 3D-printed lattice; we programmed the
stiffness gradients by varying the strut thickness (). For example, by
making the struts thinner, they bent and buckled more easily, creating
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Fig. 1. Fabrication and design overview. (A) Examples of OL without supporting structure showing light coupling (circled in red) in a 2D array (left) and a 3D geometry
(right). (B) 3D-printed soft scaffolding with embedded channels for elastomeric light guide cores (left). Eight compression tests of the 3D-printed lattice with 1 SD above
and below the average in gray (right). (C) Schematic cross section showing the light guides with close-up of the mechanoreceptor (left). LED illuminating the straight in-

put core and light coupling to an output core when deformed (right).

a softer section. Equations 1 and 2 show rectangular beam bending
and buckling forces (37)

2 4

_ mEt
Fbuckle = 1212 (1)
Fpend = 3DEL” )

- 123

where E is the elastic modulus, § is the deflection, and [ is the length
of a strut. For our printed geometry, this quartic dependence on
thickness results in large behavior differences of the softer top layer,
t=0.75 mm, which buckles at F.,mp = 6 N, and stiffer bottom layer,
t = 1.125 mm, which bends until Feomp =~ 12 N (Fig. 1B, right) and
does not exhibit buckling behavior upon compression. This complex
response to force is ideal for touch interfaces because a finger press
provides sufficient force to completely deform the top, whereas the
bottom layer provides substantial resistance to deformation. The
difference in stiffness also increases the sensitivity of the OL by
transferring forces directly to the mechanosensor, the air gap sepa-
rating the input and output light guides (Fig. 1C, left). We fixed the
cores in place within this area of interest using lattice-work guide
channels printed into the scaffold.

Optical array design and lace fabrication
After printing, we threaded the polyurethane light guides [Stretch
Magic, Pepperell Braiding Co., MA (23); diameter do, = 1 mm for
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outputs and dj, = 1.5 mm for the input; see the “System fabrication”
section in Materials and Methods] into the lattice-work channels that
loosely held the cores in place. The channel wall’s porosity, i =
Aqir/ (Agir + Appu) = 0.53, allowed our cores to guide more light by
increasing the numerical aperture (NA = 0.174 without porosity and
NA = 0.880 with porosity) and critical angle (6. = 83.42° without
porosity and 6y = 54.02° with porosity) due to the increased difference
in refractive index between the air and printed polyurethane scaf-
folding and polyurethane cores [#1¢ore = 1.52 (23); gy = 1.0; ngpy = 1.51
(fig. S2); Mporous = 1.24 at A = 850 nm].

The interconnected guide channels allowed the contact and the
coupling of light between input and output light guides. The opti-
cally powered input core leaked light into the unpowered outputs
only when deformations caused the light guides to contact (Fig. 1C,
right). In the OL presented here, the outputs were U shaped, lined
up next to each other, and optically separated from the input light
guide with a small air gap (0.4 mm) in the resting state (Fig. 1C).
This configuration allowed the outputs to be parallel to the input
core so that line (not point) contact occurred and increased the
dynamic signal range through the increasing coupling length with
compression.

We measured the power from all the output light guides to interpret
the position of localized deformations with photodiodes (see the
“Electronics setup for reading signals” section in Materials and Methods).
In the exteroceptive structures, we designed the receptive field of each
mechanosensor to be comparable with the size of a typical fingertip
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measured by a ruler, w; = 6.4 mm (fig. S3), so that a press centered
on the output would produce only one signal for simple processing.
To measure the location of touch continuously over a distance, we
placed the outputs close together (w, = 8.35 mm; fig. S3) so that the
receptive fields overlapped, allowing a single finger press to cause
signal in multiple mechanosensors at once. In the case where multiple
outputs are contacted, the touch position can be calculated using
the ratio of intensities in the neighboring light guides.

Experimental validation

To visualize the scaffold deformation and core contact, we used x-ray
micro-computed tomography (u-CT) to image the OL, 3 (fig. S4;
see the “u-CT scan” section in Materials and Methods). The 3D re-
constructions show that the variable stiffness scaffolding deformed
as designed, with the stiff scaffold undisturbed even with full com-
pression of the soft segment (Fig. 24, left). In addition, because of
the high compliance of the soft scaffold, external forces resulted in
highly localized deformation to ensure that only one or two recep-
tive fields were activated with one touch. We also confirmed that the
coupling length (i.e., physical contact between input and output cores)
does increase to its maximum length, 3.5 mm, at high forces. Under
the large deformation applied (e.g., 5 mm), light remained coupled;
however, the CT scan reveals that extreme deformations caused the
input to roll around the output core instead of simply contacting from
above (Fig. 2A, middle right).

We ran simulations on the lace (COMSOL Ray Optics; see the
“Optical simulation” section in Materials and Methods), which, as
expected, indicated a linear increase in the normalized coupled
signal transmitted from the input as the coupling length increases
(Fig. 2B). We modeled the light guides as lossless cylinders (d = 1 mm)
with 71¢re = 1.52, cladded by air, 7, = 1.00. We set them to contact
over a straight section of varied length, 0.1 mm < L < 4.5 mm (Fig. 2B),
on the output core. We also set the cores to overlap by 0.050 to 0.55 mm
to simulate a changing contact width when they are deformed into
each other. From the measured power of light at the end of the out-
put, we see that a minority fraction of the input light (<12%; fig. S5)
coupled. This ensures that multiple signals can be read simul-
taneously from a single input. The correlation of signal intensity to
core contact made it possible to measure force or extent of deformation
in addition to position. In addition, our experimental results from
testing two straight, cylindrical light guides coupled with a constant
contact width and varying length, L, matched well to the simulated
results (Fig. 2B and fig. S6). The signals in Fig. 2B were normalized
to their signal at a 4-mm coupling length.

Although the change in coupling length produces most of the sig-
nal, the contact width is also a control variable (fig. S7). Very small
contact widths led to a small contact area and low signal; too large
implied significant deformation of the cores, causing more light loss
to the environment (Supplementary Text and fig. S7). We experi-
mentally confirmed that our sensor network functions mainly because
of changes in contact length that can be seen in Fig. 2A, where even
at high deformations there is limited change in core shape.

Sensor characterization

We characterized the force response of an OL, 3 by attaching an in-
frared (IR) light-emitting diode (LED) to the end of the input core
and photodiodes to the ends of one leg of each output core to read
the coupled light intensity (see the “Force and positional accuracy
measurements” section in Materials and Methods). To measure the
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Fig. 2. Experimental validation. (A) Sliced x-ray u-CT scan reconstructions of light
guide-lattice composites with contact between cores labeled. Bottom: Magnified
isometric and side view of CT reconstructions showing the contact and orientation
of the cores at the deformation site under high deformation. (B) Normalized simu-
lated and experimental signals coupled from input to output with varying cou-
pling length and constant contact width (~0.3 mm). Error bars indicate 1 SD above
and below average.

force response, we used a z-axis stage to repeatedly press a force
gauge into the centers of each of the three outputs between 1.5 and
3.5 N at 0.5-N intervals and recorded the signal (fig. S8; see the
“Force and positional accuracy measurements” section in Materials
and Methods). The signals were normalized to the maximum possible
value that the electronics can produce (Fig. 3A; see the “Electronics
setup for reading signals” section in Materials and Methods). The
minimum and maximum indentation needed for a reliable, linear
signal response was ~1 and 3 mm, respectively, with the current
scaffold. The signal output was highly repeatable, with an average
SD,SD = 3 X1

avg signal

= 0.02, in normalized output signal across

the n = 300 to 400 total data points. The low SD of the signal implies
a force resolution (~0.3 N) comparable with the skin in the human
hand [i.e., humans can perceive 7% change in applied force between
2.5 and 10 N (38)] and is better than typical resistive or capacitive
soft sensors [~10% variation of signal (9, 11)]. The minimum in-
dentation required for this particular OL; ;3 is much larger for our
sensor than for the human hand [OL, 1 mm; human hand, 10 to 500 um

30f9

6102 ‘€2 Joquieldag uo A LISHIAINN TIINYOD e /610 Bewadusios sooqol/:djy woy papeojumod


http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

To measure the positional accuracy
of the OL, 3, we pressed the sensor every
millimeter between left and right outputs
(Fig. 3C) with the same z-axis stage and
force gauge (see the “Force and posi-
tional accuracy measurements” section
in Materials and methods). We took the
maximum value from each output during
the press to calculate position and plot-
ted it against the actual position measured
by a ruler. From Fig. 3C, we see the over-

sensor

10 15 20 25 30 35 40
Relative time (ms

lapping receptive fields of each mechano-
sensor because there are signals from both

Ground truth

neighboring outputs when the sensor was
pressed directly between, but not when
pressed directly above, their centers. From
the ratio of the output intensities, we
interpolated the position of touch between
two outputs using the empirically de-
- termined (fig. S10) Eq. 3
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Fig. 3. Sensor characterization. (A) Normalized averaged signal from each output when pressed more than
20 times with increasing force reported with 1 SD above and below. (B) Fastest (black square) and slowest (green
triangle) of eight sensor responses to a ~0.1-ms impulse that impacts at time = 0 (marked by a red vertical line).
(C) Signal from all three outputs as the OL, 3 is pressed every millimeter along the input from the middle of the left to
right outputs. (D) Average calculated versus actual position of eight samples of presses with a dotted line showing
where the points would lie if 100% accurate (ground truth). Error bars indicate 1 SD above and below.

(39, 40)] and electronic soft sensors that are typically on the scale of a
few millimeters thick (4, 13, 14, 18, 19). The design of our scaffold
OL, ; had a reliable minimum readable force of 1.5 N and a maxi-
mum of 5 N [for comparison, resistive and capacitive soft sensors
can measure minimum forces around 0.01 N (9, 11) and the human
hand 0.001 N (I)], and we could tune the sensitivity and dynamic
force range via lattice geometry. The lace itself, without being en-
capsulated in a lattice, had a minimum detectable force of 0.06 N for
the particular fiber mechanical properties used in this study.

To assess the frequency response of our sensors, we shot a 4.5-mm-
diameter projectile into an OL; 3 at ~0.23 km s! (movie S1; see the
“Impulse measurement” section in Materials and Methods). While
collecting sensor data, we visualized the impact using high-speed
camera (Phantom LAB 310) data for ground truth. The OL embedded
in the 3D-printed framework could measure an impulse between
0.2 and 2.5 ms long from six samples, whereas the actual impact
was about 0.1 ms (Fig. 3B and fig. S9). From high-speed video, we

estimated that the OL can measure deformation rates of at least 46 kHz:
frequency _ velocity f)fprojectile _ 230,000 mm s~

deformation observed 5 mm
however, is slightly delayed from the time of impact by 0.7 to
26.4 ms. The inconsistent time between analog readouts suggests
that the error is due to the microcontroller because the Arduino can
read an analog signal at about 4 kHz and the operational amplifier
(OPAMP) used will produce an attenuated signal above 6 kHz.
Another source of delay is in the finite time it takes for the com-

pression wave to collapse the elastomer matrix.

. The sensor response,
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Actual position (mm)

6 8 10 12 14 16 where xp,6 is the center of the closest
output to the left and I is the maximum
signal during a press of either the left or
right neighboring output (fig. $10). We
fit the ratio to the true position, for one
set of data, to find the nonlinear equa-
tion above (fig. S10). When only one
output core has a signal, the ratio is
zero, so the system assumes that the press
is directly above the center of that output. This introduces greater
error (maximum error, Erty.x = 2.7 mm; average error, Err=0.71 mm)
near the centers of the receptive fields where there is no overlap
(i.e., near the center of an output; Fig. 3C). Although the data were
taken with presses of around 4 to 5 N, this model does not require
previous knowledge of the magnitude of applied force because it
relies on the ratio of intensities and not their absolute value. It also
has submillimeter average positional accuracy [Err = 0.71 mm;
SD = 0.69 mm; Fig. 3D], which is comparable with the spatial reso-
lution of touch sense in a human hand [2 to 3 mm (41)]. Typical
electronic soft sensors are often shown to have spatial resolution
on the 0.1-mm scale (2, 17) but, like OL, can likely have much higher
upper limits in positional accuracy with improved manufacturing
methods.

Exteroception

To demonstrate the exteroceptive abilities of this system, we fabri-
cated a musical instrument (OL; ;5) with 15 output cores over a single,
12.5-cm-long input line (Fig. 4A) using the same core geometries as
the OL, 3 shown previously. Because of the light propagating through
the input in one direction, the coupled light primarily travels in the
same direction and thus preferentially down one leg of the contact-
ing output (Fig. 1C). We took advantage of this directionality and
placed an LED (IR on the right, visible on the left) on both sides of
the input core. In Fig. 4, we used a blue LED to visualize the pathway
for data collection; however, we took data using an IR light source,
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which would not have been visible in our illustration. We threaded
the right leg of the output to the left side to read the coupled IR light
with a photodiode (Fig. 4A, output: data, and fig. S11) and the re-
maining leg to the front of the scaffold as a visual indicator of
ground truth (Fig. 4A, output: visual, and fig. S11). The IR signals
were interpreted by an Arduino microcontroller communicating
with the software package “Processing” on a laptop computer (fig.
S12) to produce auditory signals based on position of touch in real
time (movie S2). The calculated position is also plotted on a number
line from 0 to 14, representing each of the 15 outputs. The program
also measured the intensity of the signal to play notes of varying volumes
(movie S2). Figure 4 (B to D) shows the calculated positions for a
press directly above, between, and over multiple outputs, along with
a representation of the press in the same position.

Proprioception

To demonstrate a proprioceptive use case, we collected data from
an OLy 1, (Fig. 5A; see the “System fabrication” section in Materials
and Methods) to reconstruct the 3D deformation state of a cylinder,
with embedded stiffness gradients, undergoing uniaxial compression
(Fig. 5B and movies S3 and S4). We varied the stiffness within the
cylinder by varying the strut thickness (Fig. 5B and fig. S13; from

Input: visual In ut: data

S, .

e o o 0 s s

Calculated position !

012345678 91011121314

\\\\\\

4 {

-ttt ettt
01234561738 91011121314

Fig. 4. Exteroception. (A) Musical instrument with 15 output cores. A red LED for
visual feedback and the photodiodes for each output core are located on the left
side. On the right side, we placed a blue LED to show light to be read by the photo-
diodes. Direct visual and computed locations of press positions (B) directly on an
output, (C) between outputs, and (D) over four outputs simultaneously.

Calculated position
4 )
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bottom to top, fyiff = 1 mm, feog = 0.75 mm, fpediym = 0.875 mm). By
adding a stiff spiral (Fig. 5A, scaffold) with a powered waveguide core
(Fig. 5A, input), we increased the sensitivity of the OL and swept out a
larger volume for sensory information. The variable stiffness lattice
and added stiffness from the spiral allowed the cylinder to measure
forces from 0.5 to 22 N. Figure 5A shows this spiral input core, illu-
minated using a blue and green LED, and the 12 output cores
positioned normal to it and along its length.

To calculate the compression of each section, we obtained 18 sets
of simulated force versus localized compression for every 2.2 mm of
height from finite element analysis (FEA) of the scaffold and selected
the 12 that correspond to the innervated area (see the “Proprioception
accuracy measurements” section in Materials and methods). We mea-
sured the force in each section of the cylinder using a linear model
of signal intensity to force and calculated the displacement of each
section with a compression versus force model fit to the simulated
FEA model (table S2). The model and our reconstructed data are
shown in Fig. 5 (C and D). For model validation, we compared the
calculated strains with those measured using a digital image correla-
tion (DIC) extensometer during single-axis compression tests. The
average magnitudes of error over nine tests were 0.033, 0.33, and
0.24 mm with an SD of £0.01, 0.24, and 0.25 mm (Fig. 5E) for the stiff,
medium, and soft sections, respectively. These errors are a little larger
but on the same order of magnitude as human perception of skin
indentation in the hand, ~0.1 mm (40), and can be decreased (0.021,
0.029, and 0.19 mm) if using a model fit to DIC data (movie S4).

Limits of the OL

Innervating large and tortuous 3D structures will require knowledge
of the power transfer limits of the OL, which has inherent length
limitations due to optical losses through and between fibers. We
modeled these losses using Beer’s law under two specific use cases:
(i) The first one defined the OL length as if we are looking for only
a few signals at one time over as large an area as possible. This situation
is useful in exteroception where knowing when and where a robot
has been contacted is important. In this case, presently, the input could
be ~80 cm long for the material and electronics system that we have
chosen (see Supplementary Text and fig. S14). (ii) The second defined
how long the OL can be if we want to interpret all signals simulta-
neously. This situation is useful for proprioception where constantly
measuring local curvatures globally would be important. In this case,
presently, the input can be 31 cm long with 37 outputs (see Supple-
mentary Text and fig. S14).

DISCUSSION

In this work, we demonstrated a 3D mechanosensor network, which
we call OL, cointegrated with variable compliance structures that
performs similar functions as, but does not mimic the mechanisms
of, an afferent nervous system. We demonstrated the OL’s ability to
repeatably sense localized, volumetric deformations within a 3D-
printed polyurethane lattice. Whereas the OL itself could detect
0.06-N forces, the OL embedded in the lattice could detect 1.5 N
with submillimeter average positional accuracy (0.71 mm) compa-
rable with human skin.

Although we only demonstrate two simple examples of computer
interfaces with extero- and proprioception, the OL and scaffold can
be tuned for sensitivity, spatial resolution, and accuracy as well as
designed to be responsive to both the direction and type (tension,
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Fig. 5. Proprioception. (A) Computer-aided design (CAD) model of each component of the cylinder and the completed device with three different stiffness sections.
(B) Actual structure, (C) FEA simulated model with strain, and (D) computer-reconstructed cylinder shown during compression. (E) Average displacement error in milli-
meters between calculated and measured versus normalized displacement for each stiffness section with 1 SD above and below over nine single-axis compression tests.

compression, bending, and twisting) of deformation. Changing the
scaffolding to be selectively stiff to better transfer forces to the mecha-
nosensor, removing the air gap so that the sensor starts at a nonzero
value, and adding mechanical amplifiers (like hair on animals or
feathers on birds; fig. S15) could decrease the measurable force to
~0.035 N (corresponds to a ~0.5-mm displacement).

The minimum detectable force of the OL without the scaffold
could be further reduced by lowering the elastic modulus of the core,
allowing more contact area with smaller forces. Higher positional accu-
racy, especially between outputs, could be increased by changing
the output geometries to be flatter and overlapping (fig. S16). We
could also increase both the spatial resolution and accuracy of the
OL by narrowing the widths of the outputs. Last, to measure direc-
tion and multiple types of deformations, we may combine multi-
ple OLs (fig. S17 and movie S5) and even use different geometries
altogether (fig. S18 and movie S6). Larger volumes can be innervated
by a single input using improved light guide materials, higher power
LEDs, or more sensitive photodetectors. Fewer accompanying
electronics may be required if we take inspiration from biology to
combine signals from individual mechanosensors without losing
information (42).

In the future, we would like to take advantage of the higher in-
formation density that can be carried through optical systems to create
integrated sensorimotor networks. These networks could combine
not only deformation sensing but also temperature (43), humidity
(44), and chemical monitoring. We may also better incorporate the
cores through directly 3D-printing the light guides (45). By mimicking
the inherent link between sensory and motor signals in animals, which
are used not only for action execution but also for action “selection”

Xu et al., Sci. Robot. 4, eaaw6304 (2019) 11 September 2019

(46), we may be able to use OL to simplify controls and electronics
and improve the efficiency of robots.

MATERIALS AND METHODS

Materials testing

To characterize the mechanical properties of the 3D-printed material,
we performed uniaxial tensile tests according to the ISO (Interna-
tional Organization for Standardization) 37 method with a type 4
dumbbell sample geometry. The test was run at 200 mm min~! on a
7010 Zwick Roell using a 10-kN load cell with pneumatic grips pres-
surized at 85 psi. The graph in fig. S1 shows the averaged data with
SD of 11 samples. The data show slightly exaggerated strains due to
the sample slightly slipping out of the grips. All compression tests
were run on the Zwick with a 10-kN load cell between two parallel
plates. The sample below was a solid cylinder (diameter, 29 mm; height,
12.5 mm) and was compressed at a strain rate of 12 mm min~". The
lattices in Fig. 1 were compressed at 10 mm min ™",

Measuring signal change due to varying

contact length and width

With a constant coupling length rig (fig. S15), the contact width
between cores was changed by spacers that limited the amount of
compression between cores. We see that at first, the output signal
increased as the compression and coupling length increased, but then
dropped off (fig. S15). This may be caused by loss of higher-order
modes that can be carried by the light guide due to a large change in
core diameter and increased loss due to a change in the angle at
which rays hit the core surface, as previously noted by Harnett et al.
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(23). The initial increase in signal may imply that more light couples
as the contact area increases due to greater contact width.

System fabrication

We designed the variable stiffness scaffolding using Fusion 360
(Autodesk Inc.; fig. S3) and stereolithographically 3D-printed the
OL scaffolding from a commercial EPU material on a Carbon M1
printer. We designed the top ~8 mm to have a thinner strut thickness,
tsoft = 0.75 mm, compared with the rest of the scaffold, ty=1.125 mm,
which created an area that was sensitive to external touch. Within
the scaffolding were lattice-walled channels to hold the light guides
with thin, f4,4 = 0.4 mm, walls to minimize the effect on the mechanical
properties of the structure. The scaffold was fully cured after being
in an oven for 8 hours at 120°C after excess resin was removed in an
isopropyl alcohol wash.

We threaded a thin monofilament string (Darice Jewelry Designer,
8 Ib) through each channel in the printed scaffold and super-glued
the end to a commercial, clear, soft, polyurethane core (Stretch Magic,
Pepperell) with a refractive index of 1.52 (23) and diameter doy,¢ = 1.0 mm
for the outputs and di, = 1.5 mm for the input. We then pulled the
cores into place with the string.

For the proprioception cylinder, the output U size and spacing
changed to fill the available space to be innervated. The output U’s
were 6.8 mm wide and spread out to be every 9 mm along the input
so that each one represented about 2.5 mm of height on the cylin-
der. They were parallel to the compression axis because this caused
the inputs and outputs to be pressed together during compression.
The U’s were also curved to match the spiral so that the output and
input core line contact increased with more compression. The input
was designed as a spiral as opposed to a zigzag or s-curve to avoid
any sharp curves that would introduce more light loss.

p-CT scan

We designed and printed a rig to hold the CT sample in the deformed
state for the duration of the scan, as shown in fig. S4. The sample
was scanned on an Xradia Zeiss Versa XRM-520 run at 100 kV/9 W
with 0.7-s exposure time and 36.7-pm resolution. We reconstructed
the scan into a 3D part in the software Aviso (Thermo Fisher Scientific)
after removing the bar that caused the deformation from the slices.
We then removed the background noise and testing rig before slicing
the reconstruction to show the cores in Fig. 2A.

Electronics setup for reading signals

We designed and 3D-printed elastomeric parts to hold the photodiodes
(380 to 1100 nm; SFH 229 from OSRAM Licht AG) and IR LEDs
(peak, 875 nm; TSHA4400 from Vishay Intertechnology Inc.) in
contact with the cores using friction fits. The setup used to take data
for the OL, 3 is shown in fig. S9. All data for force and positional
accuracy were taken with photodiodes amplified with an OPAMP
(LM324A; Texas Instruments Inc.) that had a 2-megohm gain and a
4700-pF capacitor acting as a low-pass filter with a maximum signal
value of 800. The signal from the photodiodes was sent through a
simple current-to-voltage (I/V) converter circuit (fig. S19) and read
through the analog pins on an Arduino microcontroller (Arduino
MEGA 2560) at a baud rate of 9600.

All the photodiodes for the exteroceptive sensor used a 2-megohm
resistor (R1), whereas the proprioceptive sensor used 2-, 4.99-, or
10-megohm resistors as listed in table S1. The IR LEDs have 33-ohm
resistors (R2). The circuits were powered by two wall outlets for +V =5
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V and -V = -5 V. Data were transferred to Processing about
50 times per second.

Optical simulation

We modeled a straight input and single output in COMSOL’s Ray
Optics package as lossless, cylindrical, 1-mm-diameter light guides.
Walls were set up at both ends of each core to measure the light in-
tensity through those areas. Input light was set up through the “Re-
lease from Grid” module, entering from one of the input ends in a
uniform density cone of 400 rays with a cone angle of /9 and a total
power of 1 W to simulate the LED. Rays leaving the cores were sup-
pressed. The mesh had a minimum element size of 0.009 mm, a
maximum of 0.25 mm with a curvature factor of 0.1, and a maxi-
mum element growth rate of 1.1. The simulation was solved using
the ray tracing solver over a path length of 0 to 300 mm with a step
size of 0.1 mm. We ran a parametric sweep of the coupling length
from 0.1 to 4.5 mm with a step size of 0.1. To simulate varying levels
of core deformation, we also ran a parametric sweep of the overlap
between the two cores from 0.05 to 0.55 mm in steps of 0.1 (fig. S7).

Impulse measurement

To measure an impulse, we first removed the capacitor (fig. S19, Cl1),
which was inserted as a low-pass filter. We recorded 4002 points of
data on an Arduino set at a baud rate of 2,000,000, which took
roughly 1 s. The actual amount of time it took to get 4002 analog
readings varied from 904 to 1093 ms. We shot seven sensors with
0.177-caliber bb pellets as the projectile and measured the signal from
the impact using a high-speed camera (Phantom LAB 310) set to
take 23,000 frames per second and a flashing LED to sync the data
to the video (fig. S20). From the high-speed video, we determined
that the projectile took ~0.00009 s (two frames) to pass through the
entire sensor. Movie S1 shows one test, with the high-speed video
brightened and contrast increased for better viewing.

Force and positional accuracy measurements
We mounted a digital force tester to a vertical lift stage and attached
a 3D-printed finger phantom to its end (fig. S9). We attached the
OL, 3 to a delrin block and a ruler to the acrylic sheet under it so that
we could measure presses every millimeter along the length (fig. S9).
To apply a force, we lowered the vertical lift stage to press the finger
phantom into the sample until the desired force was read. From the
collected data, we used the maximum value from each output for
each press, defined as a chain of nonzero signal values, and normalized
them by 800, the maximum value possibly read from the sensor
(Fig. 3, A and C). To find the nonlinear portion of Eq. 3, we divided
the actual position, Xy, by the ratio of neighboring output signals,
Tright

= Tt I O BEta multiplication factor. We then plotted the factor
by the ratio and fit a curve in Excel (Microsoft Inc.) (fig. S10). The
factor was multiplied by the ratio and added to xp,e to get the final
equation.

Proprioception accuracy measurements

We placed the cylinder between two parallel plate attachments of
the Z010 Zwick Roell tensile tester using a 10-kN load cell and ran
the compression test at 10 mm min~' while acquiring data from the
sensors. We filtered the data with an exponential filter using a smooth-
ing constant of 0.9 on an Arduino. To measure the localized defor-
mations experimentally, we marked the front face of the cylinder
with a silver Sharpie every 2.5 mm, tracked the dots using a DIC
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extensometer with Vic-Snap and VIC-2D (Correlated Solutions Inc.),
and converted the pixel positions of the dots to displacements. From
the sensor data, we correlated the signal magnitude to force with a
linear model. We then created our model using MATLAB to fit a
sixth-degree polynomial to the localized displacement and force
values from the FEA simulation done in ANSYS (movie S7). We
found the error of the calculated displacements using error =
abs(dispcaic — disppic). Because the simulation can only solve up to
35% compression, we show two models in the supplementary mov-
ies; movie S3 shows the FEA model, and movie S4 shows a model
based on experimental data up to 35% compression.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/34/eaaw6304/DC1
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