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1. Introduction

For every acyclic quiver ), we define an algebraic variety X (@) which we call the
frieze variety of Q). The terminology stems from the fact that for quivers of Dynkin type
A the coordinates of the points of the frieze variety are entries in Conway-Coxeter friezes
[10]. The frieze variety gives a geometric interpretation of the quiver as well as concrete
numerical invariants, for example the dimension, the number of components and the
degree.

The construction of the variety X (Q) is inspired from the theory of cluster algebras. It
is defined as follows. Let Q = (Qo, @1) be an acyclic quiver (i.e., a directed graph without
oriented cycles) with n vertices. Then we can label the vertices by integers 1,...,n such
that ¢ > j if there is an arrow ¢ — j.

For every vertex i € Qo we define positive rational numbers f;(t) (t € Z>¢) recursively
by fi(0) =1 and

1+ Hj*)i fj(t) Hjei fj(t +1)

(1.1)

We will see in Lemma 2.1 below that these f;(¢) are exactly the specializations at x; =
-+ =z, = 1 of preprojective cluster variables in the cluster algebra of Q. In particular
the f;(t) are integers.

For every ¢, we thus obtain a point P, = (f1(¢),..., fu(t)) € C™ in an affine space.
We define the frieze variety X (Q) of the quiver @ to be the Zariski closure of the set of
all points P, (t € Z>o). If we choose a different labeling, then the coordinates of each
new P, are obtained from the old by permuting in the same way for every ¢. So the new
X(Q) is obtained from the old by permuting its coordinates, thus is isomorphic to the
old one. In particular, dim X (@) is independent of the labeling.

Thus every acyclic quiver ) comes with an algebraic variety X(@). At this point
many natural questions arise. Some of these questions are posed in Section 6. In this
paper, we show that the dimension of the frieze variety detects the representation type
of the quiver. An acyclic quiver @ is either representation finite, tame or wild, depending
on the representation theory of its path algebra. The quiver is representation finite if
and only if its underlying graph is a Dynkin diagram of type A,D or E [17], and it is
tame if and only if the underlying graph is an affine Dynkin diagram of type 1&,]13) or E
[12,27,11]. All other acyclic quivers are wild.
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We propose a new characterization of the finite—tame—wild trichotomy in terms of the
frieze variety X (Q) of the quiver Q.

Theorem 1.1. Let @ be an acyclic quiver.

(a) If Q is representation finite then the frieze variety X (Q) is of dimension 0.
(b) If Q is tame then the frieze variety X (Q) is of dimension 1.
(¢) If Q is wild then the frieze variety X (Q) is of dimension at least 2.

If @ is representation finite then the cluster algebra has only finitely many cluster
variables [15] and hence X (Q) is a finite set of points. This shows part (a) of Theorem 1.1.

To prove part (b), we will specify linear recursions for the coordinates of the points P;
and then use a general argument to show that the projection of X (Q) to any coordinate
plane is contained in the zero locus of a polynomial constructed from the linear recur-
rence. The key step here is to show that all the roots of the characteristic polynomials
of all recursions are integral powers of a single complex number. Linear recursions for
the sequences (f;(t)):>0 where already considered in [1,20], where it is shown that there
exists a linear recursion for (f;(¢)):>o for all 7 if and only if @ is representation finite
or tame. In [20], explicit linear recursions were given in type D for leaf vertices, and we
give new proofs for these recursions here. For type A as well as the non-leaf vertices in
type ]ﬁ), we provide new explicit recursions.

To prove part (c¢) of the theorem, we use the fact that the points P; correspond to
slices 7~T1k(Q in the preprojective component of the Auslander-Reiten quiver of the path
algebra kQ of @, as well as several known facts on the spectral theory of the Coxeter
matrix of a wild quiver, see [28]. The key result, which we think interesting in its own
right, is to show that, when ¢ goes to infinity, the natural logarithm of the coordinates
In f;(t) grows in the same way as p’, where p is the largest eigenvalue, or spectral radius,
of the Coxeter matrix. See Proposition 4.7.

There are several characterizations of the finite-tame-wild trichotomy. In [29], Ringel
showed that @ is wild if and only if the spectral radius of the Coxeter transformation
is greater than 1. In [31], Skowronski and Weyman characterized tameness in terms
of semi-invariants. Recently, Lorscheid and Weist characterized tameness using quiver
Grassmannians [23]. To our knowledge, our characterization is the first one in terms of
numerical invariants that are integers.

The paper is organized as follows. In Section 2, we recall several definitions and results
from representation theory and cluster algebras that are needed later. We prove part (b)
of Theorem 1.1 in Section 3 and part (c) in Section 4. We give several examples in
Section 5 and some open problems in Section 6.
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2. Preliminaries
Throughout the paper we work over the field of complex numbers C.
2.1. Quivers and representations

We start by recalling a few basic facts about quivers and their representations. For
further details we refer to [2,30].

A quiver Q@ = (Qo, @1, s,t) consists of a set Qg of vertices, a set Q1 of arrows, and
two maps s,t : @1 — Qo that send an arrow « to its starting point s(a) and terminal
point t(«). We call Q a finite quiver if Qo and @, are both finite sets. We will always
assume @ to be finite in our paper.

A representation M = (M;, 9o )icQo,acq, of a quiver @ is a collection of C-vector
spaces M; (i € Qo) together with a collection of C-linear maps ¢o : Myq) — My
(a € Q1). A representation M is called finite-dimensional if each M; is finite-dimensional.
The representations considered in this paper are all finite-dimensional. Let dim M =
(dim M;);eq, be the dimension vector of M, and let repc@ denote the category of
finite-dimensional representations of Q). Let C(Q be the path algebra of the quiver @) over
C and mod CQ the category of finitely generated C@Q-modules. There is an equivalence
of categories mod CQ = rep¢(Q), and we use the notions of representations and modules
interchangeably.

The projective representation P(i) at vertex ¢ € (o is defined as (P(4);, @) where
P(i); is the vector space with basis the set of all paths from ¢ to j in Q; for an arrow
j = £in Q, the map ¢, : P(i); — P(i), is determined by composing the paths from i
to j with the arrow j > £.

Let D be the duality functor Homg (—, C), and let A = @;¢q,P(j). The Nakayama
functor is defined as v = DHom4(—, A). Let 7,77 denote the Auslander-Reiten trans-
lations. Recall the definition of 7. Let M be an indecomposable, non-projective repre-
sentation of an acyclic quiver @, and

P d Py M 0

be a minimal projective presentation. Then 7M is defined by the following exact sequence

0 ™M vP; i vPy vM 0.

The inverse Auslander-Reiten translation 7! is defined dually for non-injective, inde-
composable representations of (). For every indecomposable non-injective representation
M there is a unique almost split sequence 0 — M — E — 77 !M — 0 starting at M.
An indecomposable representation N is called preprojective if there is a nonnegative
integer ¢ such that 7N = P(i) for some i € Q. The set of all indecomposable prepro-
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jective representations form the preprojective component of the Auslander-Reiten quiver
of Q.

A representation M is called rigid if Extl(M ,M) = 0. The indecomposable prepro-
jective representations are rigid, since Ext! (7=t P(i), 7t P(i)) = Ext'(P(i), P(i)) = 0.

2.1.1. Admissible sequences
A sequence of vertices (i1,...,%,) (i; # i if j # £) is called an admissible sequence if
the following conditions hold:

(1) 4 is a sink of @;

(2) iz is a sink of the quiver s;, @ obtained from @ by reversing all arrows that are
incident to the vertex i1;

(3) iz isasink of s;,_, ---8;,Q for t =2,3,... n.

Note that the above definition is equivalent to saying that j < £ if there is an arrow
ij < i¢ in Q. Indeed, assuming (i1, ...,4,) is admissible, if there is an arrow a : i; < iy
in @), then the sequence s;, , ---s;, changes the orientation of « if and only if exactly
one of i; and ¢, is in {i1,... 41}, or equivalently, j < ¢ (because iy & {i1,...,%0-1}).
Conversely, assume j < /£ if there is an arrow i; < 7; in (). Then any arrow of the form
ij + i; (thus j < t), changes its orientation under the sequence s;, , ---s;,, so we get
a new arrow i; — 4. On the other hand, any arrow of the form 4; <+ ¢; (thus t < j),
remains unchanged under the sequence s;, _, ---s;,. Thus ¢; becomes a sink in the quiver
i, 51, Q.

It is easy to see that if (i1,...,4,) is an admissible sequence then s;, ---s;,Q = Q.
Indeed, since the admissible sequence contains each vertex exactly once, the reflection
sequence reflects each arrow exactly twice.

Since we chose our vertex labels 1,...,n such that ¢ > j if there is an arrow i — 7,
we see that the sequence 1,...,n is an admissible sequence.

2.1.2. Structure of the preprojective component of the Auslander-Reiten quiver
The preprojective component of the Auslander-Reiten quiver has vertices 7! P(3)
with i € Qo, t > 0 and arrows a;: 7 tP(i) — 77 'P(j) and @;: 77t P(j) — 77 7LP(>3),

o ¥
forall a: j — i € @1, t > 0. For example, if @ is the quiver 1 =<—— 2 =—— 3, then the

B
beginning of the preprojective component is of the form
PG X B1/7771P(3) x& 52/77*2P(3)
P(2) T71P(2) T72P(2)
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A mesh is an operation on the Auslander—Reiten quiver, which yields TN — M for every
M — N such that N is an indecomposable non-projective module. The meshes of the
preprojective component represent almost split short exact sequences of the following
form

0 ——77%P6) —= P "' PG)e P 'P(j) —= 7'P(i) —= 0

j—i i—j
2.2. Cluster algebras

Let @ be an acyclic quiver with n vertices. The cluster algebra A(Q) of the quiver
@ is the Z-subalgebra of the field of rational functions Q(z1,...,z,) generated by the
set of all cluster variables obtained by mutation from the initial seed ((z1,...,z,), Q).
For every vertex i, the mutation p; in direction ¢ transforms a seed ((z1,...,zy), Q) by
replacing the i-th cluster variable z; by the new cluster variable ([[,_,; z; + [I,,; ;)/2i,
where the first product runs over all arrows in @ that end at ¢ and the second product
over all arrows that start at i. Moreover, the mutation also changes the quiver. We refer
to [16] for further details on cluster algebras.

In this paper, we are only concerned with mutations at sinks. Recall that a vertex i is
a sink if there is no arrow starting at 4. Thus in this case, the mutation formula becomes
(I;; % +1)/2;. Moreover on the level of the quiver, the mutation ;@ of @ at a sink
i is the same as the reflection s;@Q of Q.

Let 41, ...,%, be an admissible sequence for (), and denote the corresponding mutation
sequence p = (4;, --- 4, . Then each mutation in this sequence is a mutation at a sink,
and moreover pu@ = Q. Let x9 = (21(0),...,2,(0)) denote the initial cluster and x; =
(z1(t),...,2,(t)) = put(xg) be the cluster obtained from it by applying the sequence
exactly ¢ times, where x;(¢) is the unique cluster variable that appears for the first time
after the mutations g, - - - i, p' 1.

The cluster character, or Caldero-Chapoton map, produces a Laurent polynomial X,
for every representation M € repc(@). In particular, this associates a cluster variable
X to every indecomposable, rigid representation M of ) in such a way that the de-
nominator of Laurent polynomial X, is equal to Hz‘er xfi, where (dy,...,d,) is the
dimension vector of M. This was shown in [6] for Dynkin quivers and in [5] for arbi-
trary acyclic quivers. This result applies in particular to all indecomposable preprojective
representations 77! P (i) with i € Qg,t > 0.

It was also shown in [4,5] that if M is a rigid indecomposable representation with
almost split sequence 0 — M — E — 77 1M — 0, then in the cluster algebra we have
the exchange relation X,.-1), Xy = Xg + 1. Using our description of the almost split
sequences in the preprojective component in section 2.1.2, we see that

X‘rftP('L) = (H X.r—t+1p(j) H X‘rftP(j) + 1) /)(.,-—t{»lp(i)7

Jj—1 i—J
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and with our notation above this becomes

(t+1) (Hx] ) [[ait+1) + 1)/mi(t).

J— 1—7

If we now specialize the initial cluster variables at 1, we obtain precisely the recursive
definition of the coordinates f;(t). We summarize the above results in the following
Lemma.

Lemma 2.1.

(1) fi(t) is z;(t) specialized at x1 = --- = x, = 1. In particular, f;(t) is a positive
integer.

(2) @i(t) = Xr-tr1p3)-

(3) The denominator of X, —t+1p(; is equal to [T la: , where (dy,...,dy) is the di-
mension vector of T~ T1P(i)

2.8. Surface type

A special class of quivers are those associated to triangulations of surfaces with marked
points. The cluster algebras of these quivers are said to be of surface type. The cluster
algebra (with trivial coefficients) does not depend on the choice of triangulation of the
surface. It was shown in [13] that there are precisely four types of surfaces that give rise
to acyclic quivers.

(1) The disk with n + 3 marked points on the boundary corresponds to the finite type
A,,. The quiver is acyclic if and only if the triangulation has no internal triangles.

(2) The disk with one puncture and n marked points on the boundary corresponds to the
finite type D,,. The quiver is acyclic if and only if the triangulation has no internal
triangles and exactly two arcs incident to the puncture.

(3) The annulus with p marked points on one and ¢ marked points on the other boundary
component corresponds to the affine type zgp,q with n = p+ ¢ vertices. The quiver is
acyclic if and only if every arc in the triangulation connects two points on different
boundary components.

(4) The disk with two punctures and n — 3 marked points on the boundary corresponds
to the affine type D with n vertices (in the usual notation this would be type ]ﬁ)n_l).
The quiver is acyclic if and only if

(i) for each of the two punctures p; there are precisely two (tagged) arcs 7;; and
Tiz (¢ = 1,2) that connect p; to a boundary point a;1,a;2, such that, either
a;1 = a9 or a;1 and a;o are neighbors on the boundary. Therefore, either the
tagged arcs 71,72 form a selffolded triangle or they form a triangle together
with the boundary segment a;; —a;o.-
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(ii) letting By and By be the two parts of the boundary separated by the two trian-
gles incident to the punctures, each of the remaining n — 4 arcs must connect a
point of By to a point of Bsy.

It was also shown in [13] that there is a bijection between cluster variables and tagged
arcs in the surface. Later, in [24], combinatorial formulas were given for cluster variables,
and in [25] these formulas were used to associate elements of the cluster algebra to other
curves in the surface including closed simple loops and bracelets. If L is a closed simple
curve its k-bracelet Bracg (L) is the k-fold concatenation of L with itself. Thus the 1-
bracelet is just the loop L and the k-bracelet has k — 1 selfcrossings. These bracelets are
essential in the construction of the canonical basis known as the bracelet basis in [25].
Bracelets satisfy the following Chebyshev recursion Bracy(L) = 2,Bracy (L) = L and

Bracy (L) = L - Bracg_1(L) — Bracg_2(L).

All these elements satisfy the so-called skein relations, which are given on the level of
curves by smoothing a crossing x in two ways < and DC. The skein relations in the
cluster algebra were proved in [26] using hyperbolic geometry and in [7-9] using only
the combinatorial definition of the cluster algebra elements. The skein relations between
bracelets and arcs play a crucial role in the proof of our main theorem in the affine types
A and D.

2.4. Linear recurrences

We recall the following result about linear recurrences.

Lemma 2.2. Let (ay,) be a sequence given by the recurrence a, = c1an,—1 + caan—o+...+
CdGn—d, where the ¢; € C are constant. Let p(x) be the characteristic polynomial of this

recurrence, thus p(x) = x4 — c;pd=t — coud=2 —

...—cq, and denote by r1,7r2,...,74 the
roots of p(t). If the roots of p(t) are all distinct then there exist constants a; € C such
that a, = a1} + aory + - agry.

In particular, if there exists a complex number p such that the roots are p, for d

distinct integers i, then a, = Zl aipm.
3. Proof of the main theorem part (b), the tame case

In this section, we prove that dim X (Q)) = 1 for affine types. In each case we shall
exhibit a linear recursion for the coordinates of the points of X (@), which then will
imply the desired result via the results in section 2.4. In the types A and I[NJ), we use skein
relations to obtain the recursions, and in type E we checked the recursion formulas by
computer.

We start with two preparatory lemmas.
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Lemma 3.1. Let e be a positive integer and p € C. Let (an)nez and (by)nez be two
sequences such that

(S e
Ap = Z O‘ipni and b, = Z 61'107”

i=—e i=—e

with a;, B; € C. Then there exists a nonzero polynomial g(x,y) € Clx,y] of degree at
most 4e — 2 such that g(an,by,) =0 for all n.

Proof. Let d = 4e — 2 and consider the general polynomial of degree d

gz y) = Y, cralyt.

0<j+k<d

This polynomial has (d + 2)(d + 1)/2 = 8e? — 2e coefficients c¢;j ;. We want to find
coefficients c; ;, such that g(an,b,) = 0 for all integers n, which is

> (D Oéip"")j(‘z Bip™)E = 0. (3.1)

0<5+k<d i=—e i=—ce
If we write the left hand side as a polynomial in p*" it is of the form

ed

S o,

l=—ed

where 7, is a linear function of the ¢;x,0 < j + k < d. Thus in order to show (3.1) it
suffices to show that the system of equations

ve((ejr)) =0

has a nontrivial solution, and this is true since the number of equations 2ed + 1 =
8e? — 4e + 1 is strictly smaller than the number of variables 8e¢? —2e. O

Lemma 3.2. Let K be any field. Fiz a nonnegative integer e and any element p € K. Let
n be a positive integer, and for each p € {1,...,n}, let (a§p))jez be a sequence such that

e
a;p) _ Z agp)pji7

i=—e

where the ozgp) € K are independent of j. Then the Zariski closure of {(a§1),a§2), Sy

ag.")) € AL . jeZ} is of Krull dimension < 1.
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Proof. We use induction on n. There is nothing to show for n = 1. The base case of
n = 2 is proved in Lemma 3.1. Suppose that it holds for n, and we prove for n + 1. Let

C = {(agl),agz),o~ ,agn_l),agn),O) €AY : jez},
D:= {(agl),af), e ,agn_l),O,a§"+1)) cATM . jez},
E:= {(aél), e ,aEn_z),O,QE"),a§"+l)) cATM . jez},
7 = {(aﬁl),af),-u ,a§"_1),a§"),a§n+1)) cATM . jez},

where the bar denotes the Zariski closure. By induction each of dim(C'), dim(D), and
dim(E) are < 1. If one of them is equal to 0, then dim(Z) < 1 since Z C C x Al,
Z C D xA',and Z C E x A'. Suppose that dim(C) = dim(D) = dim(E) = 1. Aiming
at contradiction, assume that dim(Z) = 2. Let Z; be an irreducible component of Z with
dim(Z;) = 2. Then Z; = C; x A = Dy x Al = E; x A for some irreducible component
C; of C, some irreducible component D; of D, and some irreducible component F; of
E. This implies that all of Cy, D1, and F are lines. Hence Z; is a linear plane in A?(H.
Choose three non-collinear points in general position, say (quw,1, -, Guw,n+1)we{1,2,3}, ON
Zy. Then the points (quw,1, -+, qw,n, 0)wef1,2,3} are distinct and collinear, because they are
on the line Cy. Similarly (gw,1,-+qw,n—1,0; Guw,n+1)we{1,2,3} are distinct and collinear,
and (quw,1, -, 0, Guns Gunt1)we{1,2,3} are collinear as well. Then (quw,1; -, Guw,n+1)wef1,2,3}
become collinear, which is a contradiction. O

3.1. Affine type A

Let @ be an acyclic quiver of type Apyq. We will use the annulus with p marked
points on the inner boundary component and ¢ marked points on the outer boundary
component as a model for mod CQ as described in section 2.3. Let

k—u and m = lem(p, q).

 ged(p, q)

Thus k = (p+q)m/pq. Let L be the (isotopy class of the) closed simple curve formed by
the equator of the annulus, and consider its k-bracelet Bracy(L). The crossing number
e(y, L) between any two isoclasses of curves is defined to be the minimum number of
crossings between a curve in the isotopy class of v and the isotopy class of L. We define
the constant

C(pa Q) = XBrack(L) |w¢:1

to be the positive integer obtained from the Laurent polynomial Xg,ac, (1) of the bracelet
by specializing the initial cluster variables 1 = --- = z,, = 1. Note that, unless one of p
or ¢ is 1, the value of C(p,q) depends on the orientation of the arrows of Q. For ¢ =1
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Fig. 1. The skein relation of equation (3.2) for k = 2.

we have C(p,1) = Tpt1(p + 2), where T, is the p-th Chebyshev polynomial with Tp = 2.
So C(1,1) = 7,0(2,1) = 52,0(3,1) = 527, C(4,1) = 6726. For p = q = 2, there are two
possible values, C'(2,2) = 34 or 47.

We have the following linear recursion for the coordinates f;(t) of the points defining

X(Q).

Theorem 3.3. Let Q be of type &W] and m = lem(p, q). Then for alli € Qo and allt > m

fitt +m) =C(p,q) fi(t) — fi(t —m).

Proof. The indecomposable representations in the preprojective component correspond
to arcs that connect points on different boundary components. For each such arc -+, the
crossing number e(v, L) with L is 1, and the crossing number e(y, Bracg (L)) with the
k-bracelet is k. Smoothing one of these crossings we obtain the following skein relation

Bracy(L) -7 = D*(y) + D (7). (3.2)

where D denotes the Dehn twist along L. We give an example for & = 2 in Fig. 1.
On the other hand, the inverse Auslander-Reiten translation 7! acts on the arc v by
moving its endpoint on the outer boundary component to its counterclockwise neighbor
and its endpoint on the inner boundary component to its clockwise neighbor. Since
m = lem(p, q), we see that the arc 77™(g) has the same endpoints as v but 77" (v)
wraps around the inner boundary component exactly 2t + %t = (g +p) = k times more
than 5. In other words, 7™ (v) = D¥*(v). Therefore, equation (3.2) becomes

Brac(L) -y =1"(7) +7 "),
and passing to the cluster algebra and specializing at x; = 1, we have

C(p,q) fi(t) = fi(t = m) + fi(t +m). O

Remark 3.4. Similar looking recurrence relations involving bracelets but for arcs that
have both endpoints on the same boundary component were found in [3, Theorem 2.5]
and [18, Theorem 5.4].
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Corollary 3.5. Let QQ be an acyclic quiver of affine type A. Then the dimension of the
frieze variety X (Q) is equal to one.

Proof. It suffices to show that, for every pair i,j € Qo, the projection m;;(X(Q)) of
X (Q) onto the (i, j)-plane is of dimension one. By Theorem 3.3 and Lemma 2.2, we have
linear recurrences

1
fnt+m)=C(p,q)fn(t) — falt —m) = Z Qe pe[t/mJ,

e=—1

where p is one of the roots of the polynomial 2% — C(p, ¢)x + 1, and ay, .. depends only
on h €{i,j},r=t—m|t/m] € {0,1,....,m — 1}(mod m), and e. Since C(p,q) > 2, we
have p # 1.

Thus Lemma 3.1 with e = 1 implies there is a polynomial g;(x,y) of degree 4e — 2 =
2 such that g.(fi(t + sm), f;(t + sm)) = 0, for all s such that ¢ + sm > 0. Define
9=260 91 gm—1. Then m;;(X(Q)) is contained in the zero locus of g, and hence has

dimension one. O
3.2. Affine type D

Let @ be an acyclic quiver of type D with n vertices. Thus the underlying graph of
Q is the following.

Note that we use n for the number of vertices, so in the usual notation this type is I@n,l.
Each of the vertices marked with the symbol o is called a leaf of @ and each of the
vertices marked with the symbol e is called a non-leaf. We will use the disk with two
punctures and n — 3 marked points on the boundary as a model for mod CQ as described
in section 2.3. Let L be the (isotopy class of the) closed simple curve around the two
punctures and let Bracg(L) denote its k-bracelet. We denote by D the full Dehn twist
along L in counterclockwise direction, and by D'/? the half Dehn twist.

The indecomposable representations in the preprojective component correspond to
two types of arcs, depending whether the vertex ¢ is a leaf of @) or not.

o If 7 is a leaf in @, then 77¢P(4) corresponds to an arc 7 that connects a boundary
point to a puncture such that the crossing number e(v, L) is one.

e If  is not a leaf in Q, then 77¢P(i) corresponds to an arc  with both endpoints on
the boundary and such that the crossing number e(v, L) is two.
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We call an arc vy preprojective of orbit i if it corresponds to a preprojective representation
of the form 77t P(i).

We have the following relation between the Dehn twist and the Auslander-Reiten
translation.

Lemma 3.6. Let v be a preprojective arc of orbit i. Then
D*(y) = 72" (y).
Moreover, if i is a non-leaf vertex or n is odd, then also D(y) = 7~ ("3 (y).

Proof. Recall that n — 3 is the number of marked points on the boundary of the disk.
If i is a leaf then applying 7—! moves the endpoint of v that lies on the boundary to its
counterclockwise neighbor and changes the tagging at the puncture. Thus T*(”’3)(’y) is
equal to the full Dehn twist D(v) if n — 3 is even, and it is the Dehn twist with opposite
tagging at the puncture if n — 3 is odd.

If i is not a leaf, then applying 7! moves both endpoints of v to their counterclock-

1

wise neighbors on the boundary. Thus after applying 7= exactly n — 3 times, we have

moved each endpoint of v counterclockwise around the whole boundary back to its initial
position. On the other hand, the Dehn twist does exactly the same, since =y crosses the
loop L twice in this situation. O

If v is a preprojective arc of orbit ¢ with ¢ a non-leaf vertex, we let 71,72 be the two
arcs that have the same endpoints as v and do not cross the loop L, see Fig. 2. Define
Sk (L) recursively by S1(L) =1, So(L) = L+ 2 and Sk(L) = LSk_1(L) — Sk—2(L) + 2.

Lemma 3.7. Let v be a preprojective arc of orbit ¢ and k > 1.
(a) If the vertex i is a non-leaf then
Bracy(L) -y = D*2(7) + D™*2(y) + 2(m1 + 72) Sk (L)
(b) If the vertex i is a leaf then
Bracg(L) - v = D*(7) + D" (7).

Proof. For k = 1, the results are the following skein relations (see Fig. 2 for the case
when i is a non-leaf).

DY2(5) + D 2(y) + 2(1 + if 7 is a non-leaf;
Loy { () (1) +2(m +72) (3.3)

D(y)+D () if 7 is a leaf.

The result for the case when 7 is a leaf can be obtained by the same argument as in the
proof of Theorem 3.3 (see (3.2)).
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6. @+@
‘+‘+°+ ®.

Fig. 2. The skein relation of equation (3.3). In the cluster algebra the loops that are contractible to the
puncture are equal to 2.

Now suppose k& > 1. In case (a), we may assume by induction that
Bracy—1(L) -y = D* V2 (9) + D™D (y) 4+ 2(31 + 72) Sp-1 (L)
Multiplying by L and using equation (3.3) we have

L-Bracg-1(L) -y = D"*(y)+DE272(y) +2(71 +72)
+D 72 (y) + DTFTD2(9) 4+ 2(1 + 72) + 2L (1 + 72) Sk-1(L)
= DM2(y) + DF/%(y) + Bracy—a(L) - v — 2(71 + 72) Sk—2(L)
+2(m +72)(2+ L - Sp-1(L)),

where the last equation holds by induction. Then

(L - Bracy_1 (L) — Bracy_o(L)) - v = D*/2(7) + D7*/2(5)
+2(71 +72)(L - Sk—1(L) — Sk—2(L) +2),

and using the recursions for the bracelets and for S, we get
Brack(L) - v = D*?(7) + D"?(9) + 2(m +72) Sk(L).
In case (b), we assume by induction that
Bracy_1(L) -y = D" '(7) + D~V ().

Again multiplying by L and using equation (3.3) we have
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L - Brack_1(L) -~

DF(y) + DF2(3) + DF(y) + D~ *-2)(y)
= DF(y) +D*(y) 4 Bracy_o(L) - v

where the last equation holds by induction. Then
(L - Bracy—1(L) — Bracg—2(L)) - v = D*(7) + D~*(v)
and the left hand side is equal to Bracg(L) -v. O

For our next result we define the constants

Cj(n) = XBracj(L) ;=1 J € Z>yo.

Note that Cy(n) = C1(n)? — 2 and the value of the constant depends on the orientation
of the edges in ). We have the following linear recursion for the coordinates f;(t) of the
points defining X (Q).

Theorem 3.8. Let QQ be an acyclic quiver of type D with n vertices.

(a) For all non-leaf vertices i and all t,p € Z>o, we have

fit+3p(n—=3)) = (Cop(n)+1) fi(t+2p(n—3)) = (Cop(n) +1) fi(t+p(n—3)) + fi(t).

(b) For all leaf vertices i and all t € Z>¢, we have

ot
—~
~
JF
[\
—~
|
w
S~—
=
I

Ci(n) fi(t+(n—23)) — fi(t) if nis odd;
Ca(n) fi(t +2(n —3)) — fi(t) for all n.

=
=
~
+
~
=
|
w
S~—
=
|

Proof. (a) Let i be a non-leaf vertex. Combining Lemmas 3.6 and 3.7, we have for every
preprojective arc «y of orbit 4

Braca, (L) -7 = 777" (y) + 7707 (7) + 2(71 +72) Sap(L). (3.4)
Let K denote the integer obtained by specializing the Laurent polynomial corresponding
to 2(y1 +72)S2,(L) at x; = 1. Then, if we let v = 77P(*=3)77¢+1 P(4)  the equation (3.4)
yields
Cap(n) fi(t +p(n—3)) = filt +2p(n —3)) + fi(t) + K. (3.5)
Similarly, if we let v = 7=2P(*=3)7=t+1 P(j) | the equation (3.4) yields
Cop(n) fi(t +2p(n = 3)) = fi(t + 3p(n — 3)) + fi(t + p(n - 3)) + K. (3.6)

b5

Subtracting equation (3.5) from equation (3.6) and rearranging the terms we get
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filt +3p(n = 3)) = (Cap(n) + V) fi(t + 2p(n — 3)) = (Cop(n) + 1) filt +p(n = 3)) + fi(t).

This completes the proof of (a).
(b) Let i be a leaf vertex. Combining Lemmas 3.6 and 3.7, we have for every prepro-
jective arc -y of orbit ¢

7= (=3 () + 17 73(5) if n is odd;
_ 7_72(7173)(7) 4 72(n—3) (fy) for all n.

L.~
Bracy (L) -y

We thus obtain

Ci(n)- filt+n—=3) = [fi(t+2(n—3))+ fi(t) ifnisodd;
Co(n)- fi(t+2(n—-3)) = fi(t+4(n—-23))+ fi(t) foralln. O

Remark 3.9. Part (b) of Theorem 3.8 was obtained in [20, Theorems 6.1 and 6.2] using
cluster categories.

Corollary 3.10. Let Q be an acyclic quiver of affine type D. Then the dimension of the
frieze variety X (Q) is equal to one.

Proof. Suppose first that n is odd. The characteristic polynomial of the recursions in
Theorem 3.8 are

23 — (Ca(n) + 1)2% + (Ca(n) + 1)z — 1 in case (a) with p = 1;
22— Ci(n)z+1 in case (b) with n odd.

Let p be a root of 22 — Cy(n)x + 1. Then 22 — C1(n)x +1 = (z — p)(x — p~!) and
C1(n) = p+ p~L. Moreover p # p~!, since Cy(n) > 2. From the recursive formula of the
bracelets we have Cy(n) = C1(n)? — 2, thus Ca(n) + 1 = p? + p~2 + 1. Therefore the
characteristic polynomial in case (a) is equal to (x — p?)(z — 1)(z — p~2). In particular
the roots of the characteristic polynomials in case (a) and (b) are of the form p’ with
{=-2,—-1,0,1,2. Now the result follows from Lemma 2.2 and Lemma 3.2.

If n is even, we use p = 2 so that the characteristic polynomial of the recursions in
Theorem 3.8 are

2% — (Cy(n) + Dz? 4+ (Cy(n) + 1)z — 1 in case (a) with p = 2;
22— Cy(n)z +1 in case (b) for all n.

Now we let p be a root of 2% —Cy(n) x+1, use the Chebyshev relation Cy(n) = Cz(n)?—2
and the proof is analogous to the previous case. O
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3.3. Affine type E

Let R be a commutative ring, and R’ be a subring of R. If a sequence (a¢) of elements
in R satisfies a recurrence relation coasiix +c1ao45-1+ -+ crae = 0 for all £ > 0 where
Co,---,cr € R, then we call the polynomial f(x) = coz* + c;z*1 + .- 4+ ¢, € R'[x] an
annihilator of (ag). Recall the following fact:

Lemma 3.11. Let f(x),g(z) € R'[x] be annihilators of (a;) and (be), respectively. Then:
(i) f(z)g(x) € R'[x] is an annihilator of (ag + be) of degree deg f + degg.
(ii) Let h(x) € R'[x] be the characteristic polynomial of the tensor product of the com-
panion matrices of f and g. Then h(x) is an annihilator of (acbe) of degree (deg f)(deg g).
Moreover, if the leading and constant coefficients of f,g are £1, then the same holds
for the above annihilators.

Proof. The parts (i) and (ii) are given in [20, Lemma 4.1]. The last statement is obvi-
ous. O

Let Q be an acyclic quiver of type E,_; with n vertices, so n = 7,8, or 9. Let § =
(01,.-+,0n), 0; > 0 be the unique imaginary Schur root for Q; see for example [30, 8.2.1]
for the values of the ¢;. Then there exists a one parameter family (M) of non-isomorphic
indecomposable representations with dimension vector § and such that End(M)) = k.
Moreover each M) is regular and non-rigid. Choose one such representation M such that
M is a regular simple representation. This is equivalent to the condition 7M = M, in
other words, M sits at the mouth of a homogeneous tube in the Auslander-Reiten quiver.
(Note that Xj; is denoted X5 in [20].)

Define
6, ifn="; 12, ifn =T,
My = 12, if n = 8; dy, = 29, if n=28; (3.7)
30, if n = 9. 169, if n = 9.

Lemma 3.12. Let Q be an acyclic quiver of type E,_1 where n = 17,8,9. For each i € Qq,
and 0 < r < m, — 1, the sequence (fi(jmn + r))
Z[x] of degree d,,.

;io is annthilated by a polynomial in

Proof. We explain the conclusion for n = 7 in detail, since the other two cases are proved
similarly. The idea is to give the bounds of degrees of the recursive relations described
in [20].

First note that the cluster category does not depend on the orientation of (). Once
we prove a recurrence relation of (X, —p(;)¢ for one particular orientation, changing the
orientation of the quiver will not change the recursion. We use the following orientation

of Q.
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W<—— s <——

This is the same labeling, and the opposite orientation as in [20, §7]. (We use the opposite
orientation because of a different convention used in [20].) For simplicity, we denote m,,
by m. All relations below can be found in [20, §7].

For i =1,3,5, (X, ~Gm+n p(i)) o is annihilated by 22 — Xpyx + 1. For i = 2, since

j=0
Xr—tp) = Xe—tp) Xr-c+npay — 1,

we have

XT—<jm+r>P(2) = XT—(jm+r>P(1)XT—<jm+r+1>P(l) -1

Since both sequences (X, -(m+r p(1)); and (X —gm+r+1) p(1)); are annihilated by a poly-
nomial of degree 2, and since the constant sequence (1); is annihilated by = — 1, we
conclude that the sequence (XTf(ij)P(l)XF(]-,,,W,»H)P(I))j is annihilated by a polyno-
mial of degree 2 -2 = 4, thus (XTf(]-m“)P(Q))j is annihilated by a polynomial of degree
441 =5, using Lemma 3.11. The same conclusion holds for i = 4, 6.

For ¢ = 7, we have

Xy—tmtn p7)y = Xp=Gmar) p(1) X p=Gimer+1) p(2) = Xp—Gmr42) p(1)-

By Lemma 3.11, (X~ im+n p(7)); is annihilated by a polynomial of degree 2-5+2 = 12.
We illustrate these degrees as follows, where the notation i(¥ means vertex i corre-
sponding to an annihilating polynomial of degree d with coefficients in Z[X ]:

Eg : 12) — 906) . 7(12) __ §6B) 5 5(2)

l

4(5)

l

3(2)

Now specialize the annihilating polynomial at z; = --- = x,, = 1. Since all coefficients
are in Z[X ], the specialization is well-defined. Moreover, since the leading and constant
coefficients are £1, the specialization is not trivial. This gives us the desired polynomial.
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For n = 8, the degree of an annihilating polynomial for each vertex are illustrated
below:

Er: 12) «— 906)  3012) __g(29) _, g(12) _, 5(B) 5 4(2)

|

7(5)
The degrees at vertices ¢ = 1,2, 3, 8 are obtained similar as the case n = 7, using identities

XuXr-ipa) = Xo—t4mp(1) + Xo—t-mp(1),
Xr-tp@) = Xr—p)Xr-crnpa) — 1,
Xr-tp) = Xo-tp)Xr-t0 p2) — Xr-e42 p(1)s
Xr-tp8) = Xr—tp(1) Xr-+1 p(3) — Xr—c+2) p(2)-

The degrees of i = 4, 5,6 are obtained by symmetry. For the vertex 7, we use the first
two exchange triangles in [20, page 1857]:

P 7 'Pr 77 'Py 1P, 7Py N P TR

(where N is the indecomposable regular simple module of dimension vector 11100101
which belongs to the mouth of the tube of width 4) to obtain

X per) = Xe—tp) Xr-c+0 pg) — Xr—ty

Note that the sequence (7°N), has period 4 which divides m = 12, thus (X, Gm+r-1)x);
is a constant sequence. Substituting ¢ = jm + r — 1 and using the fact that
(Xo—Gmtr—1p1))js (Xp=Gmartn p(ay)j» (Xyp=Gmer—1y); are annihilated by polynomi-
als of degrees 2,2, 1, respectively, we conclude that the sequence (XT—(]‘1,L+1~)P(7))J‘ is
annihilated by a polynomial of degree 2-2+ 1 = 5.

For n =9, we obtain

Eg : 12 < 906)  3(12) 429 . 5(70) . g(169) _ g(29) __, 7(5)

|

6(12)
Indeed, for vertices i =1, 2,3,4,5,9, we use

XuXr-tpa) = Xo—t4mp(1) + Xo—t-mp(1),
Xr—tp@) = Xr—tp)Xr-crvpa) — 1,
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Xr-tp@) = Xo-tp)Xr-crn p2) — Xr-w42 p(1)s
Xr-tp)y = X p() Xr-c+0 p3) — Xr-c+2 p(2)
Xr—tps) = Xo—tp() Xr—+1 pa) — Xo—+2) p(3)

Xr—ip(9) = Xe—tp) Xr-c+1 p(s) — Xr-42) p(a)-
For vertex 7 we use
Xrotpr) = Xp-w-2 p)Xr-wis pa) = Xr-cran

(where N is the indecomposable regular simple module of dimension vector 001111001
which belongs to the mouth of the tube of width 5) and that 5 divides m = 30.
For vertex 6 we use

Xr-tpe) = Xr--10p)Xr—c+2 p(7y — Xo—@+1 p(1)
For vertex 8 we use
Xr-tp) = Xr-t-npyXr—wt1 pe) — Xr—0+3) p(7)
This completes the proof. 0O
We need the following simple fact.

Lemma 3.13. If a sequence (%‘)j’io is annihilated by a polynomial of degree d, and
Colntk + C10ntk—1 + - + cxan, = 0 holds for 0 <n < d—1, then the equality holds for
every n.

Proof. The sequence (coan ik + C1antk—1 + -+ + Cran )y, satisfies a recursive relation of
degree d and its first d terms are 0, so it must be a constant 0 sequence. 0O

Proposition 3.14. Let QQ be an acyclic quiver of affine type E. Then the dimension of the
frieze variety X (Q) is equal to one.

Proof. Define the constant C(n) = X
under the Caldero-Chapoton map at 1 = --- = x, = 1, and let

p=(C(n)+/C(n)>—4)/2.

By definition of M, we have C(n) > 2 and therefore p # 1.
We checked, by a computer, that for every 7 and r that the sequence (f;(jm, +1))3%,
satisfies the (not-necessarily minimal) linear recurrence whose characteristic polynomial

z;=1 to be the specialization of the image of M

1S
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6

11 ="

w=—6

Indeed, by Lemma 3.13, we only need to check that the linear recurrence holds for the
first d,, instances, for each i € Qg, r = 0,...,m, — 1, and each orientation.’
The statement then follows from Lemma 3.2. O

3.4. A geometric remark

Siegel’s theorem on integral points says that a smooth curve of genus at least one
has only finitely many integral points. So in the affine case, each component of X (Q) is
either of genus zero or singular. We conjecture that each component is a smooth curve
of genus 0.

4. Proof of the main theorem part (c), the wild case

Throughout this section, let () be an acyclic quiver. This section is divided into two
subsections; in the first we recall facts on the Coxeter transformation and in the second
we prove that dim X (Q) > 1 for wild type. We keep the notation of the previous sections.

4.1. Coxeter transformation

We recall some facts on the Coxeter matrix and its inverse, following the survey paper
[28] (rewritten in our notation).

4.1.1. The Coxeter matrix ®

Let C = (cij)i<ij<n be the Cartan matriz of @, where ¢;; is the number of paths
from j to i. Its inverse C~! is the matrix (bij)1<i,j<n Where b; = 1 and if ¢ # j, then
—b;; is the number of arrows from j to 7 in Q. Define the Cozeter matriz ® and its
inverse ®~! as

d=-CT(CY) ol =—c(CcHT

Then ®~!dim M = dim (7='M) if M is not injective and ®~1dim I(i) = —dim P(i).
See for example [30, §3.1].

Let p1,...,pn be the eigenvalues of @1 such that |pi| > |p2| > -+ > |pn|, and
v; = [v;1 - v;n)T a corresponding generalized eigenvector. The largest absolute value
of the eigenvalues |p;| is called the spectral radius of ®~1.

Recall that the characteristic polynomial of a matrix A is defined as x4 (z) = det(xI —
A). Now we recall some properties of the characteristic polynomial xg-1(z) (which is
called the Coxeter polynomial in [28]).

L It took a few seconds for n = 7,8, and about half an hour for n = 9 on an iMac.
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Lemma 4.1. (1) The following characteristic polynomials are equal:

Xo-1(2) = Xor () = Xxa ().

Therefore ®~1, ®T | ® have the same set of eigenvalues and the corresponding multiplic-
ities. Moreover, the polynomials are monic, reciprocal and have integral coefficients; that
is, if we write Xg-1(z) =Y ;o a;x’, then a,, =1 and a; = a,—; € Z for all i.

In (2) and (3) we assume that Q is an acyclic wild quiver.

(2) The eigenvalue py is equal to a real number p > 1, and has multiplicity 1. Moreover
lpil < p foralli+# 1. As a consequence, vy is unique up to scale. Moreover, we can choose
vi € RY, that is, all the coordinates of vi = [v11 - -+ vln]T are strictly positive.

(3) pn = 1/p < 1 has multiplicity 1, and |p;| > 1/p for all i # n. As a consequence,

vy, 15 unique up to scale. Moreover, we can choose v, € RY, that is, all the coordinates
of Vi = [Un1 -+ vnn]T are strictly positive.
Proof. Most of the lemma is proved in [28]. The notation M, M~ C in [28] correspond
to our (C~1)T, C, ®T respectively. (Below we shall also see that p(C), y~, yT in [28]
correspond to our p, v, vl
(1) Since

clolc =c i (-o(c N0 = —~(cHTC =T,

we see that @1 and ®7 are similar, so xg-1(2) = xor(x). Moreover, a matrix and its
transpose have the same characteristic polynomial, so xer () = xa(2).

Moreover, note that det(zI — ®~!) has the leading coefficient a,, = 1, it has integral
coefficients because all entries of ®~! are integers (see §2.1), and the reciprocal property
is proved in [28, §2.7].

(2) It is a result by Ringel [29] (Theorem 2.1 in [28]) that p > 1, that it is an eigenvalue
of ®7 of multiplicity 1, and that other eigenvalues of ®" have norm less than p.

It is asserted in [28, §3.4] that there exists a (row) vector y~ with positive coordinates
such that y=®T = p~lyT. Thus ®(y~)T = p~(y~)?, therefore ®~1(y~)T = p(y~). So
we can take v; = (y~)T. This proves the last statement of (2).

(3) The first statement of (3) follows from (1) and (2); indeed, because xg-1(x) being
reciprocal is equivalent to yg-1(x) = 2" xe-1(z~") [28, §2.7], we have that p; and p; !
are eigenvalues with the same multiplicity for every 1 <1i < n.

The proof of the second statement of (3) is similar to the proof of the second statement
of (2), where v,, = (y*)T for the vector y* defined in [28, §3.4]. O

Lemma 4.2. The eigenvalue p is irrational.

Proof. The eigenvalue p is a root of the characteristic polynomial yg-1(x) which, by
Lemma 4.1, is an integral-coefficient polynomial whose leading coefficient and constant
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are both 1. The only possible rational roots of this polynomial are +1 by the rational
root theorem. But p > 1, so p must be irrational. O

In the rest of the paper we require that, for ¢ = 1,n,
v; € RYy and [|v;]| = 1.
Such v; and v, exist uniquely by the above lemma.

Lemma 4.3. Let Q be a wild acyclic quiver and M an indecomposable, preprojective repre-

sentation. Then tlim — dim 7'M = \v; for some real number X\ > 0. As a consequence,
— 00

there exist ¢, N € R~q such that all components of dim =t P(i) are greater than or equal
to cpt for everyt > N and every i € Qq.

Proof. The first statement is [28, Theorem 3.5]. The consequence is obvious. O
Indeed, a weaker version of Lemma 4.3 (replacing A > 0 by A > 0) is easy to prove,

as shown in (1) of the lemma below.
Recall that the norm of a matriz A is defined as

1Al := sup [|Az]|

llz|[=1

and it satisfies the following inequalities, see for example [21, Theorem 14 on page 90].
|IA+ B[l < [|Al[ +[IBI| and [[AB[| < [[All||B]] (4.1)

1
Lemma 4.4. (1) For any vector v € R, there exists A € R such that lim — O v = Avy.

t—o00 p

(2) There exists a number N such that ||# O~t|| < N for every t € Z>o.

Proof. (1) Let vi,...,v, be generalized eigenvectors corresponding to eigenvalues
P1, P2, - - - Pn such that

'V =VJ, (denote V:=[vi - v,])

where J is the Jordan normal form, thus
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0 pi 1 -+ 0
where each J; is of the form ) for some i # 1.
0 0 0 - p

Denote the size of J; as m; x m;. We decompose the Jordan blocks
0 0
1 0
Jj = pil + K, where I =

o= OO

00 0
Since IK = KI = K and KezoforEij, we have

m;—1
L, 1 t \ Piie t e
Ejj:;(PiIJrK) = E o\ K

£=0

Since |p;/p| < 1, and the exponential grows faster than a polynomial, we have

t
(Z):o, for each £ =0,...,m; — 1.

t—L
. Pi t ‘_ —0 1:
g 2o () = 1 i

Therefore every entry of the matrix %J jt approaches 0 as t — oo. Thus

10 --- 0
1, 00 - 0
tliglo EJ = =: Ell- (42)
0 0 0
Writing v = El Aiv; = VA (where A = [Ny -+~ )\n}T)’ and noticing that ®~'V =

VJt, we conclude

lim —<I> v = lim —<I> VA = hm —VJtA V( lim —Jt)A VE{ 1A= )\vy.

t~>oop t~>oop oop oop

(2) It follows from (4.2) that ||p—1tJt|| — 1 as t — 00, so there exists a number N’ such
that

1
| < N, for every t € Zxq.
s >
Then using the inequality ||AB|| < ||A]] - ||B]|, we have

1 1
llﬁ‘ﬁ_tll <[Vl H;Jtll AV IVI-N-[[VTH| = N, for every t € Zzo. O
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Similarly, we have

Lemma 4.5. (1) For any vector v € R™, there exists A\ € R such that lim — <I>tv = Avy,.
t—o0 p

(2) There exists a number N such that ||# ®t|| < N for every t € Z>o.

Proof. Note that since p,...,p, are eigenvalues of ®~!, we see that pfl, ey it
eigenvalues of ®, and that pfl =1/p and p,;! = p have the largest and smallest norm.

1

Moreover, since ®~lv,, = p~ vy, we have ®v,, = pv,,, that is, v,, is an eigenvector of ¢

corresponding to the eigenvalue p. Then this lemma follows from Lemma 4.4. O
4.2. Proof of Theorem 1.1 (c)

We first need two results on the growth of the coefficients f;(¢) in terms of the spectral
radius p of the inverse Coxeter matrix ®~ 1.

Lemma 4.6. Let d(t) be the largest coordinate in the vector dim7*P(i). Then f;(t) >

24(t) " As a consequence, there exist ¢, N1 € Rsq such that fi(t) > 9cr’ for every t > Ny,
1 € Qo-

Proof. Assume (di(t),...,d,(t)) = dim7 *P(i) and d(t) = d;(t) is the largest coordi-
nate. Let

X=X TtP(i Zcrx = c_ d(t d(t)_|_ Z

re€Z r>—d(t )

where ¢, € R; = Loz, ... r], be the Laurent expansion of the

+ +
VT Ty
cluster variable corresponding to 77¢P(4) in the initial cluster xo. Note that c_aw) # 0
because of Lemma 2.1(3). Let :Ez denote the cluster variable obtained by mutating x; of
the initial cluster at j; that is, 2, = (P + Q)/x; where P =[], ,;zp and Q@ =[], ;=
are both in R;. Because of the Laurent phenomenon [14] and the positivity theorem
[22], the cluster variable X is a Z>o-coefficient Laurent polynomial with respect to any

initial cluster. Particularly, taking the initial cluster to be {z1, ..., 2’ X }, the cluster

s
variable

X=) caj=) e <P;Q> =Y a(P+Q) ()"

reZ reZ J reZ
must actually be an element in
+ + + +
Zsola,. .., (@) ,...,xn]:Rg[(x;-) ]

(Note that, X is a priori only an element in K;[(m;)i], where K is the field of rational
functions K} = Q(z1,...,%j-1,%j41,.-.,Ty).) Viewing X as a Laurent polynomial in
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z; with coefficient in R;, we see that for each (z})", its coefficient ¢, (P + Q)" must be
in ;. In particular, c_ d(t)(P +Q)~4" must be in R Thus (P + Q)™ divides c_g1).
Speaahzmg initial cluster variables at 1, we have c_gg)|z;=...=¢,=1 > 24(t)  Therefore
fi(t) = X|p,=..—z, =1 > 2%"). This proves the first statement.

The consequence follows from Lemma 4.3. O

We now consider the natural logarithm of the integers f;(¢). Denote L;(t) = In f;(t) €
R for ¢ € Qo, t € Z>¢. For each t € Z>¢, define a column vector

Ly(t)

Recall that v,, is defined in Lemma 4.1.

Proposition 4.7.

.1
lim —L(t) =nvy

t—o0 P

for some real number n > 0.

Proof. We first prove that the equality holds for some real number 7. The idea is to
show that, for s sufficiently large, the growth of L(s + ¢) and ®*L(s) are almost the
same as t — 0o, and the latter is well understood by Lemma 4.4.

Rewrite (1.1) as

e+ =1+ ] HiE+1

J— J1

Taking the logarithm on both sides and using the fact? that 0 < In(z + 1) —Inz < 1/z
for any positive real number z, we conclude

Li(t+1) + Li(t) = > Li(t) + > _ L;(t + 1) + &i(1),

J—i gt
where 0;(t) > 0, and by Lemma 4.6,

1

Lo O e ~ 2 fort=i (4.3)

8;(t) <

2 To see In(z+1) —Inz < 1/z, note the left side is In(z +1) —Inz = In(1+1/x). Replacing 1/z by z, it is
equivalent to show f(z) = z—In(1+=z) > 0 for all z > 0. Note that f(0) = 0. Since f'(z) =1-1/(1+z) >0
for x > 0, f(z) is strictly increasing for > 0, so the inequality follows.
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Then

=Y Li(t+1) = —Li(t) + Y _ L;(t) + 6i(t)

Ji j—i

Rewriting these equations in matrix form brings up the inverse Cartan matrix as follows.

1 0 - 0 -1 by - bin 61 (t)
—b1g 1 0 - 0 0 —1 bys -+ boy 02(t)
—biz  —bos 1 - 0 L(t + 1) _ |0 0o -1 --- b3, L(t) + 53(t)

_I;ln _b2n _bSn

—_
o
o
o
[
—_
(=%
S
—~
ey
S~—"

which is
(C™HTL(t+1) = —(CHL(t) + &(t)
where 6(t) = [61(t) -~ 6,(t)]" satistying (by (4.3))
I16()|| <27 /n <+/m, fort> Nj. (4.4)
Left-multiplying the above equality by CT', we obtain
L(t + 1) = ®L(t) + C5(t)
It follows that, for s,t € Z >,
L(s +t) = ®'L(s) + ®'1C(s) + D' 2Co(s +1) +---+C8(s +t —1)

Assume s > Nj. Then

1 1
’F(L(s—l—t)—q)tL(s))H pe+t||zq)t iCo(s+i—1)

t
11, |
= Z oo+ ”pt—iq)t |-1C8(s+i—1)|| by (4.1)
i=1

< Z S+ZN||C'|| [6(s+4—1)|| (this N is the constant in Lemma 4.5 (2))
= 1

1
< Z NGV (by (44) and s > N)

<NIICH\/_Z e = NlClvn
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Therefore for any € > 0, we can find an integer sy sufficiently large such that

By Lemma 4.5 (1), there exist No € Rs and A € R such that

# (T(s0+1) — O'L(s0)) H <e VE>0. (4.5)

1
E ot (p SUL(S())) AVl <6 V>N (4.6)

Adding the inequalities (4.5) and (4.6) and using the triangle inequality (4.1), we have

1
’ —L(so+1) — Avn| <2 Vt>N,
p

so+t

Now replace sg + ¢ by ¢t. We have that, for any € > 0, there exist A € R, Ny € R5¢ (we
can just take Ny = sp + Na), such that

thus for any € > 0, there exists N4 € R~ such that

1
—L(t) — Av,

- <2, Vt>N, (4.7)
p

1 1

— —L{t')|| <4e, Vtt' >Ny
p

Therefore {#L(t)} is a Cauchy sequence, so must converge. Denote u := lim;_, #L(t).
If u is not on the line spanned by v,,, choose € > 0 such that 3¢ is less than the distance
from u and that line. Taking ¢ — oo in (4.7) gives the contradiction

3e < [|lu— Av,|| < 2e.

Therefore u = nv,, for some n € R.
Finally, we show that n > 0. By Lemma 4.6, there exist ¢, Ny € Rs¢ such that

Li(t) =In f;(t) > cp'In2, for every t > N; and every i € Q.
So

1
nvy, = lim —L(t) > [cln2 cIn2 - cln2)”
t—o0 p

(here we mean that “>" holds componentwise), which implies n > 0. O

We also need the following simple result.
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Lemma 4.8. For all a1,...,am,%1,...,Tm >0
In(ai121 + -+ + am@m) < max(In(z;)) + max(Ina;) + Inm.

Proof. The left hand side is at most In(m max(a;) max(z;)) which is equal to the right
hand side. O

We are now ready for the proof of our main result.

Proof of Theorem 1.1(c). Suppose X (Q) is contained in a 1-dimensional variety.

Consider the projection 7 : C* — C2, (z1,...,2,) = (21,22). Then 7(X(Q)) is at
most 1-dimensional. So there exists a nonzero polynomial g(x,y) = Z(z‘,j)es a;xtyl €
Clz,y] (where a;; # 0 for every (i,j) € S C Z2%,) such that g(fi(t), f2(t)) = 0 for
every t. -

For convenience, denote the i-th coordinates v,; of the eigenvector v,, by y; for i =
1,...,n, that is, v, = [y1 -+ yn]T. Let (ip,50) € S such that iy; + jyo is maximal.
Replacing ¢ by g/ai,;, if necessary, we may assume a;,j, = 1. Then

fi(t) fa(t)o = > (Cap) L) fa(t)
(4,3) €5\ (40,J0)
Taking the logarithm on both sides, we get
L) +aoLe() =l (Y (a0 f(t))
(4,4) €5\ (40,J0)

and according to Lemma 4.8 we get

toL1(t) + joLo(t) < max 1L1(t) + 7Lo(t)) + max In|a;;|) + In(|S| = 1).
oLa(®) +ioLalt) € | mx  (iLa(®)+iLa) + max (Infayl) + In(lS] - 1)

Now we use Proposition 4.7. Dividing the above inequality by p’ and letting ¢t — oo, we
conclude that there exists (¢,5) € S\ (40, jo) such that

tony1 + Jonye < iy + Jnye.

Thus

toy1 + Joy2 < Y1 + Jye.

By the choice of (ip,jo), the equality must hold. Therefore (ig — i)(y1/y2) = (j — Jo)-
Since y1/y2 # 0 and (i, j) # (io, jo), we must have j — jo and ig — ¢ both been nonzero.
Thus y1/y2 = (j — jo)/(i0 — %) is rational.

By a similar argument, y;/y; is rational for any 1 <14 < j < n. So there is a constant
¢ € Ry such that cv,, € Q. Then it follows from
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plevy) = ®(evy,) € Q"

that p is rational, which contradicts Lemma 4.2.
This completes the proof. 0O

Remark 4.9. It is natural to ask what is the exact dimension of X (Q) in the wild type.
One might hope that it is always equal to the number of vertices n. However, this is
not true, because whenever the quiver has a non-trivial automorphism ¢ € Aut(Q) then
we have fi(t) = fo@)(t), for all ¢, so the dimension cannot be n. An upper bound for
the dimension is the number of orbits under the action of Aut(Q) on Qq. We will try
to determine the exact dimension of the frieze variety for a class of rank 3 wild quivers
(including the quiver in Subsection 5.4) in our forthcoming work.

5. Examples

In this section we give several examples. In order to find the equations for the frieze
varieties, we used the Macaulay2 function “affinePoints” in the package “Points”. Very
recently Igusa and Schiffler [19] provided a new way to generate the equations.

5.1. Type A1

For the Kronecker quiver 1 ==——= 2 the points P, = (f1(t), f2(¢)) are (1,1),(2,5),
(13,34),(89,233), ... whose coordinates consist of every other Fibonacci number. The
frieze variety X (Q) C C? is given by the polynomial 2% — 3zy + y* + 1. This is a smooth
curve of genus zero.

5.2. Type As 1
In this case the first few points are
(1,1,1),(2,3,7), (11,26,41), (97,153, 362), (571,1351,2131), ...
The frieze variety X (Q) has two components, and each is a planar curve of degree 2.
V(z1 — 229 + 73,223 — 6m223 + 323 + 1) and V(x1 — 322 + 3, 323 — 62273 + 222 + 1).
Both are smooth curves of degree 2, hence of genus zero.

5.3. Type D3

Consider the following quiver Q:
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The first five points are

(1,1,1,1,1,1),(2,2,5,6,7,7), (3,3,11,90, 13,13), (4,4, 131, 246, 19, 19),
(33,33, 2045, 3001, 158, 158).

The frieze variety X (Q) has three components.

2 2
V(zs — 6,21 — T2, TG + T3 — 224, DTaTe — T3 — Tg — 3,T5 — 2x3 + T4),
2 2
V(xs — x6, 1 — T2, g + X3 — 9g, 5xo2s — k3 — 84 — 17,25 — 225 + x4),

V(zs — xg,x1 — xg,xg + 23 — 224, 5Tox — 83 — 4 — 17,22 — 923 + 4).

Each component is a smooth curve of degree 2 and genus zero by the same argument as
in the previous example.

5.4. A wild example

Consider the following quiver Q:

Then
t]fi(t) Ja(t) J3(t) L(t)"
112 3 13 0.693 1.099 2.565
21254 1101 5464009 5.537 7.004  15.514
311.294 x 10'*  6.422 x 107 1.969 x 103° 32.49 41.00 90.48
411.923 x 1082 5.895 x 10193 1.107 x 10%%° | 189.47 238.94 527.39
513.759 x 1047 7.063 x 10504 9.012 x 101334 | 1104.26 1392.72 3073.85

The Cartan matrix and its inverse, the Coxeter matrix and its inverse are:

1 1 3 1 -1 =2 -1 1 2 6 2 -3
c=1|0 11|, ¢ct=]lo 1 -1|, &=|-1 0 3|, & '=|3 0 —-1|.
00 1 0 0 1 -3 2 6 2 1 -1

The characteristic polynomial xg-1(x) = 2® — 522 — 5z + 1 = (x + 1)(2? — 62 + 1), so
p=3+8~ 58284 and 1/p = 3 — /8 =~ 0.1716 are irrational, and the corresponding
eigenvectors are

vi ~[0.866 0.392 0.311]7, v, ~ [0.311 0.392 0.866]%.
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(In this example, v,, happens to be the “reverse” of vi. This is not the case in general.)
Computation shows

1 0.164
lim —L(t) ~ | 0.207 | ~ 0.528v,,.
i=00 p 0.457

So roughly we can describe the growth of P;(t) as
Pi(t) = (F1(0), [o(t), F3(1)) e (%1047, 020707, 045700),
6. Open problems

In this section we collect some open problems. Several vague questions are as follows:
Does the geometry of the variety reflect the representation theory of the quiver? Are
dimension, degree and number of components meaningful invariants of the quiver? More
precise questions are given below.

(1) One may study the irreducible components of the frieze variety. Are they smooth?
Are the components in the tame case all of genus 07

(2) Define and study frieze varieties for quivers that are not acyclic themselves but
that are mutation equivalent to an acyclic quiver. One may then ask how does the frieze
variety behave under mutation?

(3) Determine the exact dimension of the frieze variety for each wild quiver (see
Remark 4.9).

(4) Study the frieze obtained by specializing a cluster to a tuple of numbers other
than 1’s.
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