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or wild, respectively, if and only if the dimension of its frieze 
variety is 0, 1, or ≥ 2, respectively.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

For every acyclic quiver Q, we define an algebraic variety X(Q) which we call the 
frieze variety of Q. The terminology stems from the fact that for quivers of Dynkin type 
A the coordinates of the points of the frieze variety are entries in Conway-Coxeter friezes 
[10]. The frieze variety gives a geometric interpretation of the quiver as well as concrete 
numerical invariants, for example the dimension, the number of components and the 
degree.

The construction of the variety X(Q) is inspired from the theory of cluster algebras. It 
is defined as follows. Let Q = (Q0, Q1) be an acyclic quiver (i.e., a directed graph without 
oriented cycles) with n vertices. Then we can label the vertices by integers 1, . . . , n such 
that i > j if there is an arrow i → j.

For every vertex i ∈ Q0 we define positive rational numbers fi(t) (t ∈ Z≥0) recursively 
by fi(0) = 1 and

fi(t + 1) =
1 +

∏
j→i fj(t)

∏
j←i fj(t + 1)

fi(t)
. (1.1)

We will see in Lemma 2.1 below that these fi(t) are exactly the specializations at x1 =
· · · = xn = 1 of preprojective cluster variables in the cluster algebra of Q. In particular 
the fi(t) are integers.

For every t, we thus obtain a point Pt = (f1(t), . . . , fn(t)) ∈ Cn in an affine space. 
We define the frieze variety X(Q) of the quiver Q to be the Zariski closure of the set of 
all points Pt (t ∈ Z≥0). If we choose a different labeling, then the coordinates of each 
new Pt are obtained from the old by permuting in the same way for every t. So the new 
X(Q) is obtained from the old by permuting its coordinates, thus is isomorphic to the 
old one. In particular, dimX(Q) is independent of the labeling.

Thus every acyclic quiver Q comes with an algebraic variety X(Q). At this point 
many natural questions arise. Some of these questions are posed in Section 6. In this 
paper, we show that the dimension of the frieze variety detects the representation type 
of the quiver. An acyclic quiver Q is either representation finite, tame or wild, depending 
on the representation theory of its path algebra. The quiver is representation finite if 
and only if its underlying graph is a Dynkin diagram of type A,D or E [17], and it is 
tame if and only if the underlying graph is an affine Dynkin diagram of type Ã, D̃ or Ẽ
[12,27,11]. All other acyclic quivers are wild.
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We propose a new characterization of the finite–tame–wild trichotomy in terms of the 
frieze variety X(Q) of the quiver Q.

Theorem 1.1. Let Q be an acyclic quiver.

(a) If Q is representation finite then the frieze variety X(Q) is of dimension 0.
(b) If Q is tame then the frieze variety X(Q) is of dimension 1.
(c) If Q is wild then the frieze variety X(Q) is of dimension at least 2.

If Q is representation finite then the cluster algebra has only finitely many cluster 
variables [15] and hence X(Q) is a finite set of points. This shows part (a) of Theorem 1.1.

To prove part (b), we will specify linear recursions for the coordinates of the points Pt

and then use a general argument to show that the projection of X(Q) to any coordinate 
plane is contained in the zero locus of a polynomial constructed from the linear recur-
rence. The key step here is to show that all the roots of the characteristic polynomials 
of all recursions are integral powers of a single complex number. Linear recursions for 
the sequences (fi(t))t≥0 where already considered in [1,20], where it is shown that there 
exists a linear recursion for (fi(t))t≥0 for all i if and only if Q is representation finite 
or tame. In [20], explicit linear recursions were given in type D̃ for leaf vertices, and we 
give new proofs for these recursions here. For type Ã as well as the non-leaf vertices in 
type D̃, we provide new explicit recursions.

To prove part (c) of the theorem, we use the fact that the points Pt correspond to 
slices τ−t+1kQ in the preprojective component of the Auslander-Reiten quiver of the path 
algebra kQ of Q, as well as several known facts on the spectral theory of the Coxeter 
matrix of a wild quiver, see [28]. The key result, which we think interesting in its own 
right, is to show that, when t goes to infinity, the natural logarithm of the coordinates 
ln fi(t) grows in the same way as ρt, where ρ is the largest eigenvalue, or spectral radius, 
of the Coxeter matrix. See Proposition 4.7.

There are several characterizations of the finite-tame-wild trichotomy. In [29], Ringel 
showed that Q is wild if and only if the spectral radius of the Coxeter transformation 
is greater than 1. In [31], Skowroński and Weyman characterized tameness in terms 
of semi-invariants. Recently, Lorscheid and Weist characterized tameness using quiver 
Grassmannians [23]. To our knowledge, our characterization is the first one in terms of 
numerical invariants that are integers.

The paper is organized as follows. In Section 2, we recall several definitions and results 
from representation theory and cluster algebras that are needed later. We prove part (b) 
of Theorem 1.1 in Section 3 and part (c) in Section 4. We give several examples in 
Section 5 and some open problems in Section 6.
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2. Preliminaries

Throughout the paper we work over the field of complex numbers C.

2.1. Quivers and representations

We start by recalling a few basic facts about quivers and their representations. For 
further details we refer to [2,30].

A quiver Q = (Q0, Q1, s, t) consists of a set Q0 of vertices, a set Q1 of arrows, and 
two maps s, t : Q1 → Q0 that send an arrow α to its starting point s(α) and terminal 
point t(α). We call Q a finite quiver if Q0 and Q1 are both finite sets. We will always 
assume Q to be finite in our paper.

A representation M = (Mi, ϕα)i∈Q0,α∈Q1 of a quiver Q is a collection of C-vector 
spaces Mi (i ∈ Q0) together with a collection of C-linear maps ϕα : Ms(α) → Mt(α)
(α ∈ Q1). A representation M is called finite-dimensional if each Mi is finite-dimensional. 
The representations considered in this paper are all finite-dimensional. Let dimM =
(dimMi)i∈Q0 be the dimension vector of M , and let repCQ denote the category of 
finite-dimensional representations of Q. Let CQ be the path algebra of the quiver Q over 
C and modCQ the category of finitely generated CQ-modules. There is an equivalence 
of categories modCQ ∼= repC(Q), and we use the notions of representations and modules 
interchangeably.

The projective representation P (i) at vertex i ∈ Q0 is defined as (P (i)j , ϕα) where 
P (i)j is the vector space with basis the set of all paths from i to j in Q; for an arrow 
j

α→ � in Q, the map ϕα : P (i)j → P (i)� is determined by composing the paths from i
to j with the arrow j α→ �.

Let D be the duality functor HomC(−, C), and let A = ⊕j∈Q0P (j). The Nakayama 
functor is defined as ν = DHomA(−, A). Let τ, τ−1 denote the Auslander-Reiten trans-
lations. Recall the definition of τ . Let M be an indecomposable, non-projective repre-
sentation of an acyclic quiver Q, and

P1
f

P0 M 0

be a minimal projective presentation. Then τM is defined by the following exact sequence

0 τM νP1
νf

νP0 νM 0 .

The inverse Auslander-Reiten translation τ−1 is defined dually for non-injective, inde-
composable representations of Q. For every indecomposable non-injective representation 
M there is a unique almost split sequence 0 → M → E → τ−1M → 0 starting at M .

An indecomposable representation N is called preprojective if there is a nonnegative 
integer t such that τ tN = P (i) for some i ∈ Q0. The set of all indecomposable prepro-
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jective representations form the preprojective component of the Auslander-Reiten quiver 
of Q.

A representation M is called rigid if Ext1(M, M) = 0. The indecomposable prepro-
jective representations are rigid, since Ext1(τ−tP (i), τ−tP (i)) ∼= Ext1(P (i), P (i)) = 0.

2.1.1. Admissible sequences
A sequence of vertices (i1, . . . , in) (ij �= i� if j �= �) is called an admissible sequence if 

the following conditions hold:

(1) i1 is a sink of Q;
(2) i2 is a sink of the quiver si1Q obtained from Q by reversing all arrows that are 

incident to the vertex i1;
(3) it is a sink of sit−1 · · · si1Q for t = 2, 3, . . . , n.

Note that the above definition is equivalent to saying that j < � if there is an arrow 
ij ← i� in Q. Indeed, assuming (i1, . . . , in) is admissible, if there is an arrow α : ij ← i�
in Q, then the sequence si�−1 · · · si1 changes the orientation of α if and only if exactly 
one of ij and i� is in {i1, . . . , i�−1}, or equivalently, j < � (because i� /∈ {i1, . . . , i�−1}). 
Conversely, assume j < � if there is an arrow ij ← i� in Q. Then any arrow of the form 
ij ← it (thus j < t), changes its orientation under the sequence sit−1 · · · si1 , so we get 
a new arrow ij → it. On the other hand, any arrow of the form it ← ij (thus t < j), 
remains unchanged under the sequence sit−1 · · · si1 . Thus it becomes a sink in the quiver 
sit−1 · · · si1Q.

It is easy to see that if (i1, . . . , in) is an admissible sequence then sin · · · si1Q = Q. 
Indeed, since the admissible sequence contains each vertex exactly once, the reflection 
sequence reflects each arrow exactly twice.

Since we chose our vertex labels 1, . . . , n such that i > j if there is an arrow i → j, 
we see that the sequence 1, . . . , n is an admissible sequence.

2.1.2. Structure of the preprojective component of the Auslander-Reiten quiver
The preprojective component of the Auslander-Reiten quiver has vertices τ−tP (i)

with i ∈ Q0, t ≥ 0 and arrows αt : τ−tP (i) → τ−tP (j) and αt : τ−tP (j) → τ−t−1P (i), 

for all α : j → i ∈ Q1, t ≥ 0. For example, if Q is the quiver 1 2α 3
β

γ

, then the 

beginning of the preprojective component is of the form

P (3)
β0

γ0

τ−1P (3)
β1

γ1

τ−2P (3)

P (2)

β0

γ0

α0

τ−1P (2)

β1

γ1

α1

τ−2P (2)

β2

γ2

P (1)

α0

τ−1P (1)

α1

τ−2P (1)

α2

· · ·



6 K. Lee et al. / Advances in Mathematics 367 (2020) 107130
A mesh is an operation on the Auslander–Reiten quiver, which yields τN −→ M for every 
M −→ N such that N is an indecomposable non-projective module. The meshes of the 
preprojective component represent almost split short exact sequences of the following 
form

0 τ−t+1P (i)
⊕
j→i

τ−t+1P (j) ⊕
⊕
i→j

τ−tP (j) τ−tP (i) 0

2.2. Cluster algebras

Let Q be an acyclic quiver with n vertices. The cluster algebra A(Q) of the quiver 
Q is the Z-subalgebra of the field of rational functions Q(x1, . . . , xn) generated by the 
set of all cluster variables obtained by mutation from the initial seed ((x1, . . . , xn), Q). 
For every vertex i, the mutation μi in direction i transforms a seed ((x1, . . . , xn), Q) by 
replacing the i-th cluster variable xi by the new cluster variable (

∏
j→i xj +

∏
i→j xj)/xi, 

where the first product runs over all arrows in Q that end at i and the second product 
over all arrows that start at i. Moreover, the mutation also changes the quiver. We refer 
to [16] for further details on cluster algebras.

In this paper, we are only concerned with mutations at sinks. Recall that a vertex i is 
a sink if there is no arrow starting at i. Thus in this case, the mutation formula becomes 
(
∏

j→i xj + 1)/xi. Moreover on the level of the quiver, the mutation μiQ of Q at a sink 
i is the same as the reflection siQ of Q.

Let i1, . . . , in be an admissible sequence for Q, and denote the corresponding mutation 
sequence μ = μin · · ·μi1 . Then each mutation in this sequence is a mutation at a sink, 
and moreover μQ = Q. Let x0 = (x1(0), . . . , xn(0)) denote the initial cluster and xt =
(x1(t), . . . , xn(t)) = μt(x0) be the cluster obtained from it by applying the sequence μ
exactly t times, where xj(t) is the unique cluster variable that appears for the first time 
after the mutations μij · · ·μi1μ

t−1.
The cluster character, or Caldero-Chapoton map, produces a Laurent polynomial XM

for every representation M ∈ repCQ. In particular, this associates a cluster variable 
XM to every indecomposable, rigid representation M of Q in such a way that the de-
nominator of Laurent polynomial XM is equal to 

∏
i∈Q0

xdi
i , where (d1, . . . , dn) is the 

dimension vector of M . This was shown in [6] for Dynkin quivers and in [5] for arbi-
trary acyclic quivers. This result applies in particular to all indecomposable preprojective 
representations τ−tP (i) with i ∈ Q0, t ≥ 0.

It was also shown in [4,5] that if M is a rigid indecomposable representation with 
almost split sequence 0 → M → E → τ−1M → 0, then in the cluster algebra we have 
the exchange relation Xτ−1MXM = XE + 1. Using our description of the almost split 
sequences in the preprojective component in section 2.1.2, we see that

Xτ−tP (i) =
(∏

Xτ−t+1P (j)
∏

Xτ−tP (j) + 1
)/

Xτ−t+1P (i),

j→i i→j
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and with our notation above this becomes

xi(t + 1) =
(∏

j→i

xj(t)
∏
i→j

xj(t + 1) + 1
)/

xi(t).

If we now specialize the initial cluster variables at 1, we obtain precisely the recursive 
definition of the coordinates fi(t). We summarize the above results in the following 
Lemma.

Lemma 2.1.

(1) fi(t) is xi(t) specialized at x1 = · · · = xn = 1. In particular, fi(t) is a positive 
integer.

(2) xi(t) = Xτ−t+1P (i).
(3) The denominator of Xτ−t+1P (i) is equal to 

∏n
i=1 x

di
i , where (d1, . . . , dn) is the di-

mension vector of τ−t+1P (i)

2.3. Surface type

A special class of quivers are those associated to triangulations of surfaces with marked 
points. The cluster algebras of these quivers are said to be of surface type. The cluster 
algebra (with trivial coefficients) does not depend on the choice of triangulation of the 
surface. It was shown in [13] that there are precisely four types of surfaces that give rise 
to acyclic quivers.

(1) The disk with n + 3 marked points on the boundary corresponds to the finite type 
An. The quiver is acyclic if and only if the triangulation has no internal triangles.

(2) The disk with one puncture and n marked points on the boundary corresponds to the 
finite type Dn. The quiver is acyclic if and only if the triangulation has no internal 
triangles and exactly two arcs incident to the puncture.

(3) The annulus with p marked points on one and q marked points on the other boundary 
component corresponds to the affine type Ãp,q with n = p + q vertices. The quiver is 
acyclic if and only if every arc in the triangulation connects two points on different 
boundary components.

(4) The disk with two punctures and n − 3 marked points on the boundary corresponds 
to the affine type D̃ with n vertices (in the usual notation this would be type D̃n−1). 
The quiver is acyclic if and only if
(i) for each of the two punctures pi there are precisely two (tagged) arcs τi1 and 

τi2 (i = 1, 2) that connect pi to a boundary point ai1, ai2, such that, either 
ai1 = ai2 or ai1 and ai2 are neighbors on the boundary. Therefore, either the 
tagged arcs τi1, τi2 form a selffolded triangle or they form a triangle together 
with the boundary segment ai1 ai2.



8 K. Lee et al. / Advances in Mathematics 367 (2020) 107130
(ii) letting B1 and B2 be the two parts of the boundary separated by the two trian-
gles incident to the punctures, each of the remaining n − 4 arcs must connect a 
point of B1 to a point of B2.

It was also shown in [13] that there is a bijection between cluster variables and tagged 
arcs in the surface. Later, in [24], combinatorial formulas were given for cluster variables, 
and in [25] these formulas were used to associate elements of the cluster algebra to other 
curves in the surface including closed simple loops and bracelets. If L is a closed simple 
curve its k-bracelet Brack(L) is the k-fold concatenation of L with itself. Thus the 1-
bracelet is just the loop L and the k-bracelet has k− 1 selfcrossings. These bracelets are 
essential in the construction of the canonical basis known as the bracelet basis in [25]. 
Bracelets satisfy the following Chebyshev recursion Brac0(L) = 2, Brac1(L) = L and

Brack(L) = L · Brack−1(L) − Brack−2(L).

All these elements satisfy the so-called skein relations, which are given on the level of 
curves by smoothing a crossing × in two ways �	 and ⊃⊂. The skein relations in the 
cluster algebra were proved in [26] using hyperbolic geometry and in [7–9] using only 
the combinatorial definition of the cluster algebra elements. The skein relations between 
bracelets and arcs play a crucial role in the proof of our main theorem in the affine types 
Ã and D̃.

2.4. Linear recurrences

We recall the following result about linear recurrences.

Lemma 2.2. Let (an) be a sequence given by the recurrence an = c1an−1 + c2an−2 + . . .+
cdan−d, where the ci ∈ C are constant. Let p(x) be the characteristic polynomial of this 
recurrence, thus p(x) = xd − c1x

d−1 − c2x
d−2 − . . .− cd, and denote by r1, r2, . . . , rd the 

roots of p(t). If the roots of p(t) are all distinct then there exist constants αi ∈ C such 
that an = α1r

n
1 + α2r

n
2 + · · ·αdr

n
d .

In particular, if there exists a complex number ρ such that the roots are ρi, for d
distinct integers i, then an =

∑
i αiρ

ni.

3. Proof of the main theorem part (b), the tame case

In this section, we prove that dimX(Q) = 1 for affine types. In each case we shall 
exhibit a linear recursion for the coordinates of the points of X(Q), which then will 
imply the desired result via the results in section 2.4. In the types Ã and D̃, we use skein 
relations to obtain the recursions, and in type Ẽ we checked the recursion formulas by 
computer.

We start with two preparatory lemmas.
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Lemma 3.1. Let e be a positive integer and ρ ∈ C. Let (an)n∈Z and (bn)n∈Z be two 
sequences such that

an =
e∑

i=−e

αiρ
ni and bn =

e∑
i=−e

βiρ
ni

with αi, βi ∈ C. Then there exists a nonzero polynomial g(x, y) ∈ C[x, y] of degree at 
most 4e − 2 such that g(an, bn) = 0 for all n.

Proof. Let d = 4e − 2 and consider the general polynomial of degree d

g(x, y) =
∑

0≤j+k≤d

cj,kx
jyk.

This polynomial has (d + 2)(d + 1)/2 = 8e2 − 2e coefficients cj,k. We want to find 
coefficients cj,k such that g(an, bn) = 0 for all integers n, which is

∑
0≤j+k≤d

cj,k(
e∑

i=−e

αiρ
ni)j(

e∑
i=−e

βiρ
ni)k = 0. (3.1)

If we write the left hand side as a polynomial in ρ±n it is of the form

ed∑
�=−ed

γ�(ρn)�,

where γ� is a linear function of the cj,k, 0 ≤ j + k ≤ d. Thus in order to show (3.1) it 
suffices to show that the system of equations

γ�((cj,k)) = 0

has a nontrivial solution, and this is true since the number of equations 2ed + 1 =
8e2 − 4e + 1 is strictly smaller than the number of variables 8e2 − 2e. �
Lemma 3.2. Let K be any field. Fix a nonnegative integer e and any element ρ ∈ K. Let 
n be a positive integer, and for each p ∈ {1, ..., n}, let (a(p)

j )j∈Z be a sequence such that

a
(p)
j =

e∑
i=−e

α
(p)
i ρji,

where the α(p)
i ∈ K are independent of j. Then the Zariski closure of {(a(1)

j , a(2)
j , · · · ,

a
(n)
j ) ∈ An

K : j ∈ Z} is of Krull dimension ≤ 1.
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Proof. We use induction on n. There is nothing to show for n = 1. The base case of 
n = 2 is proved in Lemma 3.1. Suppose that it holds for n, and we prove for n + 1. Let

C := {(a(1)
j , a

(2)
j , · · · , a(n−1)

j , a
(n)
j , 0) ∈ An+1

K : j ∈ Z},

D := {(a(1)
j , a

(2)
j , · · · , a(n−1)

j , 0, a(n+1)
j ) ∈ An+1

K : j ∈ Z},

E := {(a(1)
j , · · · , a(n−2)

j , 0, a(n)
j , a

(n+1)
j ) ∈ An+1

K : j ∈ Z},

Z := {(a(1)
j , a

(2)
j , · · · , a(n−1)

j , a
(n)
j , a

(n+1)
j ) ∈ An+1

K : j ∈ Z},

where the bar denotes the Zariski closure. By induction each of dim(C), dim(D), and 
dim(E) are ≤ 1. If one of them is equal to 0, then dim(Z) ≤ 1 since Z ⊂ C × A1, 
Z ⊂ D ×A1, and Z ⊂ E ×A1. Suppose that dim(C) = dim(D) = dim(E) = 1. Aiming 
at contradiction, assume that dim(Z) = 2. Let Z1 be an irreducible component of Z with 
dim(Z1) = 2. Then Z1 = C1 ×A1 = D1 ×A1 = E1 ×A1 for some irreducible component 
C1 of C, some irreducible component D1 of D, and some irreducible component E1 of 
E. This implies that all of C1, D1, and E1 are lines. Hence Z1 is a linear plane in An+1

K . 
Choose three non-collinear points in general position, say (qw,1, ..., qw,n+1)w∈{1,2,3}, on 
Z1. Then the points (qw,1, ..., qw,n, 0)w∈{1,2,3} are distinct and collinear, because they are 
on the line C1. Similarly (qw,1, ..., qw,n−1, 0, qw,n+1)w∈{1,2,3} are distinct and collinear, 
and (qw,1, ..., 0, qw,n, qw,n+1)w∈{1,2,3} are collinear as well. Then (qw,1, ..., qw,n+1)w∈{1,2,3}
become collinear, which is a contradiction. �
3.1. Affine type A

Let Q be an acyclic quiver of type Ãp,q. We will use the annulus with p marked 
points on the inner boundary component and q marked points on the outer boundary 
component as a model for modCQ as described in section 2.3. Let

k = p + q

gcd(p, q) and m = lcm(p, q).

Thus k = (p + q)m/pq. Let L be the (isotopy class of the) closed simple curve formed by 
the equator of the annulus, and consider its k-bracelet Brack(L). The crossing number 
e(γ, L) between any two isoclasses of curves is defined to be the minimum number of 
crossings between a curve in the isotopy class of γ and the isotopy class of L. We define 
the constant

C(p, q) = XBrack(L)|xi=1

to be the positive integer obtained from the Laurent polynomial XBrack(L) of the bracelet 
by specializing the initial cluster variables x1 = · · · = xn = 1. Note that, unless one of p
or q is 1, the value of C(p, q) depends on the orientation of the arrows of Q. For q = 1
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Fig. 1. The skein relation of equation (3.2) for k = 2.

we have C(p, 1) = Tp+1(p + 2), where Tp is the p-th Chebyshev polynomial with T0 = 2. 
So C(1, 1) = 7, C(2, 1) = 52, C(3, 1) = 527, C(4, 1) = 6726. For p = q = 2, there are two 
possible values, C(2, 2) = 34 or 47.

We have the following linear recursion for the coordinates fi(t) of the points defining 
X(Q).

Theorem 3.3. Let Q be of type Ãp,q and m = lcm(p, q). Then for all i ∈ Q0 and all t ≥ m

fi(t + m) = C(p, q)fi(t) − fi(t−m).

Proof. The indecomposable representations in the preprojective component correspond 
to arcs that connect points on different boundary components. For each such arc γ, the 
crossing number e(γ, L) with L is 1, and the crossing number e(γ, Brack(L)) with the 
k-bracelet is k. Smoothing one of these crossings we obtain the following skein relation

Brack(L) · γ = Dk(γ) + D−k(γ), (3.2)

where D denotes the Dehn twist along L. We give an example for k = 2 in Fig. 1. 
On the other hand, the inverse Auslander-Reiten translation τ−1 acts on the arc γ by 
moving its endpoint on the outer boundary component to its counterclockwise neighbor 
and its endpoint on the inner boundary component to its clockwise neighbor. Since 
m = lcm(p, q), we see that the arc τ−m(g) has the same endpoints as γ but τ−m(γ)
wraps around the inner boundary component exactly mp + m

q = m
pq (q+p) = k times more 

than γ. In other words, τ−m(γ) = Dk(γ). Therefore, equation (3.2) becomes

Brack(L) · γ = τm(γ) + τ−m(γ),

and passing to the cluster algebra and specializing at xi = 1, we have

C(p, q) fi(t) = fi(t−m) + fi(t + m). �

Remark 3.4. Similar looking recurrence relations involving bracelets but for arcs that 
have both endpoints on the same boundary component were found in [3, Theorem 2.5]
and [18, Theorem 5.4].
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Corollary 3.5. Let Q be an acyclic quiver of affine type Ã. Then the dimension of the 
frieze variety X(Q) is equal to one.

Proof. It suffices to show that, for every pair i, j ∈ Q0, the projection πij(X(Q)) of 
X(Q) onto the (i, j)-plane is of dimension one. By Theorem 3.3 and Lemma 2.2, we have 
linear recurrences

fh(t + m) = C(p, q)fh(t) − fh(t−m) =
1∑

e=−1
αh,r,e ρ

e�t/m�,

where ρ is one of the roots of the polynomial x2 −C(p, q)x + 1, and αh,r,e depends only 
on h ∈ {i, j}, r = t −m�t/m
 ∈ {0, 1, ..., m − 1}(mod m), and e. Since C(p, q) > 2, we 
have ρ �= 1.

Thus Lemma 3.1 with e = 1 implies there is a polynomial gt(x, y) of degree 4e − 2 =
2 such that gt(fi(t + sm), fj(t + sm)) = 0, for all s such that t + sm ≥ 0. Define 
g = g0 · g1 · · · gm−1. Then πij(X(Q)) is contained in the zero locus of g, and hence has 
dimension one. �
3.2. Affine type D

Let Q be an acyclic quiver of type D̃ with n vertices. Thus the underlying graph of 
Q is the following.

◦ ◦
• • · · · •

◦ ◦

Note that we use n for the number of vertices, so in the usual notation this type is D̃n−1. 
Each of the vertices marked with the symbol ◦ is called a leaf of Q and each of the 
vertices marked with the symbol • is called a non-leaf. We will use the disk with two 
punctures and n −3 marked points on the boundary as a model for modCQ as described 
in section 2.3. Let L be the (isotopy class of the) closed simple curve around the two 
punctures and let Brack(L) denote its k-bracelet. We denote by D the full Dehn twist 
along L in counterclockwise direction, and by D1/2 the half Dehn twist.

The indecomposable representations in the preprojective component correspond to 
two types of arcs, depending whether the vertex i is a leaf of Q or not.

◦ If i is a leaf in Q, then τ−tP (i) corresponds to an arc γ that connects a boundary 
point to a puncture such that the crossing number e(γ, L) is one.

• If i is not a leaf in Q, then τ−tP (i) corresponds to an arc γ with both endpoints on 
the boundary and such that the crossing number e(γ, L) is two.
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We call an arc γ preprojective of orbit i if it corresponds to a preprojective representation 
of the form τ−tP (i).

We have the following relation between the Dehn twist and the Auslander-Reiten 
translation.

Lemma 3.6. Let γ be a preprojective arc of orbit i. Then

D2(γ) = τ−2(n−3)(γ).

Moreover, if i is a non-leaf vertex or n is odd, then also D(γ) = τ−(n−3)(γ).

Proof. Recall that n − 3 is the number of marked points on the boundary of the disk. 
If i is a leaf then applying τ−1 moves the endpoint of γ that lies on the boundary to its 
counterclockwise neighbor and changes the tagging at the puncture. Thus τ−(n−3)(γ) is 
equal to the full Dehn twist D(γ) if n − 3 is even, and it is the Dehn twist with opposite 
tagging at the puncture if n − 3 is odd.

If i is not a leaf, then applying τ−1 moves both endpoints of γ to their counterclock-
wise neighbors on the boundary. Thus after applying τ−1 exactly n − 3 times, we have 
moved each endpoint of γ counterclockwise around the whole boundary back to its initial 
position. On the other hand, the Dehn twist does exactly the same, since γ crosses the 
loop L twice in this situation. �

If γ is a preprojective arc of orbit i with i a non-leaf vertex, we let γ1, γ2 be the two 
arcs that have the same endpoints as γ and do not cross the loop L, see Fig. 2. Define 
Sk(L) recursively by S1(L) = 1, S2(L) = L + 2 and Sk(L) = LSk−1(L) − Sk−2(L) + 2.

Lemma 3.7. Let γ be a preprojective arc of orbit i and k ≥ 1.

(a) If the vertex i is a non-leaf then

Brack(L) · γ = Dk/2(γ) + D−k/2(γ) + 2(γ1 + γ2)Sk(L).

(b) If the vertex i is a leaf then

Brack(L) · γ = Dk(γ) + D−k(γ).

Proof. For k = 1, the results are the following skein relations (see Fig. 2 for the case 
when i is a non-leaf).

L · γ =
{

D1/2(γ) + D−1/2(γ) + 2(γ1 + γ2) if i is a non-leaf;
D(γ) + D−1(γ) if i is a leaf.

(3.3)

The result for the case when i is a leaf can be obtained by the same argument as in the 
proof of Theorem 3.3 (see (3.2)).
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Fig. 2. The skein relation of equation (3.3). In the cluster algebra the loops that are contractible to the 
puncture are equal to 2.

Now suppose k > 1. In case (a), we may assume by induction that

Brack−1(L) · γ = D(k−1)/2(γ) + D−(k−1)/2(γ) + 2(γ1 + γ2)Sk−1(L).

Multiplying by L and using equation (3.3) we have

L · Brack−1(L) · γ = Dk/2(γ) + D(k−2)/2(γ) + 2(γ1 + γ2)

+D−k/2(γ) + D−(k−2)/2(γ) + 2(γ1 + γ2) + 2L(γ1 + γ2)Sk−1(L)

= Dk/2(γ) + D−k/2(γ) + Brack−2(L) · γ − 2(γ1 + γ2)Sk−2(L)

+2(γ1 + γ2)(2 + L · Sk−1(L)),

where the last equation holds by induction. Then

(L · Brack−1(L) − Brack−2(L)) · γ = Dk/2(γ) + D−k/2(γ)

+ 2(γ1 + γ2)(L · Sk−1(L) − Sk−2(L) + 2),

and using the recursions for the bracelets and for Sk we get

Brack(L) · γ = Dk/2(γ) + D−k/2(γ) + 2(γ1 + γ2)Sk(L).

In case (b), we assume by induction that

Brack−1(L) · γ = Dk−1(γ) + D−(k−1)(γ).

Again multiplying by L and using equation (3.3) we have
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L · Brack−1(L) · γ = Dk(γ) + Dk−2(γ) + D−k(γ) + D−(k−2)(γ)
= Dk(γ) + D−k(γ) + Brack−2(L) · γ

where the last equation holds by induction. Then

(L · Brack−1(L) − Brack−2(L)) · γ = Dk(γ) + D−k(γ)

and the left hand side is equal to Brack(L) · γ. �
For our next result we define the constants

Cj(n) = XBracj(L)|xi=1 j ∈ Z≥0.

Note that C2(n) = C1(n)2 − 2 and the value of the constant depends on the orientation 
of the edges in Q. We have the following linear recursion for the coordinates fi(t) of the 
points defining X(Q).

Theorem 3.8. Let Q be an acyclic quiver of type D̃ with n vertices.

(a) For all non-leaf vertices i and all t, p ∈ Z≥0, we have

fi(t+3p(n−3)) = (C2p(n)+1) fi(t+2p(n−3))−(C2p(n)+1) fi(t+p(n−3))+fi(t).

(b) For all leaf vertices i and all t ∈ Z≥0, we have

fi(t + 2(n− 3)) = C1(n) fi(t + (n− 3)) − fi(t) if n is odd;
fi(t + 4(n− 3)) = C2(n) fi(t + 2(n− 3)) − fi(t) for all n.

Proof. (a) Let i be a non-leaf vertex. Combining Lemmas 3.6 and 3.7, we have for every 
preprojective arc γ of orbit i

Brac2p(L) · γ = τ−p(n−3)(γ) + τp(n−3)(γ) + 2(γ1 + γ2)S2p(L). (3.4)

Let K denote the integer obtained by specializing the Laurent polynomial corresponding 
to 2(γ1 +γ2)S2p(L) at xi = 1. Then, if we let γ = τ−p(n−3)τ−t+1P (i), the equation (3.4)
yields

C2p(n) fi(t + p(n− 3)) = fi(t + 2p(n− 3)) + fi(t) + K. (3.5)

Similarly, if we let γ = τ−2p(n−3)τ−t+1P (i), the equation (3.4) yields

C2p(n) fi(t + 2p(n− 3)) = fi(t + 3p(n− 3)) + fi(t + p(n− 3)) + K. (3.6)

Subtracting equation (3.5) from equation (3.6) and rearranging the terms we get
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fi(t + 3p(n− 3)) = (C2p(n) + 1)fi(t + 2p(n− 3)) − (C2p(n) + 1)fi(t + p(n− 3)) + fi(t).

This completes the proof of (a).
(b) Let i be a leaf vertex. Combining Lemmas 3.6 and 3.7, we have for every prepro-

jective arc γ of orbit i

L · γ = τ−(n−3)(γ) + τn−3(γ) if n is odd;
Brac2(L) · γ = τ−2(n−3)(γ) + τ2(n−3)(γ) for all n.

We thus obtain

C1(n) · fi(t + n− 3) = fi(t + 2(n− 3)) + fi(t) if n is odd;

C2(n) · fi(t + 2(n− 3)) = fi(t + 4(n− 3)) + fi(t) for all n. �
Remark 3.9. Part (b) of Theorem 3.8 was obtained in [20, Theorems 6.1 and 6.2] using 
cluster categories.

Corollary 3.10. Let Q be an acyclic quiver of affine type D̃. Then the dimension of the 
frieze variety X(Q) is equal to one.

Proof. Suppose first that n is odd. The characteristic polynomial of the recursions in 
Theorem 3.8 are

x3 − (C2(n) + 1)x2 + (C2(n) + 1)x− 1 in case (a) with p = 1;
x2 − C1(n)x + 1 in case (b) with n odd.

Let ρ be a root of x2 − C1(n) x + 1. Then x2 − C1(n) x + 1 = (x − ρ)(x − ρ−1) and 
C1(n) = ρ + ρ−1. Moreover ρ �= ρ−1, since C1(n) > 2. From the recursive formula of the 
bracelets we have C2(n) = C1(n)2 − 2, thus C2(n) + 1 = ρ2 + ρ−2 + 1. Therefore the 
characteristic polynomial in case (a) is equal to (x − ρ2)(x − 1)(x − ρ−2). In particular 
the roots of the characteristic polynomials in case (a) and (b) are of the form ρ� with 
� = −2, −1, 0, 1, 2. Now the result follows from Lemma 2.2 and Lemma 3.2.

If n is even, we use p = 2 so that the characteristic polynomial of the recursions in 
Theorem 3.8 are

x3 − (C4(n) + 1)x2 + (C4(n) + 1)x− 1 in case (a) with p = 2;
x2 − C2(n)x + 1 in case (b) for all n.

Now we let ρ be a root of x2−C2(n) x +1, use the Chebyshev relation C4(n) = C2(n)2−2
and the proof is analogous to the previous case. �
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3.3. Affine type E

Let R be a commutative ring, and R′ be a subring of R. If a sequence (a�) of elements 
in R satisfies a recurrence relation c0a�+k + c1a�+k−1 + · · ·+ cka� = 0 for all � ≥ 0 where 
c0, . . . , ck ∈ R′, then we call the polynomial f(x) = c0x

k + c1x
k−1 + · · · + ck ∈ R′[x] an 

annihilator of (a�). Recall the following fact:

Lemma 3.11. Let f(x), g(x) ∈ R′[x] be annihilators of (a�) and (b�), respectively. Then:
(i) f(x)g(x) ∈ R′[x] is an annihilator of (a� + b�) of degree deg f + deg g.
(ii) Let h(x) ∈ R′[x] be the characteristic polynomial of the tensor product of the com-

panion matrices of f and g. Then h(x) is an annihilator of (a�b�) of degree (deg f)(deg g).
Moreover, if the leading and constant coefficients of f, g are ±1, then the same holds 

for the above annihilators.

Proof. The parts (i) and (ii) are given in [20, Lemma 4.1]. The last statement is obvi-
ous. �

Let Q be an acyclic quiver of type Ẽn−1 with n vertices, so n = 7, 8, or 9. Let δ =
(δ1, . . . , δn), δi > 0 be the unique imaginary Schur root for Q; see for example [30, 8.2.1]
for the values of the δi. Then there exists a one parameter family (Mλ) of non-isomorphic 
indecomposable representations with dimension vector δ and such that End(Mλ) ∼= k. 
Moreover each Mλ is regular and non-rigid. Choose one such representation M such that 
M is a regular simple representation. This is equivalent to the condition τM ∼= M , in 
other words, M sits at the mouth of a homogeneous tube in the Auslander-Reiten quiver. 
(Note that XM is denoted Xδ in [20].)

Define

mn =

⎧⎪⎪⎨⎪⎪⎩
6, if n = 7;
12, if n = 8;
30, if n = 9.

dn =

⎧⎪⎪⎨⎪⎪⎩
12, if n = 7;
29, if n = 8;
169, if n = 9.

(3.7)

Lemma 3.12. Let Q be an acyclic quiver of type Ẽn−1 where n = 7, 8, 9. For each i ∈ Q0, 
and 0 ≤ r ≤ mn − 1, the sequence 

(
fi(jmn + r)

)∞
j=0 is annihilated by a polynomial in 

Z[x] of degree dn.

Proof. We explain the conclusion for n = 7 in detail, since the other two cases are proved 
similarly. The idea is to give the bounds of degrees of the recursive relations described 
in [20].

First note that the cluster category does not depend on the orientation of Q. Once 
we prove a recurrence relation of (Xτ−tP (i))t for one particular orientation, changing the 
orientation of the quiver will not change the recursion. We use the following orientation 
of Q.
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1 2 7 6 5

4

3

This is the same labeling, and the opposite orientation as in [20, §7]. (We use the opposite 
orientation because of a different convention used in [20].) For simplicity, we denote mn

by m. All relations below can be found in [20, §7].
For i = 1, 3, 5, 

(
Xτ−(jm+r)P (i)

)∞
j=0 is annihilated by x2 −XMx + 1. For i = 2, since

Xτ−tP (2) = Xτ−tP (1)Xτ−(t+1)P (1) − 1,

we have

Xτ−(jm+r)P (2) = Xτ−(jm+r)P (1)Xτ−(jm+r+1)P (1) − 1.

Since both sequences (Xτ−(jm+r)P (1))j and (Xτ−(jm+r+1)P (1))j are annihilated by a poly-
nomial of degree 2, and since the constant sequence (1)j is annihilated by x − 1, we 
conclude that the sequence (Xτ−(jm+r)P (1)Xτ−(jm+r+1)P (1))j is annihilated by a polyno-
mial of degree 2 · 2 = 4, thus (Xτ−(jm+r)P (2))j is annihilated by a polynomial of degree 
4 + 1 = 5, using Lemma 3.11. The same conclusion holds for i = 4, 6.

For i = 7, we have

Xτ−(jm+r)P (7) = Xτ−(jm+r)P (1)Xτ−(jm+r+1)P (2) −Xτ−(jm+r+2)P (1).

By Lemma 3.11, (Xτ−(jm+r)P (7))j is annihilated by a polynomial of degree 2 ·5 +2 = 12.
We illustrate these degrees as follows, where the notation i(d) means vertex i corre-

sponding to an annihilating polynomial of degree d with coefficients in Z[XM ]:

Ẽ6 : 1(2) 2(5) 7(12) 6(5) 5(2)

4(5)

3(2)

Now specialize the annihilating polynomial at x1 = · · · = xn = 1. Since all coefficients 
are in Z[XM ], the specialization is well-defined. Moreover, since the leading and constant 
coefficients are ±1, the specialization is not trivial. This gives us the desired polynomial.
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For n = 8, the degree of an annihilating polynomial for each vertex are illustrated 
below:

Ẽ7 : 1(2) 2(5) 3(12) 8(29) 6(12) 5(5) 4(2)

7(5)

The degrees at vertices i = 1, 2, 3, 8 are obtained similar as the case n = 7, using identities

XMXτ−tP (1) = Xτ−t+mP (1) + Xτ−t−mP (1),

Xτ−tP (2) = Xτ−tP (1)Xτ−(t+1)P (1) − 1,

Xτ−tP (3) = Xτ−tP (1)Xτ−(t+1)P (2) −Xτ−(t+2)P (1),

Xτ−tP (8) = Xτ−tP (1)Xτ−(t+1)P (3) −Xτ−(t+2)P (2).

The degrees of i = 4, 5, 6 are obtained by symmetry. For the vertex 7, we use the first 
two exchange triangles in [20, page 1857]:

P1 → τ−1P7 → τ−4P4 → τP1, τ−4P4 → N → P1 → τ−3P4

(where N is the indecomposable regular simple module of dimension vector 11100101 
which belongs to the mouth of the tube of width 4) to obtain

Xτ−(t+1)P (7) = Xτ−tP (1)Xτ−(t+4)P (4) −Xτ−tN

Note that the sequence (τ tN)t has period 4 which divides m = 12, thus (Xτ−(jm+r−1)N )j
is a constant sequence. Substituting t = jm + r − 1 and using the fact that 
(Xτ−(jm+r−1)P (1))j , (Xτ−(jm+r+3)P (4))j , (Xτ−(jm+r−1)N )j are annihilated by polynomi-
als of degrees 2, 2, 1, respectively, we conclude that the sequence (Xτ−(jm+r)P (7))j is 
annihilated by a polynomial of degree 2 · 2 + 1 = 5.

For n = 9, we obtain

Ẽ8 : 1(2) 2(5) 3(12) 4(29) 5(70) 9(169) 8(29) 7(5)

6(12)

Indeed, for vertices i = 1, 2, 3, 4, 5, 9, we use

XMXτ−tP (1) = Xτ−t+mP (1) + Xτ−t−mP (1),

Xτ−tP (2) = Xτ−tP (1)Xτ−(t+1)P (1) − 1,
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Xτ−tP (3) = Xτ−tP (1)Xτ−(t+1)P (2) −Xτ−(t+2)P (1),

Xτ−tP (4) = Xτ−tP (1)Xτ−(t+1)P (3) −Xτ−(t+2)P (2),

Xτ−tP (5) = Xτ−tP (1)Xτ−(t+1)P (4) −Xτ−(t+2)P (3),

Xτ−tP (9) = Xτ−tP (1)Xτ−(t+1)P (5) −Xτ−(t+2)P (4).

For vertex 7 we use

Xτ−tP (7) = Xτ−(t−2)P (1)Xτ−(t+5)P (1) −Xτ−(t+2)N

(where N is the indecomposable regular simple module of dimension vector 001111001
which belongs to the mouth of the tube of width 5) and that 5 divides m = 30.
For vertex 6 we use

Xτ−tP (6) = Xτ−(t−1)P (1)Xτ−(t+2)P (7) −Xτ−(t+7)P (1)

For vertex 8 we use

Xτ−tP (8) = Xτ−(t−1)P (1)Xτ−(t+1)P (6) −Xτ−(t+3)P (7)

This completes the proof. �
We need the following simple fact.

Lemma 3.13. If a sequence (aj)∞j=0 is annihilated by a polynomial of degree d, and 
c0an+k + c1an+k−1 + · · · + ckan = 0 holds for 0 ≤ n ≤ d − 1, then the equality holds for 
every n.

Proof. The sequence (c0an+k + c1an+k−1 + · · · + ckan)n satisfies a recursive relation of 
degree d and its first d terms are 0, so it must be a constant 0 sequence. �
Proposition 3.14. Let Q be an acyclic quiver of affine type Ẽ. Then the dimension of the 
frieze variety X(Q) is equal to one.

Proof. Define the constant C(n) = XM |xi=1 to be the specialization of the image of M
under the Caldero-Chapoton map at x1 = · · · = xn = 1, and let

ρ = (C(n) +
√

C(n)2 − 4)/2.

By definition of M , we have C(n) > 2 and therefore ρ �= 1.
We checked, by a computer, that for every i and r that the sequence (fi(jmn + r))∞j=0

satisfies the (not-necessarily minimal) linear recurrence whose characteristic polynomial 
is
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6∏
w=−6

(x− ρw).

Indeed, by Lemma 3.13, we only need to check that the linear recurrence holds for the 
first dn instances, for each i ∈ Q0, r = 0, . . . , mn − 1, and each orientation.1

The statement then follows from Lemma 3.2. �
3.4. A geometric remark

Siegel’s theorem on integral points says that a smooth curve of genus at least one 
has only finitely many integral points. So in the affine case, each component of X(Q) is 
either of genus zero or singular. We conjecture that each component is a smooth curve 
of genus 0.

4. Proof of the main theorem part (c), the wild case

Throughout this section, let Q be an acyclic quiver. This section is divided into two 
subsections; in the first we recall facts on the Coxeter transformation and in the second 
we prove that dimX(Q) > 1 for wild type. We keep the notation of the previous sections.

4.1. Coxeter transformation

We recall some facts on the Coxeter matrix and its inverse, following the survey paper 
[28] (rewritten in our notation).

4.1.1. The Coxeter matrix Φ
Let C = (cij)1≤i,j≤n be the Cartan matrix of Q, where cij is the number of paths 

from j to i. Its inverse C−1 is the matrix (bij)1≤i,j≤n where bii = 1 and if i �= j, then 
−bij is the number of arrows from j to i in Q. Define the Coxeter matrix Φ and its 
inverse Φ−1 as

Φ = −CT (C−1) Φ−1 = −C(C−1)T

Then Φ−1dimM = dim (τ−1M) if M is not injective and Φ−1dim I(i) = −dimP (i). 
See for example [30, §3.1].

Let ρ1, . . . , ρn be the eigenvalues of Φ−1 such that |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρn|, and 
vi = [vi1 · · · vin]T a corresponding generalized eigenvector. The largest absolute value 
of the eigenvalues |ρ1| is called the spectral radius of Φ−1.

Recall that the characteristic polynomial of a matrix A is defined as χA(x) = det(xI−
A). Now we recall some properties of the characteristic polynomial χΦ−1(x) (which is 
called the Coxeter polynomial in [28]).

1 It took a few seconds for n = 7, 8, and about half an hour for n = 9 on an iMac.
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Lemma 4.1. (1) The following characteristic polynomials are equal:

χΦ−1(x) = χΦT (x) = χΦ(x).

Therefore Φ−1, ΦT , Φ have the same set of eigenvalues and the corresponding multiplic-
ities. Moreover, the polynomials are monic, reciprocal and have integral coefficients; that 
is, if we write χΦ−1(x) =

∑n
i=0 aix

i, then an = 1 and ai = an−i ∈ Z for all i.
In (2) and (3) we assume that Q is an acyclic wild quiver.
(2) The eigenvalue ρ1 is equal to a real number ρ > 1, and has multiplicity 1. Moreover 

|ρi| < ρ for all i �= 1. As a consequence, v1 is unique up to scale. Moreover, we can choose 
v1 ∈ Rn

>0, that is, all the coordinates of v1 = [v11 · · · v1n]T are strictly positive.
(3) ρn = 1/ρ < 1 has multiplicity 1, and |ρi| > 1/ρ for all i �= n. As a consequence, 

vn is unique up to scale. Moreover, we can choose vn ∈ Rn
>0, that is, all the coordinates 

of vn = [vn1 · · · vnn]T are strictly positive.

Proof. Most of the lemma is proved in [28]. The notation M , M−t, C in [28] correspond 
to our (C−1)T , C, ΦT , respectively. (Below we shall also see that ρ(C), y−, y+ in [28]
correspond to our ρ, vT

1 , vT
n .)

(1) Since

C−1Φ−1C = C−1(−C(C−1)T )C = −(C−1)TC = ΦT ,

we see that Φ−1 and ΦT are similar, so χΦ−1(x) = χΦT (x). Moreover, a matrix and its 
transpose have the same characteristic polynomial, so χΦT (x) = χΦ(x).

Moreover, note that det(xI − Φ−1) has the leading coefficient an = 1, it has integral 
coefficients because all entries of Φ−1 are integers (see §2.1), and the reciprocal property 
is proved in [28, §2.7].

(2) It is a result by Ringel [29] (Theorem 2.1 in [28]) that ρ > 1, that it is an eigenvalue 
of ΦT of multiplicity 1, and that other eigenvalues of ΦT have norm less than ρ.

It is asserted in [28, §3.4] that there exists a (row) vector y− with positive coordinates 
such that y−ΦT = ρ−1y+. Thus Φ(y−)T = ρ−1(y−)T , therefore Φ−1(y−)T = ρ(y−)T . So 
we can take v1 = (y−)T . This proves the last statement of (2).

(3) The first statement of (3) follows from (1) and (2); indeed, because χΦ−1(x) being 
reciprocal is equivalent to χΦ−1(x) = xnχΦ−1(x−1) [28, §2.7], we have that ρi and ρ−1

i

are eigenvalues with the same multiplicity for every 1 ≤ i ≤ n.
The proof of the second statement of (3) is similar to the proof of the second statement 

of (2), where vn = (y+)T for the vector y+ defined in [28, §3.4]. �
Lemma 4.2. The eigenvalue ρ is irrational.

Proof. The eigenvalue ρ is a root of the characteristic polynomial χΦ−1(x) which, by 
Lemma 4.1, is an integral-coefficient polynomial whose leading coefficient and constant 
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are both 1. The only possible rational roots of this polynomial are ±1 by the rational 
root theorem. But ρ > 1, so ρ must be irrational. �

In the rest of the paper we require that, for i = 1, n,

vi ∈ Rn
>0 and ||vi|| = 1.

Such v1 and vn exist uniquely by the above lemma.

Lemma 4.3. Let Q be a wild acyclic quiver and M an indecomposable, preprojective repre-
sentation. Then lim

t→∞
1
ρt

dim τ−tM = λv1 for some real number λ > 0. As a consequence, 

there exist c, N ∈ R>0 such that all components of dim τ−tP (i) are greater than or equal 
to cρt for every t ≥ N and every i ∈ Q0.

Proof. The first statement is [28, Theorem 3.5]. The consequence is obvious. �
Indeed, a weaker version of Lemma 4.3 (replacing λ > 0 by λ ≥ 0) is easy to prove, 

as shown in (1) of the lemma below.
Recall that the norm of a matrix A is defined as

||A|| := sup
||x||=1

||Ax||

and it satisfies the following inequalities, see for example [21, Theorem 14 on page 90].

||A + B|| ≤ ||A|| + ||B|| and ||AB|| ≤ ||A|| ||B||. (4.1)

Lemma 4.4. (1) For any vector v ∈ Rn, there exists λ ∈ R such that lim
t→∞

1
ρt

Φ−tv = λv1.

(2) There exists a number N such that || 1
ρt Φ−t|| ≤ N for every t ∈ Z≥0.

Proof. (1) Let v1, . . . , vn be generalized eigenvectors corresponding to eigenvalues 
ρ1, ρ2, . . . , ρn such that

Φ−1V = VJ, (denote V := [v1 · · · vn ])

where J is the Jordan normal form, thus

J =

⎡⎢⎢⎣
ρ 0 · · · 0
0 J2 · · · 0
...

⎤⎥⎥⎦ ,
0 0 · · · Jp
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where each Jj is of the form

⎡⎢⎢⎣
ρi 1 0 · · · 0
0 ρi 1 · · · 0
... 1
0 0 0 · · · ρi

⎤⎥⎥⎦ for some i �= 1.

Denote the size of Jj as mj ×mj . We decompose the Jordan blocks

Jj = ρiI + K, where I =

⎡⎢⎢⎣
1 0 0 · · · 0
0 1 0 · · · 0
... 0
0 0 0 · · · 1

⎤⎥⎥⎦ ,K =

⎡⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
... 1
0 0 0 · · · 0

⎤⎥⎥⎦
Since IK = KI = K and K� = 0 for � ≥ mj , we have

1
ρt
J t
j = 1

ρt
(ρiI + K)t =

mj−1∑
�=0

ρt−�
i

ρt

(
t

�

)
K�

Since |ρi/ρ| < 1, and the exponential grows faster than a polynomial, we have

lim
t→∞

∣∣∣ρt−�
i

ρt

(
t

�

)∣∣∣ = |ρ−�
i | lim

t→∞

∣∣∣∣ρiρ
∣∣∣∣t(t�

)
= 0, for each � = 0, . . . ,mj − 1.

Therefore every entry of the matrix 1
ρt J

t
j approaches 0 as t → ∞. Thus

lim
t→∞

1
ρt
J t =

⎡⎢⎢⎣
1 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0

⎤⎥⎥⎦ =: E11. (4.2)

Writing v =
∑

i λivi = VΛ (where Λ = [λ1 · · · λn ]T ), and noticing that Φ−tV =
VJ t, we conclude

lim
t→∞

1
ρt

Φ−tv = lim
t→∞

1
ρt

Φ−tVΛ = lim
t→∞

1
ρt

VJ tΛ = V( lim
t→∞

1
ρt

J t)Λ = VE11Λ = λ1v1.

(2) It follows from (4.2) that || 1
ρt J

t|| → 1 as t → ∞, so there exists a number N ′ such 
that

|| 1
ρt
J t|| ≤ N ′, for every t ∈ Z≥0.

Then using the inequality ||AB|| ≤ ||A|| · ||B||, we have

|| 1
t
Φ−t|| ≤ ||V|| · || 1

t
J t|| · ||V−1|| ≤ ||V|| ·N ′ · ||V−1|| =: N, for every t ∈ Z≥0. �
ρ ρ
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Similarly, we have

Lemma 4.5. (1) For any vector v ∈ Rn, there exists λ ∈ R such that lim
t→∞

1
ρt

Φtv = λvn.

(2) There exists a number N such that || 1
ρt Φt|| ≤ N for every t ∈ Z≥0.

Proof. Note that since ρ1, . . . , ρn are eigenvalues of Φ−1, we see that ρ−1
1 , . . . , ρ−1

n are 
eigenvalues of Φ, and that ρ−1

1 = 1/ρ and ρ−1
n = ρ have the largest and smallest norm. 

Moreover, since Φ−1vn = ρ−1vn, we have Φvn = ρvn, that is, vn is an eigenvector of Φ
corresponding to the eigenvalue ρ. Then this lemma follows from Lemma 4.4. �
4.2. Proof of Theorem 1.1 (c)

We first need two results on the growth of the coefficients fi(t) in terms of the spectral 
radius ρ of the inverse Coxeter matrix Φ−1.

Lemma 4.6. Let d(t) be the largest coordinate in the vector dim τ−tP (i). Then fi(t) ≥
2d(t). As a consequence, there exist c, N1 ∈ R>0 such that fi(t) ≥ 2cρt for every t ≥ N1, 
i ∈ Q0.

Proof. Assume (d1(t), . . . , dn(t)) = dim τ−tP (i) and d(t) = dj(t) is the largest coordi-
nate. Let

X = Xτ−tP (i) =
∑
r∈Z

crx
r
j = c−d(t)x

−d(t)
j +

∑
r>−d(t)

crx
r
j ,

where cr ∈ Rĵ := Z≥0[x±
1 , . . . , x

±
j−1, x

±
j+1, . . . , x

±
n ], be the Laurent expansion of the 

cluster variable corresponding to τ−tP (i) in the initial cluster x0. Note that c−d(t) �= 0
because of Lemma 2.1(3). Let x′

j denote the cluster variable obtained by mutating xj of 
the initial cluster at j; that is, x′

j = (P +Q)/xj where P =
∏

k→j xk and Q =
∏

k←j xk

are both in Rĵ . Because of the Laurent phenomenon [14] and the positivity theorem 
[22], the cluster variable X is a Z≥0-coefficient Laurent polynomial with respect to any 
initial cluster. Particularly, taking the initial cluster to be {x1, . . . , x′

j , . . . , xn}, the cluster 
variable

X =
∑
r∈Z

crx
r
j =

∑
r∈Z

cr

(
P + Q

x′
j

)r

=
∑
r∈Z

cr(P + Q)r(x′
j)−r

must actually be an element in

Z≥0[x±
1 , . . . , (x′

j)±, . . . , x±
n ] = Rĵ [(x

′
j)±]

(Note that, X is a priori only an element in Kĵ[(x′
j)±], where Kĵ is the field of rational 

functions K̂ := Q(x1, . . . , xj−1, xj+1, . . . , xn).) Viewing X as a Laurent polynomial in 
j
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x′
j with coefficient in Rĵ , we see that for each (x′

j)r, its coefficient cr(P + Q)r must be 

in Rĵ . In particular, c−d(t)(P + Q)−d(t) must be in Rĵ . Thus (P + Q)d(t) divides c−d(t). 
Specializing initial cluster variables at 1, we have c−d(t)|x1=···=xn=1 ≥ 2d(t). Therefore 
fi(t) = X|x1=···=xn=1 ≥ 2d(t). This proves the first statement.

The consequence follows from Lemma 4.3. �
We now consider the natural logarithm of the integers fi(t). Denote Li(t) = ln fi(t) ∈

R for i ∈ Q0, t ∈ Z≥0. For each t ∈ Z≥0, define a column vector

L(t) =

⎡⎣L1(t)
...

Ln(t)

⎤⎦ ∈ Rn.

Recall that vn is defined in Lemma 4.1.

Proposition 4.7.

lim
t→∞

1
ρt

L(t) = ηvn

for some real number η > 0.

Proof. We first prove that the equality holds for some real number η. The idea is to 
show that, for s sufficiently large, the growth of L(s + t) and Φ−tL(s) are almost the 
same as t → ∞, and the latter is well understood by Lemma 4.4.

Rewrite (1.1) as

fi(t + 1)fi(t) = 1 +
∏
j→i

fj(t)
∏
j←i

fj(t + 1)

Taking the logarithm on both sides and using the fact2 that 0 < ln(x + 1) − ln x < 1/x
for any positive real number x, we conclude

Li(t + 1) + Li(t) =
∑
j→i

Lj(t) +
∑
j←i

Lj(t + 1) + δi(t),

where δi(t) > 0, and by Lemma 4.6,

δi(t) <
1∏

j→i fj(t)
∏

j←i fj(t + 1) < 2−cρt

, for t ≥ N1. (4.3)

2 To see ln(x +1) − lnx < 1/x, note the left side is ln(x +1) − lnx = ln(1 +1/x). Replacing 1/x by x, it is 
equivalent to show f(x) = x − ln(1 +x) > 0 for all x > 0. Note that f(0) = 0. Since f ′(x) = 1 −1/(1 +x) > 0
for x > 0, f(x) is strictly increasing for x ≥ 0, so the inequality follows.
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Then

Li(t + 1) −
∑
j←i

Lj(t + 1) = −Li(t) +
∑
j→i

Lj(t) + δi(t).

Rewriting these equations in matrix form brings up the inverse Cartan matrix as follows.⎡⎢⎢⎢⎢⎣
1 0 · · · 0

−b12 1 0 · · · 0
−b13 −b23 1 · · · 0

...
...

−b1n −b2n −b3n · · · 1

⎤⎥⎥⎥⎥⎦L(t + 1) =

⎡⎢⎢⎢⎢⎣
−1 b12 · · · b1n
0 −1 b23 · · · b2n
0 0 −1 · · · b3n
...

...
0 0 0 · · · −1

⎤⎥⎥⎥⎥⎦L(t) +

⎡⎢⎢⎢⎢⎣
δ1(t)
δ2(t)
δ3(t)

...
δn(t)

⎤⎥⎥⎥⎥⎦
which is

(C−1)TL(t + 1) = −(C−1)L(t) + δ(t)

where δ(t) = [δ1(t) · · · δn(t)]T satisfying (by (4.3))

||δ(t)|| < 2−cρt√
n <

√
n, for t ≥ N1. (4.4)

Left-multiplying the above equality by CT , we obtain

L(t + 1) = ΦL(t) + Cδ(t)

It follows that, for s, t ∈ Z≥0,

L(s + t) = ΦtL(s) + Φt−1Cδ(s) + Φt−2Cδ(s + 1) + · · · + Cδ(s + t− 1)

Assume s ≥ N1. Then

∥∥∥∥ 1
ρs+t

(
L(s + t) − ΦtL(s)

)∥∥∥∥ = 1
ρs+t

‖
t∑

i=1
Φt−iCδ(s + i− 1)‖

≤
t∑

i=1

1
ρs+i

‖ 1
ρt−i

Φt−i‖ · ‖Cδ(s + i− 1)‖ by (4.1)

≤
t∑

i=1

1
ρs+i

N‖C‖ · ‖δ(s + i− 1)‖ (this N is the constant in Lemma 4.5 (2))

<
t∑

i=1

1
ρs+i

N‖C‖ ·
√
n (by (4.4) and s ≥ N1)

< N‖C‖
√
n

∞∑ 1
ρs+i

= N‖C‖
√
n

ρ−s−1

1 − ρ−1 → 0 as s → ∞.

i=1
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Therefore for any ε > 0, we can find an integer s0 sufficiently large such that∥∥∥∥ 1
ρs0+t

(
L(s0 + t) − ΦtL(s0)

)∥∥∥∥ < ε, ∀t ≥ 0. (4.5)

By Lemma 4.5 (1), there exist N2 ∈ R>0 and λ ∈ R such that∥∥∥∥ 1
ρt

Φt
(
ρ−s0L(s0)

)
− λvn

∥∥∥∥ < ε, ∀t ≥ N2 (4.6)

Adding the inequalities (4.5) and (4.6) and using the triangle inequality (4.1), we have∥∥∥∥ 1
ρs0+t

L(s0 + t) − λvn

∥∥∥∥ < 2ε, ∀t ≥ N2

Now replace s0 + t by t. We have that, for any ε > 0, there exist λ ∈ R, N4 ∈ R>0 (we 
can just take N4 = s0 + N2), such that∥∥∥∥ 1

ρt
L(t) − λvn

∥∥∥∥ < 2ε, ∀t ≥ N4 (4.7)

thus for any ε > 0, there exists N4 ∈ R>0 such that∥∥∥∥ 1
ρt

L(t) − 1
ρt′

L(t′)
∥∥∥∥ < 4ε, ∀t, t′ ≥ N4

Therefore { 1
ρt L(t)} is a Cauchy sequence, so must converge. Denote u := limt→∞

1
ρt L(t). 

If u is not on the line spanned by vn, choose ε > 0 such that 3ε is less than the distance 
from u and that line. Taking t → ∞ in (4.7) gives the contradiction

3ε < ||u − λvn|| < 2ε.

Therefore u = ηvn for some η ∈ R.
Finally, we show that η > 0. By Lemma 4.6, there exist c, N1 ∈ R>0 such that

Li(t) = ln fi(t) ≥ cρt ln 2, for every t ≥ N1 and every i ∈ Q0.

So

ηvn = lim
t→∞

1
ρt

L(t) ≥ [c ln 2 c ln 2 · · · c ln 2]T

(here we mean that “≥” holds componentwise), which implies η > 0. �
We also need the following simple result.
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Lemma 4.8. For all a1, . . . , am, x1, . . . , xm > 0

ln(a1x1 + · · · + amxm) ≤ max(ln(xi)) + max(ln ai) + lnm.

Proof. The left hand side is at most ln(m max(ai) max(xi)) which is equal to the right 
hand side. �

We are now ready for the proof of our main result.

Proof of Theorem 1.1(c). Suppose X(Q) is contained in a 1-dimensional variety.
Consider the projection π : Cn → C2, (x1, . . . , xn) �→ (x1, x2). Then π(X(Q)) is at 

most 1-dimensional. So there exists a nonzero polynomial g(x, y) =
∑

(i,j)∈S aijx
iyj ∈

C[x, y] (where aij �= 0 for every (i, j) ∈ S ⊂ Z2
≥0) such that g(f1(t), f2(t)) = 0 for 

every t.
For convenience, denote the i-th coordinates vni of the eigenvector vn by yi for i =

1, . . . , n, that is, vn = [y1 · · · yn]T . Let (i0, j0) ∈ S such that iy1 + jy2 is maximal. 
Replacing g by g/ai0j0 if necessary, we may assume ai0j0 = 1. Then

f1(t)i0f2(t)j0 =
∑

(i,j)∈S\(i0,j0)
(−aij)f1(t)if2(t)j

Taking the logarithm on both sides, we get

i0L1(t) + j0L2(t) = ln
( ∑

(i,j)∈S\(i0,j0)
(−aij)f1(t)if2(t)j

)
and according to Lemma 4.8 we get

i0L1(t) + j0L2(t) ≤ max
(i,j)∈S\(i0,j0)

(
iL1(t) + jL2(t)

)
+ max

(i,j)∈S\(i0,j0)
(ln |aij |) + ln(|S| − 1).

Now we use Proposition 4.7. Dividing the above inequality by ρt and letting t → ∞, we 
conclude that there exists (i, j) ∈ S \ (i0, j0) such that

i0ηy1 + j0ηy2 ≤ iηy1 + jηy2.

Thus

i0y1 + j0y2 ≤ iy1 + jy2.

By the choice of (i0, j0), the equality must hold. Therefore (i0 − i)(y1/y2) = (j − j0). 
Since y1/y2 �= 0 and (i, j) �= (i0, j0), we must have j − j0 and i0 − i both been nonzero. 
Thus y1/y2 = (j − j0)/(i0 − i) is rational.

By a similar argument, yi/yj is rational for any 1 ≤ i < j ≤ n. So there is a constant 
c ∈ R>0 such that cvn ∈ Qn

>0. Then it follows from
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ρ(cvn) = Φ(cvn) ∈ Qn

that ρ is rational, which contradicts Lemma 4.2.
This completes the proof. �

Remark 4.9. It is natural to ask what is the exact dimension of X(Q) in the wild type. 
One might hope that it is always equal to the number of vertices n. However, this is 
not true, because whenever the quiver has a non-trivial automorphism φ ∈ Aut(Q) then 
we have fi(t) = fφ(i)(t), for all t, so the dimension cannot be n. An upper bound for 
the dimension is the number of orbits under the action of Aut(Q) on Q0. We will try 
to determine the exact dimension of the frieze variety for a class of rank 3 wild quivers 
(including the quiver in Subsection 5.4) in our forthcoming work.

5. Examples

In this section we give several examples. In order to find the equations for the frieze 
varieties, we used the Macaulay2 function “affinePoints” in the package “Points”. Very 
recently Igusa and Schiffler [19] provided a new way to generate the equations.

5.1. Type A1,1

For the Kronecker quiver 1 2 the points Pt = (f1(t), f2(t)) are (1, 1), (2, 5),
(13, 34), (89, 233), . . . whose coordinates consist of every other Fibonacci number. The 
frieze variety X(Q) ⊂ C2 is given by the polynomial x2 − 3xy+ y2 +1. This is a smooth 
curve of genus zero.

5.2. Type A2,1

In this case the first few points are

(1, 1, 1), (2, 3, 7), (11, 26, 41), (97, 153, 362), (571, 1351, 2131), . . .

The frieze variety X(Q) has two components, and each is a planar curve of degree 2. 
V (x1 − 2x2 + x3, 2x2

2 − 6x2x3 + 3x2
3 + 1) and V (x1 − 3x2 + x3, 3x2

2 − 6x2x3 + 2x2
3 + 1). 

Both are smooth curves of degree 2, hence of genus zero.

5.3. Type D5

Consider the following quiver Q:

1 5
3 4

2 6
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The first five points are

(1, 1, 1, 1, 1, 1), (2, 2, 5, 6, 7, 7), (3, 3, 11, 90, 13, 13), (4, 4, 131, 246, 19, 19),

(33, 33, 2045, 3001, 158, 158).

The frieze variety X(Q) has three components.

V (x5 − x6, x1 − x2, x
2
6 + x3 − 2x4, 5x2x6 − x3 − x4 − 3, x2

2 − 2x3 + x4),

V (x5 − x6, x1 − x2, x
2
6 + x3 − 9x4, 5x2x6 − x3 − 8x4 − 17, x2

2 − 2x3 + x4),

V (x5 − x6, x1 − x2, x
2
6 + x3 − 2x4, 5x2x6 − 8x3 − x4 − 17, x2

2 − 9x3 + x4).

Each component is a smooth curve of degree 2 and genus zero by the same argument as 
in the previous example.

5.4. A wild example

Consider the following quiver Q:

2

1 3

Then

t f1(t) f2(t) f3(t) L(t)T

1 2 3 13 0.693 1.099 2.565
2 254 1101 5464009 5.537 7.004 15.514
3 1.294 × 1014 6.422 × 1017 1.969 × 1039 32.49 41.00 90.48
4 1.923 × 1082 5.895 × 10103 1.107 × 10229 189.47 238.94 527.39
5 3.759 × 10479 7.063 × 10604 9.012 × 101334 1104.26 1392.72 3073.85

The Cartan matrix and its inverse, the Coxeter matrix and its inverse are:

C =
[1 1 3

0 1 1
0 0 1

]
, C−1 =

[1 −1 −2
0 1 −1
0 0 1

]
, Φ =

[−1 1 2
−1 0 3
−3 2 6

]
, Φ−1 =

[6 2 −3
3 0 −1
2 1 −1

]
.

The characteristic polynomial χΦ−1(x) = x3 − 5x2 − 5x + 1 = (x + 1)(x2 − 6x + 1), so 
ρ = 3 +

√
8 ≈ 5.8284 and 1/ρ = 3 −

√
8 ≈ 0.1716 are irrational, and the corresponding 

eigenvectors are

v1 ≈ [0.866 0.392 0.311]T , vn ≈ [0.311 0.392 0.866]T .
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(In this example, vn happens to be the “reverse” of v1. This is not the case in general.) 
Computation shows

lim
t→∞

1
ρt

L(t) ≈
[0.164

0.207
0.457

]
≈ 0.528vn.

So roughly we can describe the growth of Pi(t) as

Pi(t) = (f1(t), f2(t), f3(t)) ≈ (e0.164ρt

, e0.207ρt

, e0.457ρt

).

6. Open problems

In this section we collect some open problems. Several vague questions are as follows: 
Does the geometry of the variety reflect the representation theory of the quiver? Are 
dimension, degree and number of components meaningful invariants of the quiver? More 
precise questions are given below.

(1) One may study the irreducible components of the frieze variety. Are they smooth? 
Are the components in the tame case all of genus 0?

(2) Define and study frieze varieties for quivers that are not acyclic themselves but 
that are mutation equivalent to an acyclic quiver. One may then ask how does the frieze 
variety behave under mutation?

(3) Determine the exact dimension of the frieze variety for each wild quiver (see 
Remark 4.9).

(4) Study the frieze obtained by specializing a cluster to a tuple of numbers other 
than 1’s.
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