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ABSTRACT

The sluggish methanol oxidation reaction (MOR) remains the biggest challenge for direct methanol fuel
cells. To advance our understanding of the MOR mechanism, we have employed dual thin-layer
differential electrochemical mass spectrometry (DEMS) to study reaction intermediates on a family of Pt-
Fe-Cu ternary ordered intermetallics. We found that PtFeo.7Cuo.3/C exhibited the highest CO2 production
efficiency, while PtFeo.sCuo.s/C generated the largest proportion of methyl formate or formic acid. The
different selectivity is partially ascribed to the difference in lattice compressive strain due to the
incorporation of Fe and Cu atoms. We propose a dual-pathway mechanism in which the increase in lattice
contraction can stabilize the intermediates forming methyl formate or formic acid, while a moderate lattice
strain leads to the highest CO> generation via COa.q intermediates. Our work on ternary catalysts may
provide valuable insights for designing electrocatalysts for the MOR.
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Introduction:

Direct Methanol Fuel Cells (DMFCs) have received a great deal of attention due to their high energy
conversion efficiency and portability.'> However, the methanol oxidation reaction (MOR) in DMFCs is
challenging since intermediate species such as COag can poison the reaction active sites, hindering further
conversion to CO».2 Platinum has been shown to be the most active monometallic catalyst for the MOR,
but a high Pt loading is still required at high overpotentials to oxidatively remove COaq species. By
alloying Pt with other non-precious metals, it is possible to lower the loading of Pt and mitigate the
overpotential by introducing a bifunctional mechanism,’® electronic effects,* or third-body effects.> Pt-
Ru alloys’ are regarded as model catalysts for the MOR since the onset potential can be 200-300 mV
lower than Pt.® However, the Pt-Ru alloys still suffer from significant overpotentials and poor durability.®*
Ordered intermetallic catalysts have higher leaching resistance in acidic conditions due to their higher
formation energy relative to the disordered counterparts.'® As a result, Pt-based ordered intermetallics
have been intensively investigated as promising catalysts in electrocatalysis.!! Previously, Pt-Pb,'? Pt-
Zn,'%B Pt-Ti and Pt-V!* intermetallic nanocatalysts have been reported to exhibit superior MOR
performance relative to Pt. Recently, we have reported a systematic study on a family of Pt-Fe-Cu
electrocatalysts, with ordered intermetallic structures and a 2-3 atomic layer Pt-skin. They showed
significantly enhanced activity and durability for the MOR, when compared to the disordered counterparts
and Pt/C."

Differential electrochemical mass spectrometry (DEMS) is a powerful tool for detecting gaseous or
volatile species. Depending on the type of the electrochemical cell, DEMS has several basic designs:
conventional cell, thin-layer cell, dual thin-layer flow cell and capillary inlet.'®!” Among them, the dual
thin-layer flow cell has received extensive attention for its capability of being coupled to other analytical
tools, such as attenuated total reflection-infrared spectroscopy (ATR-FTIRS)!®!° and electrochemical
quartz crystal microbalance (EQCM).2?° Compared to conventional electrochemical methodologies, which
use only overall current density as a metric to evaluate the MOR performance, DEMS offers not only

detection of specific species, but also quantitative descriptors for evaluating catalyst activity and
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especially selectivity. Herein, we report on an in-depth DEMS-study of the MOR mechanism on Pt-Fe-

Cu ternary catalysts.

RESULTS AND DISCUSSION

Pt-Fe-Cu ternary ordered intermetallics were prepared by an impregnation method under a flowing
H> gas atmosphere. X-ray diffraction (XRD) (Figure 1A) and high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) (Figures 1B-C) were employed to characterize the
structure and morphology of the Pt-Fe-Cu electrocatalysts. Compared to Pt/C (Figure S1), the XRD
patterns of Pt-Fe-Cu catalysts exhibited the features of a tetragonal PtFe ordered intermetallic, similar to
the standard XRD pattern of PtFe (PDF #01-089-2051). PtFe(.sCuo.s/C showed a positive shift in the (001)
planes when compared to PtFe/C (Figure 1A), indicating that the partial replacement of Fe by Cu causes
a lattice contraction in ¢ due to the smaller size of Cu relative to Fe. An expansion in the a direction, as
observed from the (100) plane (Table S1) is likely an adjustment to the change of the unit cell in the ¢
direction.!® Atomic-scale STEM images of PtFeosCuos exhibited a 3.7 A lattice d-spacing, which was
assigned to the (001) facet, based on PDF #01-089-2051 (Figures 1B-C). The brighter atom columns are
Pt atoms while the dimmer atoms are M (Fe or Cu) since the HAADF-STEM image intensity is
proportional to atomic number ( «Z!7). Atomic-scale STEM images of PtFeq sCuo s along the [010] zone
axis exhibited a 2-3 atomic-layer of pure Pt shell on the surface (Figure S2). The above image analysis
convincingly suggests that the as-prepared catalysts are an ordered intermetallic phase, consistent with
the XRD results.

As shown in Figure 2A, the DEMS setup is composed of three components: electrochemical cell,
porous Teflon membrane and vacuum chamber, which is connected to the mass spectrometer. Generally,
under an applied potential, gaseous or volatile species, generated at the surface of the working electrode,
are carried away by the incoming electrolyte flux from the inlet and diffuse through the gas-permeable

porous membrane. The rest of the solution is pumped out to the outlet using a syringe pump.
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The top panel in Figure 2B presents the cyclic voltammetric (CV) profile at 10 mV/s of Pt/C in a
0.2M methanol solution in Ar saturated 0.2M HC1O4 while the middle and bottom panels present the mass
spectrometric (MS) signals of CO; (m/z=44) and methyl formate (m/z=60), respectively, as a function of
applied potential. Although they can be main byproducts, the MS signals for formic acid (m/z=46) and
formaldehyde (m/z=30) are not presented since they overlap with the MS signals from CO; and methanol,
respectively 21?2, Therefore, we use the m/z=60 signal (methyl formate) as proxy for the generation of
formic acid?**%. The m/z=44 ion current closely follows the faradaic current profile while the m/z=60 ion
current has a clear delay in the reverse scan (bottom panel in Figure 2B), which is likely due to the slow
kinetics of methyl formate formation.’>** (Time delays (2~3 s at a flow rate of 10 uL/s) between the
generation and detection of specific species can be seen in Figure S3.) The m/z=44 ion current was
calibrated via formic acid oxidation at 0.70 V vs. RHE (Figure 2C) while the calibration of m/z=60 was
performed based on m/z=44 and m/z=60 (see DEMS calibration section in Supporting Information for
details). It is interesting to note that the signal delay between m/z=60 and m/z=44 was about 0.5 s (Figure
2D), possibly due to the difference in partition coefficients between methyl formate and CO; in the Teflon
membrane.

After calibration of the DEMS setup, CO stripping cyclic voltammograms were performed to
characterize the CO tolerance of the catalysts (Figures 3A-B). In the first half cycle, the hydrogen
desorption region is significantly suppressed due to the saturation coverage of CO on the catalyst surface.
The broad current peaks, corresponding to CO oxidation, are generally found between 0.7 and 0.9 V.
PtFe/C, PtFeosCuos/C and PtFeo7Cuo3/C all have negatively shifted peak positions, relative to Pt/C,
indicating a higher tolerance against CO-poisoning (weaker CO binding), which is consistent with our
previous work.!> Based on the CO; partial current density (derived from the MS signal at m/z=44) in
Figure 3B, PtFe and Pt-Fe-Cu catalysts have significantly lower onset potentials, relative to Pt/C, likely
due to a weaker CO adsorption, again, consistent with the above.?® Interestingly, the overall current
density in Figure 3A is larger than the CO; partial current density. Charge integration of the peak current

density reveals that the CO; current density represents about 75% of the total current density, indicating

ACS Paragon PﬁJS Environment



Page 5 of 19 ACS Catalysis

oNOYTULT D WN =

a 25% contribution from non-faradaic processes, most likely due to anion re-adsorption during CO
stripping.'® These results highlight the unique capabilities of DEMS in establishing the faradaic processes,
when compared to the limited information derived from the overall current in CV profiles.

The MOR was further studied under potentiodynamic cyclic voltammetry. The CO> current densities
presented in Figure 4A, follow the same trend as the total current density in Figure S4. In the CV profile,
the first peak, corresponding to the anodic oxidation of methanol, appears at around 0.9 V in the positive
scan while in the reverse (cathodic) scan a peak can be found at around 0.7 V. Interestingly, all of the
catalysts, except Pt/C, exhibited a decreased peak intensity in the negative scan direction, when compared
to the positive scan direction. This discrepancy is likely due to different reactivation efficiencies of the
catalysts.?® When comparing CO> conversion efficiencies, all the catalysts exhibited an overall value of
around 70% (Figure 4B). Among the catalysts, even though PtFe/C presented the highest overall current
density for MOR, PtFe(.7Cuo3/C exhibited a slightly higher overall yield for CO; (71.4 + 4.2%), relative
to other compositions. Notably, regardless of the compositions of the catalysts, the conversion efficiency
of COz in the negative scan was consistently larger than that in the positive scan (Figure 4B). This
behavior can be explained by the chemical reaction between Pt-oxide species and methanol in the negative
scan, which generates CO» without producing a faradaic current response.’? Again, this illustrates the
value of DEMS in such mechanistic studies. The methyl formate ion current (Figure 4C) is about two
orders of magnitude lower than CO», mainly due to its slow reaction rate.** Similar to the behavior of CO»,
methyl formate presents peaks at around 0.9 V and 0.7 V in the positive and negative scans, respectively,
with the first peak being significantly larger than the second, except for Pt/C. As shown in Figure 4D,
PtFeo.sCuo.s/C has the highest methyl formate conversion efficiency (2.1 + 0.1%), relative to other
compositions. It is possible to calculate the generation rate of formic acid from methyl formate assuming
that an equilibrium exists between methyl formate and formic acid.**’ However, a quantitative
measurement of formic acid formation rate is challenging with DEMS.?® Nevertheless, a qualitative
assessment is still valuable as a higher yield of methyl formate indicates a larger amount of formic acid

formed.
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To further investigate the reaction mechanism, chronoamperometric (CA) curves were performed to
evaluate the catalyst’s CO tolerance and stability. The generation of CO, and methyl formate at 0.80 V
exhibited a noticeable decay (Figures SA-B), which is unlikely due to CO-poisoning effects since COaq 1s
believed to be completely oxidized at such high overpotentials (Figure 3). A similar behavior has been
reported for single-crystalline?® and polycrystalline Pt electrodes.>® The decrease was attributed to the
gradual deactivation of the platinum surface by water and/or anion adsorption.?’ The periodic fluctuations
present in the profiles are mainly due to the use of peristaltic syringe pump, which causes a discontinuous
motion of the solution. Subtracting the contribution of the CO; current from the total current density yields
a combination of formic acid and formaldehyde (Figure 5C), since CO,, formic acid and formaldehyde
are the main products. The rapid initial decay of the current is likely due to the pseudocapacitive double
layer discharging and smearing effect from the electrolyte’s mass transport.? In contrast to the gradual
decay in CO2 or methyl formate (Figures 5A-B), the combined current of formic acid and formaldehyde
remains virtually constant over the entire time period, indicating that CO, generation dominates the
current decay in the chronoamperometric profiles. The current efficiencies of CO; and methyl formate
were calculated by choosing signals at 120 s, as shown in Figure 5D. Consistent with the results of the
potentiodynamic study, PtFeo;Cuo3/C exhibited a slightly higher conversion efficiency for CO;
production (74.2 = 3.2%) while PtFe sCuo.5/C exhibited the highest yield for methyl formate (2.4 + 0.1%)
or formic acid. Overall, the potentiodynamic and potentiostatic studies were well consistent with each
other.

Based on previous work>!222%33 and as well as on our experiment results, we propose a possible
reaction mechanism as shown in Scheme 1. The first step involves breaking of a C-H bond, producing
H>COH.g, some of which can be converted to formaldehyde. The adsorbed HCOH can be further
dehydrogenated to HC=0.4, which plays an important role in determining whether the reaction goes
through the indirect or direct pathway. At low potentials (< 0.7 V), when adsorbed CO species are very
stable, the reaction is dominated by the direct pathway** producing HCOOH or HCOOCHj at the surface

of the electrode.
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The generation of HCOOCH3 may be induced by an esterification reaction with CH3OH catalyzed by Pt
on the surface of the electrode’’ However, based on the rather long time constant (1x10° s) of
esterification between HCOOH and CH30OH on polycrystalline Pt electrode, Baltruschat et al. proposed
that methyl formate should be formed at the electrode/electrolyte interface by nucleophilic attack of
CH;0" species on HC=0,4.® However, it remains challenging to translate such a finding, on a smooth
polycrystalline electrode, into nano-sized catalysts, since the electric field, local pH, methanol
concentration and mass transport conditions on different nanocatalyst facets can be (and likely are)
significantly different. Therefore, it is possible that esterification still has some contribution to the
formation of methyl formate on nano-sized catalysts. Therefore, we have included both mechanisms in
our Scheme 1. The coexistence of two methyl formate formation mechanisms does not compromise our
analysis on formic acid, since in the nucleophilic attack case, the ratio of formic acid to methyl formate
should be determined by their ratio of nucleophilic power, which should be a constant independent of
potential.”® The generated species on the surface of the electrode, HoCOsyrt, HCOOHsurs and HCOOCH 3urf,
can diffuse away from the electrode.

When the applied potential is high enough to oxidatively remove adsorbed CO, the reaction occurs
through both direct and indirect pathways. The HCOOHsut can be converted to CO2 via COaq or directly,
as indicated by previous work.®*> However, whether the reaction goes through the direct or indirect
pathway depends on the nature of the electrode surface. If the surface of the electrode can stabilize the
transition states during the conversion from HC=0a.q to HCOOHgsut or HCOOCH3sut, then the direct
pathway will be favored. In Figure 5D, it is interesting to note that the conversion efficiency of methyl
formate increases monotonically with an increase in the lattice contraction. This is probably due to the
strained Pt lattice which serves as a stabilizer toward the transition-state intermediates (HC(OH)2aq or
HCOHOCH3.4), explaining why PtFeosCuo.s/C exhibits the highest activity to produce formic acid or
methyl formate. The change in the efficiency of CO2 production appears to be nonmonotonic. A moderate
increase in the lattice contraction is believed to weaken the CO binding energy, which can facilitate CO

oxidation to CO,.* However, if the lattice contraction is too strong, to such an extent that CO cannot
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easily adsorb to the surface, the generation of CO» via CO therefore will be hindered, yielding a lower
efficiency. This explanation reveals why a further lattice contraction from PtFeo 7Cuo.3/C to PtFeo.5sCuo.s/C
leads to a slight decrease in the CO» production efficiency. These observations and interpretations offer a
reasonable answer to the behaviors of those catalysts although they still need to be corroborated by

theoretical calculations which is part of our future work.

CONCLUSIONS

In conclusion, we have studied the MOR on Pt-Fe-Cu ternary alloy catalysts using DEMS. Our results
indicate that PtFeo.7Cuo3/C possesses the highest conversion efficiency of CO2 while PtFeo.sCuo.s/C
exhibits the maximum yield of methyl formate or formic acid. Based on our proposed mechanism, the
increased production of methyl formate or formic acid is due to the stabilizing effect of the lattice strain
on transition-state intermediates, while the nonmonotonic dependence of CO:> efficiency on lattice strain
indicates that the CO binding energy should be at a moderate level. This work provides possible structure-
activity correlations for the MOR electrocatalysts and may help understand and unravel the complex MOR

reaction mechanism.
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Figure 1. (A) XRD patterns for PtFe/C, PtFeo.7Cuo3/C and PtFeosCuo.s/C. The magenta vertical lines

indicate the peak positions of standard XRD patterns of ordered PtFe. (B-C) Atomic-scale STEM images

of PtFeo sCuo.5/C. Red and yellow arrows indicate the direction of Pt and M (Fe, Cu) atoms, respectively.
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