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Abstract
This paper describes the work done by sixth grade students to achieve and sustain productive and personally meaningful lines of
inquiry with computational models. The capacity to frame interactions with tools as dialogic exchanges with co-participants is a
productive practice for disciplinary engagement in science and for computational thinking (Chandrasekharan and Nersessian
2015; Dennet 1989; Latour 1993; Pickering 1995). We propose that computational models have unique affordances for dialogic
interaction because they are probabilistic and iteratively executable, features that provide an entry point for students to adopt
stances that treat computational models as participants. Our analysis reveals that existing patterns in students’ social interactions
are resources for interacting flexibly with computational tools as participants. In particular, we found that students treated
computational models as participants in three ways: (1) as conversational peers, (2) as co-constructors of lines of inquiry, and
(3) as projections of students’ agency and identity. Our data also demonstrate that students take on flexible, rather than fixed,
stances toward computational participants. These stances parallel scientists’ interactions with non-human entities, which often
involve treating tools as agentive participants in inquiry (Latour 1999; Pickering 1995), affording students a pathway to practices
at the intersection of disciplinary engagement and computational thinking.

Keywords Computational participation . Computational thinking . Agent-based modeling . Science education . Science as
practice

Studies of professional science suggest that participation
frameworks (Goodwin 2007) should extend to encompass
the actions of human and non-human entities (Dennett 1989;
Latour 1999). Flexible and dialogic interaction with non-
human objects and systems is an important practice in science
(Latour 1993; Pickering 1995), particularly when utilizing
computational tools (Chandrasekharan and Nersessian
2015). Projecting agency and intentionality onto tools such

as computational models brings into focus their patterns of
behavior and inconsistences, provoking related explanations
(Dennett 1989). Therefore, flexibly treating tools as partici-
pants in interaction can be productive for disciplinary engage-
ment in science and computational thinking.

In this paper, we propose that computational models have
unique affordances for dialogic interaction because they are
probabilistic and iteratively executable. Our data suggest that
these affordances provide an entry point for students to adopt
flexible stances that treat computational models as partici-
pants. These relationships with computational models parallel
scientists’ relationships to objects and systems, affording stu-
dents a pathway to practices at the intersection of disciplinary
engagement and computational thinking. In our analysis, we
illustrate how dialogue-inviting affordances of computational
models might be leveraged by middle school students, and we
identify social resources that support students’ engagement
with their models as participants in interaction.

More specifically, this paper describes the work done by
students to achieve and sustain productive and personally
meaningful lines of inquiry with computational models.
Using data from a sixth grade STEM classroom engaging in
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computational modeling as part of an NGSS-aligned ecology
unit, we analyze different ways that students manage and le-
verage social interactions with computational models and their
human peers. Our analysis reveals that existing patterns in
students’ social interactions are resources for interacting flex-
ibly with computational tools as participants. Although com-
putational models are not artificially intelligent or literally
sapient peers, integrating computational modeling
reconfigured the social environment because students treated
their models as co-participants in inquiry. To analyze the so-
cial dynamics that emerged in this classroom, we compare the
ways that three students interacted with their computational
models and the social world around them. We find that stu-
dents treated computational models as participants in interac-
tion, moving flexibly between several stances toward their
computational models as (1) conversational peers, (2) co-
constructors of lines of inquiry, and (3) projections of stu-
dents’ agency and identity. These stances parallel scientists’
interactions with non-human entities, which often involve
treating tools as agentive participants in inquiry (Latour
1999; Pickering 1995), affording students a pathway to prac-
tices at the intersection of disciplinary engagement and com-
putational thinking.

Non-human Participants in Science

Accounts of professional science practice typically focus on
the agency of scientists or the scientific community. However,
it can be productive, particularly in science, to treat non-
human entities, including tools and nature, as participants in
inquiry (Dennett 1989; Latour 1993, 1999; Pickering 1995).
Broadly, Latour (2005) explains that non-human objects do
not act in the same meaningful intentional way that humans
do; yet, they are treated as participants in action. For example,
he argues that it is a fundamentally different activity to hit a
nail with and without a hammer, or keep track of inventory
with or without a list. While non-human participants do not
determine the action, these objects might Bauthorize, allow,
afford, encourage, permit, suggest, influence, block, render
possible, forbid and so on^ (2005 p. 72). Similarly, Dennett
(1989) argues attributing intentionality to non-human entities
is pervasive and productive. He argues for treating Bany object
or system whose behavior you want to predict as a rational
agent with beliefs and desires^ (p. 15). He illustrates this in-
tentional stance by recalling an electrician’s explanation of
how to protect a water pump from lightning damage:
Blightning, he said, always wants to find the best way to the
ground, but sometimes it gets tricked into taking second-best
paths. You can protect the pump by making another, better
path more obvious to the lightning^ (p. 22). Dennet explains
that attributing intentionally to objects and systems supports
reasoning about the behavior of objects and systems by

bringing into focus patterns of behavior as well as deviations
from those patterns. Attributing beliefs and desires to objects
can be particularly productive in science, because this lens
focuses explanations on the internal states and process that
regulate the behavior of an object or system.

In professional science, Latour demonstrates that non-
human entities are often treated as participants in interaction.
Latour (1993, 1999) traces Pasteur’s many ontological stances
toward an entity that he would ultimately call lactic acid fer-
mentation yeast, demonstrating that Pasteur relied on the co-
operation of the yeast as a participant in action to understand
how to reliably produce fermentation. Similarly, Pickering
describes the Bdance of agency,^ between scientists and the
material world. To exemplify this dance, Pickering (1995)
describes Glaser’s bubble chamber, a tool for experimental
elementary-particle physics. Pickering characterizes Glaser’s
work on the bubble chamber in terms of bursts of activity and
periods of passivity, in which Glaser steps back to attend to
how nature acts on the machine that he has built. During these
periods of material agency, the bubble chamber often per-
forms in unexpected ways. Reconciling these empirical find-
ings with his original ideas shapes Glaser’s conjectures and
the direction of his research.

These patterns of interaction extend to computational tools
in domains that integrate science, engineering, and technolo-
gy. Studies of emerging fields, such as computational physics
(Fox Keller 2003) and bioengineering (Chandrasekharan and
Nersessian 2015, 2017), find that scientists treat computation-
al tools as participants in a shared inquiry, even though com-
putational tools do not literally exhibit independent agency.
Fox Keller (2003) describes how computational tools are
treated as participants in physical science, where computation-
al tools are used to bridge theoretical and empirical methods to
explore complex systems for which the underlying dynamics
of interaction are relatively unknown. Scientists co-construct
theories about these dynamics with their models as they run
and refine their models. Similarly, Chandraskeharan and
Nersessian (2015, 2017) find that bioengineers treat models
as participants within distributed cognitive-cultural systems.
They explain that computational models take on the role of an
external imagination system, producing a close coupling be-
tween the scientist’s imagination and variations made possible
by the computational model. This partnership is more com-
plex than one in which scientists express or externalize their
ideas in computational models, because the models support
the generation of novel and fine-grained scenarios that would
have been impossible to realize in a scientist’s mind due to
their nuance and complexity. These partnership practices re-
semble disciplinary engagement in computational sciences,
which similarly involves partnering with computational tools
in inquiry (Epstein and Axtell 1996; Railsback et al. 2006).

From these studies of professional science, we argue that
partnering with computational models is an important skill for
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engagement in disciplinary science practices and a significant
manifestation of computational thinking. Although computa-
tional models do not literally exhibit agency, it is nonetheless
important to help students develop flexible strategies of en-
gagement with computation models, including treating com-
putational models as participants in inquiry, given the preva-
lence of these practices in STEM fields. To prepare K-12
students for the future of work at the human-technology fron-
tier (NSF 2019), it is important to understand how students
partner with computational tools in disciplinary settings.
Understanding how students construct and navigate human-
computational partnerships will inform the design of learning
environments that prepare students for success in a landscape
with rapid social and technological change.

Computational Models as Participants

Awealth of research demonstrates that computational model-
ing promotes engagement and conceptual growth in K-12 sci-
ence. Computational modeling allows students to make repre-
sentations of key scientific phenomena visible, executable,
and interactive, while developing mathematical and domain-
specific reasoning skills and supporting deep conceptual un-
derstandings of science content (Sengupta et al. 2013; diSessa
et al. 1991; Sengupta and Wilensky 2009; Weintrop et al.
2016; Wilensky and Resnick 1999; Wilkerson-Jerde et al.
2015). Engaging in computational modeling can allow stu-
dents to build deeper understandings of the causal mecha-
nisms underlying phenomena and develop key aspects of
computational thinking (Sengupta et al. 2013; Dickes and
Sengupta 2013; Papert 1980; Wilensky and Reisman 2006).
Computational modeling also provides powerful opportuni-
ties for students to participate in computational practices and
engage in computational thinking by offering learners new
representational infrastructures and new ways of making
sense of phenomena and problems (Sengupta et al. 2013;
Lee et al. 2011; Weintrop et al. 2016).

But computational modeling can be challenging, for both
syntactic and conceptual reasons. Learning environments that
combine visual programming with agent-based modeling
(ABM) approaches address both of these barriers (Horn
et al. 2014, Sengupta et al. 2015; Guo et al. 2016). On the
syntactic side, visual programming environments, where pro-
gramming is conducted using Bblocks^ rather than text-based
commands (e.g., Scratch, StarLogo Nova), can lower the
threshold for engaging in computational modeling. On the
conceptual side, ABM approaches can make modeling com-
plex systems accessible to young learners (Brady et al. 2015;
Klopfer 2003; Resnick 1994; Wilensky and Reisman 2006)
due to the representational correspondence between computa-
tional entities (Bagents^) and conceptual entities (e.g., parti-
cles in a gas model or fish in a pond ecosystemmodel). ABMs

enable a modeler to Bgrow^ a complex system (Epstein and
Axtell 1996) from the interactions between simple constituent
components. Modelers do this by identifying agents, giving
them computational rules of behavior and interaction, and
Brunning^ the system. This enables the computational repre-
sentation to simulate emergent whole-system behaviors so
that the modeler-plus-computer can reason about the agent-
level and aggregate-levels of the system.

In this study, we used an ABM environment, StarLogo
Nova (SLN), to help students explore population dynamics
within an ecosystem. SLN combines a block-based program-
ming environment with a powerful agent-based simulation en-
gine and 3D renderer optimized for modeling complex sys-
tems. It also includes the ability to use tables and graphs to
gather and visualize data. Although existing research considers
the affordances of SLN for learning about complex systems
(Yoon et al. 2016, 2017), no prior studies have explored the
unique ways that students simultaneously balance and negoti-
ate interactions with SLN computational models as partici-
pants, an important link between disciplinary science practices
and computational thinking practices. It is important to note
that SLN models do not attempt to simulate human interaction,
like some computational modeling tools (e.g., Betty’s Brain,
Leelawong and Biswas 2008) and to recognize that SLN com-
putational models do not exhibit independent agency in a literal
sense. Instead, we focus on the relationship between the stu-
dents and the computational models that they treat as partici-
pants. This type of relationship more closely mirrors profes-
sional science and computational thinking; in professional sci-
ence, computational tools do not mimic human behavior, yet
scientists strategically treat them as participants in inquiry.

In this paper, we describe the work done by sixth grade
students to adopt productive stances toward computational
models, including stances that treat computational tools as par-
ticipants in interaction and in inquiry. As described above, flex-
ibly partnering with computational participants is becoming an
essential skill within emerging STEM fields. Our data suggest
that students leverage existing patterns in social interaction as
resources for interacting with computational models as partici-
pants in this classroom. From a practical perspective, our data
demonstrate that our students interact with their models as con-
versational peers. The utterances that students produce reflect
the intentions and ideas of the students but are also shaped in
part by the computational models (Sengupta et al. forthcoming).
In combination with the probabilistic nature of the models and
the students’ inexperience with the environment, these partici-
pation structures position the models as co-constructors of new
lines of inquiry.

To consider the complex social dynamics that occur as stu-
dents engage with computational models, we use Goodwin’s
concept of interactive footing (2007). This analytic framework
builds from Goffman’s deconstruction of speakers (1981),
which parses the interplay between separate voices within an
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individual’s speech. Goodwin argues that participation frame-
works should extend beyond an individual as a speaker to en-
compass the embodied actions of others who are present and
who contribute to achieve communicative acts. In this way,
Goodwin attributes utterances to multi-party participants rather
than to individual speakers. For example, he describes a con-
versation involving a participant, Chil, whose vocabulary was
limited by a severe stroke. Though Chil is only able to say three
words (yes, no, and and), Goodwin describes him as a powerful
speaker in interaction because he uses gestures and his limited
vocabulary to get others to participate in conversations and co-
produce the utterances that he needs.

Although agent-based models and the computational infra-
structure that they build upon are not conscious participants in
interaction, they encode and express disciplinary perspectives
and the intentions of their authors. As such, students’ interac-
tions with them exhibit a phenomenon of co-action (Moreno-
Armella and Brady 2018). In our data, computational models
and students interact in complex ways, so that the
Butterances^—artifacts, behaviors, and findings—that are pro-
duced are projections of the intentions and ideas of the students
but are also shaped in part by the computational environment.
Like Chil, computational models do not produce complete and
meaningful Butterances^ on their own, but students cooperate
with them to produce speech, and each run of a model acts as a
substrate for students’ later speech and actions (Goodwin
2017). As we demonstrate in our analysis, students often liter-
ally speak to their models, verbalizing questions that they are
working to address with their model and attempting to give
voice to their models’ behaviors and outputs. This form of
Bconversation^ provides support for the notion that students
can interact with models as interlocutors in a real sense.

In our study, the students’ models also took on an effec-
tively agentive role in their interactions. We conjecture that
two features of the models contribute to their effective agency.
First, probabilistic behavior is coded into the models, meaning
that it is impossible to predict exactly how a model will be-
have even with full knowledge of the code and the initial
parameter settings. This randomness adds nuance to students’
interactions with the models, introducing variation even when
students are Brepeating^ a prior run with no change to the
code. In this sense, Bletting the model speak^ in repeated runs
reveals more about the behavior of the computational system.
Second, this unit was our students’ first experience with com-
putational models. Therefore, throughout the unit, we see stu-
dents actively attempting to make sense of the models’ under-
lying rules for behavior. Our data suggest that these
affordances provide any entry point for students to flexibly
adopt stances that treat computational models as participants.
These relationships to computational models parallel scien-
tists’ relationships to objects and systems, affording students
a pathway to practices at the intersection of disciplinary en-
gagement and computational thinking.

Methods

This work is part of a five-cycle design study (Cobb et al.
2003) aiming to integrate computational thinking and model-
ing into an NGSS-aligned curriculum. These data were col-
lected during the pilot implementation of a 9-week ecology
unit designed to support students’ understanding of the flow
of energy andmatter in an ecosystem through engagement in a
range of model-based inquiry, including diagrammatic, phys-
ical, and computational modeling.

Research Context

The current study was conducted in a public middle school
located in a small suburban school district in the southeastern
United States. According to the state report card, 18% of the
school’s students qualify for free or reduced lunch. The stu-
dents are culturally and linguistically diverse: 52% of students
identify asWhite, 25% as Hispanic or Latino, 15% as Black or
African American, and 7% as Asian. In addition, 13% of
students are classified as English learners. The study was con-
ducted in collaboration with a STEM teacher, Ms. S, who was
in her 25th year of teaching. Ms. S’s sixth grade STEM class
participated in the project (25 students total). All procedures
performed in this study were in accordance with the ethical
standards of the institutional research committee and with the
1964 Helsinki declaration and its later amendments. Informed
consent and assent were obtained from all individual partici-
pants included in the study.

Ms. S and the first author, Ashlyn, co-designed and co-
taught all of the lessons for the project. Lessons took place 2
to 3 times a week during the students’ 45-min STEM class
over the course of approximately 9 weeks, for a total of 22
class sessions. The unit was designed to support standards
from the NGSS, including (1) using models to describe that
energy in animals’ food was once energy from the sun, (2)
arguing that plants get the materials they need for growth from
air and water, and (3) developing models to describe the
movement of matter among plants, animals, decomposers,
and the environment (Next Generation Science Standards
[NGSS] Lead States 2013).

The unit builds on and refines the SAIL curriculum (NSF
DRL#1503330), which is a yearlong science curriculum de-
signed to promote three-dimensional learning as outlined in
the NGSS. The curriculum blends science and engineering
practices, crosscutting concepts, and disciplinary core ideas
to help students explore natural phenomena and design solu-
tions to problems through engineering. The SAIL curriculum
was designed to promote language development through pur-
poseful communication (Ellis and Larsen-Freeman 2009;
Valdés 2015), drawing on the multiple and diverse channels
through which communication occurs (e.g., speech, gesture,
drawings, symbols, graphs, and texts). The current study, part
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of the larger SAIL+CTM project (NSF DRL#1742138), ex-
tends and refines the original SAIL curriculum to integrate
computational thinking and modeling. Within the new curric-
ulum, students create computational models in conjunction
with physical and diagrammatic models. The physical models
enable them to collect and interpret data, and the diagrammatic
models fulfill a descriptive and explanatory function (Pierson
et al. 2017). Computational models afford students the oppor-
tunity to represent unseen or difficult-to-imagine aspects of a
phenomenon. They can also be used for speeding up or slowing
down time, dealing with hard-to-manage substances; testing
and revising ideas about relationships; and running experi-
ments that are dangerous, unethical, or impractical (e.g., study-
ing the spread of forest fires). The ability to translate and coor-
dinate information frommultiple modes of modeling (physical,
diagrammatic, and computational) is central to both the NGSS
(Berland et al. 2015; NGSS Lead States 2013) and computa-
tional thinking (Brady et al. 2015; Weintrop et al. 2016).

The SAIL+CTM ecology unit is framed by the driving
question, BWhy are the salamanders disappearing?^ At the
beginning of the unit, students watch videos about a local
salamander species, demonstrating that the animal, once prev-
alent in the local environment, is becoming difficult to find.
Students generate potential explanations for the decrease in
salamanders, beginning with direct causes (e.g., threats to the
salamander’s immediate habitat or food source) and
expanding throughout the food web and the local environ-
ment. The unit is anchored with a simplified computational
representation of a food web that includes the salamander,
the salamander’s primary prey (isopods), and the isopods’ pri-
mary food source (detritus). Students gather information and
re-represent the salamanders’ environment with increasing
complexity. To learn more about the other organisms in the
environment, the students read a modified journal article about
the salamanders and create food webs to represent the relation-
ships described in the article. To consider the stability of the
environment, they model aquatic habitats with closed-system
biodomes that include fish, plants, and snails. Throughout the
unit, students refine the original computational models, adding
species and attempting to identify stable conditions for the
salamanders. Because the implementation of the unit de-
scribed in this paper was a pilot study, there are many aspects
that we plan to change in the following four implementations
of the unit. These revisions are not the focus of the current
paper; instead, we focus on the students’ interactions with the
computational models to inform their integration into this cur-
riculum and to inform other designs to support computational
thinking and disciplinary engagement in STEM classrooms.

Computational Modeling Activities

The computational modeling activities in the unit fall into two
broad categories: black-box and gray-box modeling

experiences. In the first category, students experience the base
model as a Bblack-box^ simulation, interacting with it exclu-
sively through a prepared user interface (see Fig. 1). With
sliders, they control the initial populations of salamanders
and isopods, as well as the rate of inflow of detritus into the
system. With buttons, they reset and run the model. With the
3D renderer, they observe the emergent behavior of the eco-
system. Finally, with data boxes, they can see the current
size of each population, and with a real-time graph, they
can see trends in the sizes of these populations over time.
In these activities, students are challenged to keep sala-
manders alive as long as possible by choosing initial pop-
ulation sizes of salamanders and isopods and by setting
the rate of detritus influx.

On day 2 of the project, this challenge is subtly refined
through interaction between Ms. S and the students. As the
students start on the black-box modeling task, Ms. S asks
students, BWhat do you think you’re trying to do in the
environment?^ One student responds with Bthem [the sala-
manders] not disappearing.^ Ms. S says, BOk, so what needs
to happen?^ Jeff says, Bbalance.^ Another student, Bruno,
adds, Bbalance the salamanders and isopods.^ To clarify, Ms.
S asks, BBalance the what?^ Several students chorally respond
with Bthe environment.^ In this way, the students’ collective
understanding of the activity shifts toward a goal of
Bbalancing^ the environment, which is then carried through
the unit as a goal for students’ physical models (biodomes)
and computational models. The base model was designed so
that there were many configurations that would support a
Bbalanced^ system. Even so, all solutions depend on the sup-
ply of detritus, which must be sufficient to sustain a stable
population of isopods but not so great as to cause boom-
and-crash cycles in the isopod and/or salamander populations.

In later activities, students work with the StarLogo Nova
environment as a Bgray-box^ model. In these activities, stu-
dents can modify the code for the base model to add species
and refine its descriptive power as a model. Work with the
model in these activities also involves the students debugging
and testing the behavior of their refined models. For instance,
over several days, Ms. S shows students how to modify the
code of the model to add worms (because the class has learned
that salamanders can also eat worms, and worms can eat de-
tritus). Later, some of the students attempt to balance the re-
fined model and consider adding other species to the model.
However, not all students were able to add additional species
to their models beyond worms during this implementation.

Data Collection and Analysis

Throughout the project, we collected data from a variety of
sources to triangulate perspectives of students’ interactions as
they were engaging in computational modeling. During each
class period, we collected video recordings of the classroom;
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audio recordings of Ashlyn’s conversations with students dur-
ing group and individual work; student artifacts such as
models and written reflections; and Ashlyn’s field notes from
each class period. In addition, we used Camtasia with three
focal students to capture video and audio of the students and
their computer screens. The focal students (pseudonyms
Camille, Marla, and Garrincha) were selected by the sixth
grade teaching team as Btypical^ students, meaning the
teachers felt these students were representative of most stu-
dents in the sixth grade both academically and behaviorally.
At the end of the unit, Ashlyn conducted interviews with each
of these three focal students. In the interviews, Ashlyn asked
the students about how their computational models related to
the other models in the unit, how the students felt about the
computational modeling activities (for example, interesting,
hard, boring, fun), and how the students perceived social in-
teraction during modeling (for example, whether and what
they learned from other students, and whether they prefer
working in groups or alone).

To analyze data for this project, we transcribed these inter-
views and the video recordings of the three focal students
interacting with their computational models. Because the stu-
dents were working on a computational modeling task that
involved several streams of visual and quantitative output
from the models, discourse and interaction around the models
was both interactive and multimodal (Norris and Jones 2005).

Thus, we initially analyzed discourse as units of mediated
action. We conceptualized high-level units of mediated action
as actions being taken with physical objects (the computation-
al models) and their representations in students’ language.
However, through our analysis, we found that the computa-
tional models took on a role beyond a mediator of action.
Instead, we observed students interacting with their models
as participants. We found that our transcripts included utter-
ances co-constructed by both the students and their models.
Thus, rather than characterizing our unit of analysis as medi-
ated action, we instead consider units of co-action in which
both the students and their computational models are partici-
pants (Moreno-Armella and Brady 2018).

We draw analytical boundaries in the field of socio-
technical activity by building interpretations of articulated in-
tention. Thus, a co-action sequence is grouped by what we, as
interpreters of the record, identify as a stable goal. When such
a goal is identified, we trace backward to what we perceive to
be its roots in the flow of interaction to identify an analytical
starting point. When we note this goal-oriented action has
played itself out (by the goal’s being achieved, frustrated,
altered, or otherwise exhausted), we identify an analytical
ending point. Within this delimited time interval, we identify
a horizon of action, involving the subset of the social and
technical actors in the classroom whose activity is relevant
to the unfolding action. Of course, our actors have histories

Fig. 1 Black-box interface with purposefully blurred Camtasia video capture of student user in bottom right
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and memories, and our understanding of these references is
limited to our experience and the traces in the data. Our selec-
tion of episodes has for this reason favored episodes in which
the interactions of present actors have proven sufficient to
develop a coherent interpretive theory that is borne out by
the subsequent behavior of the actors involved.

To represent the simultaneous co-actions in the transcript,
we created interactive stanzas, drawing from Gee (2014) and
Norris and Jones (2005). While we aim to parse interactions
by goals, because students often draw on multiple priorities
simultaneously (e.g., social, academic), we have had to make
interpretive judgments about the primary goal for each inter-
action, and we recognize this as a limitation of our analytic
approach. We think that this limitation is outweighed by the
affordances of the transcript, which allows us to organize
overlapping actions while still maintaining the temporal struc-
ture of the interactions.

In Table 1, we present an example of our analytic approach.
This table is organized into three columns around the simul-
taneously occurring actions audible in the video. In the left
column, Marla interacts with her model while singing in order
to identify a stable setup configuration for her isopods. In the
analysis section below, we describe how singing creates space
for her to interact with her model despite competing activities
occurring nearby. In the middle column, Amy announces the
stable environment that she has created with her model.
She gives voice to output from her model, announcing
that her salamanders are Bstill surviving^ even as the
model’s clock reaches 165. In the right column, Ms. S
and students interact to negotiate access to the lizard that
was in the classroom that day.

In our analysis, aligningwith prior research (e.g., Farris and
Sengupta 2014), we find that interaction with human and
computational participants contextualizes and shapes the focal
students’ actions. To consider how the focal students manage
the worlds of their models and the classroom simultaneously,
we analyze their actions in terms of interactive footing,

describing how the students position themselves and others
in the flow of activity (Goffman 1981; Goodwin 2007). In this
sense, students are Bbalancing the environment^ on two
levels: they attempt to balance the environment within the
model, but they also balance their interactions with the model
and their interactions involving other participants in the
classroom.

Analysis and Findings

In this section, we analyze episodes that illustrate the variety
of ways that our focal students manage and leverage the ever-
changing dynamics of their social interactions with their com-
putational models and their peers. First, we show howCamille
interacts with her model as an agentive co-participant in dia-
logic conversation. Then, we analyze howMarla creates space
for engaging with her model by working around the expecta-
tions of her teacher and peers without compromising her so-
cial connections in the classroom. Finally, we consider how
interaction with code and with his friend Bruno bootstraps
Garrincha’s engagement in the scientific problems posed by
the model.

We see each of these as episodes in which human-human
and human-computer interaction dynamics have been
achieved that are productive for disciplinary learning. We do
not argue that these episodes reflect permanent classes of in-
teraction that are characteristic of these students, these models,
or these activities. In fact, in the BDiscussion and
Conclusions^ section, we include counterpoint examples for
each student to demonstrate that these are not static modes of
interaction. Rather than pointing to robust and repeatable cat-
egories of participation, we see these episodes as emergent
equilibria: patterns that have appeared in the flow of socio-
technological inquiry. We conjecture that these patterns in
students’ social interactions are resources for interacting flex-
ibly with computational tools as participants, affording

Table 1 Marla singing to create space for modeling

Marla and computational model Amy and computational model Ms. S and students

Jeff: Ms. S? can I go see the lizard?

Marla: {sets isopods to 189} [one]-hundred-eighty-nine…
{clicks Run Model} [one-hundred-eighty]-nine. do do
do do do do do boo. ((singing))

Amy: [mine are still surviving.] Ms. S: yes [you may].

Marla: ((singing)) {watching model, sliding the isopod
slider up and down, stopping at 345}

Ms. S: [um . Betsy you may
see the lizard.]

Amy: ow . my hair… mine keeps on going
it’s on one hundred and sixty five.

Marla: set up {clicks Clear, Setup, Run Model} come on.
((singing))

Marla: [((singing))] Amy: [my salamanders have not died yet.

Jeff: good job.]
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students a pathway to practices at the intersection of disciplin-
ary engagement and computational thinking.

Camille: Computational Model as an Agentive
Participant

During students’ first interaction with the models, on day 2,
students are challenged to keep the salamanders alive for as
long as possible. Camille approaches this problem by
interacting almost exclusively with her model, rarely
interacting directly with other students. This is not always
the case for Camille; during other class periods, she recruits
students from her own table and from other groups to interact
with her model. However, because Camille works relatively
independently in this episode, it is useful for illustrating how
the model can take on the role of a participant in interaction
with Camille, moving beyond the role of a tool that mediates
her action.

Camille begins interacting with the model before Ms. S has
given students directions (see Fig. 2 for a segment of this
discourse). As other students find the StarLogo Nova website,
Camille clicks Setup and Run Model for her first run of the
model. Camille begins in this example by engaging both with
the view of the model in the 3D renderer and with the graph.
Almost immediately, her isopod and salamander populations
start decreasing. Camille articulates what she sees the model
doing, saying aloud, Bthese are dead^ as she circles the simu-
lation with her mouse pointer (02:42). Then, she says, Band
they’re decreasing,^ as she traces the graph with the mouse
pointer (02:44). In this first run, Camille begins by giving
voice to the trends produced by the model as it runs. In this
way, Camille and the model are co-constructing knowledge
about the decrease in salamanders and isopods. Her two ob-
servations here are in fact quite profound: Camille and the
model are together making connections between agent-level

changes (the deaths of individuals), and aggregate-level
changes (trends in the populations). As noise around her in-
creases, Camille starts to sing while tracing the graph, distanc-
ing herself from ambient human-human interactions in the
classroom to create an isolated space for herself to focus on
interacting with the model (03:02).

During Run 2 of the model, Ms. S speaks to the whole class
and asks students to click Clear, Setup, and Run Model. She
facilitates a discussion about how to manipulate the sliders in
the model and about the students’ objective in this activity
(balancing the environment). Throughout this discussion,
Camille works to maintain her isolated workspace, giving
voice to data from the data boxes and the graph in her model
as she traces the lines on the graph with her mouse pointer. For
example, as Ms. S is describing the assignment, Camille re-
ports in a whisper the number of salamanders in her model:
Beighteen salamanders . twenty . . twenty-three . twenty-four .
eight . nine. twenty-nine^ (04:24). A few minutes later, when
her model crashes, Camille uses her mouse pointer to trace the
salamanders’ line on the graph, reporting, Bthey’re literally
gone^ (05:48). As she did during the first run of the model,
Camille creates an audio-visual space for interaction with the
model despite all of the commotion around her.

As Camille interacts with the model, her speech becomes
more conversational (see Fig. 3). In Run 3, she reports on data
from the graph (08:01), but then expresses disappointment
when the salamanders die (08:18). In response, she sets all
of her sliders to 1, but then catches herself, saying Bwait if I
do that—^ (08:36). She interrupts herself and resets the
sliders. She presses Run Model, but there is not feedback from
the model, so she says Bhold on . set up,^ as if she is asking the
model to wait for her to press the Setup button (08:55). During
Run 5, she sets all the sliders to 1 and tells the single salaman-
der in the model that it’s Bgonna die^ (09:06). When it does,
she tries a new set up configuration for Run 6. In addition to

Fig. 2 Camille’s articulates her model’s action

J Sci Educ Technol (2020) 29:101–119108



reporting data, as she did in early runs, she now begins
to interpret data and judge outputs. For example, when
she notices that the isopods are getting low, she says,
Bthat’s bad^ (09:42).

Later in the class period, Camille directly addresses the
computational model using a variety of forms of speech,
interacting with the model increasingly in the manner of a
socially challenging peer. For instance, as the model crashes
in Run 7, she says to the model in a sharp staccato tone, BI do
not know!^ and then asks, Bwhat are you doing?^ She bar-
gains with the agents in the model, softening and lowering her
voice and asking Bcan you like . stay alive please?^ This
speech resembles a challenging interaction with a peer. First,
Camille expresses frustration, and, seeing no change in the
trend of decreasing salamanders, makes a plea for
cooperation.

In addition to negotiating with the model broadly, at other
times, Camille speaks directly to agents in the model. In Run
9, she sets up the model with 1 salamander, 1 isopod, and 100
for the rate of detritus flow. As the isopods dramatically in-
crease in the model, the single salamander wanders in a corner
of the screen opposite the isopods. She narrates this moment
by singing BDun dun dun .. dun dun dun^with a dramatic tone
and in a minor key. Once the salamander reaches the isopods
and rapidly reproduces, she sings, Bthe salamanders are in-

crea-sing . . in-crea-sing.^ Then, she speaks to the isopods
directly, warning with a deep voice, Bthey’re taking ov-er.^
This is loud enough to attract the attention of other students.
Adam looks over at Camille’s model and exclaims, Bwow you
have one hundred salamanders almost . . . dang.^ Camille
does not respond to Adam. Instead, she continues with the
dramatic low voice, warning the isopods, Bthey’re switching
over . . they’re taking over the land . . everybody RUN.^
During this run, Camille continues to prioritize the model over
her peers in interaction, speaking to the agents, dramatizing
their interactions, and interpreting, rather than simply re-voic-
ing, the data she observes.

During Run 10, Camille speaks to the model as if she and
the model are collectively working to solve a problem, using
phrases like, Blet’s see what’s . . isopods^ as she is adjusting
the slider for isopods. For the salamanders, she says, Blet’s do
two this time.^ This speech resembles the collaborative inter-
action we might expect from a pair of students working to-
gether. Instead of using singular pronouns, she uses the plural
Blet’s.^ In this way, Camille makes suggestions for the model
rather than announcing her next action to the computer. Thus,
as Camille engages with the model throughout the class peri-
od, her interactions with the model shift to position the model
as an interlocutor and as a co-participant in the goal-directed
inquiry of the activity. At the beginning of the class, she re-

Fig. 3 Camille converses with her model
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voices its behavior, reading data from the model out loud; but
by the end of class, she has co-constructed a dialogue with the
model and with the agents within the model.

Contrasting these participation structures provides a lens
for considering how Camille perceives her interactions with
the computational model. When Camille reports data from the
screen, she uses declarative phrases to announce the output
from the data boxes or the graph. With these utterances,
Camille signals that the model is communicating with her,
but she does not directly address the model with her speech.
This structure shifts throughout the class period. Later in the
class, Camille tries on new participation structures, speaking
directly to the model and collaborating with the model as
though with a partner. For example, during Run 7, Camille
speaks to the model as an uncooperative peer, expressing frus-
tration and negotiating with the agents in the model. During
Run 10, she speaks to the model as a partner, using words like
Blet’s^ to suggest initial configurations for the sliders. Camille
also speaks directly to the model in Run 9, although her role is
slightly different during this run. Rather than speaking to the
model as a peer, she contributes to the narrative playing out in
the model’s 3D renderer by creating dramatic music and warn-
ing the isopods about the threat of the salamanders.

All of these runs occurred within 15 min, yet in this short
amount of time, Camille engaged with the model using a wide
range of interactive footings that shifted and evolved as she
interacted with the model. This variation suggests that analyz-
ing students’ computational modeling practices solely from a
lens of human-tool interaction could look past students’ ten-
dencies to interact with computational models as participants
in disciplinary settings and, in turn, overlook opportunities to
capitalize on students’ stances with respect to their computa-
tional models for science learning and for cultivating compu-
tational thinking practices.

Marla: Managing Social Interaction
and Computational Modeling

Whereas Camille distances herself from her peers in the ex-
ample above, Marla attempts on the same day to balance par-
ticipation with her model and with her peers. Like Camille,
Marla at times creates space for modeling by singing or by re-
voicing data from her model. Yet, at other times, Marla simul-
taneously interacts with her model and with other human par-
ticipants in the room. With our analysis in this section, we
present an example of how a student might balance the social
world of the classroom with a systematic investigation of a
computational model, leveraging social resources to negotiate
interactions with human and computational peers.

Marla relies on a variety of epistemic and social resources
for exploring her model, including explicitly stating and test-
ing conjectures. For example, inMarla’s first run of themodel,
she moves each slider to halfway between the minimum and

maximum value, saying, Bthis is half of each number.^ In the
context of Marla’s goal to create a balanced environment, this
statement can be interpreted as a conjecture that setting each
parameter to Bhalf^ will support a balanced environment. In
her next run, she conjectures, Bwait the detritus flow is better
when it’s . higher^ as she increases the rate of detritus flow.
She adjusts the slider and says, Bthere . that should be good.^
These explicit conjectures help Marla systematically explore
the model by expressing a hypothesis prior to each run.

The practice of defining explicit conjectures before each
run may help Marla recognize unanticipated outputs from
her model as she tests her conjectures. As Marla observes
her model, she often expresses surprise or asks questions of
her model (see her facial expression in Fig. 4a). During this
run, Marla has intended to increase the rate of detritus flow,
yet she seems shocked by the drastic increase in detritus on the
screen, gasping with surprise and saying, Blook how many!^
Typically, after Marla expresses surprise or asks questions of
her model, she revises her conjectures. For example, in this
case, Marla says, BI don’t think it needs to be 100maybe like –
35?^ and moves the detritus slider down to 35. These data
suggest that the practice of explicitly stating and evaluating
her conjectures supports systematic exploration of the model,
allowing Marla to use previous runs to inform future runs.

In addition to epistemic resources for exploring the model,
Marla also draws on social resources to interpret the model.
She frequently turns her screen toward Amy, who sits next to
her, to show her what is happening in her model. Marla and
Amy use talk and gesture to interpret the model. For example,
after setting the rate of detritus flow to 100, Marla turns the
model toward Amy, saying Bwait look how much the detritus
is coming^ and pointing to the screen. Amy responds, Bthat’s a
lot it’s like making little two circles.^Marla says Bit’s like—B
and gestures to mimic the circular waves of detritus disper-
sion. This interaction is focused entirely on the model, but at
other times, the students talk about the models and their lives
out of school simultaneously. For example, during one run,
Marla’s model nearly crashes. As the isopods and salamanders
increase, she turns the computer toward Amy and says Boh
this is cool . look . it just re-started.^ Jeff, sitting across from
Marla, responds with a joke: Byour mom re-started.^Amy and
Marla both look toward Jeff as Amy says, BYeah – so she’s
young again?^ Marla looks back down to her model and no-
tices that it is crashing, saying in a softer voice, Bthat looks
wrong.^ Amy, still speaking to Jeff, says Bthat’s good.^ Once
the model crashes, Marla re-joins the social conversation, con-
tributing Bmy mom works out five days a week.^ In this mo-
ment, social interaction blends seamlessly with academic in-
teraction centered on the model.

Marla uses several strategies to negotiate social interaction
while attempting to create a balanced environment in her mod-
el. In some cases, Marla engages in social interaction while
simultaneously creating space for modeling. For example, she
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is obligated to interact with her teacher even when she is
focused on her model. Below, Ms. S explicitly asks Marla if
she has seen the lizard in the classroom that day:

Ms. S: ok good. have you seen it Marla?
Marla: {moves sliders toward 40} umm . . have I s- seen
what?
Ms. S: have you seen [my lizard?]
Marla:[no.] {shakes head, continues to move the
sliders}

In this interaction, although Marla engages with Ms. S, she
seems to violate Ms. S’s expectation that Marla will disengage
with the model to go see the lizard. Marla complies with her
teacher by participating in the interaction, but she seems pri-
marily focused on her model. She does not initially understand
what Ms. S means by Bit,^ but slowly and hesitantly clarifies
as she continues to set up her model. Once Marla realizes that
Bit^ refers to the lizard, she interruptsMs. S with a Bno^ before
Ms. S finishes her sentence, and she then continues to work on
her model. In this way, Marla negotiates the interaction with
her teacher in a way that creates space for modeling.

Marla uses this strategy when interacting with peers as
well. On several occasions, Marla jokes with the other stu-
dents at her table (Amy and Jeff) while simultaneously attend-
ing to her model. These interactions typically occur when
Marla’s model is already running. For example, Marla is will-
ing to engage with Jeff’s joke (Byour mom re-started,^ de-
scribed above) as her model is running. At other times, partic-
ularly when she is setting up her model or appears confused by
the model’s outcome, Marla shifts her footing to Bcheck out^
socially from interactions with others in a way that creates
space for interacting with her model. In these situations,
Marla does not respond to her teacher’s or peers’ direct or
indirect bids to recruit her into their activities, violating their
expectation that Marla will participate in their interactions. In
the example below, Marla does not respond to her teacher’s
directions or Amy’s questions, and instead, continues to inter-
act with her model.

Ms. S: bookmark if you’re not sure how? Um I usually
drag it all to the bar you can do it however you want just
make sure you save everything.
Amy: bookmarked. . . . do you need to bookmark it?
Marla: {moves detritus slider to 1}
Amy: ow my hair’s . . ow… click that little [star]
Marla: [wait the] detritus flow is better when it’s .
higher{moves detritus slider to 100}

In this interaction, Marla positions herself as outside of the
human-human interaction despite Amy’s bids to involve her.
Instead, Marla engages only in human-computer interaction
with her model, responding to the model by suggesting that
the Bdetritus flow is better when it’s higher.^

In other contexts, Marla creates a separate space to work
with her model by humming or singing. At times she sings the
numbers on her screen or sings syllables as placeholders.
Several interpretations are possible: she could be distancing
herself from nearby human-human interactions by signaling
that she is focused on her model, or she could be creating an
individual soundscape that prevents her from overhearing
others’ interactions. The singing and humming often occur
when there is a lot of noise happening around her or when
others make bids for her attention. We presented an example
in Table 1 earlier. In that interaction, Amy is announcing her
success with her model, aiming for recognition from the teach-
er or her peers. At the same time, Ms. S is managing access to
the lizard in the classroom. Marla seems to be creating a
workspace by establishing a barrier between herself and these
human-human interactions by singing, allowing her to focus
on interactions with her model in a busy classroom.

While the transcript in Table 1 presents social interaction as
potentially distracting, Amy’s repeated bids for recognition
ultimately support Marla in balancing her own model. After
Jeff acknowledgesAmy (Bgood job^), Amy continues to report
success. Eventually, Amy frames her accomplishment as a rule
for balancing the model. She says Bmine have the same . the
same amount. mine are 400-400-400 . . . you can do 50-50-50
or whatever number you want.^Marla takes up this suggestion

Fig. 4 Students are surprised by outcomes of their models (a—left) Between gasps,Marla says, Blook howmany,^ in response to the increase in detritus.
(b—right) Garrincha exclaims BOh my – expanding bro!^
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as a conjecture, setting each of her sliders to 11. She announces
that she Bfigured it out^ even before she observes the outcome
of this run of themodel. DespiteMarla’s confidence, themodel
crashes. In response, the girls jointly revise the conjecture;
Marla suggests, BI think it has to be 40-40-40.^

In summary, if we only attend to Marla’s interaction with
the model, we are missing the work she is doing to create
space for herself to interact with her model while leveraging
social and academic interactions with her peers for a variety of
goals. In designing learning environments for computational
modeling, it is therefore critical to consider scaffolding not
only for engagement with the model but also to create space
for productive interaction and collaboration with, as well as
distance from, the other participants in the classroom. In our
analysis of Marla’s interaction with her model and her peers,
we see how she sustains the fragile thread of inquiry, main-
taining continuity across her conjectures. At times, she
reaches out into the noisy environment to garner resources
and feedback necessary to her work, but in doing so, must
simultaneously manage the complex social dynamics of the
classroom. These skills are necessary for success in a class-
room environment, yet may not be skills that can be scaffolded
in a generic way given the wide range of learners in any
classroom. Whereas Camille’s focal example provides a lens
for how a student could interact with a model on her own,
Marla’s example provides a lens for how a student could man-
age and balance social interaction with inquiry. Next, we will
present an example in which social interaction serves as a
jumping-off point for inquiry with the computational model.

Garrincha: Interaction with the Computer
and with a Peer Facilitates Inquiry

On the first day with the computational models, like Camille,
Garrincha rarely interacted with other students. Although he
was compliant with classroom expectations in terms of inter-
action with the model, he rarely asked questions or expressed
excitement. In this section, we illustrate how Garrincha later
enthusiastically reframed and investigated the problem of how
to balance the environment in his computational model. We
show how two factors led him back to the problem of
balancing the environment: interacting with the code blocks
and interacting with his friend Bruno, who had been moved
next to Garrincha a few days earlier. The coding objective for
the day and social interaction with Bruno seem like theymight
steer Garrincha away from attempting to balance the environ-
ment. Yet, these interactions engage Garrincha enthusiastical-
ly in this initial domain-specific question.

In this section, we draw from data collected during students’
introduction to the code behind the model that they had manip-
ulated previously as a black-box simulation. In designing this
activity, we chose to show students how to change features of
blocks in the base model (like assigning drop-down or

numerical values for variables) before they moved new blocks
into or out of the code. This allowed students to connect the
code to implications for their models. It also minimized frustra-
tion and confusion during their first interaction with code be-
cause the students had fewer opportunities to misplace blocks
and create unintended bugs. During this lesson, we encouraged
students to change the size, shape, and color of the isopods in
their models. Because these are primarily esthetic features of
the model, we did not expect the activity to lead back to ques-
tions about balancing the environment. Rather, our goal was to
build a foundation for students to understand the relationship
between the blocks and the model and to build their confidence
with changing code in the model. Thus, it is surprising that
interacting with the model in this way leads Garrincha and
Bruno back to questions about balancing the environment.

At the beginning of the activity, Ms. S demonstrates how to
change isopods’ size. Garrincha and Bruno follow along, but
also joke with each other. For example, after Ms. S shows how
to make the isopods larger (Bso press Set Up . . OH yeah
they’re bigger^), Garrincha turns to Bruno and whispers,
Bthat’s what she said.^ Both of the boys laugh as they set their
isopods to size 11. The boys’ affective engagement shifts as
they see the impact of changing the code in their own models.
The boys are visibly surprised by the dramatic change in the
isopods. Bruno repeatedly asks both Ashlyn and Ms. S Bwait
why are they so big?^ With wide eyes, Garrincha leans into
his computer and exclaims BOh my – expanding bro!^ (see
Fig. 4b). Although the boys were replicating a change that Ms.
S had demonstrated, it seems that interacting with their own
models leads to a different type of engagement.

Next,Ms. S demonstrates changing the shape of the isopods,
which were originally set to Burchin.^ Ms. S says, Bnow this
time . remember we talked about the urchins? . . why don’t we
change it and I’m gonna let Amy choose . whatever she wants,
so click on . . there’s a drop down that will happen . . you guys
choose whatever you want.^ Betsy asks, Bcan we choose the
color too?^ Ms. S responds, Bif you want to change the color
you can as well.^ Previously, during this class period, when
Ms. S stopped the students for instruction, Garrincha turned
away from his model and toward the board. However, at this
point, Garrincha and Bruno break away from the rest of the
class’ interaction and continue tomake changes to their models.
Ms. S asks several students what button they need to push after
they make changes to their model (they need to push Run Code
to compile their changes, which students often forget).
Meanwhile, Bruno and Garrincha whisper excitedly about
what shapes they might use, switching as they confer between
English and the Spanish that they share. For example:

Garrincha: I put a . . I turned it into a shark what did you
do?
Bruno: nothing . . I still haven’t entered it . . they have
leones? Lionel Messi
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In this conversation, Garrincha and Bruno connect their
models to their out-of-school interests; the lions in the model
remind Bruno of a professional soccer player (Lionel Messi).
The boys’ whispered conversation builds interest in the activ-
ity, but it also slows them down. Garrincha is briefly halted by
the error Ms. S was trying to address with the whole-class
conversation. In his code, Garrincha had changed the isopods’
color to green and shape to dragon, but when he clicks Setup
and Run Model the isopods still look like white urchins. He
says, Bhow come it doesn’t go,^ and scrolls back down to the
code. Bruno helps him by prompting, Brun code.^

Both boys are excited about the new shapes of their iso-
pods. Bruno exclaims Btiburones!^ in a high-pitched voice.
Garrincha laughs and asks, BIs it really sharks?^ He smiles
and announces, Bah there’s dragons for me!^ The boys go
back and forth, each insisting the other look at his screen;
for example, Bruno says, Bno but look at mine look at mine.^
The boys even recruit friends at other tables to see their
models. This new attachment to the isopods affects how the
boys approach the problem of balancing the environment.
Whereas their initial engagement with the task of balancing
the environment seemed grounded in compliance, they now
express concern about the isopods.

Garrincha turns his isopods into sharks and tries to show his
friend Jason, but the sharks quickly die. Garrincha leans in and
expresses despair about the loss of his shark-isopods, whereas
he was previously silent when his isopod population crashed
(day 2). This time, as he watches the shark-isopods decrease,
he says, Bthey’re missing they’re gone they’re gone!^ Bruno
asks, Bthey are sharks right?^ Garrincha responds Byeah . .
what do they eat?^ Bruno points to the screen and says Bit’s
those . . those guys.^ Garrincha challenges his claim: Bbut I
don’t see that . . . that they’re eating them.^ This interaction
suggests that Garrincha’s new interest in the isopods as a result
of changing their traits spurs questions about the food web in
the model in service of keeping the shark-isopods alive.

As the boys continue to change the shapes of the isopods in
their models, Garrincha has more questions about the factors
that affect the isopods’ survival. He changes the isopod shape
to Blion,^ and asks BWhy do the lions m—like they die
quickly.^ Then he tries pyramids and asks, Bthe . the . they
die quick why do they – if you put something else instead of
the urchin why do they die fast?^ Ashlyn is nearby and re-
sponds, BI don’t know um are the – are the other things dif-
ferent size than the urchins?^ Garrincha says, BI put pyramids
they’re dying quickly.^ It is unclear whether Garrincha is con-
sidering size as a factor for isopod survival, because he is
interrupted by Bruno. Garrincha and Bruno consider color as
a factor in the disappearance of Bruno’s isopods. Garrincha
suggests that Bruno’s isopods are dying, Bmaybe cause you
put the color red.^ This interaction suggests that the boys are
concerned about the survival of their isopods and that they are
considering factors beyond shape in their survival.

When Garrincha turns back to his own model, he notices
that, Byou can put letters too^ for the shape of the isopods (see
Fig. 5, 35:46). He chooses BB^ and showsBruno, who says Boh
B – B for my name Bruno^ (36:01). Garrincha runs the model
and reports to Bruno, Byou’re dying . . you’re dying! . . . you
died^ (36:07). At this point, Ms. S calls the students back to
give more directions, so Garrincha and Bruno end their conver-
sation. However, Garrincha does not stop interacting with his
model. He changes the isopods to BG^ for Garrincha (36:52).
He changes the color from yellow to turquoise, perhaps to better
camouflage the isopods, since earlier he proposed that Bruno’s
isopods might have been dying because of their red color. He
also reduces the isopods’ size from 11 to 2, bringing them down
to their original size, potentially drawing fromAshlyn’s prompt
to consider size a few minutes before. Still, the isopods do not
thrive, and Garrincha whispers to the computer Bthey’re eating
me^ (37:21). In response, Garrincha goes back to the strategy
from the first day with the models: manipulating the sliders
(37:29). He moves the number of salamanders from 21 down
to 7, and he increases the isopods from 353 to 500. Then, he
runs the model to see if his isopods survive. He whispers, BI got
it^ as his isopod population increases (37:38).

This example reaffirms findings from prior research that
demonstrate that Bthinking like^ the agents in a computational
model supports students’ understanding of scientific phenom-
ena by helping students connect agent-level actions and inter-
actions to emergent aggregate level patterns or trends
(Wilensky and Reisman 2006; Wilensky and Resnick 1999).
Becoming increasingly Bidentified with^ and Binhabiting^ the
agents in turn drives engagement for Garrincha, increasing his
attention to details in the model, such as what the agents eat
and how the agents’ traits impact their survival. In this exam-
ple, Garrincha fluidly moves between the perspective of an
observer of the model (e.g., BI got it^ 37:38) and an isopod
(e.g., Bthey’re eating me^ 37:21). This Bfusion^ of identity
and agency between symbols and referents facilitates thinking
across agent and aggregate levels (Nemirovsky et al. 1998).

In summary, the computational model provides a means by
which Garrincha and Bruno are able to return to their original
line inquiry, balancing the environment. Both Bruno and the
model act as peers for Garrincha with key roles as co-
participants in constructing knowledge about balancing the
environment. Because the isopods took on the shapes of
things that mattered to Garrincha and Bruno, the students be-
came newly invested in the isopods’ survival. They explored a
range of factors that could contribute to their survival, includ-
ing size, shape, color, and the setup configurations that they
attempted to balance during their initial interaction with the
computational models. The model also acted as a participant
in these interactions, challenging the boys’ assumptions about
what mattered for the survival of agents in their models. On
the first day with the models, the boys did not consider the
traits of the isopods, yet the surprising outcomes that the
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models produce as the boys change these traits lead the boys
to co-construct new lines of inquiry with their models. In
addition, affordances of the agent-based modeling environ-
ment enable Garrincha and Bruno to project their identities
into the model, allowing them to Bdive in^ and Bstep back^
between the agent and aggregate levels of the model
(Ackermann 2012). Projecting into the model in this way goes
beyond using the model as a tool and instead frames the model
as a co-participant in interaction.

It is impossible to parse to what extent interaction with the
code versus interaction with Bruno contributed to Garrincha’s
interest in balancing the environment. It is possible that if the
boys had been sitting near each other on the first day, they
would have co-constructed a narrative about the isopods that
was equally compelling to them and that facilitated engage-
ment with the task of balancing the environment. It is also
possible that even if Garrincha were not sitting next to
Bruno as he learned how to change the isopods’ traits, he
would have become equally as invested in the isopods’ sur-
vival. Yet, in these data and in classrooms more broadly, in-
teractions with computational models and with other students
seem inextricably connected. Thus, it is important to consider
the constellation of computational and peer interactions that
could be leveraged to support learning in classroom contexts.

Discussion and Conclusions

Flexible and dialogic interaction with non-human objects
and systems is important for disciplinary engagement in

science (Latour 1993; Pickering 1995), computational
thinking (Epstein and Axtell 1996; Railsback et al.
2006), and success at the human-technology frontier
(Chandrasekharan and Nersessian 2015, 2017; Fox
Keller 2003). Projecting agency and intentionality onto
tools such as computational models brings into focus their
patterns of behavior and inconsistencies, provoking relat-
ed explanations (Dennett 1989). In the analysis above, we
describe the work done by three students to achieve and
sustain productive and personally meaningful lines of in-
quiry in a learning environment populated by various
computational and human participants and various oppor-
tunities for interaction with these participants. The analy-
sis suggests that computational models have unique
affordances for engaging students in dialogic interaction
because they are probabilistic and iteratively executable,
affording opportunities for students to interact with
models as (1) conversational peers, (2) co-constructors
of lines of inquiry, and (3) projections of students’ agency
and identity. Furthermore, our analysis above reveals that
existing patterns in students’ social interactions are re-
sources for interacting flexibly with computational tools
as participants, and thus are resources for cultivating this
important practice for disciplinary engagement in science
and in computational thinking. At the same time, our data
demonstrate that participation structures and students’
strategies for engaging in inquiry are constantly in flux.
In this section, we elaborate on these conclusions and
identify directions for future research based on the find-
ings and limitations of this study.

Fig. 5 Garrincha changes the isopods’ shape to B (for Bruno) and G (for Garrincha)
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Reframing Computational Participation to Include
Computers as Participants

In response to our data, we propose extending the concept of
Bcomputational participation^ (Burke et al. 2016; Kafai and
Burke 2013) to include computational agents as participants in
the interaction. Computational participation acknowledges
that code is not created in a vacuum, but rather as a means
for sharing and connecting with others. Burke and colleagues
explain (Burke et al. 2016 p. 373): BWhereas computational
thinking uses an algorithmic lens toward problem solving,
computational participation extends this thinking beyond the
individual to integrate social networks and digital tools in a
networked society.^ Our examples illustrate the importance
and power of participating in social networks around coding.
Yet, our data also suggest that computational agents can act as
more than tools to be leveraged by social networks—from the
students’ perspective, computational agents can themselves
become participants in interaction. Expanding computational
participation to include computational entities recognizes that
it requires skill and judgment to adjust one’s footing strategi-
cally toward computers to position them productively as co-
participants. This skill lies at the intersection of disciplinary
engagement and computational thinking.

In this classroom, computers are treated as participants in
three ways: (1) as conversational peers, (2) as co-constructors
of lines of inquiry, and (3) as projections of students’ agency
and identity. We argue that these stances toward computation-
al models are productive for disciplinary engagement and
computational thinking because they parallel the ways that
scientists flexibly engage with tools as participants.
Stabilizing these stances as part of a classroom’s accepted
norms and routines requires an appreciation of how they can
be deliberately utilized by learners to bring about specific
relations between humans and computers and to yield
desired results. Following from Sengupta et al. (2018) propos-
al that computational thinking in STEM should be viewed
phenomenologically, future research should explore how stu-
dents’ heterogeneous stances toward computational models
become stabilized over time.

We saw evidence of computational models acting as con-
versational peers across the examples from all three focal stu-
dents, although the students partnered with their models in
different ways. For example, Camille and Marla adopted an
intentional stance toward their models (Dennett 1989) as they
spoke directly to their models. Both girls re-voiced data from
their models, expressed conjectures, and asked questions of
their models (e.g., BI don’t think it needs to be 100 maybe like
– 35?^ fromMarla, and Blet’s do two [salamanders] this time^
from Camille). In the examples analyzed above, Camille
strived to engage with her model one-on-one, to the exclusion
of interactions with human peers. In contrast, Marla seamless-
ly integrated interactions with her model and interactions with

other students. Yet, both girls directly addressed their compu-
tational models in their speech, suggesting that they saw their
models as participants in interaction.

The register that the girls used with their models further
suggests that they saw their models not only as co-
participants but also as peers. When Marla and Camille talked
to adults, like Ms. S or Ashlyn, they used a formal register,
speaking in complete sentences and using a calm even tone.
For example, on day 2, when Ashlyn asked Marla what she
was learning from her model, Marla said, BIt could be better
for the salamanders if all of the other elements of the habitat
were the same amount as the salamanders so they are even.^
In contrast, when Marla spoke to her model, her speech was
fragmented and her tone was more emotional, approximating
her speech patterns with fellow students. With her model, she
issued imperative commands (Bstop running . . . I said stop
running!^), asked questions (BWait how dowe have – ?^), and
provided encouragement (BCome on!^). Marla used this in-
formal register even though she knew that the camera and
microphone on the computer were recording her speech and
actions and that an adult could watch the recording later.
Camille also used an informal register with her model, con-
versing with it as she might with an uncooperative peer (Run
7) or partner (Run 10). This informal register suggests
that the girls saw their models as peers and compatriots
rather than as sources of adult authority. Similarly, studies
of professional science suggest that scientists also engage
with computational tools as peers, describing scientists
Bpartnering^ with agent-based computational models
(Epstein and Axtell 1996; Railsback et al. 2006).

Although Garrincha does not explicitly speak to his model,
his example highlights another way that the computational
models can act as participants in students’ interactions.
Garrincha and Bruno co-constructed new lines of inquiry with
their models as their models produced surprising output.
Marla and Camille also responded generatively to surprises
from their models. For example, Marla was shocked by a
dramatic increase in detritus (Fig. 4a) leading her to new con-
jectures about its role in the food web. Similarly, Camille was
surprised that all of the salamanders died in Run 3 (Fig. 3), and
in the next run, she reversed the setup configuration for sala-
manders. These dialogic interactions with their models paral-
lel the dance of agency that Pickering (1995) describes be-
tween scientists and material supports for their research.
Experiences of surprise depend on and promote a dialogic,
dance-like relationship with the computer as a partner in stu-
dents’ investigation. The rapidly mutable and executable fea-
tures of the model also afforded an external imagination,
expanding the variations and nuances that students were able
to explore (Chandrasekharan and Nersessian 2015, 2017).

In addition, the computational models acted as participants
as the students projected their identities into their models in
various ways that furthered their inquiry. This is most explicit
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in Garrincha’s example, where he used letters to connect the
isopods to himself and Bruno. When the B-isopods were de-
creasing, he said, Byou died^ to Bruno. When the G-isopods
died, he said, Bthey’re eating me.^ This connection projected
the boys into the model, positioning the model as a participant
that was inextricably linked to Garrincha and Bruno.
Similarly, Camille projected agency and identity into the mod-
el when she spoke directly to agents, warning the isopods to
run away from the salamanders. In this way, the students
projected themselves into the model, moving beyond using
the model as a tool and instead framing their models and the
agents within them as co-participants in interaction. Similar
affective engagement with non-human entities exists in pro-
fessional science practice (Fox Keller 1983; Salk 1983). For
example, Jonas Salk describes affectively projecting into the
systems he studied: BWhen I observed phenomena in the lab-
oratory that I did not understand, I would also ask questions as
if interrogating myself: BWhy would I do that if I were a virus
or a cancer cell, or the immune system?^ Before long, this
internal dialogue became second nature to me; I found that
my mind worked this way all the time^ (Salk 1983, p. 7).

In this context, our data suggest that integrating disciplin-
ary engagement with computational thinking involved know-
ing how to partner with computational agents as participants
rather than simply as tools. This is a shift from the historical
human-centric perspectives on computational thinking.
Computational thinking often describes coding as formatting
problems inways that can be solved by a computer (e.g.,Wing
2008), and computational participation characterizes coding
as a way of sharing and connecting with others in the practices
of the discipline (e.g., Burke 2016). We propose a new per-
spective that includes knowing how to structure one’s engage-
ment with a computer flexibly, including the ability to adopt a
stance that treats a computer not merely as a tool for solving
problems but as a peer with whom one can collaborate
to generate and pursue new lines of inquiry. This per-
spective aligns with practices observed in emerging
STEM fields, in which computational partners are treat-
ed as participants in inquiry (Chandrasekharan and
Nersessian 2015, 2017; Epstein and Axtell 1996; Fox
Keller 2003; Railsback et al. 2006).

Social Dynamics Among Humans and Computers Are
Constantly in Flux

In the analysis above, we present a variety of participation
structures that students employ for engaging with their human
and computational peers. Camille interacted with her comput-
er and rarely interacted with other students, and her participa-
tion with the computer shifted throughout the episode. At the
beginning of the class, she reported data from the computer,
whereas by the end of class, she engaged in conversation with
the computer and narrated joint activities using collective

language like Blet’s.^ In contrast, Marla and Garrincha
interacted with both human and computational peers. Marla
attempted to balance and manage participation in her compu-
tational and social worlds, creating space for interaction with
her computer while sustaining social connections with her
friends. She also leveraged social resources to support
problem-solving with her model, recruiting Amy to help her
balance her environment. Garrincha’s stance toward interac-
tion with Bruno looked less like Bbalancing^ or Bmanaging.^
Instead, Garrincha and Bruno built on each other’s interests to
support a shared, emergent inquiry. Yet, these social roles are
not fixed—Camille, Marla, and Garrincha do not represent
three different Btypes^ of students. Often, research considers
students in categories such as high- or low-achieving, inde-
pendent or social, or other ostensibly stable, often binary, cat-
egories within the curriculum or activity. In contrast, across
the unit and even within a single class session, these three
students engaged in a variety of patterns of interaction with
peers and with their models. This flexible stance mirrors sci-
entists’ shifting ontological stances toward non-human entities
(Latour 1993).

Although Camille worked alone in the example presented
above, at other times in the unit, social interaction played a
significant role in her work. For example, on day 19, Camille
recruited multiple students to help her try to duplicate a block
in her code. After asking the three other students at her table,
she asked Natalia, who was working at another table, for help.
On other days, Camille worked to manage social connections
and academic goals, similar toMarla’s example in the analysis
section. On day 20, Camille made several errors with her code
because she was trying to simultaneously engage in coding
and social interaction. She said, BOh wait. This isn’t the one.
Ah man! I done goofed!^ Between jokes with her friends, she
expressed frustration with her management of her social and
computational worlds, saying, BI need to pay attention!^ Even
so, during the end of semester interviews, Camille said that
she would prefer to work on computational models with other
students rather than alone. She explained, Byou get more help
and so you can be more advanced and you can help other
people so they can be at the same level . . . because when
you’re by yourself, and no one’s there, you kind of get stuck.
And you can’t get past the stuff you’re going through.^ Thus,
Camille’s way of operating in the social space of the class-
room was not rigidly or uniformly either individualistic or
gregarious. She is a complex actor whose stance toward the
other human and computational participants in the classroom
shifted throughout the unit in response to particular needs and
situations.

Garrincha also noticeably shifted his footing across the
unit. On the first day that students interacted with computa-
tional models, Garrincha only spoke to Ashlyn, and only
when she checked in with him to ask how he was doing. As
seen in the example above, Garrincha’s stance toward social
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interaction seemed to dramatically shift when he was sitting
next to Bruno. We were surprised therefore to learn in
Garrincha’s interview that he would prefer to Bbe alone be-
cause – if I be alone I could like concentrate more on what I’m
doing. And if there’s other people and they’re talking around
me – like I get distracted easily.^ Garrincha reinforced this
sentiment on the last day of class. While the students were
working on their biodomes, Garrincha asked if he could use
his computer to finish working on his model. Ashlyn told
Garrincha that he could ask Bruno to work on the model with
him if he wanted, but he said he would rather work by himself.

Marla also demonstrates flux in footing and participation.
Our analysis above demonstrates predominantly how she bal-
ances and manages the social milieu so that she can participate
with her model and friends simultaneously. However, later in
the project, the social dynamics and hierarchy of sixth graders
took precedence, and she focused her efforts on balancing and
managing those social networks rather than the populations of
the agents within her computational model. In summary, in
our analysis, we present examples of three students interacting
with human and computational peers in different ways. Yet,
our data also suggest that students do not conform to distinct
types or categories. Instead, we find that social dynamics and
interactive footing are constantly in flux as students engage
with their computational models and their peers in the class-
room, just as scientists flexibly shift their ontological stance
toward non-human entities (Latour 1993).

Implications for Researchers and Educators

In this study, we focus on students’ interactions with their
models and their peers. However, we recognize that other
contextual features, including the role of the teacher, shape
classroom interactions and students’ opportunities for disci-
plinary engagement and computational thinking. Our data
suggest that computational modeling poses unique challenges
in classrooms. At what might seem a classroom management
level, there is what Jim Kaput described as Bthe millipede
problem^ (Kaput, Personal Communication). As a pioneer
in supporting computational modeling activities in the
SimCalc projects, Kaput compared the Bshow-stopping^ mo-
ments when learners in a classroom get Bstuck^ to the failure
of a few of a millipede’s legs—the entire organism would
come to a halt. Such moments often seem trivial. Camille
got stuck duplicating a block, which is like copying and past-
ing code. Yet this prevented her and others at her table from
moving forward with their models. Similarly, Garrincha and
other students had trouble remembering to compile their new
blocks by pressing Run Code before they clicked Setup.
Students often encounter similar problems at different times,
so if their teacher attempts whole group intervention (as Ms. S
did for Run Code), some students (like Garrincha, in this ex-
ample) are likely to tune out her instructions. Attempting to

help each student individually therefore seems unmanageable,
and trying to do so could cause the teacher to miss opportuni-
ties to focus on the disciplinary objectives that the learning
activity is intended to support. Thus, activities like computa-
tional modeling amplify the importance of effective and prac-
tical management of computers as participants in the class-
room and depend on interactions between students to address
otherwise show-stopping problems. A limitation of this study
is that we did not address the role of the teacher in facilitating
these interactions; this is an important focus for future
research.

Beyond promoting whole class engagement in computa-
tional modeling, there is the challenge of promoting disciplin-
ary engagement. Here, our data suggest that there may be no
single Bcorrect^ way to scaffold for disciplinary engagement
in terms of computational participation. We found that pro-
ductive participation looks different over time and from stu-
dent to student because productive social dynamics are con-
stantly in flux. Therefore, rigid participation structures are
unlikely to yield productive participation in computational
modeling: moreover, since our data suggest that a signif-
icant feature of computational thinking with scientific
models involves adopting an array of stances toward
computational partners, rigidity itself may be counterpro-
ductive. Instead, our data suggest flexible and fluid sup-
ports for productive engagement, including opportunities
for (1) personal engagement, (2) flexible participation
structures, and (3) experimentation with patterns of pro-
ductive engagement. Because we did not explicitly design
to create these conditions, we present these suggestions as
conjectures pointing to a broader design space that should
be explored in future research.

First, we observed that projecting their interests and iden-
tities into their models promoted a Bfusion^ for Garrincha and
Bruno between symbols and referents that facilitated thinking
across agent and aggregate levels (Nemirovsky et al. 1998;
Wilensky and Reisman 2006; Wilensky and Resnick 1999).
Thus, personalizing their model supported engagement in the
task as well as disciplinary thinking in terms of science con-
tent. These data align with earlier research suggesting that
providing students with opportunities for ownership, agency,
and personal engagement with their models can facilitate pro-
ductive disciplinary engagement.

Second, our data suggest that flexible participation struc-
tures allow students to recruit support as needed. Moreover,
working with other students facilitates computational partici-
pation and learning because students can share ideas and
maintain social connections with their peers (Kafai and
Burke 2013). Yet, flexibility can pose challenges as well;
our focal students expressed difficulty balancing the some-
times conflicting demands of the social and academic worlds
in the classroom. For example, Garrincha expressed a prefer-
ence for working alone because other students could be
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distracting. Marla and Camille preferred to work near others,
but were sometimes frustrated with their own incapacity to
manage their social and computational worlds (e.g., BI need
to pay attention!^ from Camille). These data emphasize the
need for research that explores the teacher’s role in recogniz-
ing and leveraging productive dynamics that emerge while
moderating, redirecting, or re-assigning dynamics or group-
ings that are proving counter-productive.

Third, we found that students can productively leverage
sophisticated epistemic resources and approaches for making
sense of their models. For example, Marla systematically ex-
plored relationships in her model by explicitly stating and
revising conjectures with each run of the model. This ap-
proach is consistent with research in science education on an
overt Bpredict, observe, explain^ script (e.g., Kearney 2004).
Though Marla’s strategy may not support learning for all stu-
dents or in all contexts, sharing strategies with students and
providing themwith opportunities to Btry on^ these patterns of
interaction could help students identify productive ways to
engage with their models. Designing scaffolds is difficult,
because providing strategies for engaging with computational
environments can support control-oriented learners but dis-
courage autonomous learners (Rienties et al. 2012).
Furthermore, over-scripting has been demonstrated to dimin-
ish engagement and authenticity in computer-supported col-
laborative learning (e.g., Dillenbourg et al. 2009). Further re-
search is needed to Bbalance the environment^ at this higher
design level—providing guidance and support with scaffolds
designed to help students in these complex tasks.

Flexibility and fluidity are central to all of these sugges-
tions. Thus, in the context of computational modeling, it
seems increasingly important for research to explore and un-
derstand productive roles for teachers. Ultimately, a social
environment in which models can be taken by students as
meaningful participants in their investigations is productive
for supporting disciplinary engagement and computational
thinking, and such an environment is likely to prepare students
for future work at the human-technology frontier. In this pa-
per, we have identified three productive stances toward com-
putational models grounded in students’ existing social re-
sources, demonstrating that students can partner with compu-
tational models as (1) conversational peers, (2) co-
constructors of lines of inquiry, and (3) projections of stu-
dents’ agency and identity. Still, further research is needed to
explore approaches that help teachers and students negotiate
and manage interactions with human and computational par-
ticipants. Such researchwould be valuable not only in terms of
supporting computational participation but also in terms of
understanding and scaffolding students’ engagement in the
core disciplinarily practice of modeling in STEM.
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