
Rock-Salt-Type $\text{MnCo}_2\text{O}_3/\text{C}$ as Efficient Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells

Yao Yang,^{ID} Rui Zeng,^{ID} Yin Xiong, Francis J. DiSalvo, and Héctor D. Abruña^{*ID}

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States

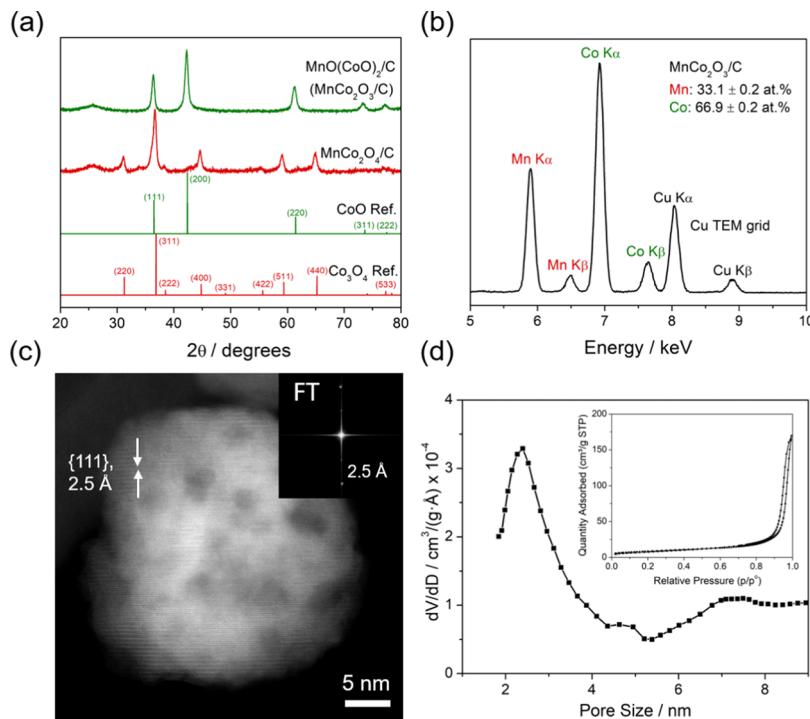
 Supporting Information

ABSTRACT: The search for nonprecious metal-based electrocatalysts with high activity and long durability for the oxygen reduction reaction (ORR) has been long pursued by the renewable energy material community. Here, we designed a new Mn–Co bimetallic oxide $\text{MnCo}_2\text{O}_3/\text{C}$ with the rock-salt-type structure, derived from a spinel-type precursor $\text{MnCo}_2\text{O}_4/\text{C}$ under mild reduction using NH_3 at 300 °C. In-depth electron microscopic and spectroscopic investigations suggest that $\text{MnCo}_2\text{O}_3/\text{C}$ predominantly has Mn(II) and Co(II) and can be written as $\text{MnO}(\text{CoO})_2/\text{C}$. Charge transfer between Mn and Co was probed by electron energy-loss near-edge structure (ELNES) analysis. $\text{MnCo}_2\text{O}_3/\text{C}$ has a Co-rich core and a thin 1–3 nm Mn shell with a mesoporous morphology. $\text{MnCo}_2\text{O}_3/\text{C}$ achieved a high ORR activity with a half-wave potential of 0.86 V in 1 M KOH, which was ascribed to the microstructure and the synergistic effects between Mn and Co, serving as co-active sites for the ORR.

INTRODUCTION

Hydrogen fuel cells have been recognized as one of the key next-generation renewable energy technologies, especially for powering electric vehicles (EVs).^{1–4} However, a significant amount of Pt (>0.2 g_{Pt}/kW) is still required to catalyze the sluggish oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs).^{5–8} Recently, anion exchange membrane fuel cells (AEMFCs) have emerged as a competitive alternative technology, since they enable the use of nonprecious metals or metal oxides in alkaline media.^{9,10} To facilitate the ORR kinetics in alkaline media, the fuel cell community has been devoted to investigating a variety of nonprecious electrocatalysts, including metal-containing nitrogen-doped carbons, perovskites, and transition-metal oxides.^{11–18} Metal-containing nitrogen-doped carbons (e.g., Fe–N–C) have shown promising activities in rotating disk electrode (RDE) measurements. However, they generally suffer from poor performance in practical membrane electrode assembly (MEA) tests (peak power density <0.5 W/cm²) due to their intrinsically low density of active sites. Perovskites (e.g., LaCoO_3) have been reported to be active catalysts for the ORR but with inferior activity (half-wave potential <0.75 V vs reversible hydrogen electrode (RHE)), likely due to their poor electronic conductivity.¹³ As a comparison, 3d metal oxides have attracted increasing attention as ORR electrolysis due to their high activity, high density of active sites, stable structure, and low cost.^{19–29} For example, cobalt and manganese monoxides (CoO and MnO) with a rock-salt structure were reported to be active for catalyzing the oxygen reduction.^{30–33} However, the reported activities in alkaline

media yielded half-wave potentials ($E_{1/2}$) less than 0.8 V vs the reversible hydrogen electrode (RHE), which is much lower than the benchmark activity of Pt/C (0.89 V vs RHE). Previously, we showed that Mn–Co oxides exhibited a promising ORR activity in RDE measurements and achieved a high peak power density of over 1 W/cm² in membrane electrode assembly (MEA) measurements.^{19,20} In this work, we went one step further to explore Mn–Co bimetallic oxides with different crystal structures to better understand the catalyst structure and the observed ORR activity. We discovered a new compound, MnCo_2O_3 , with a rock-salt-type structure that exhibited a remarkable ORR activity. The methodology of structural analysis described in this work could help understand the microstructure of other catalysts, at the atomic scale, and build correlations to the catalytic activity.

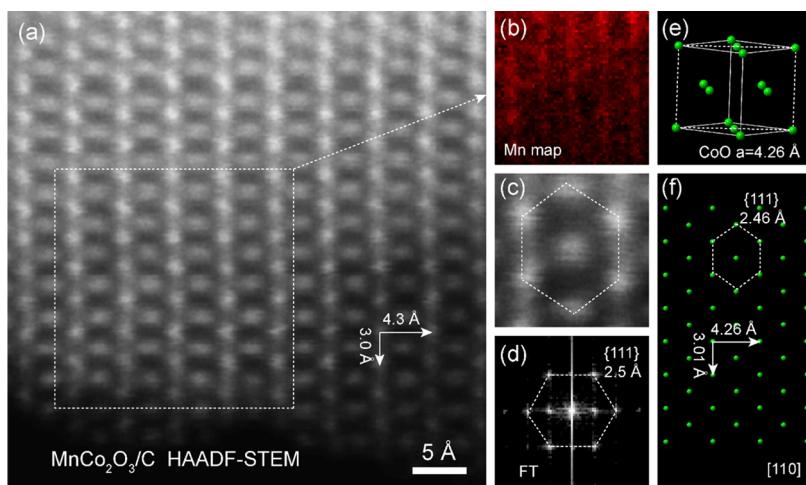

RESULTS AND DISCUSSION

$\text{Co}_3\text{O}_4/\text{C}$ and $\text{MnCo}_2\text{O}_4/\text{C}$ with cubic spinel structures were first synthesized through a facile hydrothermal method. Powder X-ray diffraction (XRD) patterns of $\text{Co}_3\text{O}_4/\text{C}$ exhibited the typical features of cubic spinel oxides with a major (311) peak (PDF# 01-071-1178) (Figure S1a). The domain size of the Co_3O_4 nanoparticles (NPs) was estimated to be 18 nm based on the Scherrer equation. $\text{Co}_3\text{O}_4/\text{C}$ was then partially reduced to CoO/C under mild NH_3 reduction at 300 °C for 3 h (referred to $\text{CoO}/\text{C-N300}$). The resulting

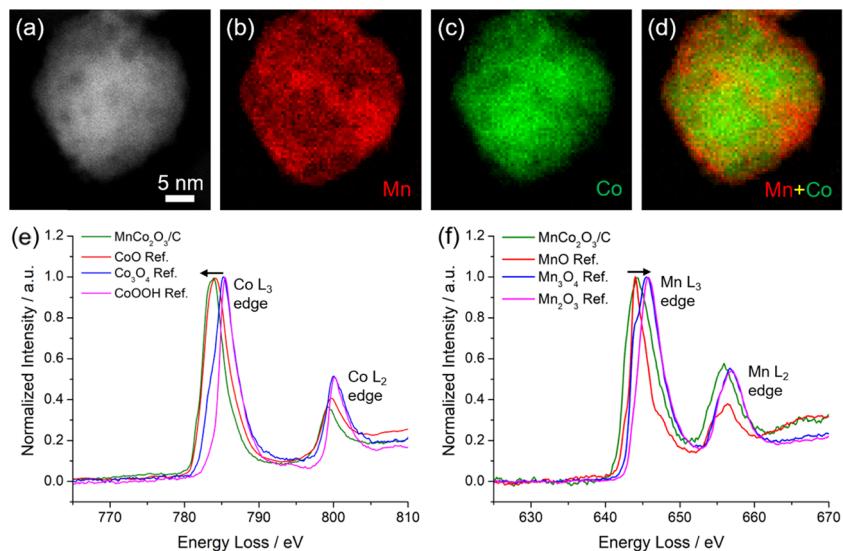
Received: July 15, 2019

Revised: October 30, 2019

Published: October 31, 2019


Figure 1. (a) Powder XRD patterns of MnCo₂O₃/C, MnCo₂O₄/C compared to standard XRD patterns of CoO and Co₃O₄. (b) TEM-EDX spectrum of MnCo₂O₃/C showing the relative Co/Mn atomic ratio of 2:1. (c) Atomic-scale STEM image of MnCo₂O₃/C with {111} d-spacings and the corresponding Fourier transform (FT). (d) Differential pore volume distribution (dV/dD profile) as a function of pore size of MnCo₂O₃ without carbon support and the corresponding N₂ adsorption-desorption BET isotherm (inset).

CoO/C-N300 exhibited a single-phase XRD pattern as the CoO XRD reference (PDF# 01-076-1802) with a slightly smaller domain size of 14 nm. As a fingerprint of the chemical environment of Co, electron energy-loss near-edge structure (ELNES) spectra of CoO/C-N300 exhibited nearly identical features as the CoO reference, indicating that CoO/C-N300 shared the same chemical environment of Co(II) as CoO (Figure S1b). Comparisons in the crystal structure of Co₃O₄ and CoO are demonstrated in Figure S2. During NH₃ treatment, some of the oxygen atoms in the spinel Co₃O₄ were removed to form the rock-salt-type CoO. Consequently, the coordination numbers (CN) of Co changed from the co-existence of tetrahedral [CoO₄] and octahedral [CoO₆] in Co₃O₄ to all octahedral [CoO₆] in CoO (Figure S2).


Following the successful synthesis of CoO/C NPs, MnCo₂O₄/C spinel oxides were synthesized and used as precursors for further NH₃ treatment at 300 °C. As shown in Figure 1a, Mn–Co bimetallic oxides exhibited a similar rock-salt-type structure to the CoO reference with a major (200) peak. Thus, we propose that this new compound has a chemical formula of MnO(CoO)₂/C or simply MnCo₂O₃/C. It has been reported that CoO and MnO could form a miscible solid solution, bulk-phase Co_xMn_{1-x}O (0 < x < 1) under high-temperature (1100 °C) sintering.³⁴ The domain sizes of the nanoparticles were calculated to be 15 nm for MnCo₂O₄/C and 13 nm for MnCo₂O₃/C. The chemical composition of MnCo₂O₃/C was determined by X-ray energy-dispersive spectroscopy (EDX) (Figure 1b), based on the Cliff–Lorimer equation.³⁵ MnCo₂O₃/C exhibited relative contents of 33.1 atom % Mn and 66.9 atom % Co (relative error: 0.2% was defined as one standard deviation), which matched the theoretical values of 33.3 and 66.6% in MnCo₂O₃, respectively. Since NH₃ was used as a mild reducing agent, it is important to

know whether any N was introduced into the product during the synthesis. As shown in Figure S3, no evidence of a N signal from MnCo₂O₃/C was found to be above the detection limit of EDX, electron energy-loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS) characterizations.

The morphology and crystal structure of MnCo₂O₃/C were examined using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging at 100 keV (Nion UltraSTEM). MnCo₂O₃/C exhibited a particle size of 30–50 nm embedded in a Ketjen black (KB) carbon matrix (Figure S4), indicating that the majority of particles have multiple subdomains, given an XRD domain size of about 13 nm. Atomic-scale STEM images of individual MnCo₂O₃ nanoparticles showed single-crystal features with d-spacings of 2.5 Å, as indicated by the diffraction spots in the Fourier transform, which were the same as the {111} d-spacings of CoO (2.46 Å) within the STEM spatial resolution (Figure 1c). The lattice images of MnCo₂O₃ showed a nonuniform image intensity, suggesting the existence of nm scale mesoporous morphology, which was also found in many other MnCo₂O₃ NPs (Figure S5). To quantify the porosity of MnCo₂O₃ NPs, a N₂ adsorption–desorption test was performed on MnCo₂O₃ without KB carbon support since the larger surface area of carbon (900 m²/g) would likely dominate the measured surface area in the catalyst/carbon composite. The specific surface area of MnCo₂O₃ NPs was estimated to be 30 ± 0.1 m²/g by the Brunauer–Emmett–Teller (BET) method (Figure 1d, inset). The pore size distribution of MnCo₂O₃, derived from the Barrett–Joyer–Halenda (BJH) method suggested a narrow size distribution with an average pore size of 2.4 nm (Figure 1d), which was consistent with the pore size in STEM images (Figures 1c and S5). MnCo₂O₃/C exhibited a similar pore size

Figure 2. Atomic-scale HAADF-STEM image of rock-salt-type $\text{MnCo}_2\text{O}_3/\text{C}$. (a) Overall lattice image of MnCo_2O_3 on the zone axis of [110]. (b) Atomic-scale EELS elemental map of Mn acquired from the dashed box in (a). (c) The magnified single unit cell of MnCo_2O_3 showing the typical hexagonal symmetry. (d) Fourier transform (FT) of lattice image in (a) showing the corresponding hexagonal symmetry with {111} d-spacing (2.5 Å). (e) Unit cell of rock-salt-type CoO (lattice parameter, $a = 4.26$ Å) based on PDF# 01-071-1178. Dashed lines indicate the lattice planes proportional to the [110] zone axis. (f) 2D projection of the crystal model exhibiting the hexagonal symmetry with {111} d-spacings of 2.46 Å. Theoretical lattice spacings of 4.26 and 3.01 Å are consistent with experimental values of 4.3 and 3.0 Å in (a).

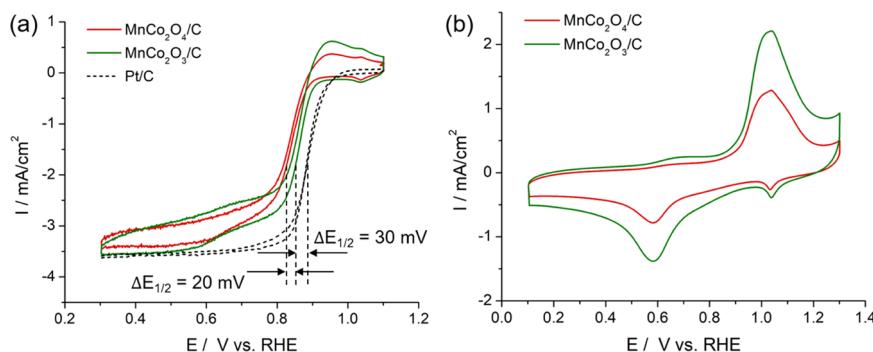


Figure 3. STEM-EELS elemental mapping and fine spectroscopic analysis of $\text{MnCo}_2\text{O}_3/\text{C}$. (a–d) STEM images of one MnCo_2O_3 nanoparticle and the corresponding EELS elemental maps of Mn (red), Co (green) and composite map of Mn vs Co. (e) Electron energy-loss near-edge structure (ELNES) of Co $\text{L}_{3,2}$ edges of $\text{MnCo}_2\text{O}_3/\text{C}$ and reference Co oxides, CoO , Co_3O_4 , and CoOOH . (f) ELNES spectra of Mn $\text{L}_{3,2}$ edges of $\text{MnCo}_2\text{O}_3/\text{C}$ and reference Mn oxides, MnO , Mn_3O_4 , Mn_2O_3 . Black arrows in (e, f) indicate the negative and positive shifts of Co and Mn L_3 edges, relative to CoO and MnO references, respectively.

distribution as the KB support, which had undergone the same hydrothermal treatment and subsequent annealing in NH_3 gas. It indicates that MnCo_2O_3 did not significantly change the porosity of KB (Figure S6). The spinel precursor, MnCo_2O_4 , was found to have a similar BET surface area of 34.1 ± 0.3 m^2/g , indicating no significant changes in the surface area during NH_3 treatment (Figure S7).

The crystal structure of MnCo_2O_3 was then directly visualized using atomic-scale STEM imaging and EELS mapping. As shown in Figure 2a, MnCo_2O_3 exhibited atom columns with two perpendicular d-spacings of 4.3 and 3.0 Å on the [110] zone axis, which were consistent with the theoretical values of 4.26 and 3.01 Å, based on the crystal model of CoO (Figure 2f). The [110] zone axis is proportional to the lattice

plane indicated by the dashed rectangles in the unit cell of CoO (Figure 2e). The d-spacings of 3.01 Å can be obtained by dividing the lattice parameter, 4.26 Å by $\sqrt{2}$ due to a projection angle of 45°. The magnified image in Figure 2c showed the characteristic hexagonal symmetry on the [110] zone axis of CoO. The corresponding Fourier transform (FT) in Figure 2d displayed the hexagonal arrangements of diffraction spots with {111} d-spacings of 2.5 Å, which matched well the theoretical values of 2.46 Å in the crystal model in Figure 2f. Besides the imaging analysis on crystal structures, atomic-scale EELS mapping was employed to extract chemical composition using metal L_3 edges (Figure S8). An atomic-scale EELS map of Mn exhibited a clear

Figure 4. (a) ORR polarization profiles of MnCo₂O₄/C, MnCo₂O₃/C, and Pt/C in O₂-sat. 1 M KOH at 1600 rpm and 5 mV/s. Metal oxides and Pt mass loadings are 0.1 mg/cm² and 25 µg/cm², respectively. (b) CV profiles of MnCo₂O₄/C and MnCo₂O₃/C in Ar-sat. 1 M KOH at 10 mV/s.

layered structure, indicating the successful incorporation of Mn into the Co-based rock-salt-type structures at the atomic scale.

The chemical composition was investigated using electron energy-loss spectroscopy (EELS). Figure 3a–c presents the STEM image of one MnCo₂O₃ nanoparticle and the corresponding EELS elemental maps of Mn in red and Co in green. The composite map of Mn vs Co in Figure 3d suggests a Co-rich core with a thin Mn-rich shell of 1–3 nm, which was further evidenced by EELS maps of other MnCo₂O₃ NPs (Figure S9). The electron energy-loss near-edge structure (ELNES) analysis offers microstructural analysis with atomic-scale spatial resolution and high-energy resolution (0.5 eV) simultaneously. ELNES serves as a “fingerprint” to probe the local electronic structure, i.e., density of unfilled states (unfilled density of states (DOS)) above the Fermi level (E_F), which is particularly sensitive to the local atomic environment, such as valence state, chemical bonding, and coordination environment.³⁶ ELNES spectra of Co and Mn L edges were aligned against the zero loss peak (ZLP) and found to have high reproducibility among five different regions on the TEM grids (Figure S10a,b). Given the existence of a thin Mn shell in MnCo₂O₃/C, ELNES spectra of Co and Mn in core and shell sections were extracted separately from spectrum images to identify any inhomogeneities of electronic structures between the core and shell. As shown in Figure S10c,d, Co and Mn in core and shell sections shared nearly the same features in ELNES spectra, indicating a homogeneous local valence distribution despite the heterogeneous elemental distribution with a Mn-rich shell.

To further identify the valence state of active sites of the electrocatalysts, ELNES spectra of MnCo₂O₃/C were compared to Co and Mn reference oxides (Figure 3e,f). Co and Mn L₃ edges of MnCo₂O₃/C exhibited similar features to CoO and MnO references (green and red lines in Figure 3e,f) and were distinct from the ELNES spectra of Co₃O₄(II,III), Mn₃O₄(II,III), CoOOH(III), and Mn₂O₃(III). It has been suggested that Co and Mn in MnCo₂O₃/C share the same rock-salt-type structures as CoO(II) and MnO(II), respectively. Furthermore, Co L₃ edge showed a slightly negative shift, relative to CoO(II), while the Mn L₃ edge had a slightly positive shift, relative to MnO(II). This symmetrical spectra shift indicated a local charge transfer from Mn to Co and a possible synergistic effect between the two of them, serving as co-active sites, which is consistent with our observation on Co–Mn spinel oxides using *in situ* X-ray absorption spectroscopy (XAS).^{28,29} Besides the relative peak position, the intensity ratio of L₂/L₃ edges also reveals the covalency of

metal–oxygen bonds.³⁷ A higher L₂/L₃ ratio indicates a more covalent bond, as shown by the difference between CoO(II) and CoOOH(III) and between MnO(II) and Mn₂O₃(III) (Figure 3e,f). Co in MnCo₂O₃/C exhibited an even lower L₂/L₃ ratio than CoO(II), while Mn in MnCo₂O₃/C showed a much higher L₂/L₃ ratio than MnO (II), suggesting a less covalent (more ionic) Co–O bond and symmetrically a more covalent Mn–O, relative to CoO and MnO, respectively. Apart from the metal L edges, oxygen K-edge can also provide a complementary picture of the metal–oxygen binding environment. The first and second peaks in ELNES spectra of the O K-edge represent the O 2p character in metal partially filled 3d bands and empty 4s,p bands, respectively (Figure S11). The O K-edge of MnCo₂O₃/C resembled the features of CoO and MnO rather than other reference oxides with higher valence (Figure S11a,b). More specifically, the O K-edge of MnCo₂O₃/C is more similar to CoO than MnO since Co is the majority metal in MnCo₂O₃/C (Figure S11a).

After thorough structural investigation, the well-defined rock-salt-type MnCo₂O₃/C as well as the spinel-type MnCo₂O₄/C materials were employed as oxygen reduction electrocatalysts in alkaline fuel cells. ORR polarization profiles were acquired in O₂-saturated 1 M KOH at 1600 rpm and 5 mV/s using a rotating disk electrode (Pine Instruments). MnCo₂O₃/C with a loading of 0.1 mg/cm² exhibited a promising ORR activity with a half-wave potential ($E_{1/2}$) = 0.86 V vs a reversible hydrogen electrode, RHE). This is 20 mV higher than that of the spinel MnCo₂O₄/C ($E_{1/2}$ = 0.84 V), corresponding to about 2-fold enhancement in mass-specific activity (Figure 4a). The $E_{1/2}$ of MnCo₂O₃/C is only 30 mV away from the benchmark 20 wt % Pt/C ($E_{1/2}$ = 0.89 V), making MnCo₂O₃/C a promising nonprecious ORR electrocatalyst for alkaline fuel cells. It should be noted that the catalytic activities were preliminarily evaluated employing RDE measurements, while the more realistic MEA measurements are currently under investigation. MnCo₂O₃/C is able to reach the same diffusion-limited current density (-3.6 mA/cm²), I_d , as Pt/C, suggesting a 4e⁻ process of reducing O₂ completely to H₂O. It is important to note that, based on the Levich equation, the I_d of the 4e⁻ reduction of oxygen in 0.1 M oxygen-saturated KOH or HClO₄ should be -5.5 mA/cm² at 1600 rpm. Since the O₂ solubility (CO₂) in 1 M KOH at 25 °C and 1 atm is 8.42×10^{-4} mol/L, which is 70% of the CO₂ in 0.1 M KOH (1.21×10^{-3} mol/L),³⁸ the I_d of the 4e⁻ ORR in 1 M KOH will be correspondingly lower with a value of about -3.8 mA/cm² at 1600 rpm. Additionally, as shown in Figure S13, MnCo₂O₃/C and MnCo₂O₄/C have smaller Tafel slopes

of 45 and 50 mV/dec, respectively, relative to Pt/C (60 mV/dec), suggesting a smaller overpotential to achieve the same kinetic current change. To investigate the catalyst surface, cyclic voltammetric (CV) profiles of $\text{MnCo}_2\text{O}_3/\text{C}$ and $\text{MnCo}_2\text{O}_4/\text{C}$ were acquired, which showed that $\text{MnCo}_2\text{O}_3/\text{C}$ had a larger redox current than $\text{MnCo}_2\text{O}_4/\text{C}$, indicating the existence of more active sites in $\text{MnCo}_2\text{O}_3/\text{C}$ (Figure 4b). Both $\text{MnCo}_2\text{O}_4/\text{C}$ and $\text{MnCo}_2\text{O}_3/\text{C}$ shared a similar redox peak position, indicating a similar catalyst surface, which actually matched our previous observation that spine-type $\text{MnCo}_2\text{O}_4/\text{C}$ has a shell rich in CoO(II) and a core rich in Co_3O_4 (Figure S12). The small reduction peak at 1.1 V vs RHE was separated from the main peak by changing the lower scan limit of the CV profile (Figure S14). It was identified as monolayer species on the Mn-rich shell with a highly reversible redox process.

In an attempt to implement a Pt-free cathode for AEMFCs, nonprecious ORR electrocatalysts are required to not only satisfy the initial activity requirements but also survive long-term durability tests.² Catalyst durability was examined by following an accelerated aging protocol: continuous 10 000 CV cycles at 10 mV/s from 0.6 to 1.0 V vs RHE in O_2 -sat. 1 M KOH (Figure S15a). $\text{MnCo}_2\text{O}_3/\text{C}$ exhibited a mild decay in ORR activity after 10K cycles as the $E_{1/2}$ shifted from 0.86 to 0.84 V. The activity decay of $\text{MnCo}_2\text{O}_3/\text{C}$ is comparable to or slightly better than Pt/C ($\Delta E_{1/2} = 25$ mV after 10K cycles) under same test conditions (Figure S16). The activity decay of Pt/C was mainly ascribed to the loss of electrochemical surface area (ECSA), as shown in the CV profiles of Pt/C. Noticeably, the activity of $\text{MnCo}_2\text{O}_3/\text{C}$ after 10K cycles was still comparable to the initial activity of $\text{MnCo}_2\text{O}_4/\text{C}$. A noticeable loss in the I_d was found in both $\text{MnCo}_2\text{O}_3/\text{C}$ and $\text{MnCo}_2\text{O}_4/\text{C}$, suggesting a loss of surface area, possibly due to particle aggregation during cycles. Further strategies to enhance the catalyst–support interactions will be critical to mitigate the particle aggregation and extend the lifetime of nonprecious metal oxide electrocatalysts. TEM–EDX spectra were used to quantitatively investigate the changes in chemical composition after durability tests. Mn and Co $\text{K}\alpha$ edges were used to quantify the relative contents of Mn and Co (Figure S15b). They showed that the Mn content increased slightly from 33.1 ± 0.2 to 35.9 ± 0.4 atom % (Table S1).

CONCLUSIONS

In summary, a new rock-salt-type Mn–Co oxide $\text{MnCo}_2\text{O}_3/\text{C}$ was discovered by treating $\text{MnCo}_2\text{O}_4/\text{C}$ in a mild reducing agent, NH_3 . The microstructure and chemical environment were comprehensively investigated by atomic-scale STEM imaging, EDX, EELS, and ELNES spectroscopic analysis. The promising ORR activity of $\text{MnCo}_2\text{O}_3/\text{C}$ is likely due to rationally designed nanostructure with Mn and Co serving as synergistically active sites. This in-depth structural investigation will offer insightful strategies for material design and developments in the renewable energy community, in general, and in fuel cells, in particular.

EXPERIMENTAL SECTION

Material Synthesis. $\text{Mn}(\text{Ac})_2 \cdot 4\text{H}_2\text{O}$ and $\text{Co}(\text{Ac})_2 \cdot 4\text{H}_2\text{O}$ were dissolved in 15 mL of deionized (DI) water and sonicated for 15 min. Concentrated $\text{NH}_3 \cdot \text{H}_2\text{O}$ (500 μL) was diluted in 5 mL of DI water and added to the metal precursor solution dropwise under vigorous stirring at 1200 rpm. The pH of the formed metal– NH_3 complex solution was tested and controlled to be around 11. Ethanol (20 mL)

was later added to the metal– NH_3 complex solution with an EtOH/ H_2O volume ratio of 1:1. Ketjen Black (KB) with a BET surface area of 900 m^2/g was added to the resulting suspension/solution, which was kept stirring at 1200 rpm and 60 °C for 12 h. The solution was then transferred into a 50 mL autoclave for the hydrothermal reaction at 150 °C for 3 h. Co_3O_4 and MnCo_2O_4 supported on carbon (40 wt %) were separated from the residual solution using a centrifuge at 6000 rpm and washed with EtOH/ H_2O (vol 1:1) three times and oven-dried at 80 °C for 6 h. Rock-salt-type CoO/C and $\text{MnCo}_2\text{O}_3/\text{C}$ were formed by treating the as-synthesized $\text{Co}_3\text{O}_4/\text{C}$ and $\text{MnCo}_2\text{O}_4/\text{C}$ in NH_3 at 300 °C for 3 h with a temperature ramping rate of 5 °C/min. NH_3 treatment at higher temperatures would introduce metallic or metal nitride impurity phases, and H_2 treatment at 300 °C would lead to the formation of metallic Co. MnCo_2O_3 NPs with no carbon support were prepared from MnCo_2O_4 NPs with no carbon support, which was synthesized using the same hydrothermal procedures except without adding carbon during the synthesis.

Structural Characterization. The crystal structures of all of the synthesized electrocatalysts were examined by powder X-ray diffraction (XRD) using a Rigaku Ultima IV Diffractometer. Diffraction patterns were collected at a scan rate of 2 °/min at 0.02° steps from 20 to 80°. Specific surface area and pore size distributions were analyzed based on Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods from the N_2 adsorption–desorption isotherms acquired at –195 °C (liquid N_2) in a Micromeritics ASAP2020 instrument. XPS spectra were acquired using a Surface Science Instruments SSX-100 with an operating pressure of 2×10^{-9} Torr. Monochromatic Al $\text{K}\alpha$ X-rays (1486.6 eV) with 1 mm diameter beam size were used. Photoelectrons were collected at a 55° emission angle. A hemispherical analyzer determined electron kinetic energy using a pass energy of 150 V for wide/survey scans and 50 V for high-resolution scans. Scanning transmission electron microscopy (STEM) images and elemental electron energy-loss spectroscopy (EELS) maps were acquired on a fifth-order aberration-corrected STEM (Cornell Nion UltraSTEM) operated at 100 keV with a beam convergence semiangle of 30 mrad. TEM–EDX spectra were collected in a FEI Tecnai F-20 electron microscope equipped with an Oxford X-Max detector. Detailed S/TEM analysis can be found in the Supporting Information.

Electrochemical Characterization. Electrocatalysts (5.0 mg) were mixed with 1.0 mL of 0.05 wt % Nafion/ethanol solution and, subsequently, sonicated for approximately 30 min to form a homogeneous catalyst ink. The resulting catalyst ink (10 μL) was loaded onto a glassy carbon (GC) electrode ($D = 5.0$ mm, Pine Instruments) as the working electrode (WE), achieving a metal oxide loading of $0.1 \text{ mg}/\text{cm}^2$, followed by thermal evaporation of the solvent under infrared light. Similarly, 5 μL of a Pt/C catalyst ink was loaded onto a GC electrode to achieve a loading of $25 \text{ }\mu\text{g}/\text{cm}^2$, a common value for comparison in fuel cell tests. Ag/AgCl in the saturated KCl solution was served as the reference electrode (RE), and a large area graphite rod was used as the counter electrode (CE). More experimental details can be found in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.9b02801.

Electron microscopy characterization; electrochemical characterization; powder XRD patterns; crystal structures; EDX, EELS, XPS spectra; STEM images; pore size distribution (Figures S1–S16 and Table S1) (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: hda1@cornell.edu.

ORCID

Yao Yang: 0000-0003-0321-3792

Rui Zeng: 0000-0002-7577-767X

Héctor D. Abruña: 0000-0002-3948-356X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was primarily supported by the Center for Alkaline-Based Energy Solutions (CABES), part of the Energy Frontier Research Center (EFRC) program supported by the U.S. Department of Energy, under grant DE-SC-0019445. This work made use of TEM facilities at the Cornell Center for Materials Research (CCMR), which are supported through the National Science Foundation Materials Research Science and Engineering Center (NSF MRSEC) program (DMR-1719875). We are grateful to Malcolm (Mick) Thomas at CCMR for the help in Nion UltraSTEM. We appreciate the help in BET tests from Mary Zick in the Milner group at Cornell University.

REFERENCES

- (1) Debe, M. K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells. *Nature*. **2012**, *486*, 43–51.
- (2) Gasteiger, H. A.; Kocha, S. S.; Somali, B.; Wagner, F. T. Activity Benchmarks and Requirements for Pt, Pt-alloy, and non-Pt Oxygen Reduction Catalysts for PEMFCs. *Appl. Catal., B*. **2005**, *56*, 9–35.
- (3) Xiong, Y.; Yang, Y.; Jores, H.; Padgett, E.; Gupta, U.; Yarlagadda, V.; Agyeman-Budu, D. N.; Huang, X.; Moylan, T. E.; Zeng, R.; Kongkanand, A.; Escobedo, F. A.; Brock, J. D.; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Revealing the Atomic Ordering of Binary Intermetallics Using *in Situ* Heating Techniques at Multilength Scales. *Proc. Natl. Acad. Sci. U.S.A.* **2019**, *116*, 1974–1983.
- (4) Papageorgopoulos, D. *2017 Annual Merit Review and Peer Evaluation Meeting in Fuel Cells Program Area*, U.S. Department of Energy: Washington, DC, 2017.
- (5) Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. *Nat. Mater.* **2013**, *12*, 81–87.
- (6) Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Pt-Decorated Composition-Tunable Pd–Fe@Pd/C Core–Shell Nanoparticles with Enhanced Electrocatalytic Activity toward the Oxygen Reduction Reaction. *J. Am. Chem. Soc.* **2018**, *140*, 7248–7255.
- (7) Xiong, Y.; Xiao, L.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. High-Loading Intermetallic Pt₃Co/C Core–Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). *Chem. Mater.* **2018**, *30*, 1532–1539.
- (8) Wang, G.; Huang, B.; Xiao, L.; Ren, Z.; Chen, H.; Wang, D.; Abruña, H. D.; Lu, J.; Zhuang, L. Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. *J. Am. Chem. Soc.* **2014**, *136*, 9643–9649.
- (9) Lu, S.; Pan, J.; Huang, A.; Zhuang, L.; Lu, J. Alkaline Polymer Electrolyte Fuel Cells Completely Free from Noble Metal Catalysts. *Proc. Natl. Acad. Sci. U.S.A.* **2008**, *105*, 20611–20614.
- (10) Pan, J.; Chen, C.; Zhuang, L.; Lu, J. Designing Advanced Alkaline Polymer Electrolytes for Fuel Cell Applications. *Acc. Chem. Res.* **2012**, *45*, 473–481.
- (11) Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct Atomic-Level Insight into the Active Sites of a High-Performance PGM-Free ORR Catalyst. *Science* **2017**, *357*, 479–484.
- (12) Ren, H.; Wang, Y.; Yang, Y.; Tang, X.; Peng, Y.; Peng, H.; Xiao, L.; Lu, J.; Abruña, H. D.; Zhuang, L. Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. *ACS Catal.* **2017**, *7*, 6485–6492.
- (13) Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J.; Shao-Horn, Y. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal–Air Batteries. *Nat. Chem.* **2011**, *3*, 647.
- (14) Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Metal-Organic-Framework-Derived Co-Fe Bimetallic Oxygen Reduction Electrocatalyst for Alkaline Fuel Cells. *J. Am. Chem. Soc.* **2019**, *141*, 10744–10750.
- (15) Huang, K.; Liu, J.; Wang, L.; Chang, G.; Wang, R.; Lei, M.; Wang, Y.; He, Y. Mixed Valence CoCuMnO_x Spinel Nanoparticles by Sacrificial Template Method with Enhanced ORR Performance. *Appl. Surf. Sci.* **2019**, *487*, 1145–1151.
- (16) He, X.; Luan, S. Z.; Wang, L.; Wang, R. Y.; Du, P.; Xu, Y. Y.; Yang, H. J.; Wang, Y. G.; Huang, K.; Lei, M. Facile Loading Mesoporous Co₃O₄ on Nitrogen Doped Carbon Matrix as an Enhanced Oxygen Electrode Catalyst. *Mater. Lett.* **2019**, *244*, 78–82.
- (17) Negro, E.; Nale, A.; Vezzu, K.; Pagot, G.; Herve Bang, Y.; Polizzi, S.; Colombo, M.; Prato, M.; Crociani, L.; Bonaccorso, F.; Noto, V. D. (Co,Ni)Sn_{0.5} Nanoparticles Supported on Hierarchical Carbon Nitride-Graphene-Based Electrocatalysts for the Oxygen Reduction Reaction. *ChemElectroChem* **2018**, *5*, 2029–2040.
- (18) Negro, E.; Bach Delpeluch, A.; Vezzu, K.; Nawn, G.; Bertasi, F.; Ansaldi, A.; Pellegrini, V.; Dembinska, B.; Zoladek, S.; Miecznikowski, K.; Rutkowska, I. A.; Skunik-Nuckowska, M.; Kulesza, P. J.; Bonaccorso, F.; Noto, V. D. Toward Pt-Free Anion-Exchange Membrane Fuel Cells: Fe-Sn Carbon Nitride-Graphene Core-Shell Electrocatalysts for the Oxygen Reduction Reaction. *Chem. Mater.* **2018**, *30*, 2651–2659.
- (19) Wang, Y.; Yang, Y.; Jia, S.; Wang, X.; Lyu, K.; Peng, Y.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L.; Wang, J.; Muller, D. A.; Abruña, H. D.; Hwang, B. J.; Lu, J.; Zhuang, L. Synergistic Mn-Co Catalyst Outperforms Pt on High-Rate Oxygen Reduction Reaction for Alkaline Polymer Electrolyte Fuel Cells. *Nat. Commun.* **2019**, *10*, No. 1506.
- (20) Yang, Y.; Peng, H.; Xiong, Y.; Li, Q.; Lu, J.; Xiao, L.; DiSalvo, F.; Zhuang, L.; Abruña, H. High-Loading Composition-Tolerant Co-Mn Spinel Oxides with Performance beyond 1 W/cm² in Alkaline Polymer Electrolyte Fuel Cells. *ACS Energy Lett.* **2019**, *4*, 1251–1257.
- (21) Peng, X.; Omasta, T. J.; Magliocca, E.; Wang, L.; Varcoe, J. R.; Mustain, W. E. N-doped Carbon CoO_x Nanohybrids: The First Precious Metal Free Cathode to Achieve 1.0 W/cm² Peak Power and 100 h Life in Anion-Exchange Membrane Fuel Cells. *Angew. Chem., Int. Ed.* **2019**, *58*, 1046–1051.
- (22) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co₃O₄ Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. *Nat. Mater.* **2011**, *10*, 780–786.
- (23) Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.; Suib, S. Structure–Property Relationship of Bifunctional MnO₂ Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media. *J. Am. Chem. Soc.* **2014**, *136*, 11452–11464.
- (24) Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. *J. Am. Chem. Soc.* **2012**, *134*, 3517–3523.
- (25) Li, C.; Han, X.; Cheng, F.; Hu, Y.; Chen, C.; Chen, J. Phase and Composition Controllable Synthesis of Cobalt Manganese Spinel Nanoparticles towards Efficient Oxygen Electrocatalysis. *Nat. Commun.* **2015**, *6*, No. 7345.
- (26) Wei, C.; Feng, Z.; Scherer, G.; Barber, J.; Shao-Horn, Y.; Xu, Z. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. *Adv. Mater.* **2017**, *29*, No. 1606800.
- (27) Indra, A.; Menezes, P.; Sahraie, N.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. *J. Am. Chem. Soc.* **2014**, *136*, 17530–17536.

(28) Yang, Y.; Wang, Y.; Xiong, Y.; Huang, X.; Shen, L.; Huang, R.; Wang, H.; Pastore, J. P.; Yu, S.-H.; Xiao, L.; Brock, J. D.; Zhuang, L.; Abruna, H. D. In Situ X-ray Absorption Spectroscopy of a Synergistic Co–Mn Oxide Catalyst for the Oxygen Reduction Reaction. *J. Am. Chem. Soc.* **2019**, *141*, 1463–1466.

(29) Xiong, Y.; Yang, Y.; Feng, X.; DiSalvo, F. J.; Abruna, H. D. A Strategy for Increasing the Efficiency of the Oxygen Reduction Reaction in Mn-Doped Cobalt Ferrites. *J. Am. Chem. Soc.* **2019**, *141*, 4412–4421.

(30) Liu, J.; Jiang, L.; Zhang, B.; Jin, J.; Su, D. S.; Wang, S.; Sun, G. Controllable Synthesis of Cobalt Monoxide Nanoparticles and the Size-Dependent Activity for Oxygen Reduction Reaction. *ACS Catal.* **2014**, *4*, 2998–3001.

(31) Guo, S.; Zheng, S.; Wu, L.; Sun, S. Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen. *Angew. Chem., Int. Ed.* **2012**, *51*, 11770–11773.

(32) Shanmugam, S.; Gedanken, A. MnO Octahedral Nanocrystals and MnO@C Core-Shell Composites: Synthesis, Characterization, and Electrocatalytic Properties. *J. Phys. Chem. B* **2006**, *110*, 24486–24491.

(33) Chen, R.; Yan, J.; Liu, Y.; Li, J. Three-Dimensional Nitrogen-Doped Graphene/MnO Nanoparticle Hybrids as a High-Performance Catalyst for Oxygen Reduction Reaction. *J. Phys. Chem. C* **2015**, *119*, 8032–8037.

(34) Seetharaman, S.; Abraham, K. P. Activity Measurements in CoO-MnO Solid Solutions. *Scr. Metall.* **1969**, *3*, 911–916.

(35) Cliff, G.; Lorimer, G. W. The Quantitative Analysis of Thin Specimens. *J. Microsc.* **1975**, *103*, 203–207.

(36) Williams, D. B.; Carter, C. B. *Transmission Electron Microscopy: A Textbook for Materials Science*, 2nd ed.; Springer: New York, 2009; p 741.

(37) Garvie, L. A. J.; Craven, A. J. High-resolution Parallel Electron Energy-loss Spectroscopy of Mn L_{2,3}-Edges in Inorganic Manganese Compounds. *Phys. Chem. Miner.* **1994**, *21*, 191–206.

(38) Davis, R. E.; Horvath, G. L.; Tobias, C. W. The Solubility and Diffusion Coefficient of Oxygen in Potassium Hydroxide Solutions. *Electrochim. Acta* **1967**, *12*, 287–297.