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ABSTRACT
With the increased adoption of Mobile CrowdSensing platforms in
urban environments, the mobility of participating self-motivated
crowds already roaming in the field can be coordinated to assist in
completing spatio-temporal sensing tasks. In this work, we propose
to utilize the mobility predictability within such platforms, coupled
with the availability of spatio-temporal tasks on the mobility field,
to recommend routes for participants in real-time. In this paper, we
define the graph-theoretic measure of Temporal Coverage Centrality,
as well as adopt techniques from distributed systems to define three
online route recommendation mechanisms, which can be used to
coordinate the mobility of participants within MCS platforms to
optimize system performance. Moreover, we empirically evaluate
the efficiency of the proposed mechanisms with an insight on their
benefits.
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1 INTRODUCTION
Mobile CrowdSensing (MCS) platforms are increasingly used to
inexpensively collect sensing data in urban environments, as they
leverage the help of participating self-motivated crowds already
roaming in a mobility field to assist in completing spatio-temporal
sensing tasks, as shown in Figure 1. Sensing tasks can vary from
taking images with the camera, to measuring acoustics with the
microphone, to answering questions on a mobile application [9].
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Figure 1: An example of a typical MCS platform, with spatio-
temporal tasks and participants roaming around the mobil-
ity field using various transportation modes.

In most Mobile CrowdSensing (MCS) platforms, participants
have access to the sensing tasks through a central service, which
has various degrees of involvement in the process of task allocation.
Task allocation is either agent-initiated, in which the participating
agents pick the tasks to complete independently [16], or server-
initiated, in which the service provider assigns tasks to roaming
agents based on system needs and the agents’ location, availability,
and sensing capabilities [14]. In this work, we envision an MCS
platform that coordinates the mobility of its participants, according
to their personal mobility constraints, to improve the overall plat-
form’s performance, namelyCoordinated -Mobile CrowdSensing
(C-MCS) platforms.

The main premise of C-MCS platforms is that a human agent /
participant willingly joins the platform by sharing their journey
information, in the form of their two spatio-temporal end-points;
representing the start and end locations, and the earliest departure
time and the latest arrival time. By sharing their spatio-temporal
constraints on their mobility, agents implicitly identify their flexibil-
ity, i.e., willingness to deviate from their regular paths to participate
in task completion. Agents have an envelope of behaviors accord-
ing their degree of flexibility, and they are assumed to be at the
disposal of the platform as long as the decisions made are within
that envelope, giving the platform the chance to coordinate the
mobility of all participants, as shown in Figure 2.

Paper Contribution.
In this paper, we investigate the problem of mobility coordination
within C-MCS platforms, as agents1 join the platform in an online
1The terms agent and participant are used interchangeably throughout this paper.
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Figure 2: Paths are recommended for participants via a cen-
tral task allocation service, which takes as input the avail-
ability information of spatio-temporal tasks andmobile par-
ticipants.

model, i.e., their spatio-temporal journey information is available
in real-time. We define various online route recommendation mech-
anisms to coordinate participants mobility, using techniques from
graph-theory and distributed systems. Moreover, we develop an
evaluation platform to benchmark their performance using both
real and synthesized mobility traces.

Paper Outline.
In Section 2, we present our the C-MCS system model, and in
Section 3 we define our online route recommendation mechanisms
for mobility coordination within such C-MCS platforms. In Section
4, we present the developed evaluation platform, and then discuss
the evaluation results. Finally, we conclude with a description of
related work in Section 5, and a summary with discussion of future
and current work in Section 6.

2 COORDINATED MOBILE CROWDSENSING
In a typical Mobile CrowdSensing (MCS) platform, sensing tasks are
distributed over the mobility field, be it a city, campus, or within a
smart building, and participants roam freely over that mobility field,
according to their personal hidden schedules. On the other hand,
in Coordinated MCS (C-MCS) platforms, participants share infor-
mation about their schedules, giving permission to the platform
to coordinate their mobility, in return for profitable path recom-
mendations. In this section, we present the system model of such
C-MCS platforms.

2.1 Graph and Tasks
Themobility field can bemodeled as a graphwith a set of predefined
verticesV and edges E, such as a Manhattan graph that can be used
to model a structured urban setting as shown in Figure 1. The
sensing period varies based on the application, but it is reasonable
to assume a day-long period, during which the mobility field graph
would typically remain static.

Two types of sensing tasks are considered; spatial and spatio-
temporal tasks. Spatial tasks are typically seen in MCS applications
when time is not a factor, as opposed to spatio-temporal tasks

that are time-sensitive, such as those within health-based [16] and
delivery service [1] applications. We define tasks by the general
definition of (v, [t], [p]); in which v ∈ V represents the location of
the task, t ∈ N represents the specified time of completion, and
p ∈ R represents the payoff to be received for completing the task.
The values of t and p are optional in the task definition, to allow for
one definition for all types of tasks; spatial, spatio-temporal, and
free tasks. For the purposes of this paper, we assume that sensing
tasks are known by the beginning of the sensing period.

To further optimize this model, we adopt the definition ofWeight
Evolving temporal (WET) graphs [2] to model both the graph and
the spatio-temporal tasks within it. In a WET graph, G = (V ,E,w),
the temporal weight function,w , represents the reward associated
with completing tasks on the mobility field graph. It associates a
location, v ∈ V , and time, t > 0, with a reward, which represents
the payoff collected by completing the tasks with the defined spatio-
temporal constraints, (v, t).

The novelty of the WET graph model lies in the temporal weight
function, which links the weight of a vertex to the reward of a
specific task at some point in time. This allows for various scoring
models that are typically encountered in MCS platforms, such as
instantaneous, steady, and time-window scoring. In the instanta-
neous model the reward is valid at a single time step, in the steady
model the reward is valid for the entire time horizon, i.e., spatial
tasks, and in the time-window model the reward is valid during a
specific time window.

2.2 Mobile Participants
Participants inMCS platforms have a wide range of mobility flexibil-
ity based on their personal schedules and needs, which is depicted
in Figure 3. Participants with no flexibility always expect to be
routed through the shortest path to their destinations, whereas,
participants with extreme flexibility can go to any location of their
choosing at any time.

Figure 3: Participants have a wide range of constraints on
their mobility; ranging from none flexible, in which strict
shortest paths are required, to extremely flexible, in which
the participant has no limitations on their mobility. This
work considers the middle range of that spectrum, in which
participants have some slack in their mobility constraints.

In Coordinated-MCS, we assume that participants have some
spatio-temporal constraints, and are willing to share them with
the platform in return for profitable path recommendations. In this
work, we assume that participants need to only share their spatio-
temporal endpoints with the platform, in the form of origin and



destination locations as well as their earliest departure and latest
arrival times. This information is then used by the platform for task
allocation and path recommendations.

Such an assumption is not very far fetched, since the information
required is minimal, and can be easily obtained from the partic-
ipants beforehand. Participants can provide their temporal con-
straints accompanied with their spatial constraints through their
GPS navigation applications, or can share their schedules with the
platform at the beginning of the sensing period. Moreover, a par-
ticipant’s trajectory can be predicted from their repeated behavior,
such as going from home to work and vise versa every day.2

Participants join the C-MCS platform by sharing their spatio-
temporal endpoints with the platform, and they can join at any
time within the sensing period. Given these endpoints and the
list of sensing tasks, the platform attempts to allocate tasks to the
participant, as shown in Figure 2, with an objective to maximize
the reward/payoff collected from completed tasks.

3 ROUTE RECOMMENDATION IN C-MCS
The goal of C-MCS platforms is to coordinate the mobility of its
participants to optimize the platform’s performance. In this section,
we define various online route recommendation algorithms, with an
objective to maximize the rewards collected from tasks completed
within the platform.

Before defining our online route recommendation algorithms,
we differentiate between a participant’s time of arrival, i.e., when
they share their endpoints, and their earliest time of departure,
i.e., when they can start moving towards their destination. Route
recommendation can be performed on-arrival, regardless of the
participant’s expected departure time, or on-move, delaying the
decision as much as possible. We explain this further using the
example in Figure 4, in which agents A and B are the participants.
Agent A arrives earlier than their earliest departure time, while
Agent B arrives exactly when they are able to start moving. For
agent B, the routing decision is always made on-arrival. However,
for agent A, the routing decision can be made either on-arrival or
on-move.

Since the tasks allocated to the participants dictate how they
should move along the mobility field, the process of mobility coordi-
nation in C-MCS is equivalent to that of task allocation. Algorithm 1
defines the actions that would be taken by the platform throughout
the sensing period, with the on-move model of allocation. The on-
arrival mode of allocation would be similar, but with the decision
made on the arrival of the participant.

3.1 Individually-Optimal Route
Recommendation

An initial straight-forward approach would be to find the optimal
set of tasks to be allocated to each individual participant as needed,
whether on-move or on-arrival. Given a WET graph, G, and a
participant’s spatio-temporal endpoints, the objective of an optimal
path is to maximize the reward collected from tasks completed
on the way. In other words, and without loss of generality, the

2 For the purposes of this paper, it assumed that the spatio-temporal endpoints are
known regardless of the method of collection. The ideas mentioned in this paragraph
are part of our current and future work.

(a) In this example, the routing decision is made once the
participant joins the platform. When agent A moves later
in the timeline, no further action needs to be made by the
platform.

(b) The same example as above, but with on-move allo-
cation. The routing decision is made just as the agent is
ready to move.

Figure 4: Example for different modes of allocation.

objective is to maximize the total reward collected from visiting
various WET graph vertices, which could be achieved using any of
the optimal routing algorithm defined in [2].

Algorithm 2 takes as input the WET graph and the participant’s
spatio-temporal endpoints, (vstar t ,vend , tstar t ,Tmax ), and finds
the optimal path that starts at vstar t and ends at vend in at most
Tmax time units. The algorithm’s optimality is derived from the
recurrence of the dynamic program on which its based, and its
running time complexity is O(Tmax |E |) [2].

3.2 Backfilling Coordination
The Backfilling technique has long been used for scheduling online
jobs in distributed systems [3, 25], in which online jobs are grouped
together into batches of jobs, and scheduling decisions are made
on the batch as a whole to improve the overall performance of the



Algorithm 1 Route recommendation as participants move in C-
MCS
Input: G = (V ,E) in
1: Collect task information (T )
2: Generate WET graph G = (V ,E,w)

3: while within sensing period do
4: for each arriving participant a do
5: Mark a’s earliest departure time
6: end for
7: for each participant’s a departure time do
8: Decide on tasks to be allocated
9: for each task t chosen do
10: Allocate t to a
11: Remove t from T
12: end for
13: end for
14: end while

Algorithm 2 Optimal reward-maximizing routing on WET graphs
with instantaneous tasks.
Input: G = (V ,E,w), (vstar t ,vend ), Tmax in
Output: Optimal routes from vstar t to all destinations out
1: Create the time-ordered graph GTmax from G
2: Create arrayM of size (|V | ×Tmax )

3: for t = 2 to Tmax do
4: for each vertex v ∈ V t do
5: for each vertex u ∈ V t−1 s.t. (u,v) ∈ Et−1,t do
6: Choose u with maximumM[u, t − 1]
7: end for
8: M[v, t] = M[u, t − 1] +

∑
∀r w(r ,v, t)

9: end for
10: end for
11: return M

system. The efficiency of this approach relies greatly on how long
a job can be forced to wait to place it with a larger batch of jobs.
However, in crowdsensing platforms, forcing a participant to wait
and delaying them from reaching their destination is not an option.

Therefore, in this mechanism, we heavily rely on the differen-
tiation between arrival time and earliest departure time, and all
decisions can only be made on-move. As shown in Algorithm 3,
the allocation is decided based on the available set of participants.
A participant is available if they have already joined the system,
by submitting their spatio-temporal constraints, but is not ready
to move yet. The algorithm defined is a 1

2 -approximation greedy
algorithm[4], in which the utility of an agent/participant can be
defined as the total path length taken, the total revenue collected,
or some other sub-modular cost function. Although the mechanism
below decides on how to distribute the tasks to all available par-
ticipants, only the participant moving at the moment of executing
that mechanism is provided with task recommendations.

The running time complexity of this mechanism is O(|T | ∗ |V | ∗

cost), in which cost represents the complexity of computing the
utility function of the participant, based its definition. Although
the algorithm itself is a 1

2 -approximation of the optimal, the whole

Algorithm 3 Backfilling-based route recommendation mechanism
for a specific participant (theAgent)
1: Sort tasks in decreasing order by their payoff/reward
2: for each task t do
3: for each available agent a do
4: if t is feasible for a then
5: Calculate the utility of a if t is allocated to them
6: end if
7: end for
8: Find the agent a∗ with highest utility
9: Mark t for a∗
10: end for
11: return the tasks marked for theAgent

route recommendation process isn’t guaranteed to be as efficient,
since only a single agent follows the allocation decided by the
algorithm at a time.

3.3 Centrality-based Coordination
Although the backfilling-based recommendation is very efficient,
it is highly dependent on participants arriving a good amount of
time before their earliest departure time, which is not always the
case in C-MCS applications. If all participants arrive exactly before
their earliest departure time, as in the case of using GPS navigation
applications, then all allocations are focused on increasing the utility
of each individual participant, leading to a performance similar to
that of the Individually-Optimal route recommendation mechanism
defined above.

To overcome this limitation, we propose using the node cover-
age centrality metric, as defined in Equation 1, which is a novel
centrality measure that captures the frequency of traversing a node
given a set of spatio-temporal tasks on a WET graph [2].

The definition of Coverage Centrality, as shown in Equation 1,
is adopted from the classic definition of Betweenness Centrality
[8]. A node’s coverage centrality is defined as the ratio between
the number of optimal routes between all pairs of spatio-temporal
endpoints on the WET graph that pass through that node, and the
total number of optimal routes between all pairs of spatio-temporal
endpoints on the graph.

coveraдe(v) =

∑
∀(i, j,t,Tmax ) πv (i, j, t ,Tmax )∑
∀(i, j,t,Tmax ) π (i, j, t ,Tmax )

(1)

In which (i, j, t ,Tmax ) represents a set of spatio-temporal end-
points and can be further expanded to

∑
i ∈V

∑
j ∈V

∑
1≤t ≤T∑

1≤Tmax ≤T . The function π (i, j, t ,Tmax ) represents the number
of optimal routes between the spatio-temporal endpoints, (i, t)
and (j, t + Tmax ), and πv (i, j, t ,Tmax ) represents the number of
optimal routes between the spatio-temporal endpoints, (i, t) and
(j, t +Tmax ), which includes the vertex v .

This coverage centralitymetric can be computed at the beginning
of the sensing period, as the task information becomes available.
However, this metric, as defined in [2] is very inefficient to compute
frequently, since it’s running the optimal Algorithm 2 for every
possible set of spatio-temporal endpoints.



Algorithm 4 Centrality-based route recommendation algorithm
1: Sort tasks in T in increasing order based on the coverage cen-

trality of their locations
2: for each task t in T do
3: if t is on a’s route to destination and feasible then
4: Allocate t to a
5: end if
6: end for

In urban environments, we have the advantage that participant
mobility is fairly predictable [7, 13]. Therefore, we propose that
the metric be computed based on the history of spatio-temporal
endpoints encountered by the system, as shown in Equation2.

coveraдe(v) =

∑
∀(i, j,t,Tmax )∈H πv (i, j, t ,Tmax )∑
∀(i, j,t,Tmax )∈H π (i, j, t ,Tmax )

(2)

This temporal definition of the coverage centrality metric re-
duces the complexity of computing the centrality value, while
maintaining the most relevant information on the participants’
most common routes. Various improvements can be further done
to this metric, such as to include randomly chosen spatio-temporal
endpoints in the computation. However, our evaluation results
show that the effect of these improvements is minimal on the task
allocation process.

4 PERFORMANCE EVALUATION
In this section, we present our evaluation platform, and present the
results obtained from evaluating the defined online route recom-
mendation mechanisms.

4.1 Evaluation Platform
A discrete event simulator has been developed with the purpose
of evaluating the effectiveness of various task allocation mecha-
nisms on the performance of C-MCS platforms. The simulator has
a modular design, which allows for the addition of new allocation
mechanisms. Moreover, all activities occurring in the simulated
environment are traced to allow for new metrics to be measured in
the future.

Task Model. Due to the lack of crowdsensing datasets, with
recorded sets of spatio-temporal tasks, we generate our own random
sets of spatio-temporal tasks on various graph structures. Tasks
are created with randomly chosen locations, spatially distributed
uniformly over the mobility field, and with temporal demand that
is generated according to an exponential distribution with a mean
that is a parameter of the simulation.

Agent Model. For the purposes of this paper, we generate pairs
of spatio-temporal endpoints tomimic participants’ behaviorswithin
the platform. The actual mobility pattern of the participants is a
result of the allocation mechanism adopted in the simulation, which
greatly depends on the distribution of the spatio-temporal tasks on
the mobility field.

Participants’ spatio-temporal endpoints are generated using two
models; random and urban. In the random model, the spatial end-
points are chosen uniformly at random, while in the urban model,
typical daily mobility behavior is modeled, in which agents move

from home to the city center in the morning, and move back at
the end of the day. For both models, the temporal demand is gener-
ated according to an exponential distribution with a mean that is a
parameter of the simulation.

Evaluation Metrics. In the experiments shown below, we mea-
sure the system’s participation ratio, task coverage, rewards ratio,
and agent deviation. The system’s participation ratio is the ratio
between participants generating revenue and the total number of
participants, its task coverage is the ratio between completed tasks
and all available tasks, its revenue collected is the ratio between
rewards collected and maximum possible rewards, and its agent
deviation is the ratio between the agent’s final path length and
shortest path length. All results shown below are averages of 30
executions of the simulation with varying random seeds.

4.2 Effectiveness of Temporal Coverage
Initially, we evaluate the effectiveness of the defined temporal cov-
erage metric, when compared to the classical coverage centrality
metric. Due to the lack of any optimizations to the classical metric,
it is computationally inefficient to execute it as defined for larger
graphs. Therefore, all experiments in this subsection are performed
on a 7x7 Manhattan Grid, with a simulation time of 6 hours, or
360 time units, and 300 spatio-temporal tasks uniformly distributed
over the grid.

In the results shown in Figure 5 represent the results obtained
by varying the flexibility factor of a 50 agents. An agent’s flexibility
factor indicates the increase in path length that an agent is willing
to accept. A flexibility factor of 0.5 means that the agent might
accept paths that are 1.5 the length of their shortest paths. These
results show that the temporal coverage metric performs as well
as the classical coverage metric, even as the flexibility factor is
increased. They also indicate the power of flexibility, as the task
coverage ratio more than doubled with a small increase of flexibility
from 0.4 to 1, while maintaining a participation ratio of less than
15%.

Another interesting pattern is that the agent deviation ratio
remains at 1 , i.e., no deviation, until an adequate flexibility value
is reached, which highly increases the task coverage and rewards
ratio, along with a slight increase in participation. This due to
the coordination aspect of the allocation, as participants have an
increased envelope of choices, due to the increased flexibility, longer
routes are chosen to optimize for task coverage, to avoid congestion
around most popular tasks.



(a)

(b)

(c)

(d)

Figure 5: Task coverage and rewards increase at a high rate
with the increase of flexibility, even as participation ratio
remains at a low value.

In Figure 6, represents the results of varying the number of
participants roaming the field, with uniform mobility models, and
a flexibility factor of 0.5. The task coverage ratio increases at a
similar rate as the increased number of agents, which is due to
the rigid schedules of users that make deviations less likely. This
scenario resembles current MCS platforms, in which participants
aim to minimize their trip duration, thus limiting the possibility
of mobility coordination and improved task coverage with lower
participation rates.

Figure 6: With less flexibility, many participants are needed
to coordinated to cover as many tasks as possible. Even with
the increased number of participants, the participation ratio
keeps increasing to cover more tasks.

This is not the case in Figure 7, which has the same exact simu-
lation parameters except for a flexibility factor of 2. In this setting,
participants can be coordinated to take longer routes, thus covering
more tasks with less participation rate. Moreover, we note that
the task coverage ratio seems to plateau after a certain number of
agents, which indicates a saturation in the mobility field.

Figure 7: The effect of increasing the flexibility factor of the
agents can be seen in the decreasing participation ratio, even
with similar task coverage rates.

4.3 Optimal Routing vs. Backfilling
In the next set of experiments, we evaluate the performance of all
proposed mechanisms against each other. Since we have shown that



temporal coverage can be used in place of the classical coverage
metric, we can increase the graph sizes. All experiments in this
subsection are performed on a 20x20 Manhattan Grid, with a simu-
lation time of 6 hours, or 360 time units, and 3000 spatio-temporal
tasks uniformly distributed over the grid.

In these experiments we compare the performance of all pro-
posed mechanisms against each other, as well as against short-
est path, in which the shortest path is chosen for all agents, and
individual-revenue, in which the agent picks one task at a time
based on its revenue. We vary the value of the flexibility factor with
the same number of agents of 1000.

Figure 8: The performance of the temporal coverage and
backfilling mechanisms keep improving, until it almost
reaches that of the optimal.

Figure 9: An advantage of the backfilling technique is that it
employs the help of less participants while gaining almost
the same task coverage as other efficient mechanisms.

All of the results obtained in these experiments have shown that
the temporal coverage coordination mechanism performs as well
as the backfilling mechanism (with 30 minute earlier arrival rate).
They indicate that the individual optimal is superior to all other

mechanisms no matter the value of flexibility, which is due to the
uniformity of task distribution over space and time3

Moreover, for the backfilling-based mechanism, we note the
decreased participation rate accompanied with the increased task
coverage as the flexibility increases. This is due to the nature of the
backfilling technique itself, as it groups participants together before
making allocation decisions, thus further optimizing the allocation.

5 RELATEDWORK
Task Allocation.
Task allocation in MCS platforms can be generally classified into
the two categories of single-task and multi-task allocation. Both of
which can be used to optimize various system objectives, such as
participation, quality of work, energy efficiency, and task comple-
tion among many.

In single-task allocation mechanisms, participants are typically
assigned a single task in each allocation cycle, such as in [6], in
which auctions are used to decide on optimal and truthful task
allocation. In [12], the privacy of bidders is a concern of the system,
and a group-based bidding approach is adopted. In work done
by Xiong et al. in [24], the objective was to increase task coverage
while minimizing the energy consumed by the participating devices,
while using the Piggyback approach as defined in their earlier work
on CrowdTasker [23].

On the other hand, multi-task allocation mechanisms attempt to
coordinate the allocation of tasks to optimize for the system as a
whole, such as in PSAllocator [19], in which participants movement
is predicted, and then the allocation problem is solved as a bipartite
matching problem. Similarly in TRACCS [5] and [22], optimization
techniques are used to coordinate participant mobility to maximize
the total payoff from assigned tasks. Multi-task allocation can also
be used for assigning interdependent tasks as in [20], in which the
quality of each task is ensured as interdependent tasks are being
allocated.

Node Centrality.
For classically defined temporal graphs/networks, the centrality of
a node was measured based on number of shortest paths that pass
through that node in [18]. In [10], temporal graphs are modeled as
a sequence of static graphs, labeled with the time the edge existed.
In [11], the authors presented time-ordered graphs, which is a
powerful model for characterizing a temporal graph, and redefined
basic temporal centrality measures accordingly. In [17], the notion
of temporal vertices is defined, which are robust against time scale
changes, and efficiently compute various centrality values.

More centrality measures have been proposed for temporal
graphs, as in [15, 21]. However, all of these measures are not suit-
able for identifying central nodes in a temporal graph model such
as WET graphs, since their main focus is on the evolution of graph
edges and the graph’s connectivity over time. In [2], the notions
of weight evolving temporal graphs and coverage centrality have
been defined, but their effect on online mobility coordination has
not been clearly investigated. In this work, we further develop

3Evaluating the performance of these mechanisms with various task distribution
models is part of our future work.



these definitions, and compare them against existing optimal rout-
ing algorithms designed for offline route coordination in C-MCS
platforms, such as those defined in [4].

6 CONCLUSION AND FUTUREWORK
In this paper, we presented the notion of using task allocation
mechanisms to coordinate the mobility of online participants in
Coordinated-MCS platforms. Given the difficulty of coordinating
crowd mobility in general, the requirement of allocating spatio-
temporal tasks to them adds to the complexity of the coordination
problem. We defined several route coordination mechanisms, and
evaluated them empirically. Moreover, we defined the temporal
coverage centrality metric, and showed it to be equally effective
for mobility coordination when compared to the classical coverage
centrality metric.

This paper is a first step towards a deeper study of mobility
coordination mechanisms for C-MCS platforms. Our future work
is two parts; theoretical and practical. On the theoretical front, we
plan to further investigate other coordination mechanisms, as well
as define appropriate incentive mechanisms to accompany them.
Moreover, we plan to investigate the usefulness of the temporal
coverage metric in other aspects of MCS platforms, such as resource
placement. On the practical front, we plan to evaluate the effec-
tiveness of our mobility coordination mechanisms on real crowds,
specifically in a college campus setting, in which mobility schedule
can be defined beforehand.
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