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Abstract
We present a new and very concrete connection between cluster algebras and knot
theory. This connection is being made via continued fractions and snake graphs. It
is known that the class of 2-bridge knots and links is parametrized by continued
fractions, and it has recently been shown that one can associate to each continued
fraction a snake graph, and hence a cluster variable in a cluster algebra. We show that
up to normalization by the leading term the Jones polynomial of the 2-bridge link is
equal to the specialization of this cluster variable obtained by setting all initial cluster
variables to 1 and specializing the initial principal coefficients of the cluster algebra as
follows y1 = t−2 and yi = −t−1, for all i > 1. As a consequence we obtain a direct
formula for the Jones polynomial of a 2-bridge link as the numerator of a continued
fraction of Laurent polynomials in q = −t−1. We also obtain formulas for the degree
and the width of the Jones polynomial, as well as for the first three and the last three
coefficients. Along the way, we also develop some basic facts about even continued
fractions and construct their snake graphs. We show that the snake graph of an even
continued fraction is isomorphic to the snake graph of a positive continued fraction if
the continued fractions have the same value. We also give recursive formulas for the
Jones polynomials.

Keywords Cluster algebras · Jones polynomial · 2-Bridge knots · Continued
fractions · Snake graphs
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1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in 2002 in the context
of canonical bases in Lie theory [8]. Since then many people have worked on cluster
algebras and the subject has developed into a theory of its ownwith deep connections to
a number of research areas including representation theory of associative algebras and
Lie algebras, combinatorics, number theory, dynamical systems, hyperbolic geometry,
algebraic geometry and string theory.

In this paper, we develop a new connection between cluster algebras and knot
theory. The key to this relation is the use of continued fractions in both areas. To every
continued fraction, one can associate a knot or a 2-component link which is built up
as a sequence of braids each of which corresponding to one entry of the continued
fraction. The class of knots (and links) obtained in this way are called 2-bridge knots.
They were first studied by Schubert in 1956 in [28] and the relation to continued
fractions goes back to Conway in 1970 in [5].

A significant part of knot theory is concerned with knot invariants, and one of the
most important knot invariants is the Jones polynomial, introduced by Jones in 1984 in
[14]. The Jones polynomial of an oriented link is a Laurent polynomial in one variable
t± 1/2 with integer coefficients.

A cluster algebra is a Z-subalgebra of a field of rational functions in several vari-
ables. To define a cluster algebra, one constructs a possibly infinite set of generators
called cluster variables, by a recursivemethod calledmutation. Each cluster variable is
a polynomial in two types of variables; the initial cluster variables x±1

1 , x±1
2 , . . . , x±1

N
and the initial principal coefficients y1, y2, . . . , yN , see [8,9], and with positive integer
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coefficients, see [17]. The F-polynomial of the cluster variable is obtained by setting
all initial cluster variables equal to 1.

The relation between cluster algebras and continued fractions was established
recently by Çanakçı and the second author in [4]. They showed that the set of positive
continued fractions is in bijection with the set of abstract snake graphs. These are
planar graphs that appeared naturally in the study of cluster algebras from surfaces
in [20] (also [25] for the special case of the once-punctured torus). The bijection is
such that the numerator of the continued fraction is equal to the number of perfect
matchings of the snake graph.

In [20,21], the authors gave a combinatorial formula for the cluster variables for
cluster algebras from surfaces, and in [22] this formula was used to construct canonical
bases for these cluster algebras in the case where the surface has no punctures. For
each cluster variable, the authors construct a weighted snake graph from geometric
information provided by the surface. The combinatorial formula expresses the cluster
variables as a sum over all perfect matchings of that snake graph.

In [4], the authors used their new approach to snake graphs via continued fractions
to give another formula for the cluster variables of a cluster algebra of surface type
(with trivial coefficients) which expresses the cluster variable as the numerator of a
continued fraction of Laurent polynomials. This formula was generalized by Rabideau
[26] to include cluster algebras with principal coefficients.

Our main result in this paper is that these cluster variables specialize to the Jones
polynomials of 2-bridge links.

In order to make this statement precise, we must first ensure that the 2-bridge
link as well as its orientation is uniquely determined by the continued fraction.
We found that the most natural way to do so is to work with even continued frac-
tions [b1, b2, . . . , bm], where each entry bi is an even non-zero integer (possibly
negative). This is no restriction, since every 2-bridge link is associated to an even
continued fraction. Moreover, if [b1, b2, . . . , bm] is an even continued fraction and
[a1, a2, . . . , an] is a positive continued fraction such that both have the same value
[b1, b2, . . . , bm] = p/q = [a1, a2, . . . , an], then the associated 2-bridge links are
isotopic and the associated snake graphs are isomorphic.

To state our main theorem, recall from above that each cluster variable is a polyno-
mial in variables x±1

1 , x±1
2 , . . . , x±1

N , y1, y2, . . . , yN , and that the Jones polynomial
is a polynomial in one variable t± 1/2. Denote by Fb1,b2,...,bm the specialization of
the cluster variable of the continued fraction [b1, b2, . . . , bm] obtained by setting
x1 = x2 = · · · = xN = 1, y2 = y3 = · · · = yN = −t−1 and y1 = t−2. Then
our main result is the following.

Theorem 1.1 (Theorem 7.1) Let [b1, b2, . . . , bm] be an even continued fraction, let
V[b1,b2,...,bm ] be the Jones polynomial of the corresponding 2-bridge link, and let
Fb1,b2,...,bm be the specialized cluster variable. Then

V[b1,b2,...,bm ] = δ t j Fb1,b2,...,bm , (1.1)

where δ = ±1 and j = ∑m
i=1 max((−1)i+1bi + sign(bi bi−1)

2 ,− 1
2 ).
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We also give a simple formula for the sign δ. Thus the Jones polynomial is com-
pletely determined by the cluster variable, and hence this theorem establishes a direct
connection between knot theory on the one hand and cluster algebras on the other.
This also shows that the Jones polynomial of a 2-bridge knot is an alternating sum,
which is not true for arbitrary knots. Another direct consequence of the theorem is
that the difference between the highest and the lowest degree in the Jones polynomial
is equal to the sum of the entries in the positive continued fraction a1 + a2 + · · ·+ an .

We also obtain the following direct formula for the Jones polynomial in terms of
the continued fraction. In the statement, we use the notation [a]q = 1 + q + q2 +
· · · + qa−1 for the q-analogue of the positive integer a, and we let q = −t−1, and
�i = a1 + a2 + · · · ai .
Theorem 1.2 (Theorem7.4)Let [a1, a2, . . . , an]be apositive continued fraction. Then
up to normalization by its leading term, V[a1,a2,...,an ] is equal to the numerator of the
following continued fraction

(a) If n is odd,

[
[a1 + 1]q − q, [a2]q q−�2 , [a3]q q�2+1, . . . , [a2i ]q q−�2i ,

[a2i+1]q q�2i+1, . . . , [an]q q�n−1+1
]
.

(b) If n is even,

q�n
[
[a1 + 1]q − q, [a2]q q−�2 , [a3]q q�2+1, . . . , [a2i ]q q−�2i ,

[a2i+1]q q�2i+1, . . . , [an]q q−�n
]
.

This result is very useful for computations. We give several examples, the biggest
being the Jones polynomial of a link with 20 crossings, corresponding to the continued
fraction [2, 3, 4, 5, 6]. The theorem also allows us to obtain direct formulas for the
first 3 and the last 3 coefficients of the Jones polynomials in Theorem 7.6.

As mentioned above, a main ingredient in the proofs is the use of even continued
fractions. These were used in knot theory previously, see for example [15], but not
in cluster algebras. We also did not find an algebraic treatment of the topic in the
literature, so we include the basic algebraic foundation of even continued fractions in
Sect. 2, and we apply it to the study of snake graphs in Sect. 3. Our main result in
Sect. 3 is the following.

Theorem 1.3 (Theorem 3.3) Given a positive continued fraction [a1, a2, . . . , an] and
an even continued fraction [b1, b2, . . . , bm] such that both have the same value p/q,
then the corresponding snake graphs are isomorphic.

We also study the Jones polynomials of 2-bridge links and develop recursive for-
mulas which we need to prove our main results.

Let us point out that Hikami and Inoue have obtained a realization of knots in a
cluster algebra of a disc with several punctures using the braid presentation of the knot
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in [12,13]. Their approach as well as their results are very different from ours. Let us
also mention the work of Shende, Treumann andWilliams, who relate cluster algebras
to Legendrian knots [29]. Also their work is very different from ours.

The paper is organized as follows. In Sect. 2, we review positive continued fractions
and develop basic results for even continued fractions. We introduce snake graphs of
even continued fractions in Sect. 3 and compare them to snake graphs of positive
continued fractions. Section 4 contains a short overview of 2-bridge links. We also fix
conventions for the links and their orientations in that section. In Sect. 5, we define the
Jones polynomial and develop recursive formulas for the Jones polynomial of 2-bridge
links from the definition. We also compute the degree of the Jones polynomial and the
sign of the leading coefficient. Section 6 contains a brief review of cluster algebras,
especially the formula for the (specialized) cluster variables in terms of continued
fractions. We also prove recursive formulas for the F-polynomials in this section.
Our main results are stated and proved in Sect. 7. This section also contains several
examples.

We would like to thank Michael Shapiro for helpful comments.

2 Positive continued fractions versus even continued fractions

In this section, we list a few results on continued fractions that we will need later. For a
standard introduction, we refer to [11, Chapter 10]. For a more extensive treatment of
continued fractions see [24]. For the relation between continued fractions and cluster
algebras see [4].

In this paper a continued fraction is an expression of the form

[a1, a2, . . . , an] = a1 + 1

a2 + 1

a3 + 1

. . . + 1

an

where the ai are integers (unless stated otherwise) and an �= 0. We will be mainly
concerned with the following two types of continued fractions. A continued fraction
is called positive if each ai is a positive integer, and it is called even if each ai is a
nonzero even integer.

For example, the rational number 27
10 can be represented as a positive continued

fraction as well as an even continued fraction as follows.

27

10
= [2, 1, 2, 3] = [2, 2,−2, 4].

Indeed, the first expression is obtained by the Euclidean division algorithm
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27 = 2 · 10 + 7
10 = 1 · 7 + 3
7 = 2 · 3 + 1
3 = 3 · 1,

and the second expression is obtained by the following division algorithm

27 = 2 · 10 + 7
10 = 2 · 7 + (− 4)
7 = (−2) · (− 4) + (− 1)

− 4 = 4 · (− 1).

We often use the notation N [a1, a2, . . . , an] for the numerator of the continued
fraction. Thus N [2, 1, 2, 3] = 27.

Lemma 2.1 Let p > q > 0 be integers.

(a) There exist unique integers a, r such that p = aq + r , with a > 0 and 0 ≤ r < q.
(b) There exist unique integers b, s such that p = bq + s, with b ∈ 2Z\{0} and

−q ≤ s < q.

Moreover, if pq is even then so is qs.

Proof Part (a) is the Euclidean division algorithm in Z. To prove (b), we let b = a
and s = r if a is even, and we let b = a + 1 and s = r − q if a is odd. Then
p = bq + s and the inequalities 0 ≤ r < q imply the inequalities −q ≤ s < q. To
prove uniqueness, suppose we have another pair b′, s′ satisfying the required property.
Then, since bq + s = b′q + s′, we have |b − b′|q = |s′ − s| < 2q, and since b − b′
is even, it follows that b = b′ and s = s′. ��
Example 2.2 The even continued fraction of p/(p − 1) is [2,−2, 2,−2, . . . ,±2]
with a total of m = p − 1 coefficients. Thus 2/1 = [2], 3/2 = [2,−2], 4/3 =
[2,−2, 2], 5/4 = [2,−2, 2,−2].
Proposition 2.3 Let p, q be relatively prime integers with p > q > 0. Then

(a) p/q has a positive continued fraction expansion p/q = [a1, a2, . . . , an] which is
unique up to replacing the coefficient an by the two coefficients an − 1, 1.

(b) If p or q is even, then p/q has a unique even continued fraction expansion.
(c) If p and q are both odd then p/q does not have an even continued fraction

expansion.

Proof Part (a) is well known, see for example [11, Theorem 162].We prove part (b) by
induction on p. If p = 2 then q = 1 and p/q = 2 = [2]. To show that this expansion is
unique, suppose that 2 = [b1, b2, . . . , bm]withm > 1. Then 2 = b1+1/[b2, . . . , bm],
which implies that −1 ≤ 2 − b1 ≤ 1. Since b1 is even, we conclude b1 = 2 and thus
1/[b2, . . . , bm] = 0 which is impossible.

Now suppose that p ≥ 2. Lemma 2.1 implies the existence of unique b1, s with
p = b1q + s with b1 even and −q ≤ s < q, and qs is even. By induction, we may
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assume that q/s has a unique even continued fraction expansion q/s = [b2, . . . , bm].
Thus p/q = b1 + s/q = [b1, b2, . . . , bm]. To show uniqueness, suppose p/q =
[b′

1, b
′
2, . . . , b

′
m] = b′

1 +1/[b′
2, . . . , b

′
m]. Then p = b′

1q +q/[b′
2, . . . , b

′
m] with −q <

q/[b′
2, . . . , b

′
m] < q, and then the uniqueness in Lemma 2.1 implies that b′

1 = b1 and
q/[b′

2, . . . , b
′
m] = s. Now the statement follows from the uniqueness of the expansion

q/s = [b2, . . . , bm].
To show part (c), we prove by induction that if [b1, b2, . . . , bm] = p/q with bi even,

then one of p or q is even. Clearly [b1] = b1 is even. For the induction step, suppose
that p/q = [b1, b2, . . . , bm] = b1 + 1/[b2, . . . , bm], and let [b2, . . . , bm] = q/r .
Then one of q or r is even, by induction. If q is even we are done, and if r is even then
p/q = b1 + r/q implies that p is even. ��
Proposition 2.4 Let p > q > 1 be relatively prime integers such that p or q
is even. Denote by p/q = [a1, a2, . . . , an] a positive continued fraction expan-
sion and by p/q = [b1, b2, . . . , bm] the even continued fraction expansion. Let
q/r = [a2, . . . , an]. Then

[b2, . . . , bm] =
{
q/r if a1 is even;
− q/(q − r) if a1 is odd.

Proof By Lemma 2.1, we have p = a1q + r = b1q + s and [b2, . . . , bm] = q/s. If
a1 is even, then a1 = b1, r = s. If a1 is odd, then b1 = a1 + 1 and s = r − q. ��
Proposition 2.5 Let p/q = [b1, b2, . . . , bm] with nonzero even integers bi . Then p is
odd if and only if m is even.

Proof Ifm = 1 then p = b1 is even. Ifm = 2 then p = b1b2 +1 is odd. Now suppose
m > 2. Then the recursion relation for the convergents of the continued fraction [11,
Theorem 149] gives

N [b1, b2, . . . , bm] = bmN [b1, b2, . . . , bm−1] + N [b1, . . . , bm−2]. (2.1)

The first summand on the right hand side is always even since bm is even. Thus the
parity of N [b1, b2, . . . , bm] is the same as the parity of N [b1, b2, . . . bm−2], and the
result follows by induction. ��

The following definition will be crucial in the whole paper.

Definition 2.6 Let [b1, b2, . . . , bm] be an even continued fraction.
(a) The sign sequence sgn[b1, b2, . . . , bm] of [b1, b2, . . . , bm] is the sequence

(sgn(b1), . . . , sgn(b1)︸ ︷︷ ︸
, − sgn(b2), . . . , − sgn(b2)︸ ︷︷ ︸

, . . . (−1)m+1 sgn(bm ), . . . , (−1)m+1 sgn(bm ))
︸ ︷︷ ︸

.

|b1| |b2| . . . |bm |
Thus the first |b1| entries of sgn[b1, b2, . . . , bm] are equal to the sign of b1, the
next |b2| entries are equal to the sign of − b2 and so on.

(b) The type sequence type[b1, b2, . . . , bm] of [b1, b2, . . . , bm] is the sequence

(sgn(b1),− sgn(b2), . . . , (−1)m+1 sgn(bm)).
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G1 G2

G3

G4 G5

G6 G7 G8

e2

e3

e4

e5

e6 e7

e1

Fig. 1 A snake graph with 8 tiles and 7 interior edges (left); a sign function on the same snake graph (right)

For example

sgn[2, 4, 2] = (+, +, −,−, −, −, +, +), t ype[2, 4, 2] = (+,−, +)

sgn[2, 2, −2, 4] = (+, +, −,−, −, −, −, −, −, −), t ype[2, 2, −2, 4] = (+,−, −, −).

3 Snake graphs

In this section, we review the construction of a snake graph from a positive contin-
ued fraction, and we introduce the new construction of a snake graph from an even
continued fraction.We show that the two constructions are compatible in Theorem 3.3.

3.1 Abstract snake graphs

Abstract snake graphs have been introduced and studied [1–3] motivated by the snake
graphs appearing in the combinatorial formulas for elements in cluster algebras of
surface type in [20–22,25]. In this section we review the definition. Throughout we
fix the standard orthonormal basis of the plane.

A tile G is a square in the plane whose sides are parallel or orthogonal to the
elements in the fixed basis. All tiles considered will have the same side length. We
consider a tile G as a graph with four vertices and four edges in the obvious way.
A snake graph G is a connected planar graph consisting of a finite sequence of tiles
G1,G2, . . . ,Gd with d ≥ 1, such that Gi and Gi+1 share exactly one edge ei and this
edge is either the north edge of Gi and the south edge of Gi+1 or the east edge of Gi

and the west edge of Gi+1, for each i = 1, . . . , d − 1. An example is given in Fig. 1.
The graph consisting of two vertices and one edge joining them is also considered as
a snake graph.

The d−1 edges e1, e2, . . . , ed−1 which are contained in two tiles are called interior
edges of G and the other edges are called boundary edges. We will always use the
natural ordering of the set of interior edges, so that ei is the edge shared by the tiles
Gi and Gi+1.



Cluster algebras and Jones polynomials Page 9 of 41 58

We denote by SWG the 2 element set containing the south and the west edge of the
first tile of G and by GNE the 2 element set containing the north and the east edge of
the last tile of G. If G is a single edge, we let SWG = ∅ and GNE = ∅.

A snake graph G is called straight if all its tiles lie in one column or one row, and a
snake graph is called zigzag if no three consecutive tiles are straight. We say that two
snake graphs are isomorphic if they are isomorphic as graphs.

A sign function f on a snake graph G is a map f from the set of edges of G to
{+,−} such that on every tile in G the north and the west edge have the same sign, the
south and the east edge have the same sign and the sign on the north edge is opposite
to the sign on the south edge. See Fig. 1 for an example.

Note that on every snake graph there are exactly two sign functions. A snake graph
is determined up to symmetry by its sequence of tiles together with a sign function on
its interior edges.

3.2 Snake graphs from positive continued fractions

In this section, we recall a construction from [4] which associates a snake graph to a
positive continued fraction.

Given a snake graph G with d tiles, we consider the set of interior edges
{e1, e2, . . . , ed−1} and we let e0 be one of the two boundary edges in SWG, and we
let ed be one of the two boundary edges in GNE . Let f be a sign function on G and
consider the sign sequence ( f (e0), f (e1), . . . , f (ed)). Let − ε ∈ {±} be the first sign
f (e0) in this sequence, and define a continued fraction [a1, a2, . . . , an] from the sign
sequence as follows

(− ε, . . . ,− ε
︸ ︷︷ ︸

, ε, . . . , ε
︸ ︷︷ ︸

, − ε, . . . ,− ε
︸ ︷︷ ︸

, . . . , ± ε, . . . ,± ε
︸ ︷︷ ︸

).

a1 a2 a3 . . . an
(3.1)

Thus a1 is the number of entries before the first sign change, a2 is the number of entries
between the first and the second sign change and so on. See the top row of Fig. 5 for
examples.

Conversely, to every positive integer ai , we associate the snake graph G[ai ] con-
sisting of ai − 1 tiles and ai − 2 interior edges all of which have the same sign. Thus
G[ai ] is a zigzag snake graph, meaning that no three consecutive tiles lie in one row
or in one column.

If [a1, a2, . . . , an] is a positive continued fraction, its snake graphG[a1, a2, . . . , an]
is defined as the unique snake graph with d = a1 + a2 + · · · + an − 1 tiles such that
the signs of the d − 1 interior edges form the following sign sequence.

(− ε, . . . ,− ε
︸ ︷︷ ︸

, ε, . . . , ε
︸ ︷︷ ︸

, − ε, . . . ,− ε
︸ ︷︷ ︸

, . . . , ± ε, . . . ,± ε
︸ ︷︷ ︸

).

a1 − 1 a2 a3 . . . an − 1
(3.2)

Furthermore the continued fraction determines a choice of edges e0 in SWG and ed in
GNE via the sign condition.
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Fig. 2 The snake graph
G[2, 1, 2, 3]. The zigzag
subgraphs G[2],G[2],G[3] are
shaded and the subgraph G[1]
consist of the interior edge
shared by the second and third
tile

G[ |bi| ]

G[ |bi+1| ]
connecting tile

G[ |bi| ]

G[ |bi+1| ]
gluing edge

Fig. 3 Joining the zigzag graphs. On the left bi and bi+1 have the same sign, and on the right they have
opposite signs

For example, the snake graph of 27/10 = [2, 1, 2, 3] is shown in Fig. 2. Note that
between any two consecutive zigzag graphs G[ai ] and G[ai+1] there is exactly one tile
that is not part of the zigzag graphs.

Snake graphs were introduced in [20,21] to describe cluster variables in cluster
algebra of surface type. The cluster variable is given as a sumover all perfectmatchings
of the snake graph. Therefore the main interest in the construction of snake graphs
from continued fractions stems from the following result.

Theorem 3.1 [4]

[a1, a2, . . . , an] = m(G[a1, a2, . . . , an])
m(G[a2, . . . , an]) ,

where m(G) is the number of perfect matchings of the graph G. Moreover the fraction
on the right hand side is reduced.

In particular, the numerator N [a1, a2, . . . , an] of the continued fraction is the num-
ber of perfect matchings of the snake graph G[a1, a2, . . . , an].

3.3 Snake graphs from even continued fractions

In this subsection, we extend the construction of [4] to even continued fractions.
Let [b1, b2, . . . , bm] be an even continued fraction. Again we form the zigzag graphs
G[ |b1| ], . . . ,G[ |bm | ] of the absolute values of the bi , but nowwe join them according
to the following rule, see Fig. 3.

Without loss of generality, assume that the last tile of G[ |bi | ] is north of the second
to last tile, then the first tile of G[ |bi+1| ] is south of its second tile. If bi and bi+1 have
the same sign then we join the two graphs by drawing two horizontal edges that form
a connecting tile together with the east edge of the last tile of G[ |bi | ] and the west
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Fig. 4 The edges e′0, e′1, . . . , e′β
carry the signs of
[b1, b2, . . . , bm ]. The sign of e′0
is equal to the sign of b1

G[4,−2] G[−4, 2]

edge of the first tile of G[ |bi+1| ]. This case is illustrated in the left picture in Fig. 3. If
bi and bi+1 have opposite signs then we glue the two graphs by identifying the north
edge of the last tile of G[ |bi | ] with the south edge of the first tile of G[ |bi+1| ]. This
case is illustrated in the right picture in Fig. 3. Thus if bi and bi+1 have the same
sign then the sign function on the interior edges changes from the subgraph G[ |bi | ] to
G[ |bi+1| ]. On the other hand, if bi and bi+1 have opposite signs then the sign function
stays the same from G[ |bi | ] to G[ |bi+1| ].

The following lemma follows directly from the construction.

Lemma 3.2 (a) G[− b1,− b2, . . . ,− bm] ∼= G[b1, b2, . . . , bm].
(b) G[b1, b2] ∼=

{G[ |b1| , |b2| ] if b1b2 > 0;
G[ |b1| − 1, 1, |b2| − 1] if b1b2 < 0.

(c) G[2,− 2, 2,− 2, . . .] is a zigzag snake graph.
(d) G[2, 2,−2,−2, 2, 2,− 2,− 2, . . .] is a straight snake graph.

3.3.1 The sign sequence of a snake graph of an even continued fraction

We choose our sign function f such that the south edge of the first tile e0 has the same
sign as b1. Thus f (e0) = sgn(b1). We want to define a sequence of edges by e′

0 =
e0, e′

1, . . . , e
′
β in G[b1, b2, . . . , bm] that realize the sign sequence sgn[b1, b2, . . . , bm]

for [b1, b2, . . . , bm] introduced in Definition 2.6; here β = |b1| + · · · |bm |. The first
edge in the sequence is e0. On the subgraph G[ |b1| ], we choose the interior edges
e′
1, . . . , e

′|b1|−1 and the unique edge e′|b1| ∈ G[ |b1| ]NE such that f (e′|b1|) = sgn(b1).
Similarly, on the subgraph G[ |bi | ], we choose the interior edges and the two unique
edges in SWG[ |bi | ] and G[ |bi | ]NE whose signs are (−1)i+1 sgn(bi ). See Fig. 4 and
the bottom row of Fig. 5 for examples. Thus we have the following equality of sign
sequences

( f (e′
0), f (e′

2), . . . , f (e′
β)) = sgn[b1, b2, . . . , bm]. (3.3)

3.4 Correspondence between the two constructions

We are ready for the main result of this section.

Theorem 3.3 Let [a1, a2, . . . , an] = p/q be a positive continued fractionwith a1 > 1,
and let [b1, b2, . . . , bm] be an even continued fraction such that [b1, b2, . . . , bm] =
p/q or p/(p − q). Then the following snake graphs are isomorphic

G[a1, a2, . . . , an] ∼= G[1, a1 − 1, a2, . . . , an] ∼= G[b1, b2, . . . , bm].

In particular, the number of perfect matchings of G[b1, b2, . . . , bm] is equal to p.
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[2,1,2]=8/3 [2,2,1]=7/3 [5]=5/1 [3,1,1]=7/2 [1,2,2]=7/5 [1,3,1]=5/4 [1,1,3]=7/4 [1,1,1,1,1]=8/5

[2,2,-2] [4,-2] [2,-2,2,-2] [2,-4] [2,-2,-2][4,-2]

Fig. 5 The top row shows a complete list of snake graphs with 4 tiles together with their positive continued
fractions. Those which admit even continued fractions are repeated in the bottom row. The signed edges
indicate the sign sequence of the continued fraction

Proof Thefirst isomorphism followsdirectly from the constructionof the snakegraphs.
Indeed the difference between the two snake graphs consists only in the choice of the
boundary edge e0.

To prove the second isomorphism, we proceed by induction on n. If n = 1 then
G[a1] is a zigzag graph with a1 − 1 tiles. If a1 is even then b1 = a1 and we are done.
If a1 is odd, then the even continued fraction cannot be equal to a1/1 and therefore
we must have [b1, b2, . . . , bm] = a1/(a1 − 1). We have seen in Example 2.2 that
[b1, b2, . . . , bm] = [2,−2, 2,−2, ... ± 2] with m = a1 − 1. Since the signs in this
continued fraction are alternating, the corresponding snake graph G[b1, b2, . . . , bm]
is a zigzag snake graph with a1 − 1 tiles, thus G[a1] ∼= G[b1, b2, . . . , bm].

Suppose now that n > 1. Since G[a1, a2, . . . , an] ∼= G[1, a1 − 1, a2, . . . an] and
the continued fraction [1, a1 − 1, a2, . . . an] = p/(p − q), we may assume without
loss of generality that [a1, a2, . . . , an] = [b1, b2, . . . , bm] = p/q. Let q/r denote
the value of [a2, . . . , an]. From Proposition 2.4 we know that [b2, . . . , bm] = q/r or
−q/(q − r). Thus by induction, we may assume that G[a2, . . . , an] ∼= G[b2, . . . , bm].

ThegraphG[a1, a2, . . . , an] is obtained from the subgraphsG[a1] andG[a2, . . . , an]
as described above by inserting two horizontal edges to form the connecting tile Ga1 .
Since G[a1] has a1 − 1 tiles, the connecting tile Ga1 is the a1th tile of the snake graph
G[a1, a2, . . . , an].

If a1 is even, then a1 = b1, and then b1 and b2 have the same sign by the division
algorithm. Thus G[a2, . . . , an] ∼= G[b2, . . . , bm] and the gluing with G[a1] = G[b1]
which yields G[a1, a2, . . . , an] respectively G[b1, b2, . . . , bm] is the same. This shows
the result if a1 is even.

Suppose now that a1 is odd. Then b1 = a1 + 1 > 0 and b2 < 0. Now, G[b1]
has one more tile than G[a1], however, since b1 and b2 have opposite signs, the pro-
cedure by which we glue G[b1] with G[b2, . . . , bm] yields the same snake graph
as the gluing of G[a1] with G[a2, . . . , an]. Thus G[a1, a2, . . . , an] is isomorphic
to G[b1, b2, . . . , bm]. ��
Corollary 3.4 The number of tiles of G[b1, b2, . . . , bm] is equal to

m∑

i=1

|bi | − 1 − (number of sign changes in b1, b2, . . . , bm).
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Fig. 6 Two isotopic knots C(27/10) = C[2, 1, 2, 3] ∼= C[2, 2, − 2, 4]. The knot on the left has a positive
continued fraction [2, 1, 2, 3] and is alternating. The knot on the right has an even continued fraction
[2, 2, − 2, 4] and its diagram is not alternating from the second to the third braid and from the third to the
forth braid

Proof If m = 1 then G[b1] has b1 − 1 tiles. For m > 1, we have seen that
G[b1, b2, . . . , bm] is obtained by gluing G[b1] to G[b2, . . . , bm]. By induction we
may assume that the number of tiles in G[b2, . . . , bm] is ∑m

i=2 |bi | − 1−(number of
sign changes in b2, . . . , bm), and gluing G[b1] to it will increase this number by b1, if
b1 and b2 have the same sign, and by b1 − 1, if the signs of b1 and b2 are opposite.
This completes the proof. ��
Remark 3.5 Theorem 3.3 and its corollary also hold more generally for continued
fractions with entries bi ∈ Z\{0,−1}, but we will not need this here.

4 Two-bridge knots from continued fractions

In this section, we briefly review two-bridge knots. These knots have been studied first
by Schubert in 1956 [28]. For a detailed introduction see for example [16].

A knot is a subset ofR3 that is homeomorphic to a circle. A link with r components
is a subset of R3 that is homeomorphic to a disjoint union of r circles. Thus a knot
is a link with one component. A knot diagram is alternating if the crossings alternate
between over and under when traveling along a strand. A knot is called alternating if
it has an alternating knot diagram.

To every rational number p/q ≥ 1 one can associate a link C(p/q) or
C[a1, a2, . . . , an] using the positive continued fraction expansion
p/q = [a1, a2, . . . , an].
Example 4.1 27/10 = [2, 1, 2, 3] corresponds to the knot shown on the left in Fig. 6.

The link consists of n pieces, each of which is a 2-strand braid with ai crossings,
where i = 1, 2, . . . , n. These pieces are joined in such away that the link is alternating,
see Fig. 7. It is well known that the linkC(p/q) is a knot if p is odd and it is a link with
exactly two connected components if p is even [28]. Moreover, in the case where p is
odd, the two knots C(p/q) and C(p/(p−q)) are isotopic. Indeed this follows simply
from the fact that the continued fractions are related as follows p/q = [a1, a2, . . . , an]
and p/(p − q) = [1, a1 − 1, a2, . . . , an]. Thus when we are considering the knot or
link C[a1, a2, . . . , an], we may always assume that a1 > 1.

On the other hand, by Proposition 2.3, at least one of the rational numbers p/q and
p/(p− q) can be represented by an even continued fraction [b1, b2, . . . , bm]. We can
also construct a linkC[b1, b2, . . . , bm] from this even continued fraction, essentially in
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a4a2

a3a1

a2

a3a1

Fig. 7 2-Bridge link diagrams; n = 4 on the left, n = 3 on the right; each box represents a 2-strand braid
with ai crossings

the same way, except that a sign change now means that the diagram is not alternating
at that point. See for example the knot C[2, 2,−2, 4] in Fig. 6.

It is known that if p/q is equal to the positive continued fraction [a1, a2, . . . , an]
and to the even continued fraction [b1, b2, . . . , bm] then the corresponding links
C[a1, a2, . . . , an] and C[b1, b2, . . . , bm] are isotopic. See for example [15].

4.1 Orientation

One can orient the strand of a knot in one of two ways. In a link, one can orient each
component in one of two ways. Fixing an orientation of the strands induces a sign on
each crossing according to the following cases.

and
negativepositive

We shall always use the following convention for the orientations of the strands.
If [b1, b2, . . . , bm] is an even continued fraction then the first crossing in the b1-braid
is if b1 > 0 and it is if b1 < 0. In particular, the sign of the first crossing is equal
to the sign of b1. The |bi | crossings in the i th braid all have the same sign. We call the
braid positive if these signs are + and negative if they are −.

Lemma 4.2 With the conventions above, if [b1, b2, . . . , bm] is an even continued frac-
tion then the last crossing is of the following form.

if m is even and bm > 0; if m is odd and bm < 0;
if m is even and bm < 0; if m is odd and bm > 0.

Proof Using our schematic illustration of the link, we see that the strand that enters
the bi -braid from southwest (respectively southeast) must leave the bi -braid towards
southeast (respectively southwest), because bi is even. Similarly the strand entering the
bi -braid from the northeast (respectively northwest) will exit the braid to the northwest
(respectively northeast). If m is even, the orientation is as shown in Fig. 8. Thus if m
is even then, since bm is even, the last crossing is if bm > 0 and if bm < 0. The
odd case is proved in a similar way. ��
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b4b2

b3b1

bm

bm−1

Fig. 8 The orientation of the strands in C[b1, b2, . . . , bm ] when the bi are even and m is even

Fig. 9 Definition of the Jones
polynomial

L− L+ L0

Corollary 4.3 The signs of the crossings in the bi -braid are (−1)i+1 sgn(bi ). In par-
ticular,

(a) The sign sequence sgn[b1, b2, . . . , bm] of the even continued fraction is equal to
the sequence of the signs of the crossings in the link diagram C[b1, b2, . . . , bm].

(b) The type sequence type[b1, b2, . . . , bm] of the even continued fraction is equal to
the sequence of the signs of the braids in C[b1, b2, . . . , bm].

Proof This follows directly from Lemma 4.2. ��

5 Jones polynomial

The Jones polynomial of an oriented link is an important invariant. For 2-bridge links,
the Jones polynomial has been computed in [19,23]. For general facts about the Jones
polynomial see for example the book by Lickorish [18].

The Jones polynomial V (L) of an oriented link L can be defined recursively as
follows. The Jones polynomial of the unknot is 1, and whenever three oriented links
L−, L+ and L0 are the same except in the neighborhood of a point where they are as
shown in Fig. 9 then

V (L−) = t−2 V (L+) + ε V (L0),

where ε = t−1(t−1/2 − t1/2) = t−3/2 − t−1/2. Equivalently,

V (L+) = t2 V (L−) + ε̄ V (L0),

where ε̄ = t2(−ε) = t(t1/2 − t−1/2).

Remark 5.1 Usually the defining identity is stated as

t−1V (L+) − t V (L−) + (t−1/2 − t1/2)V (L0) = 0.
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Fig. 10 Computation of the Jones polynomial of two copies of the unknot (L0 in the top left), the Hopf link
(L− in the top right) and the the trefoil knot (L− in the bottom left)

Example 5.2 The Jones polynomial V◦◦ of two disjoint copies of the unknot can be
computed using the defining relation as shown on the top left of Fig. 10. Since L−
and L+ are both the unknot we see that

V◦◦ = (1 − t−2)/ε = −t−1/2 − t1/2.

The Jones polynomial of the Hopf link is computed in the top right of Fig. 10. We
have

VHopf link = t−2(−t−1/2 − t1/2) + ε = −t−5/2 − t−1/2.

The Jones polynomial of the trefoil knot is computed in the bottom left of Fig. 10.
We have

Vtrefoil = t−2 + εVHopf link = t−2 + (t−3/2 − t−1/2)(−t−5/2 − t−1/2) = −t−4 + t−3 + t−1.

The Jones polynomial is a Laurent polynomial in t1/2. Let ( ) : Z[t1/2, t−1/2] →
Z[t1/2, t−1/2] be the algebra automorphism of order two that sends t1/2 to t−1/2. This
is consistent with our definition of ε̄. If L is the mirror image of the link L then
V (L) = V (L).

If L is a 2-bridge link, L = C[b1, b2, . . . , bm] = C(p/q) with [b1, b2, . . . , bm] an
even continued fraction, then the following are equivalent

L is a knot ⇐⇒ p is odd ⇐⇒ m is even ⇐⇒ V (L) ∈ Z[t, t−1].

If L is not a knot then it is a 2-component link and V (L) ∈ t1/2Z[t, t−1]. If L is
a knot and L ′ is the same knot with reversed orientation (running through L in the
opposite direction) then V (L) = V (L ′). Thus the Jones polynomial of a knot does
not depend on the orientation of the knot. If L is a link with components L1, L2 and
L ′ is obtained from L by reversing the orientation of one component, then

V (L ′) = t−3 lk(L1,L2)V (L),
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where lk(L1, L2) = 1/2(sum of signs of crossings between L1 and L2), see [18,
p. 26].

Example 5.3 Let L = C[4] with first crossing and let L ′ be the same link with
first crossing . Then V (L) = t3/2 − t5/2 − t9/2 and V (L ′) = −t−11/2 + t−9/2 −
t−7/2 − t−3/2. On the other hand, the number lk(L1, L2) is 1

2 (−4) = −2, and thus
V (L ′) = t−6 V (L).

It is important to keep this small subtlety in mind when working with data bases,
especially if it is not immediately obvious which conventions were used for the ori-
entations of the link components. In this paper, the orientation is fixed.

5.1 The Jones polynomial of a 2-bridge knot

In this subsection, we compute recursion formulas for the Jones polynomials of 2-
bridge knots and links. We also give a direct formula for the degree and compare the
signs of the leading coefficients. Recall that because of our conventions (see Sect. 4),
the orientation of the links is fixed and therefore the Jones polynomials arewell defined.

In what follows, we will work with recursive formulas for the Jones polyno-
mials, and we will use the conventions that the expressions C[b1, b2, . . . , b0] and
C[ ] both denote the unknot and hence V[b1,b2,...,b0] = V[ ] = 1, and the expres-
sions C[b1, b2, . . . , b−1] and C[0] both denote two disjoint copies of the unknot
and hence V[b1,b2,...,b−1] = V[0] = −t−1/2 − t1/2. Recall the definition of the
type sequence t ype[b1, b2, . . . , bm] in Definition 2.6. We will use the notation
t ype[b1, b2, . . . , bm] = (. . . ,−) (respectively t ype[b1, b2, . . . , bm] = (. . . ,+)) to
indicate that the last entry of the type sequence is a minus sign (respectively a plus
sign).

Lemma 5.4 Let [a1, a2, . . . , an] = p/q be a positive continued fraction and
[b1, b2, . . . , bm] = p/q or p/(p − q) an even continued fraction and suppose
that m ≥ 1. So the two 2-bridge links C[a1, a2, . . . , an] and C[b1, b2, . . . , bm]
are isotopic. Let V[a1,a2,...,an ] or V[b1,b2,...,bm ] denote their Jones polynomials. Thus
V[a1,a2,...,an ] = V[b1,b2,...,bm ]. Then

V[b1,b2,...,bm ]

=
{
t−2 V[b1,b2,..., sgn(bm )(|bm |−2) ] + ε V[b1,b2,...,bm−1] if t ype[b1, . . . , bm ] = (. . . ,−);
t 2 V[b1,b2,..., sgn(bm )(|bm |−2) ] + ε V[b1,b2,...,bm−1] if t ype[b1, . . . , bm ] = (. . . ,+).

In particular,

V[b1] =
{
t−2 V[b1+2] + ε if b1 < 0;
t 2 V[b1−2] + ε if b1 > 0.

Proof In type (. . . ,−), the sign of the last crossing in C[b1, b2, . . . , bm] is negative.
Therefore the relation V (L−) = t−2 V (L+) + ε V (L0) applied to the last crossing
yields the identity
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trivial

L−

L+ L0

Fig. 11 Proof of Lemma 5.4

V[b1,b2,...,bm ] = t−2 V[b1,b2,..., sign(bm )(|bm |−2) ] + ε V[b1,b2,...,bm−1].

Indeed, by Lemma 4.2 the last crossing is or . Therefore after the smoothing of
this crossing, which leads to L0, the last braid becomes trivial, see Fig. 11.

In type (. . . ,+), the last crossing has positive sign and we use the analogous
argument with the smoothing relation V (L+) = t2 V (L−) + ε V (L0). ��

Applying the lemma 1
2 |bm | times, we obtain the recursive formula of the following

theorem. In its statement, we will use the notation [b]q = 1+ q + q2 + · · · + qb−1 =
(1 − qb)/(1 − q) for the q-analogue of a positive integer b. Setting q = −t−1 and
q = −t , this gives the short hands

[b]q = 1 − t−1 + t−2 − t−3 + · · · ± t−b+1 and

[b]q = 1 − t1 + t2 − t3 + · · · ± tb−1.

Theorem 5.5 Let [b1, b2, . . . , bm] be an even continued fraction with m ≥ 1. Then

V[b1,b2,...,bm ]

=
{
t−|bm | V[b1,b2,...,bm−2] − t− 1

2 [ |bm | ]q V[b1,b2,...,bm−1] if t ype[b1, . . . , bm ] = (. . . ,−) :
t |bm | V[b1,b2,...,bm−2] − t

1
2 [ |bm | ]q V[b1,b2,...,bm−1] if t ype[b1, . . . , bm ] = (. . . ,+).

In particular,

V[b1] =
{
tb1(−t−1/2 − t1/2) − t− 1

2 [−b1]q , if b1 < 0;
tb1(−t−1/2 − t1/2) − t

1
2 [b1]q if b1 > 0.

Proof This follows simply by applying Lemma 5.4 exactly bm/2 times and using the
facts that

ε(1 + t−2 + t−4 + · · · + t−|bm |+2) = −t−
1
2 [ |bm | ]q ,

ε(1 + t2 + t4 + · · · + t |bm |−2) = −t
1
2 [ |bm | ]q ,

and C[b1, b2, . . . , bm−1, 0] = C[b1, b2, . . . , bm−2].
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For the case where m = 1, we also need to observe that C[0] is a disjoint union of
two unknots, and thus V[0] = −t−1/2 − t1/2, and C[ ] is the unknot, hence V[ ] = 1. ��

In the remainder of the section, we compute the degree and the sign of the leading
term of the Jones polynomial. The degree of a Laurent polynomial in t1/2 is the highest
exponent of t that appears, and the leading term is the term that realizes the degree.
For example, the degree of t−3/2 − t−1/2 is −1/2 and the leading term is −t−1/2.

For simplicity, we shall use the following notation for i = 0, 1, 2, . . . ,m − 1.

Vi = V[b1,b2,...,bm−i ] ji = deg Vi δi t ji = leading term of Vi .

Corollary 5.6 With the notation above

j0 ≤
⎧
⎨

⎩

max( j2 − |bm | , j1 − 1
2 ) if t ype[b1, . . . , bm] = (. . . ,−);

max( j2 + |bm | , j1 − 1
2 + |bm |) if t ype[b1, . . . , bm] = (. . . ,+).

with equality if j2 − |bm | �= j1 − 1
2 , respectively j2 + |bm | �= j1 − 1

2 + |bm |.
Proof This follows directly from Theorem 5.5 and the fact that deg[b]q = 1 and
deg[b]q = b − 1, for b > 0. ��
Corollary 5.7 The degrees j0, j1 and j2 compare as follows according to the type of
[b1, b2, . . . , bm].

j0 = j1 +

⎧
⎪⎪⎨

⎪⎪⎩

− 1
2 in type (. . . ,−);

|bm | + 1
2 in type (. . . ,−,+);

|bm | − 1
2 in type (. . . ,+,+);

j0 = j2 +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 in type (. . . ,−,−);
|bm−1| in type (. . . ,−,+,−);
|bm−1| − 1 in type (. . . ,+,+,−);
|bm | in type (. . . ,−,+);
|bm | + |bm−1| in type (. . . ,−,+,+);
|bm | + |bm−1| − 1 in type (. . . ,+,+,+),

where we use the convention that for m = 1 or m = 2, the zeroth position in the type
sequence is −.

Proof We use induction on m. If m = 1, we have j1 = deg Vunknot = 0 and j2 =
deg(−t−1/2 − t1/2) = 1/2. On the other hand, Theorem 5.5 implies

j0 =
{− 1

2 if b1 < 0;
b1 + 1

2 if b1 > 0.
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Therefore

j0 =
{
j1 − 1

2 if b1 < 0;
j1 + b1 + 1

2 if b1 > 0,
and j0 =

{
j2 − 1 if b1 < 0;
j2 + b1 if b1 > 0.

This shows the result for m = 1.
Suppose now m > 1. By induction, we have

j1 = j2 +
⎧
⎨

⎩

− 1
2 if t ype[b1, . . . , bm−1] = (. . . ,−);

|bm−1| + 1
2 if t ype[b1, . . . , bm−1] = (. . . ,−,+);

|bm−1| − 1
2 if t ype[b1, . . . , bm−1] = (. . . ,+,+).

(5.1)

In particular, j1 ≥ j2 −1/2, whence j1 −1/2 > j2 −|bm |, since bm is a nonzero even
integer. Therefore Corollary 5.6 implies that, if t ype[b1, b2, . . . , bm] = (. . . ,−), then
j0 = j1−1/2, and the three cases in Eq. (5.1) prove the three cases of statement where
the type ends in a minus sign.

Next suppose that t ype[b1, b2, . . . , bm] = (. . . ,+,+). In this case, Eq. (5.1)
implies that j1 = j2 + |bm−1| ± 1/2 > j2 + 1. Then Corollary 5.6 yields
j0 = j1 − 1/2 + |bm | = j2 + |bm | + |bm−1] − 1

2 ± 1
2 .

Finally, suppose that t ype[b1, b2, . . . , bm] = (. . . ,−,+). Then Eq. (5.1) implies
that j1 = j2 − 1/2 and thus j1 − 1/2 < j2. In this case, Corollary 5.6 yields j0 =
j2 + |bm | = j1 + |bm | + 1/2. ��

Corollary 5.7 allows us to determine which of the two polynomials on the right
hand side of the equations in Theorem 5.5 contains the leading term. Indeed,
if [b1, b2, . . . , bm] is of type (. . . ,−), the equation is

V0 = t−|bm | V2 − t−
1
2 [ |bm | ]q V1.

The leading term of the first polynomial on the right hand side has sign δ2 and its
degree j2 − |bm | is strictly smaller than j2 − 1 ≤ j0, by Corollary 5.7. The leading
term of the second polynomial has sign −δ1 and its degree is j1 − 1

2 = j0. Therefore

the leading term of V0 is δ t j0 = −δ1 t j1−
1
2 .

On the other hand, if [b1, b2, . . . , bm] is of type (. . . ,+), the equation in Theorem
5.5 is

V0 = t |bm | V2 − t
1
2 [ |bm | ]q V1.

The first term on the right hand side has sign δ2 and its degree j2 + |bm | is equal to j0
in type (. . . ,−,+). The second term has sign δ1 (since bm is even) and its degree is
j1 + |bm | − 1

2 which is equal to j0 in type (. . . ,+,+). This leads us to the following
corollary.
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Corollary 5.8 The leading terms satisfy

δ0 t
j0 =

⎧
⎪⎨

⎪⎩

−δ1 t j1−
1
2 in type (. . . ,−);

δ2 t j2+|bm | in type (. . . ,−,+);
δ1 t j1+|bm |− 1

2 in type (. . . ,+,+).

(5.2)

Moreover, the coefficients δ0, δ1 and δ2 compareaccording to the typeof [b1, b2, . . . , bm]
as follows.

δ0 =
⎧
⎨

⎩

−δ1 in type (. . . ,−);
−δ1 in type (. . . ,−,+);
δ1 in type (. . . ,+,+);

and δ0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ2 in type (. . . ,−,−);
δ2 in type (. . . ,−,+,−);
−δ2 in type (. . . ,+,+,−);
δ2 in type (. . . ,−,+);
−δ2 in type (. . . ,−,+,+);
δ2 in type (. . . ,+,+,+).

Proof It only remains to show the last equations comparing δ0 with δ1 and δ2. Two
of the three equations comparing δ0 and δ1 follow directly from Eq. (5.2). In the
remaining equation, the type is (. . . ,−,+) and Eq. (5.2) yields δ0 = δ2 as well as
δ1 = −δ2, because t ype[b1, . . . , bm−1] = (. . . ,−). Thus δ0 = −δ1.

Now consider the equations comparing δ0 and δ2. In type (. . . ,−,−) we have
δ0 = −δ1 and δ1 = −δ2, thus δ0 = δ2. In type (. . . ,+,−) we have δ0 = −δ1,
whereas δ1 = −δ2 in type (. . . ,−,+,−) and δ1 = δ2 in type (. . . ,+,+,−). Thus
δ0 = δ2 in the former case and δ0 = −δ2 in the latter.

In type (. . . ,−,+) we have δ0 = −δ1 and δ1 = −δ2, thus δ0 = δ2. In type
(. . . ,+,+) we have δ0 = δ1, whereas δ1 = −δ2 in type (. . . ,−,+,+) and δ1 = δ2
in type (. . . ,+,+,+). Thus δ0 = −δ2 in the former case and δ0 = δ2 in the latter.
This completes the proof. ��

We close this section with a direct formula for the degree of the Jones polynomial.

Theorem 5.9 Let [b1, b2, . . . , bm] be an even continued fraction. Then the Jones poly-
nomial V[b1,b2,...,bm ] of the associated 2-bridge knot has degree

m∑

i=1

max

(

(−1)i+1bi + sign(bibi−1)

2
, −1

2

)

,

where we use the convention that sign(b0) = 1. Moreover, the sign of its leading term
is equal to (−1)m−τ , where τ is the number of times the subsequence +,+ appears
in the type sequence of [b1, b2, . . . , bm].
Proof If m = 1, then Theorem 5.5 implies that the leading term of Vb1 is

{
− tb1+ 1

2 if b1 > 0;
− t− 1

2 if b1 < 0,
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so the degree is equal tomax(b1+ sign(b1)
2 , − 1

2 ) and the sign is equal to (−1) = (−1)m .
Now suppose that m > 1. Corollary 5.7 implies

deg V[b1,b2,...,bm ] = j0 = j1 +
{− 1

2 in type (. . . ,−);
|bm | + sign(bmbm−1)

2 in type (. . . ,+).

By induction, we may assume that j1 is equal to the sum of the first m − 1 terms in
the theorem. Thus we must show that the mth term satisfies

max

(

(−1)m+1bm + sign(bmbm−1)

2
, −1

2

)

=
{ − 1

2 in type (. . . ,−);
|bm | + sign(bmbm−1)

2 in type (. . . ,+).

Recall that t ype[b1, b2, . . . , bm] = (. . . ,−) if m is even and bm > 0, or if m is
odd and bm < 0. Therefore the maximum on the left hand side is equal to −1/2 in
this case. On the other hand, if t ype[b1, b2, . . . , bm] = (. . . ,+), then the maximum
equals |bm | + sign(bmbm−1)

2 . This proves the statement about the degree. To determine
the sign, we use Corollary 5.8, which shows how the sign changes in terms of the
entries at positions 2, 3, . . . ,m in the type sequence of [b1, b2, . . . , bm]. Namely, the
sign changes for every − sign in these positions of the type sequence and for each +
sign that is a direct successor of a − sign. In other words, the number of sign changes
is preciselym−1− τ . Now the result follows since the sign is − in the casem = 1. ��
Remark 5.10 For each i , the maximum in the theorem is equal to−1/2 if the crossings
in the bi braid are negative and it is |bi | ± 1/2 if the crossings are positive. Thus we
can express the degree in terms of the crossings of the link as follows

deg V[b1,b2,...,bm ] = −1

2
# negative braids + # positive crossings

+ 1

2
# consecutive pairs of braids with sign (+,−)

− 1

2
# consecutive pairs of braids with sign (+,+).

Example 5.11 For the continued fraction [2, 2,−2, 4], the formula of the theorem
gives

deg V[2,2,−2,4] =
(

2 + 1

2

)

− 1

2
− 1

2
− 1

2
= 1,

and the formula from the remark gives

deg V[2,2,−2,4] = −3

2
+ 2 + 1

2
= 1.

The type sequence of [2, 2,−2, 4] is (+,−,−,−), hence τ = 0 and thus the sign of
the leading term is (−1)4 = +1.
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The Jones polynomial is

V[2,2,−2,4] = t − 2 + 4t−1 − 4t−2 + 5t−3 − 5t−4 + 3t−5 − 2t−6 + t−7.

6 Cluster algebras and specialized F-polynomials

6.1 Cluster algebras

We recall a few facts about cluster algebras with principal coefficients. For more
detailed information, we refer to the original paper [9] or the lecture notes [27]. Let Q
be a quiverwithout loops and oriented 2-cycles, and let N denote the number of vertices
of Q. LetZP denote the ring of Laurent polynomials in variables y1, y2, . . . , yN and let
QP be its field of fractions. The cluster algebraA(Q) of Q with principal coefficients
is a ZP-subalgebra of the field of rational functionsQP(x1, x2, . . . , xN ). To define the
cluster algebra one constructs a set of generators, the cluster variables, by a recursive
method called mutation. It is known that the cluster variables are elements of the
ring Z[x±1

1 , x±1
2 , . . . , x±1

N , y1, y2, . . . , yN ]with positive coefficients [8,9,17]. The F-
polynomial is the polynomial in Z[y1, y2, . . . , yN ] obtained from the cluster variable
by setting all xi equal to 1.

If the quiver Q is the adjacency quiver of a triangulation of a surface with marked
points then the cluster algebra is said to be of surface type, see [7]. In this case, each
cluster variable is given as a sum over all perfect matchings of the weighted snake
graph associated to the cluster variable [21]. In [4,26] another formula was given, that
computes the cluster variables as continued fractions of Laurent polynomials.

Example 6.1 Let Q be the quiver 1 2�� . Then the ‘largest’ cluster variable in
A(Q) is equal to (x2 + y1 + x1y1y2)/x1x2 and its F-polynomial is 1 + y1 + y1y2.

Example 6.2 Let Q be the quiver 1 2�� �� 3 . Then the ‘largest’ cluster vari-
able in A(Q) is equal to (x22 + x2y1 + x2y3 + y1y3 + x1x3y1y2y3)/x1x2x3 and its
F-polynomial is 1 + y1 + y3 + y1y3 + y1y2y3.

6.2 Specialized F-polynomials

Weshall show that the Jones polynomial of a 2-bridge link is equal (up to normalization
by its leading term) to the specialization of a corresponding cluster variable at xi =
1, y1 = t−2 and yi = −t−1 if i �= 1.

To make this statement precise, we need to fix our notation. Let [a1, a2, . . . , an]
be a positive continued fraction with a1 ≥ 2. As we have seen in Sect. 4, this is not
a restriction from the point of view of 2-bridge knots. Let G[a1, a2, . . . , an] be the
snake graph of the continued fraction, let d = a1 + a2 + · · · + an − 1 be the number
of tiles of this graph and label the tiles 1, 2, . . . , d.

LetA be any cluster algebra with principal coefficients in which we can realize the
snake graph G[a1, a2, . . . , an] as the snake graph of a cluster variable, with the sole
condition that the first tile of the snake graph corresponds to the initial cluster coeffi-
cient y1 and no other tile of the graph corresponds to the same coefficient y1. Denote
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the initial seed (with principal coefficients) by ((x1, x2, . . . , xN ), (y1, y2, . . . , yN ), Q)

where (x1, x2, . . . , xN ) is the initial cluster, (y1, y2, . . . , yN ) is the initial coefficient
tuple and Q is the initial quiver.

Remark 6.3 For example, one can choose A to be of type Ad and let the i th tile
correspond to the i th coefficient and choose the initial seed such that its quiver Q is
the acyclic quiver corresponding to the snake graph G[a1, a2, . . . , an]. That means
that Q is of the form

1 2�� · · ·�� �1�� �� �1 + 1 �� · · · �� �2 �2 + 1�� · · ·�� �3�� �� · · ·

where �i = a1+a2 +· · · ai . In this cluster algebra, the cluster variable corresponding
to the continued fraction [a1, a2, . . . , an] is the one whose denominator is the product
of all initial cluster variables x1x2 . . . xd , or equivalently, the cluster variable that, under
the Caldero-Chapoton map, corresponds to the largest indecomposable representation
of Q, the one with dimension 1 at every vertex.

In the chosen cluster algebra A, let x[a1, a2, . . . , an] denote the cluster variable
whose snake graph is G[a1, a2, . . . , an] and let F[a1, a2, . . . , an] be its F-polynomial.
Recall from [9] that F[a1, a2, . . . , an] is obtained from x[a1, a2, . . . , an] by setting
all initial cluster variables x1, x2, . . . xN equal to 1.

It has been shown in [4,26] that x[a1, a2, . . . , an] and F[a1, a2, . . . , an] can be
written as the numerator of a continued fraction of Laurent polynomials. We will
use a specialization of the F-polynomial by setting y1 = q2 and yi = q, for all
i = 2, 3, . . . , N , where q = −t−1. In other words

y1 = t−2 and y2 = y3 = · · · = yN = −t−1.

We denote this specialization by Fa1,a2,...,an . Thus

Fa1,a2,...,an = F[a1, a2, . . . , an]
∣
∣
∣
y1=t−2; yi=−t−1, i>1

.

We do not yet know an intrinsic reason why y1 is different from y2, . . . , yN .
Using the main result of [26], we have the following formula. Recall that [b]q =

1 + q + q2 + · · · + qb−1 and �i = a1 + a2 + · · · ai . Also recall that the notation
N [L1,L2, . . . ,Ln] is defined recursively in Eq. (2.1), where N [L1] = L1.

Proposition 6.4 (a) If n is odd, the specialized F-polynomial Fa1,a2,...,an is equal to

N
[
[a1 + 1]q − q , [a2]q q−�2 , [a3]q q�2+1, [a4]q q−�4 , . . . , [a2i ]q q−�2i ,

[a2i+1]q q�2i+1, . . . , [an]q q�n−1+1
]

(b) If n is even, Fa1,a2,...,an is equal to the result in (a) multiplied by q
�n .
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Proof In her formula [26], Rabideau uses the following notation.

Ci =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�i−1∏

j=1

y j if i is odd,

(�i )−1∏

j=1

y−1
j if i is even,

ϕi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(�i )−1∑

k=�i−1

k∏

j=(�i−1)+1

y j if i is odd,

�i∑

k=(�i−1)+1

(�i )−1∏

j=k

y j if i is even,

and Li = Ciϕi . With this notation

F[a1, a2, . . . , an] =
⎧
⎨

⎩

N [L1,L2, . . . ,Ln] if n is odd,

C−1
n N [L1,L2, . . . ,Ln] if n is even.

Under our specialization y1 �→ q2 and yi �→ q (i > 1), the quantities above
transform as follows.

Ci �→
⎧
⎨

⎩

q�i−1+1 if i is odd;

q−�i if i is even;

ϕ1 =
a1−1∑

k=0

k∏

j=1

y j �→ 1 + q2 + q3 + · · · + qa1 = [a1 + 1]q − q;

ϕi �→
�i−�i−1−1∑

k=0

qk = [ai ]q (i > 1).

Thus

L1 �→ [a1 + 1]q − q and Li �→
⎧
⎨

⎩

[ai ]q q−�i if i is odd;

[ai ]q q�i−1+1 if i is even,

and the proof is complete. ��

Remark 6.5 If the ai are positive integers then N [a1, a2, . . . , an] is the numerator of
the continued fraction, or to be more precise, the positive numerator, since numerators
are only defined up to multiplication by units ± 1 in Z.

Since the Li ∈ Z[t, t−1] are Laurent polynomials then N [L1,L2, . . . ,Ln] is also
a representative of the numerator of the continued fraction. Note however that the
powers of t are also units in this ring. This is the reason why we define the notation
N by the recursion in Eq. (2.1).
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6.3 F-polynomials of even continued fractions

We now want to define specialized F-polynomials for even continued fractions. If
the value of the even continued fraction is equal to a positive rational number r/s,
then its F-polynomial is the F-polynomial of the positive continued fraction of
r/s. However, if the value of the even continued fraction is negative, our definition
involves the bar automorphism defined in Sect. 4. Note that r/s > 0 if and only if
b1 > 0.

Definition 6.6 Let [b1, b2, . . . , bm] be an even continued fraction with value r/s ∈ Q.
Let [a1, a2, . . . , an] be the positive continued fraction expansion of the absolute value
|r/s| of r/s and let d = a1 + · · · + an − 1. We define the specialized F-polynomial
of [b1, b2, . . . , bm] as follows.

Fb1,b2,...,bm =
{

Fa1,a2,...,an if b1 > 0;
(−t−1)d+1 Fa1,a2,...,an if b1 < 0.

Example 6.7 The even continued fraction [2,−2] is equal to 3/2. Thus F2,−2 = F1,2
which is equal

q3N [ [2]q − q, [2]q q−3 ] = ([2]q − q)[2]q + q3

= (1)(1 + q) + q3 = 1 + q + q3 = 1 − t−1 − t−3.

Thus

F2,−2 = 1 − t−1 − t−3.

On the other hand, [−2, 2] = −3/2. Thus

F−2,2 = (−t−1)3 F1,2 = −t−3(1 − t1 − t3) = −t−3 + t−2 + 1.

Note that we also have F−2,2 = F3.

Example 6.8 The even continued fraction [4] is equal to 4/1. Thus

F4 = [5]q − q = 1 + t−2 − t−3 + t−4.

On the other hand,

F−4 = (−t−1)4 F4 = t−4 + t−2 − t−1 + 1.

Note that we also have F−4 = F1,3.
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Example 6.9 The even continued fraction [4,−2] is equal to 7/2 which is equal to the
positive continued fraction [3, 2]. Thus

F4,−2 = F3,2 = q5N [ [4]q − q , [2]q q−5 ] = ([4]q − q)[2]q + q5

= 1 − t−1 + t−2 − 2t−3 + t−4 − t−5.

On the other hand,

F−4,2 = (−t−1)5 F3,2 = −t−5 + t−4 − t−3 + 2t−2 − t−1 + 1.

Note that F−4,2 = F1,2,2.

Lemma 6.10 Let yi j denote the coefficient variable in the cluster algebra that cor-
responds to the j th tile in the snake graph G[a1, a2, . . . , an] ∼= G[b1, b2, . . . , bm],
where j = 1, . . . , d.

(a) The F-polynomial F[a1, a2, . . . , an] is a polynomial in Z≥0[y1, y2 . . . , yN ] of the
form

F[a1, a2, . . . , an] =
∑

χα1,...,αd y
α1
i1

· · · yαd
id

,

where α j ∈ {0, 1}, with constant term 1 and highest degree term yi1 yi2 · · · yid .
(b) The specialized F-polynomial Fb1,b2,...,bm is a polynomial in Z[t−1] of the form

Fb1,b2,...,bm =
d+1∑

i=0

(−1)iσi t
−i ,

where σi ∈ Z≥0, with constant term 1 and lowest degree term (−1)d+1 t−d−1. In
particular, the degree of Fb1,b2,...,bm is 0.

Proof Part (a) was conjectured in [9] and proved in [6] except for positivity which
is shown in [21] for surface type and in [17] for arbitrary quivers. The sum in (b) is
alternating, since the sum in (a) is positive. The lowest degree in (b) is −d − 1, since
y1 is specialized to t−2 and every other yi is specialized to −t−1. ��

The following proposition has already been observed in the examples above.
In the proof, we shall work with the minimal matching P− of the snake graph
G[a1, a2, . . . , an]. The snake graph has precisely two perfect matchings P− and P+
which contain only boundary edges of the snake graph. By convention, the minimal
matching P− is the one that contains the edge e0, the south edge of the first tile. The
minimal matching has trivial coefficient y(P−) = 1. The matching P+ is called the
maximal matching of the snake graph, and its coefficient y(P+) = yi1 yi2 · · · yid is
the product of the y-coefficients of all tiles in the snake graph. The term y(P−) is the
constant term in the polynomial F[a1, a2, . . . , an] and y(P+) is the term of highest
degree.
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Proposition 6.11 Let [a1, a2, . . . , an] be a positive continued fraction and let d =
a1 + a2 + · · · + an − 1. Then

F[a1, a2, . . . , an] = yi1 yi2 · · · yid F[1, a1 − 1, a2, . . . , an].

Fa1,a2,...,an = qd+1 F1,a1−1,a2,...,an .

Proof The snake graph G[1, a1 − 1, a2, . . . , an] is obtained from the snake graph
G[a1, a2, . . . , an] by a reflection along the line containing the diagonal of the first tile.
For example,

G[2, 3] = G[1, 1, 3] =and

This reflection induces a bijection ϕ between the sets of perfect matchings of the snake
graphs. Under this bijection, the minimal matching of G[a1, a2, . . . , an] is mapped to
the maximal matching of G[1, a1−1, a2, . . . , an], and this implies that for an arbitrary
perfect matching P of G[a1, a2, . . . , an] with height function y(P) = yα1

i1
· · · yαd

id
, the

corresponding perfect matching ϕ(P) of G[1, a1−1, a2, . . . , an] has the complemen-
tary height function, that is,

y(ϕ(P)) = y1−α1
i1

y1−α2
i2

· · · y1−αd
id

= yi1 yi2 · · · yid y(P).

This proves the first identity, and the second follows by specialization. ��
Our next lemmagives a recursive formula for the F-polynomial of an even continued

fraction. The result mainly follows from results in [2], however, we are using even
continued fractions here instead of positive continued fractions in loc.cit.

Lemma 6.12 Let [b1, b2, . . . , bm] be an even continued fraction. Then we have the fol-
lowing identity of F-polynomials depending on the type sequence of [b1, b2, . . . , bm].

If b1 > 0 then F[b1, b2, . . . , bm] is equal to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− F[b1, b2, . . . , bm−2] ∏

G[bm ]
yi + F[b1, b2, . . . , bm−1]F[bm ] in type (. . . ,−,−);

F[b1, b2, . . . , bm−2] ∏

G\G2

yi + F[b1, b2, . . . , bm−1]F[bm ] in type (. . . ,+,−);

F[b1, b2, . . . , bm−2] + F[b1, b2, . . . , bm−1]F[bm ]y� in type (. . . ,−,+);

− F[b1, b2, . . . , bm−2] ∏

G1\G2

yi + F[b1, b2, . . . , bm−1]F[bm ] in type (. . . ,+,+),

where
∏

G[bm ] runs over all tiles Gi ∈ G[bm];∏
G\G2

runs over all tiles Gi that lie in G[b1, b2, . . . , bm] but not in
G[b1, b2, . . . , bm−2];



Cluster algebras and Jones polynomials Page 29 of 41 58

y� is the coefficient of the tile G� that connects G[b1, . . . , bm−1] and G[bm] in
G[b1, b2, . . . , bm]; and∏

G1\G2
runs over all tiles Gi that lie in G[b1, . . . , bm−1] but not in

G[b1, b2, . . . , bm−2].
If b1 < 0, the above formulas hold if we replace the types with their negatives.

Proof One reason for the separate cases is that the construction of G[b1, b2, . . . , bm]
is different if bm and bm−1 have the same sign or not, see Sect. 3.2. Suppose first that
bm and bm−1 have the same sign, thus the type sequence has a sign change in the last
two positions. In this case, the grafting with a single edge formula [2, Sect. 3.3, case
3] gives the following two results.

If the minimal matching P− restricts to a perfect matching of G[bm] then

G[b1, b2, . . . , bm] = G[b1, b2, . . . , bm−2]
∏

G\G2

yi + G[b1, b2, . . . , bm−1]G[bm].

If the P− does not restrict to a perfect matching of G[bm] then

G[b1, b2, . . . , bm] = G[b1, b2, . . . , bm−2] + G[b1, b2, . . . , bm−1]G[bm] y�.

Suppose now that bm and bm−1 have opposite signs, thus the last two entries in the
type sequence are equal. In this case, [1, Sect. 2.5, case 2 & Theorem 6.3] yields the
following two results.

If the P− restricts to a perfect matching of G[bm] then

G[b1, b2, . . . , bm] = −G[b1, b2, . . . , bm−2]
∏

G1\G2

yi + G[b1, b2, . . . , bm−1]G[bm],

If the P− does not restrict to a perfect matching of G[bm] then

G[b1, b2, . . . , bm] = −G[b1, b2, . . . , bm−2]
∏

G[bm ]
yi + G[b1, b2, . . . , bm−1]G[bm].

Thus we need to determine when P− restricts to a perfect matching of G[bm]. See
Fig. 12 for examples that illustrate the argument. Suppose first that b1 > 0. Then
the first edge of the minimal matching e0 has sign f (e0) = +. Moreover e0 is a
south edge, which implies that all south edges and all west edges of the minimal
matching P− have sign + and all north and all east edges in P− have sign −, see
[2, Lemma 4.3]. In particular, the last edge e ∈ GNE of the minimal matching has
sign −. On the other hand, the last edge e′

β ∈ GNE of the sign sequence of the even
continued fraction [b1, b2, . . . , bm] has sign − if and only if [b1, b2, . . . , bm] is of
type (. . . ,−). Thus e′

β is in the minimal matching P− if and only if the type sequence
of [b1, b2, . . . , bm] ends in a minus sign.

Since G[bm] is a zigzag graph, if P− contains e′
β , then it contains two boundary

edges of the last tile and thus restricts to a matching of the last tile. Moreover, P−
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[2,1,1,1,1]=13/5 [2,1,3]=11/4

[2,2,-2,2]

[2,3,1]=9/4

[2,4]

[2,2,2]=12/5

[2,2,2]

[4,1,1]=9/2

[4,2]

[6] [3,2,1]=10/3

[4,-2,2]

[3,1,2]=11/3

[1,2,1,2]=11/8

[2,-2,2,2]

[1,2,3]=10/7

[2,-2,4]

[1,5]=6/5

[2,-2,2,-2,2]

[1,3,2]=9/7 [1,1,2,1,1]=12/7

[2,-4,2]

[1,1,4]=9/5 [1,1,1,2,1]=11/7 [1,1,1,1,2]=13/8

[2,-2,-2,2]

+,− −,+ +,− +,+

+,− +,+ +,+ +,+ −,−

−,−

Fig. 12 A complete list of snake graphs with 5 tiles together with their minimal matchings in bold red.
If the snake graph corresponds to an even continued fraction [b1, b2, . . . , bm ] then the subgraph G[bm ] is
shaded. The labels indicate the last two entries in the type sequence of the continued fraction (±,±). This
label sits in a shaded box if P− restricts to G[bm ], which happens precisely when the label is +, − or +,+
(color figure online)

contains 3 boundary edges of the last two tiles and thus restricts to a matching of
the last two tiles. Continuing this way, we see that P− restricts to a matching of the
last bm − 1 tiles. The question whether P− restricts to a matching of the last bm
tiles only depends on how G[bm] is glued to G[b1, . . . , bm−1]. Thus, the minimal
matching restricts to G[bm] in type (. . . ,+,−); these cases are marked (. . . ,+,−)

in Fig. 12. On the other hand, the minimal matching does not restrict to G[bm] in type
(. . . ,−,−).

Now suppose [b1, b2, . . . , bm] is of type (. . . ,+). Then e′
β is not in P−. Thus P−

contains only one edge of the last tile, only two edges of the last two tiles and only
bm − 2 edges of the last bm − 1 tiles. Again, the question whether P− restricts to a
matching of the last bm tiles only depends on how G[bm] is glued to G[b1, . . . , bm−1].
Thus, the minimal matching restricts to G[bm] in type (. . . ,+,+); these cases are
marked (. . . ,+,+) in Fig. 12. On the other hand, the minimal matching does not
restrict to G[bm] in type (. . . ,−,+). This proves the statement in the case where
b1 > 0.

If b1 < 0 the above argument is still valid, except that in this case, the sign of the
edge e0 is −, and therefore the roles of the signs are reversed. ��

We now apply this result to the specialization of the F-polynomial.

Corollary 6.13 Let [b1, b2, . . . , bm] be an even continued fraction with b1 > 0. Then

Fb1,b2,...,bm = μ(t) Fb1,b2,...,bm−2 + ν(t) [ |bm | ]q Fb1,b2,...,bm−1

where the functions ν(t) and μ(t) depend on the type sequence of [b1, b2, . . . , bm] as
follows
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ν(t) μ(t) t ype[b1, . . . , bm ]

1 t−|bm |+1 (. . . , −,−)

1 t−|bm |−|bm−1| (. . . , −,+, −)

1 −t−|bm |−|bm−1|+1 (. . . , +,+, −)

−t−1 1 (. . . , −,+)

1 −t−|bm−1| (. . . , −,+, +)

1 t−|bm−1|+1 (. . . , +,+, +)

Proof According to Lemma 6.12, we only need to check thatμ(t), ν(t) are the correct
functions. Moreover it is clear from the lemma that ν(t) = 1 in all cases except in the
case (. . . ,−,+) where ν(t) = −t−1.

In type (. . . ,−,−), Lemma 6.12 implies that μ(t) = −(−t−1)α , where α is the
number of tiles inG[bm]. Since bm and bm−1 have opposite signswe haveα = |bm |−1,
and since bm is even, we see that μ(t) = t−|bm |+1.

In type (. . . ,+,−), Lemma 6.12 implies thatμ(t) = (−t−1)α , where α is the num-
ber of tiles in G[b1, b2, . . . , bm]\G[b1, b2, . . . , bm−2]. According to Corollary 3.4,
this number is |bm | + |bm−1| − (number of sign changes in bm−2, bm−1). Thus α =
|bm |+|bm−1| in type (. . . ,−,+,−); andα = |bm |+|bm−1|−1 in type (. . . ,+,+,−).
Since bm−1 and bm−2 are both even, it follows that μ(t) = t−|bm |−|bm−1| in type
(. . . ,−,+,−), and μ(t) = −t−|bm |−|bm−1|+1 in type (. . . ,+,+,−).

In type (· · · ,−,+), Lemma 6.12 implies μ(t) = 1.
In type (· · · ,+,+), Lemma 6.12 implies that μ(t) = −(−t−1)α , where α is the

number of tiles in G[b1, b2, . . . , bm−1]\G[b1, b2, . . . , bm−2]. Similar to the previous
case, we see that α = |bm−1| in type (· · · ,−,+,+) ; and α = |bm−1| − 1 in type
(· · · ,+,+,+), and this completes the proof. ��

7 Main results

In this section, we state and prove our main theorem. Recall that we have fixed the
orientation of all knots and links in Sect. 4.

Theorem 7.1 Let [b1, b2, . . . , bm] be an even continued fraction, let V[b1,b2,...,bm ] be
the Jones polynomial of the corresponding 2-bridge link, and let Fb1,b2,...,bm be the
specialized F-polynomial of the corresponding cluster variable. Then

V[b1,b2,...,bm ] = (−1)m−τ t j Fb1,b2,...,bm

where τ is the number of subsequences +,+ in the type sequence of [b1, b2, . . . , bm]
and

j =
m∑

i=1
max

(
(−1)i+1bi + sign(bi bi−1)

2 , − 1
2

)
.
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Proof We proceed by induction on m. For m = 1, we will show that V[b1] = −t j Fb1 .
Suppose first that b1 > 0. Then j = b1 + 1

2 and according to Definition 6.6 we have
Fb1 = [b1 + 1]q − q, with q = −t−1. On the other hand, Theorem 5.5 implies

V[b1] = tb1(−t− 1
2 − t

1
2 ) − t

1
2 [b1]q

= −tb1+ 1
2 (t−1 + 1 + t−b1(1 − t + t2 − · · · − tb1−1))

= −tb1+ 1
2 ([b1 + 1]q − q),

and the result follows.
Now suppose that b1 < 0. Then j = − 1

2 and Definition 6.6 implies

Fb1 = (−t−1)|b1|F|b1| = t−|b1|[b1 + 1]q − q

= t−|b1|(1 + t2 − t3 + t4 − · · · + t |b1|) = [|b1| + 1]q − q |b1|−1.

On the other hand, Theorem 5.5 yields

V[b1] = t−|b1|(−t− 1
2 − t

1
2 ) − t− 1

2 [ |b1| ]q
= −t− 1

2 (t−|b1| + t−|b1|+1 + [ |b1| ]q)
= −t− 1

2 ( [ |b1| + 1]q − q |b1|−1),

and the result follows.
Now suppose that m > 1. Replacing [b1, b2, . . . , bm] with [−b1,−b2, . . . ,−bm]

has the effect of replacing the link with its mirror image, and its Jones polynomial with
its image under the bar involution, that is, V[−b1,−b2,...,−bm ] = V[b1,b2,...,bm ]. Therefore,
we may assume without loss of generality that b1 > 0. If m is even then L is a knot
and if m is odd then L is a 2-component link.

Now, from Theorem 5.5 we know that

V[b1,b2,...,bm ]

=

⎧
⎪⎨

⎪⎩

t−|bm | V[b1,b2,...,bm−2] − t− 1
2 [ |bm | ]q V[b1,b2,...,bm−1] if t ype[b1, . . . , bm ] = (. . . ,−) :

t |bm | V[b1,b2,...,bm−2] − t
1
2 [ |bm | ]q V[b1,b2,...,bm−1] if t ype[b1, . . . , bm ] = (. . . ,+).

By induction, we have V[b1,b2,...,bm−i ] = δi t ji Fb1,b2,...,bm−i , for i = 1, 2. where δi t ji

are the leading terms of the Jones polynomials and δi = ±1. Therefore we get

V[b1,b2,...,bm ]

=

⎧
⎪⎨

⎪⎩

δ2 t
j2−|bm | Fb1,b2,...,bm−2 − δ1 t

j1− 1
2 [ |bm | ]q Fb1,b2,...,bm−1. in type (. . . ,−);

δ2 t
j2+|bm | Fb1,b2,...,bm−2 − δ1 t

j1+ 1
2 [ |bm | ]q Fb1,b2,...,bm−1. in type (. . . ,+);

(7.1)
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On the other hand, Corollary 6.13 implies that

δ0 t
j0Fb1,b2,...,bm = δ0 t

j0 μ(t) Fb1,b2,...,bm−2 +δ0 t
j0 ν(t) [ |bm | ]q Fb1,b2,...,bm−1 (7.2)

where δ0 t j0 is the leading term of V[a1,a2,...,an ] and the functions μ(t), ν(t) depend on
the type sequence of [b1, b2, . . . , bm] as listed in the table in Corollary 6.13. We want
to show that the expressions on the left hand side of Eqs. (7.1) and (7.2) are equal,
so it suffices to show the equality of the expressions on the right hand side. To do so,
we have to go through the different cases and show that the expressions in front of
the F-polynomials are equal. This is done using the tables of Corollary 6.13 (for ν(t)
and μ(t)), Corollary 5.7 (comparing j0, j1 and j2) and Corollary 5.8 (comparing δ0,
δ1 and δ2).

In type (. . . ,−,−) we have ν(t) = 1, μ(t) = t−|bm |+1, j0 = j1 − 1/2 = j2 − 1,
and δ0 = −δ1 = δ2. Therefore

δ0 t
j0 μ(t) = δ2 t

j2−|bm | and δ0 t
j0 ν(t) = −δ1 t

j1− 1
2

as desired.
In type (. . . ,−,+,−) we have ν(t) = 1, μ(t) = t−|bm |−|bm−1|, j0 = j1 − 1/2 =

j2 + |bm−1|, and δ0 = −δ1 = δ2. Again

δ0 t
j0 μ(t) = δ2 t

j2−|bm | and δ0 t
j0 ν(t) = −δ1 t

j1− 1
2 .

In type (. . . ,+,+,−) we have ν(t) = 1, μ(t) = −t−|bm |−|bm−1|+1, j0 = j1 −
1/2 = j2 + |bm−1| − 1, and δ0 = −δ1 = −δ2. Again

δ0 t
j0 μ(t) = δ2 t

j2−|bm | and δ0 t
j0 ν(t) = −δ1 t

j1− 1
2 .

Now in type (. . . ,−,+) we have ν(t) = −t−1, μ(t) = 1, j0 = j1 + |bm | + 1/2 =
j2 + |bm |, and δ0 = −δ1 = δ2. Therefore

δ0 t
j0 μ(t) = δ2 t

j2+|bm |

which agrees with the first term on the right hand side of Eq. (7.1). For the second
term we get

δ0 t
j0 ν(t) [ |bm | ]q = δ1 t

j1+|bm |− 1
2 [ |bm | ]q = −δ1 t

j1+ 1
2 [ |bm | ]q ,

where the last equation follows from −t |bm |−1 [ |bm | ]q = [ |bm | ]q . This expression
agrees with the second term in (7.1).

In type (. . . ,−,+,+)we have ν(t) = 1,μ(t) = −t−|bm−1|, j0 = j1+|bm |−1/2 =
j2 + |bm | + |bm−1|, and δ0 = δ1 = −δ2. Again

δ0 t
j0 μ(t) = δ2 t

j2+|bm | and δ0 t
j0 ν(t) [ |bm | ]q = δ1 t

j1+|bm |− 1
2

[ |bm | ]q = −δ1 t
j1+ 1

2 [ |bm | ]q
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as desired.
Finally, in type (. . . ,+,+,+) we have ν(t) = 1, μ(t) = t−|bm−1|+1, j0 = j1 +

|bm | − 1/2 = j2 + |bm | + |bm−1| − 1, and δ0 = δ1 = δ2. Again we have

δ0 t
j0 μ(t) = δ2 t

j2+|bm | and δ0 t
j0 ν(t) [ |bm | ]q = δ1 t

j1+|bm |− 1
2

[ |bm | ]q = −δ1 t
j1+ 1

2 [ |bm | ]q .

This proves the identity in the theorem.Since, byLemma6.10, the degree of Fb1,b2,...,bm
is zero, we see that j is the degree of the Jones polynomial. The explicit formulas for
j and for the sign (−1)m−τ in the statement were already proved in Theorem 5.9. ��
We say that Laurent polynomial in t is alternating if it can be written as

±∑M
i=m(−1)i ai t i with m, M ∈ Z and ai ∈ Z≥0. The width of a Laurent poly-

nomial is the difference between the highest and the lowest exponent. For example
V[3] = t−1 + t−3 − t−4 is alternating and has width −1 − (−4) = 3.

Corollary 7.2 The Jones polynomial V[a1,a2,...,an ] is an alternating sum, its width is
a1 + a2 + · · · + an and the first and the last coefficient has absolute value 1.

Proof This follows from Theorem 7.1 using Lemma 6.10. ��
Remark 7.3 For arbitrary knots, the Jones polynomial is not necessary alternating. For
example, the Jones polynomial of the knot 10124 fromRolfsen’s table is−q10+q6+q4.

CombiningTheorem7.1 andProposition 6.4,weobtain the followingdirect formula
for the Jones polynomial.

Theorem 7.4 Let [a1, a2, . . . , an] be a positive continued fraction. Then up to nor-
malization by its leading term, V[a1,a2,...,an ] is equal to the numerator of the following
continued fraction

(a) If n is odd,

[
[a1 + 1]q − q , [a2]q q−�2 , [a3]q q�2+1, . . . , [a2i ]q q−�2i ,

[a2i+1]q q�2i+1, . . . , [an]q q�n−1+1
]
.

(b) If n is even,

q�n
[
[a1 + 1]q − q , [a2]q q−�2 , [a3]q q�2+1, . . . , [a2i ]q q−�2i ,

[a2i+1]q q�2i+1, . . . , [an]q q−�n
]
.

Corollary 7.5 If the continued fraction has only one coefficient, we have

V[2a+1] = t−a (1 + t−2 − t−3 + t−4 · · · − t−2a−1), (7.3)

V[−2a] = −t−
1
2 (1 + t−2 − t−3 + t−4 · · · − t−2a−1), (7.4)

V[2a] = −t2a+ 1
2 (1 + t−2 − t−3 + t−4 · · · − t−2a−1). (7.5)
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Proof This follows immediately from Theorem 7.1 and Proposition 6.4. ��

7.1 Coefficients of the Jones polynomial

Our realization of the Jones polynomial in terms of snake graphs allows us to compute
the coefficients directly. We give here formulas for the first three and the last three
coefficients.

Let [a1, a2, . . . , an] be a positive continued fraction with a1 ≥ 2 and an ≥ 2, and
let �i = a1 + a2 + · · · + ai . By Corollary 7.2, the Jones polynomial is of the form

V[a1,a2,...,an ] = ± t j
�n∑

i=0

(−1)i vi t
i ,

with vi ∈ Z≥0. We denote by α the cardinality of the set {i | ai = 1}, and, using the
Kronecker delta notation, we let δai ,2 = 1 if ai = 2 and δai ,2 = 0 if ai �= 2

Theorem 7.6 We have the following formulas for the coefficients of the Jones polyno-
mial

v0 = 1
v�n = 1

v1 =
{
k if n = 2k + 1;
k if n = 2k.

v�n−1 =
{
k + 1 if n = 2k + 1;
k if n = 2k.

v2 =
{ 1

2 (k + 1)(k + 2) − α if n = 2k + 1;
1
2 k(k + 3) − α if n = 2k.

v�n−2 =
{ 1

2 (k
2 + 5k + 2) − α − δa1,2 − δan ,2 if n = 2k + 1;

1
2 k(k + 3) − α − δa1,2 if n = 2k.

Proof According to Theorem 7.1, the coefficients vi are the same as the coefficients of
the specialized F-polynomial, which in turn are determined by the continued fraction
formula in Proposition 6.4. Suppose first that n = 2k + 1 is odd. Then we must
compute the coefficients of

N
[
[a1 + 1]q − q , [a2]q q−�2 , . . . , [a2i ]q q−�2i , [a2i+1]q q�2i+1, . . . , [an]q q�n−1+1

]

(7.6)
which by definition (2.1) is equal to

[an]q q�n−1+1 N
[ [a1 + 1]q − q , [a2]q q−�2 , . . . , [an−1]q q−�n−1

]

+N
[ [a1 + 1]q − q , [a2]q q−�2 , . . . , [an−2]q q�n−2+1

]
. (7.7)
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Using parts (a) and (b) of Proposition 6.4, we see that (7.7) is equal to

[an]q q Fa1,...,an−1 + Fa1,...,an−2 . (7.8)

We let v′
i and v′′

i denote the coefficients of Fa1,...,an−1 and Fa1,...,an−2 respectively, and
recall that �n−1 and �n−2 are their degrees. With this notation (7.8) becomes

[an]q q
(
1 + v′

1 q + v′
2 q

2 + · · · + v′′
�n−1−2 q

�n−1−2 + v′
�n−1−1 q

�n−1−1 + q�n−1

)

+1 + v′′
1 q + v′′

2q
2 + · · · + v′′

�n−2−2 q
�n−2−2 + v′′

�n−2−1 q
�n−2−1 + q�n−2

and this shows that v0 = v�n = 1, and

v1 = 1 + v′′
1 v2 = 1 + v′

1 + v′′
2

v�n−1 = 1 + v′
�n−1−1 v�n−2 = v′

�n−1−2 + v′
�n−1−1 + 1 − δan ,2.

Using induction on n, we have

v1 = 1 + (n − 3)/2 = k v2 = 1 + k + k(k + 1)/2 − α

v�n−1 = 1 + k v�n−2 = k(k + 3)/2 − α − δa1,2 + k + 1 − δan ,2.

This implies the result for v1 and v�n−1 directly, and for v2 it follows from the com-
putation 1+ k + k(k + 1)/2 = (k2 + 3k + 2)/2 = (k + 1)(k + 2)/2, and for v�n−2 it
follows from the computation 1 + k + k(k + 3)/2 = (k2 + 5k + 2)/2.

Now suppose n = 2k is even. In this case, we must compute the coefficients of

q�n N
[
[a1 + 1]q − q , [a2]q q−�2 , . . . , [a2i ]q q−�2i , [a2i+1]q q�2i+1, . . . , [an]q q−�n

]

(7.9)
which by definition is equal to

[an]q N
[
[a1 + 1]q − q , [a2]q q−�2 , . . . , [an−1]q q�n−1+1

]

+ q�n N
[
[a1 + 1]q − q , [a2]q q−�2 , . . . , [an−1]q q−�n−2

]
. (7.10)

Again using parts (a) and (b) of Proposition 6.4, we see that (7.10) is equal to

[an]q Fa1,...,an−1 + q�n−�n−2 Fa1,...,an−2 , (7.11)

and since �n − �n−2 = an + an−1, using the same notation as before, this becomes

[an]q (1 + v′
1 q + v′

2 q
2 + · · · + v′′

�n−1−2 q
�n−1−2 + v′

�n−1−1 q
�n−1−1 + q�n−1)

+ qan+an−1(1 + v′′
1 q + v′′

2 q
2 · · · + v′′

�n−2−2 q
�n−2−2 + v′′

�n−2−1 q
�n−2−1 + q�n−2).
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This shows that v0 = v�n = 1, and, since �n = �n−1 + an = �n−2 + an + an−1,

v1 = 1 + v′
1 v2 = 1 + v′

1 + v′
2

v�n−1 = 1 + v′′
�n−2−1 v�n−2 = 1 + v′

�n−1−1 + v′′
�n−2−2.

Applying our induction hypothesis, we get

v1 = 1 + k − 1 = k v2 = 1 + k − 1 + k(k + 1)/2 − α

v�n−1 = 1 + k − 1 = k v�n−2 = 1 + k + (k − 1)(k + 2)/2 − α − δa1,2.

This implies the result for v1 and v�n−1 directly, and for v2 it follows from the com-
putation k + k(k + 1)/2 = (k2 + 3k)/2 = k(k + 3)/2, and for v�n−2 it follows from
the computation 1 + k + (k − 1)(k + 2)/2 = (k2 + 3k)/2. ��

Example 7.7 Suppose the continued fraction [a1, a2, . . . , an] is such that all ai ≥ 2
and a1, an ≥ 3. Thus α = δa1,2 = δan ,2 = 0. For these cases the values of the
coefficients for various n are listed in the following table.

n v0 v1 v2 · · · v�n−2 v�n−1 v�n

1 1 0 1 1 1 1
2 1 1 2 2 1 1
3 1 1 3 4 2 1
4 1 2 5 5 2 1
5 1 2 6 8 3 1
6 1 3 9 9 3 1
7 1 3 10 13 4 1
8 1 4 14 14 4 1
9 1 4 15 19 5 1
10 1 5 20 20 5 1

Using a result from [10], which gives bounds for the volume of a knot in terms of
v1 and v�n−1, we have the following corollary.

Corollary 7.8 Let C = C[a1, a2, . . . , an] be a 2-bridge link such that ai ≥ 3 for all i .
Then the volume of its complement is bounded as follows.

0.35367(n − 2) < vol(S3\C) < 30v3(n − 1).

where v3 ∼ 1.0149 is the volume of a regular ideal tetrahedron.

Proof According to Corollary 1.6 in [10], we only need to show that v1 + v�n−1 = n.
This follows immediately from Theorem 7.6. ��
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7.2 Examples

7.2.1 Hopf link

C[2] is the Hopf link. It has two components and the Jones polynomial depends on
the orientation as explained in Sect. 5. We have

V[−2] = −t−1/2 − t−5/2 = −t−1/2(1 + t−2) or

V[2] = −t5/2 − t1/2 = −t5/2(1 + t−2).

In both cases, the quotient of the Jones polynomial by its leading term is equal to

F2 = [3]q − q = 1 + q2 = 1 + t−2 and F−2 = t−2 F2 = 1 + t−2.

7.2.2 Trefoil

C[3] = C[−2, 2] is the trefoil knot, and we have

V[−2,2] = t−1 + t−3 − t−4 = t−1(1 + t−2 − t−3) = t−1F−2,2,

where the last identity follows from Example 6.7.

7.2.3 4 crossings

If the number of crossings is 4 we have either the figure 8 knot C[2, 2] or the link
C[4]. In the first case, we have

V[2,2] = t2 − t + 1 − t−1 + t−2 = t2(1 − t−1 + t−2 − t−3 + t−4),

whereas

F2,2 = q4N
[ [3]q − q, [2]q q−4] = q4((1 + q2)(1 + q)q−4 + 1)

= 1 + q + q2 + q3 + q4.

On the other hand, for C[4], we have seen in Examples 5.3 and 6.8 that

V[4] = −t9/2 − t5/2 + t3/2 − t1/2 = −t9/2(1 + t−2 − t−3 + t−4) = −t9/2F4,

and

V[−4] = V[4] = −t9/2 (1 + t−2 − t−3 + t−4) = −t9/2 F4 = −t−1/2F−4.
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7.2.4 Large examples

We present two large examples to demonstrate the efficiency of the continued fraction
formula. For the continued fractions we shall use the Euler–Minding formula, see [24,
p.9], which states that N [a1, a2, . . . , an] is equal to

a1a2 . . . an

(

1 +
n−1∑

i=1

1

aiai+1
+

n−2∑

i<k−1

1

aiai+1

1

akak+1

+
n−2∑

i<k−1<�−2

1

aiai+1

1

akak+1

1

a�a�+1
+ · · ·

)

.

Thus the first term is the product of all entries of the continued fraction, then in the
first sum we remove all possible consecutive pairs from this term, in the second sum
we remove two such pairs and so on. For example, N [a, b, c, d, e] = abcde+ cde+
ade + abe + abc + e + c + a.

(i) C[3, 2, 4] To compute the Jones polynomial of C[3, 2, 4], a knot with 9 crossings,
we need to calculate F3,2,4 which is given by the numerator of the continued
fraction [ [4]q − q, [2]q q−5, [4]q q6 ], and by the Euler–Minding formula this is
equal to

([4]q − q)[2]q q−5[4]q q6 + ([4]q − q) + [4]q q6
= (1 + q2 + q3)(1 + q)(1 + q + q2 + q3)q + (1 + q2 + q3)

+ (1 + q + q2 + q3)q6

= q9 + 2q8 + 4q7 + 5q6 + 5q5 + 5q4 + 4q3 + 3q2 + q + 1

Thus the Jones polynomial is

V[3,2,4] = ± t j (−t−9 + 2t−8 − 4t−7 + 5t−6 − 5t−5

+ 5t−4 − 4t−3 + 3t−2 − t−1 + 1).

(ii) C[2, 3, 4, 5, 6]This is a 2 component linkwith 20 crossings.The continued fraction
has value [2, 3, 4, 5, 6] = 972/421. Again using the Euler–Minding formula we
see that F2,3,4,5,6 is equal to

([3]q − q) [3]q q−5 [4]q q6 [5]q q−14 [6]q q15 + [4]q q6 [5]q q−14 [6]q q15
+ ([3]q − q) [5]q q−14 [6]q q15
+ ([3]q − q) [3]q q−5 [6]q q15
+ ([3]q − q) [3]q q−5 [4]q q6 + [6]q q15 + [4]q q6 + ([3]q − q)

= q2(1 + q2)(1 + q + q2)(1 + q + q2 + q3)(1 + q + q2 + q3 + q4)

(1 + q + q2 + q3 + q4 + q5)
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+ q7(1 + q + q2 + q3)(1 + q + q2 + q3 + q4)(1 + q + q2 + q3 + q4 + q5)

+ q(1 + q2)(1 + q + q2 + q3 + q4)(1 + q + q2 + q3 + q4 + q5)

+ q10(1 + q2)(1 + q + q2)(1 + q + q2 + q3 + q4 + q5)

+ q(1 + q2)(1 + q + q2)(1 + q + q2 + q3)

+ q15(1 + q + q2 + q3 + q4 + q5) + q6(1 + q + q2 + q3) + (1 + q2)

= t−20 − 3t−19 + 7t−18 − 15t−17

+ 27t−16 − 44t−15 + 63t−14 − 83t−13 + 101t−12 − 111t−11

+ 113t−10 − 106t−9 + 92t−8 − 73t−7 + 54t−6 − 36t−5

+ 22t−4 − 12t−3 + 6t−2 − 2t−1 + 1.
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