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Abstract

We develop a novel procedure for constructing confidence bands for components

of a sparse additive model. Our procedure is based on a new kernel-sieve hybrid

estimator that combines two most popular nonparametric estimation methods in the

literature, the kernel regression and the spline method, and is of interest in its own

right. Existing methods for fitting sparse additive model are primarily based on sieve

estimators, while the literature on confidence bands for nonparametric models are

primarily based upon kernel or local polynomial estimators. Our kernel-sieve hybrid

estimator combines the best of both worlds and allows us to provide a simple procedure

for constructing confidence bands in high-dimensional sparse additive models. We prove

that the confidence bands are asymptotically honest by studying approximation with a

Gaussian process. Thorough numerical results on both synthetic data and real-world

neuroscience data are provided to demonstrate the efficacy of the theory.

1 Introduction

Nonparametric regression investigates the relationship between a target variable Y and many input

variables X = (X1, . . . , Xd)
T without imposing strong assumptions. Consider a model

Y = f(X) + ε, (1.1)
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where X ∈ X d ⊆ Rd is a d-dimensional random vector in X d, ε is random error satisfying

E[ε |X] = 0, and Y is a target variable. The goal is to estimate the unknown function f : X d 7→ R.

When d is small, fitting a fully nonparametric model (1.1) is feasible (Wasserman, 2006). However,

the interpretation of such a model is challenging. Furthermore, when d is large, consistently fitting

f(·) is only possible under additional structural assumptions due to the curse of dimensionality.

A commonly used structural assumption on f(·) is that it takes an additive form

Y = µ+
d∑
j=1

fj(Xj) + ε, and EXj [f(Xj)] = 0, (1.2)

where µ is a constant and fj(·), j = 1, . . . , d, are smooth univariate functions (Friedman and

Stuetzle, 1981; Stone, 1985; Hastie and Tibshirani, 1990). Under an additional assumption that only

s components are nonzero (s� d), significant progress has been made in understanding additive

models in high dimensions (Sardy and Tseng, 2004; Lin and Zhang, 2006; Ravikumar et al., 2009;

Meier et al., 2009; Huang et al., 2010; Koltchinskii and Yuan, 2010; Kato, 2012; Petersen et al.,

2014; Lou et al., 2014). These papers establish theoretical results on the estimation rate of sparse

additive models, however, it remains unclear how to perform statistical inference for the model.

Confidence bands can provide uncertainty assessment for components of the model and have been

widely studied in the literature with dimension fixed (Härdle, 1989; Sun and Loader, 1994; Fan and

Zhang, 2000; Claeskens and Van Keilegom, 2003; Zhang and Peng, 2010). However, it remains an

open question how to construct confidence bands in high-dimensional setting, primarily because

the direct generalization of those ideas is challenging. Confidence bands proposed in the classical

literature with fixed dimensionality d are mostly built upon kernel or local polynomial methods

(Opsomer and Ruppert, 1997; Fan and Jiang, 2005), while existing estimators for sparse additive

model are sieve-type estimators based on basis expansion. To bridge the gap, we propose a novel

sparse additive model estimator called kernel-sieve hybrid estimator, which combines advantages

from both the sieve and kernel methods. On one side, we can uniformly control the supreme norm

rate of our estimator as typical sieve estimators for sparse additive models, while on the other, we

can utilize the extreme value theory of kernel-type estimator to construct the confidence band.

To establish the validity of the proposed confidence bands we develop three new technical

ingredients: (1) the analysis of the suprema of a high dimensional empirical process that arises from
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kernel-sieve hybrid regression estimator, (2) a de-biasing method for the proposed estimator, and (3)

the approximation analysis for the Gaussian multiplier bootstrap procedure. The supremum norm

for our estimator is derived by applying results on the suprema of empirical processes (Koltchinskii,

2011; van der Vaart and Wellner, 1996; Bousquet, 2002). The de-biasing procedure for the kernel-

sieve hybrid regression estimator extends the approach used in the `1 penalized high dimensional

linear regression (Zhang and Zhang, 2013; van de Geer et al., 2014; Javanmard and Montanari, 2014).

Compared to the existing literature, this is the first work considering the de-biasing procedure for

a high dimensional nonparametric model. To prove the validity of the confidence band constructed

by the Gaussian multiplier bootstrap, we generalize the method proposed in Chernozhukov et al.

(2014a) and Chernozhukov et al. (2014b) to the high dimensional nonparametric models.

1.1 Related Literature

Our work contributes to two different areas, and make new methodological and technical contribu-

tions in both of them.

First, we contribute to a growing literature on high dimensional inference. Initial work on

high dimensional statistics has focused on estimation and prediction (see, for example, Bühlmann

and van de Geer, 2011, for a recent overview) and much less work has been done on quantifying

uncertainty, for example, hypothesis testing and confidence intervals. Recently, the focus has

started to shift towards the latter problems. Initial work on construction of p-values in high

dimensional models relied on correct inclusion of the relevant variables (Wasserman and Roeder,

2009; Meinshausen et al., 2009). Meinshausen and Bühlmann (2010) and Shah and Samworth

(2013) study stability selection procedure, which provides the family-wise error rate for any selection

procedure. Hypothesis testing and confidence intervals for low dimensional parameters in high

dimensional linear and generalized linear models are studied in Belloni et al. (2013a), Belloni et al.

(2013c), van de Geer et al. (2014), Javanmard and Montanari (2014), Javanmard and Montanari

(2013), and Farrell (2013). These methods construct honest, uniformly valid confidence intervals and

hypothesis test based on the `1 penalized estimator in the first stage. Similar results are obtained

in the context of `1 penalized least absolute deviation and quantile regression (Belloni et al., 2015,

2013b). Kozbur (2015) extends the approach developed in Belloni et al. (2013a) to a nonparametric
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regression setting, where a pointwise confidence interval is obtained based on the penalized series

estimator. Meinshausen (2013) studies construction of one-sided confidence intervals for groups of

variables under weak assumptions on the design matrix. Lockhart et al. (2014) studies significance

of the input variables that enter the model along the lasso path. Lee et al. (2013) and Taylor

et al. (2014) perform post-selection inference conditional on the selected model. Chatterjee and

Lahiri (2013), Liu and Yu (2013), Chernozhukov et al. (2013) and Lopes (2014) study properties

of the bootstrap in high-dimensions. Our work is different to the existing literature as it enables

statisticians to make global inference under a nonparametric high dimensional regression setting for

the first time.

Second, we contribute to the literature on high dimensional nonparametric estimation, which

has recently seen a lot of activity. Lafferty and Wasserman (2008), Bertin and Lecué (2008),

Comminges and Dalalyan (2012), and Yang and Tokdar (2014) study variable selection in a high

dimensional nonparametric regression setting without assuming structural assumptions on f(·)

beyond that it depends only on a subset of variables. A large number of papers have studied

the sparse additive model in (1.2) (Sardy and Tseng, 2004; Lin and Zhang, 2006; Avalos et al.,

2007; Ravikumar et al., 2009; Meier et al., 2009; Huang et al., 2010; Koltchinskii and Yuan, 2010;

Raskutti et al., 2012; Kato, 2012; Petersen et al., 2014; Rosasco et al., 2013; Lou et al., 2014; Wahl,

2014). In addition, Xu et al. (2014) study a high dimensional convex nonparametric regression.

Dalalyan et al. (2014) study the compound model, which includes the additive model as a special

case. Our approach differs from the existing literature in that we consider the ATLAS model, in

which the additive model is only used as an approximation to the unknown function f(·) at a

fixed point z and allow such approximation to change with z. Our approach only imposes a local

sparsity structure and thus allows for more flexible modeling. We also develop a novel method for

estimation and inference. Meier et al. (2009), Huang et al. (2010), Koltchinskii and Yuan (2010),

Raskutti et al. (2012), and Kato (2012) develop estimation schemes mainly based on the basis

approximation and sparsity-smoothness regularization. Our estimator approximates the function

locally using a loss function combining both basis expansion and kernel method with a hybrid

`1/`2-penalty. Our theoretical analysis also provides novel technical tools that were not available

before and are of independent interest.
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1.2 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce the penalized kernel-

sieve hybrid regression estimator as a solution to an optimization program. We then construct

a confidence band for a component of a sparse additive model based on the proposed estimator.

Section 3 provides the theoretical results on the statistical rate of convergence for the estimator

and show that the proposed confidence band is honest. In Section 4, we generalize our method to

nonparametric functions beyond sparse additive model. The numerical experiments for synthetic

and real data are collected in Section 5.

1.3 Notation

Let [n] denote the set {1, . . . , n} and let 1{·} denote the indicator function. For a vector a ∈ Rd, we

let supp(a) = {j | aj 6= 0} be the support set (with an analogous definition for matrices A ∈ Rn1×n2),

‖a‖q, for q ∈ [1,∞), the `q-norm defined as ‖a‖q = (
∑

i∈[n] |ai|q)1/q with the usual extensions

for q ∈ {0,∞}, that is, ‖a‖0 = |supp(a)| and ‖a‖∞ = maxi∈[n] |ai|. If the vector a ∈ Rd is

decomposed into groups such that a = (aG1 , . . . ,aGg)
T , where G1, . . . ,Gg ⊂ [d] are disjoint sets,

we denote ‖a‖qp,q =
∑g

k=1 ‖aGk‖
q
p and ‖a‖p,∞ = maxk∈[g] ‖aGk‖p for any p, q ∈ [1,∞). We also

denote the set {1, . . . , j − 1, j + 1, . . . , d} as \j and the vector a\j = (a1, . . . , aj−1, aj+1 . . . , ad)
T .

For the function f ∈ L2(R), we define the L2 norm ‖f‖2 = [
∫
f2(x)dx]1/2, the supremum norm

‖f‖∞ = supx∈R |f(x)| and the L2(P) norm ‖f‖L2(P) = [
∫
f2(x)dP]1/2. For a matrix A ∈ Rn1×n2 ,

we use the notation vec(A) to denote the vector in Rn1n2 formed by stacking the columns of

A. We denote the Frobenius norm of A by ||A||2F =
∑

i∈[n1],j∈[n2]
A2
ij and denote the operator

norm as ‖A‖2 = sup‖v‖2=1 ‖Av‖2. For two sequences of numbers {αn}∞n=1 and {βn}∞n=1, we use

an = O(βn) to denote that αn ≤ Cβn for some finite positive constant C, and for all n large enough.

If αn = O(βn) and βn = O(αn), we use the notation αn � βn. The notation αn = o(βn) is used to

denote that anβ
−1
n

n→∞−−−→ 0. Throughout the paper, we let c, C be two generic absolute constants,

whose values may change from line to line.
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2 Penalized Kernel-Sieve Hybrid Regression

In this section, we describe our new nonparametric estimator that combines the local kernel

regression with the B-spline based sieve method. The goal is to estimate component functions in

the additive model (1.2) and construct a confidence band for one component of the model. The

kernel-sieve hybrid regression applies the local kernel regression over the component of interest and

uses basis expansion for the rest of components. The group lasso penalty is used to shrink the

coefficients in the expansion and select relevant variables locally.

We first introduce the Hölder class H(γ, L) of functions.

Definition 2.1. The γ-th Hölder class H(γ, L) on X is the set of ` = bγc times differentiable

functions f : X 7→ R, where bγc represents the largest integer smaller than γ. The derivative f (`)

satisfies

|f (`)(x)− f (`)(y)| ≤ L|x− y|γ−`, for any x, y ∈ X .

Let X = (X1, . . . , Xd)
T be a d-dimensional random vector in X d ⊆ X d. We will consider both

the case where X is compact and the case where X is unbounded. The sparse additive model

(SpAM) is of the form given in (1.2), with only a small number of additive components nonzero.

Let S ⊆ [d] be of size s = |S| � d. Then the model in (1.2) can be written as

Y = µ+
∑
j∈S

fj(Xj) + ε (2.1)

with fj ∈ H(2, L) for any j ∈ S. Moreover, we assume the identifiability condition that

E[fj(Xj)] = 0, for all j = 1, . . . , d. (2.2)

Define the sparse additive functions class

Kd(s) =
{
f =

∑
j∈S fj(Xj)

∣∣∣ |S| ≤ s, fj ∈ H(2, L) and E[fj(Xj)] = 0, for j ∈ S
}
. (2.3)

Let {(Xi, Yi)}ni=1 be n independent random samples of (X, Y ) distributed according to (2.1).

Before describing our estimator, we first introduce the centered basis functions that will be used in
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the estimation. Let {φ1, . . . , φm} be the normalized B-spline basis functions (Schumaker, 2007).

Given m basis functions, we denote fjm(x) as the projection of fj onto the space spanned by the

basis, Bm = Span(φ1, . . . , φm). In particular, we define

fjm(·) := arg min
f∈Bm

‖f − fj‖2 =
m∑
k=1

β∗jkψ
∗
jk(·), (2.4)

where ψ∗jk’s are the locally centered bases defined as

ψ∗jk(x) = φk(x)− E[φk(Xj)], for all j ∈ [d],m ∈ [k]. (2.5)

Notice that basis functions {ψ∗jk}j∈[d],k∈[m] satisfy E[ψ∗jk(Xj)] = 0. This property ensures that

fjm(·) also satisfies the identifiability condition (2.2). To compute ψ∗jk we need to estimate the

unknown E[φk(Xj)] by φ̄jk = n−1
∑n

i=1 φk(Xij). The centered B-spline basis in (2.5) as then

ψjk(x) = φk(x)− φ̄jk.

With this notation, we are ready to introduce the penalized kernel-sieve hybrid regression

estimator. Let the kernel function K : X 7→ R be a symmetric density function with bounded

support and denote Kh(·) = h−1K(·/h) where h > 0 is the bandwidth. The kernel-sieve hybrid

loss function at a fixed point z ∈ X is given as

Lz(α,β) =
1

n

n∑
i=1

Kh(Xi1 − z)
(
Yi − Ȳ − α−

d∑
j=2

m∑
k=1

ψjk(Xij)βjk

)2

, (2.6)

where Ȳ = n−1
∑n

i=1 Yi. Let β = (βT2 , . . . ,β
T
d )T ∈ R(d−1)m with βj = (βj1, . . . ,βjm)T ∈ Rm be

the coefficients of B-spline basis functions. The penalized kernel-sieve hybrid estimator at z ∈ X is

defined as (
α̂z, β̂z

)
= arg min

α,β
Lz(α,β) + λR(α,β), (2.7)

where the penalty function is

R(α,β) =
√
m · |α|+

∑
j≥2
||βj ||2 (2.8)

with λ being a tuning parameter. We estimate the additive functions {fj}j∈[d] by f̂1(z) = α̂z and
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f̂j(x) =
∑m

k=1 ψjk(x)β̂jk;z for j ≥ 2. Based on α̂z, β̂z, we also estimate the d-dimensional function

f(z, x2, . . . , xd) = f1(z) +
∑d

j=2 fj(xj) by

f̂(z, x2, . . . , xd) = α̂z +

d∑
j=2

m∑
k=1

ψjk(xj)β̂jk;z, (2.9)

where β̂jk;z is the coordinate of β̂z corresponding to the kth B-spline basis of the jth covariate.

Remark 2.2. The estimators α̂z and β̂z are estimating different quantities. Notice that α̂z

estimates the scalar f1(z), while β̂z estimates the coefficients of B-splines. Given a function

g(x) =
∑m

k=1 βkφk(x), we have ‖g‖22 � m−1
∑m

k=1 β
2
k (see, e.g., Corollary 15 in Chapter XI of de

Boor (2001)). From this we see that the scales of α̂z and β̂z are different, which explains the

additional
√
m term multiplying |α| in the penalty function (2.8).

2.1 Comparison to the Sieve Estimator

In this section, we explain why we consider the kernel-sieve estimator as the first step of a

confidence band construction instead of the sieve estimator. In the literature of sparse additive

model estimation, most papers consider the sieve-type estimator. For example, Huang et al. (2010)

consider minimizing

β̂sieve = arg min
β

1

n

n∑
i=1

(
Yi − Ȳ −

d∑
j=1

m∑
k=1

ψjk(Xij)βjk

)2
+ λ

d∑
j=1

||βj ||2, (2.10)

while similar variations were considered in Ravikumar et al. (2009), Meier et al. (2009), Koltchinskii

and Yuan (2010), and Kato (2012). These papers show that estimators like (2.10) are good enough

to achieve the estimation consistency under the sparse additive model.

Kozbur (2015) proposes a post-nonparametric double selection procedure to conduct the inference

for a differentiable functional of the function of interest, f1, where estimation is performed by a

sieve-type estimator. This method selects variables in three steps: (i) run Lasso regression ψ1k(X1)

on {ψst(Xs)}s≥2,t≥1 and select the support Ik for all 1 ≤ k ≤ m; (ii) run Lasso regression Y on

{ψst(Xs)}s≥2,t≥1 and select the support I0; and (iii) run least square regression Y on {ψst(Xs)}

for s, t belong to the support ∪mk=0Ik. The confidence interval of a functional a(f1) could then be
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derived through the least square estimator in the last step. However, this approach cannot be

directly used to construct a confidence band. First, Assumption 14 in Kozbur (2015) assumes that

the functional a(f1) is differentiable, which does not hold for the supremum operator. Second,

the validity of the method is based on two high level assumptions on the variable selection (see

Assumptions 9 and 10 in Kozbur (2015)) that are hard to verify in practice. In particular, they are

not satisfied for the data generating process used in the simulation study in Section 5.

To sum up, it is challenging to study the uniform confidence band through pure sieve-type

approaches. Technically, if we compare the loss functions of two estimators in (2.10) and (2.6), the

sieve estimator approximates the function of interest f1 through its global basis expansion, while

the kernel-sieve hybrid estimator only approximates f1 at the local point z by a scalar α. Therefore,

in order to study the asymptotic properties of the extreme value

sup
z∈X
|f̂ sieve1 (z)− f1(z)| = sup

z∈X

∣∣∣ m∑
k=1

ψ1k(z)β̂
sieve
1k − f1(z)

∣∣∣, (2.11)

we need to analyze the m-dimensional estimator β̂sieve
1 whose dimension m is increasing with

the sample size n at the rate m � n1/6. This makes it challenging to estimate the asymptotic

distribution of the extreme value statistic in (2.11). Kozbur (2015) studies the limiting distribution

of a differential functional of β̂sieve
1 , while the extreme value is more challenging as it is non-

differentiable. We further note that most existing papers on confidence bands are based on kernel

or local polynomial methods (Härdle, 1989; Sun and Loader, 1994; Fan and Zhang, 2000; Claeskens

and Van Keilegom, 2003; Zhang and Peng, 2010). In comparison, the advantage of the kernel-sieve

hybrid estimator is that it directly outputs a scalar estimator α̂z of f1(z). This one dimensional

estimator α̂z allows us to construct a confidence band as we explain below. Furthermore, as we

discuss in Section 4, the idea behind the kernel-sieve hybrid estimator can be extended to a number

of different classes of nonparametric models for which the estimator in (2.10) does not generalize.

2.2 Computational Algorithm

In this section, we describe an algorithm to minimize (2.7). We start by introducing some extra

notation. Denote Ψ = (Ψ1•, . . . ,Ψn•)
T ∈ Rn×(1+(d−1)m), where Ψij = (ψj1(Xij), . . . , ψjm(Xij))

T

and Ψi• = (1,ΨT
i2, . . . ,Ψ

T
id)

T ∈ R1+(d−1)m for i ∈ [n] and j ≥ 2. We also write Ψ = (Ψ•1, . . . ,Ψ•d),
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Algorithm 1 Randomized coordinate descent for group Lasso

for t = 1, 2, . . . do

Let β
(t)
+ = (β

(t)
1 ,β

(t)T
2 , . . . ,β

(t)T
j )T .

Choose jt = j ∈ [d] with probability 1/d.

Compute T (β
(t)
j ) for the j-th block as

T (β
(t)
j ) = arg min

θ∈Rdim(βj)

{
µ

2
‖θ‖22 + 〈∇jLz(β(t)

+ ),θ〉+ λj‖θ + β
(t)
j ‖2

}
. (2.14)

Update β
(t+1)
j = β

(t)
j + T (β

(t)
j ).

end for

where Ψ•1 = (1, . . . , 1)T ∈ Rn and Ψ•j = (Ψ1j , . . . ,Ψnj)
T ∈ Rn×m for j ≥ 2. We further denote

Y = (Y1 − Ȳ , . . . , Yn − Ȳ )T ∈ Rn, β+ = (α,βT )T ∈ R1+(d−1)m,β∗+ =
(
f∗1 (z),β∗T

)T ∈ R1+(d−1)m

and Wz = diag
(
Kh(X11 − z), . . . ,Kh(Xn1 − z)

)
∈ Rn×n. (2.12)

To unify the notation in our algorithm, we also write β+ = (β1,β
T
2 , . . . ,β

T
d )T , where β1 = α and

β = (βT2 , . . . ,β
T
d )T . The tuning parameters are set as λj = λ

√
m for j = 1 and λj = λ for j ≥ 2.

Using the above notation, the objective function in (2.7) can be written as

Lz(β+) + λR(β+) =
1

n
(Y −Ψβ+)TWz(Y −Ψβ+) + λR(β+). (2.13)

We minimize the objective function in (2.13) using the randomized coordinate descent for

composite functions (RCDC) proposed in Richtárik and Takáč (2014). Details of the procedure are

given in Algorithm 1, where ∇jLz(β+) := ∂Lz(β+)/∂βj denotes the gradient. Suppose the result

of the t-th iteration is β
(t)
+ . In the next iteration, we randomly choose one coordinate jt+1 from

{1, . . . , d} and update the β
(t)
jt

. Each update in (2.14) can be obtained in a closed form as

T (β
(t)
j ) = Tλj/µ

(
β
(t)
j −

1

L
∇jLz

(
β
(t)
+

))
− β(t)

j , (2.15)

where µ is certain regularized constant and Tλ is the soft-thresholding operator, which is defined

as Tλ(v) = (v/‖v‖2) · max{0, ‖v‖2 − λ}. If we evaluate the estimator α̂z for M different z’s, a
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näıve approach is to run Algorithm 1 for M times. The computational complexity is O(dm2nM).

However, we propose a method to accelerate Algorithm 1 by exploiting the special structure of kernel

functions. The accelerated method improves the computational complexity to O(dm2(n + M)).

Therefore, the computational complexity of our method is comparable to applying RCDC to

minimize the objective function in (2.10) for SpAM estimation. More details can be found in

Appendix B in the supplementary material.

2.3 Confidence Band

In this section, we present a procedure for constructing a confidence band for the additive component

f1 based on a de-biased estimator. A confidence band Cn is a set of confidence intervals Cn =

{Cn(z) = [cL(z), cU (z)] | z ∈ X}. For simplicity, we define the interval c0(z) ± r0(z) := [c0(z) −

r0(z), c0(z)+r0(z)]. We use f ∈ Cn to denote that f lies in the confidence band, that is, f(z) ∈ Cn(z)

for all z ∈ X . Our idea for constructing the confidence band extends the results developed for

de-biased estimators for high-dimensional linear regression in Zhang and Zhang (2013), van de Geer

et al. (2014), and Javanmard and Montanari (2014). Our setting is much more challenging as it

involves constructing a band for an infinite dimensional object and we need a novel correction for

α̂z that reduces the bias introduced by (2.7).

We define for any v = (v1,v
T
2 , . . . ,v

T
m)T ∈ R(d−1)m+1 with v1 ∈ R and vj ∈ Rm for j ≥ 2, the

norm ‖v‖2,∞ = max(|v1|, ‖v2‖2, . . . , ‖vd‖2). Consider the following convex program

θ̂z = arg min
θ∈R(d−1)m+1

θT Σ̂zθ, subject to
∥∥Σ̂zθ − e1

∥∥
2,∞ ≤ γ, (2.16)

where Σ̂z = n−1ΨWzΨ
T and e1 is the first canonical basis in R(d−1)m+1. The de-biased estimator

is given as

f̂u1 (z) = α̂z +
1

n
θ̂Tz ΨTWz(Y −Ψβ̂+). (2.17)

We proceed to construct a confidence band based on this de-biased estimator by considering the

distribution of the process supz∈X
√
nh(f̂u1 (z)− f1(z)). We can approximate the distribution of the
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empirical process by the Gaussian multiplier process

Ĥn(z) =
1√
nh−1

n∑
i=1

ξi ·
σ̂Kh(Xi1 − z)ΨT

i θ̂z
σ̂n(z)

, (2.18)

where ξ1, . . . , ξn are independent N(0, 1) random variables, and the variance estimators are given as

σ̂2 = n−1
∑n

i=1(Yi − α̂Xi −
∑d

j=2

∑m
k=1 ΨT

ijβ̂jk;Xi)
2 and σ̂2n(z) = n−1θ̂Tz ΨW2

zΨ
T θ̂z. Let ĉn(α) be

the (1− α)th quantile of supz∈X Ĥn(z). We construct the confidence band at level 100× (1− α)%:

Cbn,α = {Cbn,α(z) | z ∈ X}, where

Cbn,α(z) := [f̂u1 (z)− ĉn(α)(nh)−1/2σ̂n(z), f̂u1 (z) + ĉn(α)(nh)−1/2σ̂n(z)]. (2.19)

We will show that the confidence band is asymptotically honest in Section 3.2 by building on the

framework developed in Chernozhukov et al. (2014a) and Chernozhukov et al. (2014b), who study

Gaussian multiplier bootstrap for approximating the distribution of the suprema of an empirical

process.

3 Theoretical Properties

We establish the rate of convergence for the proposed estimator in Section 3.1, while the confidence

band for f1 is analyzed in Section 3.2.

3.1 Estimation Consistency

We start with stating the required assumptions. Let p(x1, . . . , xd) denote the joint density of

X = (X1, . . . , Xd) and let pj(xj) denote the marginal density of Xj , for j ∈ [d]. Furthermore, let

pjk`(xj , xk, x`) be the joint density of (Xj , Xk, X`), pjk(xj , xk) be bivariate density and p(xj |x`) :=

p`j(x`, xj)/p`(x`), p(xj , xk|x`) := p`jk(x`, xj , xk)/p`(x`) be condition densities for any j, k, ` ∈ [d] .

(A1) (Density function) The density function p(x1, . . . , xd) is continuous on X d. For all j, k ≥ 2

and xj , xk ∈ X , p1,j,k(·, xj , xk) ∈ H(2, L). There exist a fixed constant B < ∞ such that

p1(x1) ∨ p(xj |x1) ∨ p(xj , xk|x1) ≤ B for all (x1, xj , xk) ∈ X 3 and j, k ∈ {2, . . . , d}.
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(A2) (Kernel function) The kernel K(u) is a continuous function with a bounded support satisfying

∫
X
K(u)du = 1 and

∫
X
uK(u)du = 0.

(A3) (Design Matrix) Let Σz = E[Kh(X1 − z)Ψ1•Ψ
T
1•], recalling that Ψ1• = (1,ΨT

12, . . . ,Ψ
T
1d)

T .

For any J ⊂ [d], we define a cone

C(κ)
β (J) =

{
β+ = (α,βT )T

∣∣ ∑
j /∈J,j 6=1‖βj‖2 ≤ κ

∑
j∈J,j 6=1‖βj‖2 + κ

√
m|α|

}
. (3.1)

There exists a universal constant ρmin > 0 independent to n, d, z such that the restricted

minimum eigenvalue on C(κ)
β (J) satisfies

inf
z∈X

inf
|J |≤s

inf
β+∈C(κ)

β (J)

βT+Σzβ+

‖β‖22 +mα2
≥ ρmin

m
. (3.2)

(A4) (Noise Term) The error term ε satisfies E[ε] = 0, is independent to X, and is a subgaussian

random variable such that E[exp(λε)] ≤ exp(λ2σ2ε /2) for any λ.

(A5) The nonparametric function f(x1, . . . , xd) ∈ Kd(s) defined in Definition 2.3.

When the support X is compact, Assumption (A1) is satisfied if there exist fixed constants

0 < c < C < ∞ such that p1(x1) ≥ c and p1jk(x1, xj , xk) ≤ C for all (x1, xj , xk) ∈ X 3 and

j, k ∈ {2, . . . , d}. The assumption that density functions are bounded away from infinity and zero

is used in many papers on additive model. For example, Huang et al. (2010) study estimation of

sparse additive models under assumption that the univariate densities {pj(xj)}j∈[d] are bounded

away from infinity and zero. Opsomer and Ruppert (1997) and Fan and Jiang (2005) study the

additive model with two covariates: Y = µ+ f1(X1) + f2(X2) + ε and impose

sup
x1,x2∈X

∣∣∣∣ p12(x1, x2)p1(x1)p2(x2)
− 1

∣∣∣∣ < 1, (3.3)

which implies that p12(x1, x2) is bounded from infinity and zero. Since the loss function in (2.6)

involves interaction terms of multiple variables, Assumption (A1) imposes boundedness on the

density related to three covariates. Moreover, Assumption (A1) can be satisfied even if the support
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X is non-compact. In comparison, whenever a density function is bounded away from zero, it has

to have bounded support. Therefore, our assumption is more general than those used in Opsomer

and Ruppert (1997), Fan and Jiang (2005) and Huang et al. (2010). As another example, consider

X ∼ N(0,Σ) where Σjj = 1 and Σjk = ρ for all 2 ≤ j < k ≤ d, we can bound the densities as

p1(x1) ≤ 1, p(xj |x1) ≤ (1− ρ2)−1/2 and p(xj , xk|x1) ≤ (1− ρ)−1(1 + 2ρ)−1/2 for all 2 ≤ j < k ≤ d.

Therefore, Assumption (A1) is satisfied in this example as long as Σ is positive definite.

Assumption (A2) is standard in the literature on local linear regression (Fan, 1993), while

Assumption (A4) is standard in the literature on sparse additive modeling (Meier et al., 2009;

Huang et al., 2010; Koltchinskii and Yuan, 2010; Raskutti et al., 2012; Kato, 2012).

Assumption (A3) is similar to the restricted strong convexity condition in Negahban et al.

(2012). Note that Σz is the expectation of the Hessian matrix of the loss function L(β+). We

require Σz to be positive definite when restricted to vectors in the cone C(κ)
β (J). Again, the

additional factor
√
m in front of |α| makes sure that α and βz are calibrated on the same scale (see

Remark 2.2). Assumption (A3) can be derived from the assumption on the design in Koltchinskii

and Yuan (2010). They consider the quantity

β2,κ(J) = inf
{
β > 0

∣∣∣ ∑j∈J ‖hj‖2L2(P) ≤ β
2
∥∥∑d

j=1 hj
∥∥2
L2(P), (h1, . . . , hd) ∈ C(κ)

h (J,P)
}
, (3.4)

where C(κ)
h (J,P) =

{
(h1, . . . , hd)

∣∣ ∑
j /∈J ‖hj‖L2(P) ≤ κ

∑
j∈J ‖hj‖L2(P)

}
for J ⊂ [d].

Let µz be the measure defined as
∫
gdµz = E[g(X)|X1 = z] for any g. The following proposition

describes the connection between β2,κ(J) and Assumption (A3).

Proposition 3.1. We define a uniform quantity based on the constant (3.4) as

β̄2,κ = sup
|J |≤s

inf

{
β>0

∣∣∣ ∑
j∈J
‖hj‖2L2(µz)

≤β2
∥∥∥ d∑
j=2

hj

∥∥∥2
L2(µz)

,(h1, . . . , hd) ∈ C(κ)
h (J, µz), z ∈ X

}
. (3.5)

Under Assumption (A1), there exist constants c, C > 0 such that for any subset X ′ ⊆ X ,

inf
z∈X ′

inf
|J |≤s

inf
β+∈C(κ)

β (J)

βT+Σzβ+

‖β‖22 +mα2
≥ inf

z∈X ′
p1(z) ·

Cβ̄−22,cκ

s(cκ+ 1)2
1

m
. (3.6)

The proof of Proposition 3.1 is stated in Appendix D in the supplementary material.
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When the support X is compact and we assume there exists a fixed constant b > 0 such that

p1(x1) ≥ b for all x1 ∈ X , Proposition 3.1 implies that if the number of active components s is

finite, we can choose ρmin = Cbβ̄−22,cκ/(s(cκ+ 1)2) and Assumption (A3) is satisfied if β̄2,cκ <∞.

The assumption that s is finite is required in the previous works (Meier et al., 2009; Huang et al.,

2010; Koltchinskii and Yuan, 2010; Kato, 2012). However, when the support X is unbounded,

p1(z)→ 0 as |z| → ∞. In this case, (3.6) does not provide a valid ρmin satisfying Assumption (A2).

We will discuss such a case in Section 3.3.

In the following, we present the rate of convergence of the kernel-sieve hybrid regression

estimator.

Theorem 3.2. Suppose that Assumptions (A1)-(A5) are satisfied. If h = o(1),m→∞ as n→∞,

and we set

λ = C

(√
log(dmh−1)

nh
+

√
s

m5/2
+
m3/2log(dh−1)

n
+

h2√
m

)
, (3.7)

for a sufficiently large constant C, the estimator (α̂z, β̂
T
z )T defined in (2.7) satisfies

sup
z∈X

d∑
j=2

||β̂j;z − β∗j ||2 ≤
sm

ρmin
λ and sup

z∈X
|âz − f1(z)| ≤

s
√
m

ρmin
λ (3.8)

with probability 1− c/n for some constant c > 0, where β̂j;z is a sub-vector of β̂z corresponding

to the coefficients of B-spline basis of the jth covariate and same for β∗j to β∗ defined in (2.4).

Furthermore, the estimator f̂ in (2.9) satisfies

‖f̂ − f‖2 ≤ ρ−1mins
√
mλ (3.9)

with probability 1− c/n.

The estimation error comes from four sources. The noise ε contributes O
(√

log(dmh−1)/nh
)

in (3.7). The second term in (3.7), O
(√
sm−5/2

)
, comes from the approximation error introduced

by using m B-spline basis functions to estimate the true functions {fj}dj=2. The third source of error

comes from the kernel method, which uses a constant to estimate f1z locally. The fourth source of

error comes from searching for correct local approximation by s additive functions due to (4.1).

Both the third and fourth sources contribute O
(
n−1m3/2 log(dh−1) + h2/

√
m
)

to the estimation
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error. The detailed proof of Theorem 3.2 is shown in Appendix A in the supplementary material.

When ρ−1min = O(1) and s = O(1), the statistical rate in (3.9) is minimized when we choose

h � n−1/6, m � n1/6 and λ � n−5/12
√

log(dn). With these choices, we obtain ‖f̂ − f‖22 =

OP
(
n−2/3 log(dn)

)
. This convergence rate is slower than the optimal rate OP

(
n−4/5 + log d/n

)
for

estimating the sparse additive model (Raskutti et al., 2012). However, we will show that this rate is

enough to construct an honest confidence band for f1 in Section 3.2. Besides, our kernel-sieve hybrid

estimator can be applied to functions beyond the sparse additive model. It can actually estimate the

functions in the form f1(x1) +
∑d

j=2 fj(xj , x1), which has two dimensional additive functions. We

refer Section 4 for the details of the generalization. In fact, the rate ‖f̂ − f‖22 = OP
(
n−2/3 log(dn)

)
we achieve is nearly optimal up to logarithmic factors for the two dimensional Hölder class (Stone,

1980). Technically, the slower rate comes from the error term Tn = supz∈X maxj∈[d]
1
n‖Ψ

T
•jWzε‖2 =

OP

(√
log(dn)/(nh)

)
, where Wz is defined in (2.2). In comparison, Huang et al. (2010) only need

to bound T ′n = supz∈X maxj∈[d]
1
n‖Ψ

T
•jε‖2 = OP

(√
log(dn)/n

)
(see their Lemma 2). Note that

Tn = OP
(
h−1/2T ′n

)
because the kernel matrix Wz increases its variance by OP (h−1/2). Detailed

technical analysis of Tn is given in Lemma A.4 in the supplementary material.

3.2 Theoretical Results for Confidence Band

In order to establish valid theoretical results on the confidence band Cbn,α, we need to strengthen

the weak dependency assumption in Assumption (A3) as follows.

Assumption (A6). (Nonparametric Weak Dependency) Recall that the constant B is defined in

Assumption (A1) and ρmin is defined in (3.2). We assume that the density functions of X satisfies

d∑
j=2

‖p1,j − p1pj‖2 ≤
ρmin

2B
and sup

k≥2

∑
j<k

‖p1,j,k − p1pjpk‖2 ≤
ρmin

2B
. (3.10)

The nonparametric weak dependency assumption quantifies how strong the dependency between

the covariates can be, while still allowing us to construct an honest confidence band. In particular,

Assumption (A6) allows us to ensure validity of the orthogonality property proposed by Cher-

nozhukov et al. (2015) and its equivalent characterization in Zhang and Zhang (2013) and van de

Geer et al. (2014). Heuristically, for M -estimators, the orthogonality property essentially requires
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the inverse of the Hessian matrix of the population loss function to have sparse columns (Ning and

Liu, 2017). For linear models, Javanmard and Montanari (2014) relax the sparsity assumption by

requiring the inverse of the Hessian matrix to have columns with bounded `1-norms. We extend

the approach of Javanmard and Montanari (2014) to our nonparametric setting here. For our loss

function in (2.6), the population Hessian matrix is Σz defined in Assumption (A3). Due to the

complicated definition of Σz, there is no straightforward interpretation of Σ−1z and any assumption

imposed on Σ−1z would imply restrictions on the data generating process that are hard to verify.

In comparison, the nonparametric weak dependency assumption in (3.10) is straightforward and

easy to check in practice. Furthermore, Assumption (A6) is a high dimensional analogue of the

assumption in (3.3), which is considered by Opsomer and Ruppert (1997) and Fan and Jiang (2005)

for fixed dimensional additive models. Since ‖p1,j,k − p1pjpk‖2 measures the dependency among

X1, Xj and Xk, (3.10) requires the `1-norms of both {‖p1,j,k−p1pjpk‖2}j≥2 and {‖p1,j−p1pj‖2}j≥2

to be bounded.

The following proposition shows Assumption (A6) can be satisfied even if X is unbounded and

Xj ’s are dependent. We refer the detailed construction of such an example to Appendix G in the

supplementary material.

Proposition 3.3. Given any ρ ∈ (0, 1/2) satisfying ρ ≤ ρmin/(18B), there exists a d-dimensional

density function p(x) with unbounded support such that

d∑
j=2

Cov(X1, Xj) ≥ ρ/9 and Cov(Xj , Xk) ≥ ρ/9 for all j, k > 2 and |j − k| ≤ 1,

and Assumption (A6) is satisfied.

The next lemma provides guidance to the selection of the tuning parameter γ in (2.16).

Lemma 3.4. Suppose that Assumptions (A1), (A3) and (A6) hold. Let

γ = C log(|X |/ρmin) · log d
√
m/nh, (3.11)

for sufficiently large constant C. Then the vector θz = Σ−1z e1 is a feasible solution to the
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optimization program in (2.16) with high probability. In particular, we have

P
(

sup
x∈X
‖Σ̂zθz − e1‖2,∞ ≤ γ

)
≥ 1− c/d

for some constant c.

We defer the proof of this lemma to Appendix F.2 in the supplementary material. We are now

ready to present the main theorem of this section which establishes a valid confidence band for a

component in the sparse additive model under the identifiability condition (2.2).

Theorem 3.5. We consider the SpAM model in (2.1) with identifiability condition (2.2). Suppose

ε ∼ N(0, σ2) and Assumptions (A1)-(A6) hold. Suppose the support X is bounded and infz p1(z) >

0. If s = O(1), m � np for p ∈ (1/5, 3/13), h � n−δ for δ ∈ (5p − 1, (1 − 3p)/2), λ satisfies (3.7)

and γ = C log(dn)
√
m/nh for sufficiently large C, there exist constants c, C1 > 0 such that for any

α ∈ (0, 1), the covering probability of Cbn,α in (2.19) is

P
(
f1(z) ∈ Cbn,α(z), for all z ∈ X

)
≥ 1− α− C1n

−c. (3.12)

In particular, the confidence band Cbn,α is asymptotically honest, that is,

lim inf
n→∞

P
(
f1(z) ∈ Cbn,α(z), for all z ∈ X

)
≥ 1− α.

Theorem 3.7 below provides a more general result for the setting where X is unbounded. Notice

that we can no longer choose h � n−1/6 and m � n1/6 as in Theorem 3.2, since we need to

under-regularize our estimator in order to make the bias terms ignorable.

3.3 Results for Unbounded Support

Here we discuss the theoretical results of our method when the support X is unbounded. Before

discussing the technical details, we first provide some heuristic intuition why the case of unbounded

support is challenging and many papers on additive model (Opsomer and Ruppert, 1997; Fan and

Jiang, 2005; Huang et al., 2010) impose bounded support condition, as well as many paper that

study uniform convergence of kernel-type estimators (Peligrad, 1992; Masry, 1996; Fan and Yao,
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2008; Nze and Doukhan, 2004). For example, consider the univariate nonparametric model that

n i.i.d. samples {Xi, Yi}ni=1 are generated from Yi = m(Xi) + εi where m ∈ H(2, L) and E[εi] = 0.

The Nadaraya–Watson estimator for m(z) is

m̂(z) = arg min
a

n∑
i=1

Kh(Xi − z)(Yi − a)2 =

∑n
i=1 YiKh(Xi − z)∑n
i=1Kh(Xi − z)

. (3.13)

The pointwise mean square error of m̂(z) is given by Fan and Gijbels (1996) as

MSE(m̂(z)) := E(m̂(z)−m(z))2 ≈
h4σ4K

4

(
m′′(z) + 2m′(z)

p′(z)

p(z)

)2
+

RKσ
2
ε

nhp(z)
, (3.14)

where σ2K =
∫
u2K(u)du,RK =

∫
K2(u)du, σ2ε = E[ε2i ], p(z) is the density of Xi, and “≈” means

we neglect higher order terms. From (3.14), we could see that MSE(m̂(z)) will diverge if p(z)→ 0.

The intuition is we have a kernel density estimator of p(z) in the denominator of m̂(z) in (3.13).

Therefore, in order to control the uniform rate supz∈X |m̂(z) − m(z)|, many analyses assume

infz∈X p(z) > 0, which is impossible if X is unbounded.

When X is unbounded, because of the argument above, the uniform rate of m̂ are typically

established on the compact subset of X . For example, for X = R, Hansen (2008) proves that

under certain regularity conditions, if bn = inf |z|≤Dn p1(z) > 0, then sup|z|≤Dn |m̂(z) −m(z)| =

OP (b−1n (h2 +
√

log n/nh)). We also show the uniform rate of our estimator on compact subsets of

X = R in the following corollary.

Corollary 3.6. Suppose Assumptions (A1), (A2), (A4), (A5) hold and β̄2,κ in (3.5) is finite. We

consider s = O(1), h � n−1/6, m � n1/6 and λ = Cn−5/12
√

log(dn) for sufficiently large constant

C. Given any compact interval [−Dn, Dn], if bn = inf |z|≤Dn p1(z) > 0, we have

sup
|z|≤Dn

|âz − f1(z)| = OP
(
b−1n log(dn)/n2/3

)
. (3.15)

The corollary can be proved by applying Proposition 3.1 to Theorem 3.2. Assumption (A3) is

not required here because ρmin could be zero when X = R. Proposition 3.1 characterizes how ρmin

depends on p1(z) when we choose X ′ = [−Dn, Dn] in (3.6) and helps us obtain an explicit rate

in (3.15).
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When the support is bounded but p1(z) goes to zero, Corollary 3.6 can also give us the uniform

rate. Without loss of generality, let X = [−a, a] for a > 0. If there exist C, β > 0 such that

p1(z) ≥ C||z| − a|β for all z ∈ [−a, a], under the assumptions of Corollary 3.6, we have

sup
z∈[−a+δn,a−δn]

|âz − f1(z)| = OP
(
δ−βn log(dn)/n2/3

)
.

We can also show the coverage probability of the confidence band Cbn,α in (2.19) on a compact

subset of R in the following theorem.

Theorem 3.7. We consider the SpAM model in (2.1) with identifiability condition (2.2). Suppose

ε ∼ N(0, σ2) and Assumptions (A1), (A2), (A4)-(A6) hold and β̄2,κ in (3.5) is finite. We

assume there exists some α > 1 such that n−α(inf |z|≤n p1(z))−1 = O(1). Given any Dn = O(nβ) for

β < 1/(10α∨5), if s = O(1), m � np for p ∈ (1/5, (3−2β)/13), h � n−δ for δ ∈ (5p−1, (1−3p)/2−β),

λ satisfies (3.7) and γ = C log(dn)
√
m/nh for sufficiently large C, there exist constants c, C > 0

such that for any α ∈ (0, 1), the covering probability of Cbn,α has

P
(
f1(z) ∈ Cbn,α(z), for all |z| ≤ Dn

)
≥ 1− α− Cn−c. (3.16)

In particular, the confidence band Cbn,α is asymptotically honest on any interval [−Dn, Dn] with

Dn = O(nβ) for β < 1/(10α ∨ 5), i.e.,

lim inf
n→∞

P
(
f1(z) ∈ Cbn,α(z), for all |z| ≤ Dn

)
≥ 1− α.

For the detailed proof of this theorem, see Appendix C.1 in the supplementary material.

4 Generalization to Larger Nonparametric Family

In this section, we will show that our kernel-sieve estimator defined in (2.7) can be applied to a

family of functions larger than the sparse additive model. We call this new function family as the

additive local approximation model with sparsity (ATLAS). Notice that under the SpAM model,

there are no interaction terms between different covariates. In addition, the set of covariates in S

affect the response Y globally. The ATLAS model relaxes these two structural constraints.
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Definition 4.1. A d-dimensional function f(x1, . . . , xd) has a local sparse additive approximation

for x1 if for any z ∈ X , there exist functions f1z(·), . . . , fdz(·) ∈ H(2, L), two bounded functions

L(·) : X d 7→ R, Q(·) : X 7→ R and a constant δ0 > 0 such that for any x−1 = (x2, . . . , xd)
T ∈ X d−1,

if x1 ∈ (z − δ0, z + δ0), we have the approximation

∣∣∣∣f(x1, . . . , xd)− f1(z)−
d∑
j=1

fjz(xj)− L(z,x−1)(x1 − z)
∣∣∣∣ ≤ Q(z)(x1 − z)2. (4.1)

Furthermore, we assume that the locally additive approximation functions are sparse in that at

most s of the functions {fjz(·)}dj=1 are not identical to zero. The sparsity pattern at each z ∈ X is

denoted as Sz = {j ∈ [d] : fjz(·) 6≡ 0}. We call the function class containing functions satisfying

Definition 4.1 the ATLAS model and denote it as Ad(s).

By letting z → x1 in (4.1), we observe that a function in the ATLAS model can be written as

f(x1, . . . , xd) = f1(x1) +

d∑
j=2

fj(xj , x1), (4.2)

where {fj(xj , x1)}dj=2 are d bivariate functions belonging to H(2, L). Similar to (2.2), we impose

the identifiability condition

E
[
f1(X1)

]
= 0 and E

[
fj(Xj , x1)

]
= 0 for any x1 ∈ X and j = 2, . . . , d. (4.3)

We call X1 the longitude variable and the functions f2(·, z), . . . , fd(·, z) for each z ∈ X as charts

at longitude z. Notice that the sparsity patterns of charts may change with z ∈ X , allowing for

more flexible modeling compared to SpAM which assumes a fixed sparsity pattern. Therefore,

ATLAS allows complex nonlinear interaction between X1 and other covariates. A visualization of a

d-dimensional function in ATLAS is illustrated in Figure 1.

It is obvious that the sparse additive model is a subset of ATLAS with the fixed charts {fj}dj=1

which are invariant to any longitude variable. In fact, ATLAS model generalizes many existing

nonparametric models in the literature. Functions like (4.2) are studied under the framework of

time-varying additive models for longitudinal data (Zhang and Wang, 2015) when the dimension is

fixed. It has also been considered as compound functional model proposed in Dalalyan et al. (2014)
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Figure 1: The illustration of ATLAS. As the longitude variable X1 changes as X1 ∈ {z1, z2, z3, z4},
the sparsity patterns of the charts are different. By fixing the lattitude variable Xj for j = 2, . . . , 5,
the values of charts fj(·, z) change with z. Under the sparsity assumption, fj(·, z) is zero for most
of the range of z.

under the high dimensional setting. However, ATLAS allows the sparsity pattern to vary with the

longitude covariate x1 while the compound functional model in Dalalyan et al. (2014) must have

fixed support. The following example gives another subset of ATLAS model.

Example 4.2. Consider a d-dimensional function with the structure

f(x1, . . . , xd) = f1(x1) +
d∑
j=2

aj(x1)fj(xj), (4.4)

where aj(·), fk(·) ∈ H(2, L) for all k ∈ [d] and j ≥ 2. Moreover, for any fixed z ∈ X , at

most s of {aj(z)}j≥2 are nonzero. The function in (4.4) satisfies Definition 4.1. We define

fj(xj , x1) = aj(x1)fj(xj) for j = 2, . . . , d and let L(z,x−1) =
∑

j≥2 a
′
j(z)fj(xj). Then for any

x1 ∈ (z − δ0, z + δ0) and x−1 ∈ X d−1, we have

∣∣∣∣f(x1, . . . , xd)−
d∑
j=1

fj(xj , z)− L(z,x−1)(x1 − z)
∣∣∣∣ ≤ smax

j∈[d]
‖fj‖∞‖a′′j ‖∞(x1 − z)2 := Q(z)(x1 − z)2,

which satisfies Definition 4.1 if s is finite. The nonparametric function in (4.4) allows nontrivial

interactions between X1 and Xj for j ≥ 2, which cannot be modeled with SpAM. The sparsity of

the function in (4.4) originates from aj(x1) and there is no sparsity assumption on fj(xj).

Example 4.2 shows that the ATLAS model is a generalization of the varying coefficient additive

model for functional data (Zhang and Wang, 2015). If fj(xj)’s are linear functions for all j ≥ 2, we

can write (4.4) as

f(x1, . . . , xd) = f1(x1) +
d∑
j=2

aj(x1)xj , (4.5)
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which is a high dimensional varying coefficient linear model, where the support of the linear

coefficients may vary with x1. Varying coefficient linear models in fixed dimension have been

extensively studied Hastie and Tibshirani (1993), Fan and Zhang (1999), Berhane and Tibshirani

(1998), and Zhu et al. (2012), while Wei et al. (2011) study high dimensional varying coefficient

linear models with fixed sparsity.

The locally additive assumption in (4.1) for the ATLAS model makes it possible for us to use the

kernel-sieve hybrid estimator to estimate functions in Ad(s). The loss function for the kernel-sieve

hybrid estimator in (2.6) has two parts: the kernel function makes the loss function only involve

data points within the area (z − h, z + h) × X d−1 and the sieve approximation part is therefore

good enough to approximate the true function according to (4.1). In particular, let (α̂z, β̂z) be the

output of (2.7), we estimate the true functions f1(z) and fj(xj , z) by

f̂1(z) = α̂z and f̂j(xj , z) =

m∑
k=1

ψjk(xj)β̂jk;z, for j = 2, . . . , d.

We can thus estimate the bivariate charts {fj(xj , x1)}dj=2 by “gluing” the local charts {fj(xj , z)}dj=1

over different longitudes z ∈ X through a fast algorithm proposed in Appendix B in the supplemen-

tary material. Moreover, we can also construct a confidence band for f1 following the procedure in

Section 3.2.

If we weaken Assumption (A5) and generalize it to the assumption that f(x1, . . . , xd) ∈ Ad(s),

the estimation rates in Theorem 3.2 and the property of confidence band in Theorem 3.7 remain

true. In fact, we will prove these theorems under the ATLAS model and apply them to SpAM.

5 Numerical Experiments

In this section, we study the finite sample properties of confidence bands for the ATLAS model

and sparse additive model. We apply the SpAM to a genomic dataset and the ATLAS model to a

fMRI dataset.
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5.1 Synthetic Data

We consider two kinds of synthetic models. In the first example we evaluate the empirical properties

of the bootstrap confidence band for sparse additive model. In the second example, we apply it to

the ATLAS model.

In both examples, we use the quadratic kernel Kquad(u) = (15/16) · (1− u2)2 1(|u| < 1) as the

kernel function in (2.7).

Example 5.1. We consider the sparse additive model Yi =
∑4

j=1 fj(Xij) + εi, where

f1(t) = 6
(
0.1 sin(2πt) + 0.2 cos(2πt) + 0.3(sin(2πt))2 + 0.4(cos(2πt))3 + 0.5(sin(2πt))3

)
,

f2(t) = 3(2t− 1)2, f3(t) = 5t, f4(t) = 4 sin(2πt)/(2− sin(2πt)).

The model is considered by Zhang and Lin (2006), Meier et al. (2009), and Huang et al. (2010).

Let W1, . . . ,Wd and U follow i.i.d. Uniform[0, 1] and

Xj =
Wj + tU

1 + t
for j = 1, . . . , d.

The data sample X1j , . . . , Xnj are i.i.d. copies of Xj . The correlation between Xj , Xj′ is therefore

t2/(1 + t2) for j 6= j′. We set t = 0.3. The noise {εi}ni=1 are i.i.d. N(0, 1.52). Let the dimension

d = 600 and the sample sizes n ∈ {400, 500, 600}. In the kernel-sieve hybrid estimator (2.7), we

use the cubic B-splines with nine evenly distributed knots and m = 5. The parameter γ in (2.16)

is set to be γ = 0.05 log d
√
m/nh. The tuning parameter λ and bandwidth h are chosen by cross

validation according to the BIC criterion defined as

BIC = log
(RSS

nh

)
+ df · log nh

nh
,

where RSS is the residual sums of squares and the degrees of freedom is defined as df = ŝ ·m with ŝ

being the number of variables selected by the estimator. We aim to construct the confidence band for

f∗1 (t) = f1(t)−E[f1(X1)]. In the simulation, we use the sample mean En[f1(X1)] := n−1
∑n

i=1 f(Xi1)

to center f1(t).

To test the coverage probability of confidence bands for inactive covariates, we also construct
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Figure 2: Kernel-sieve hybrid estimators for the d = 600 dimensional SpAM model Y =∑4
j=1 fj(Xj) + ε, for n = 400, 500, 600 and the noise ε ∼ N(0, 1.52). The confidence bands

at significant level 95% cover f1(t) on the first row and f5(t) = 0 on the second row.

the confidence band for f5(t) = 0. We set the significance level at 95%. We compute the empirical

coverage probability via the percentage that the confidence band covers the truth on all the 500

grid points on [0, 1] in 500 repetitions. We compare the performance of our method on Example 5.1

with the oracle method in Kozbur (2015), which assumes that the nonzero functions are known

beforehand. Since Kozbur (2015) does not provide a straightforward construction of the confidence

band, we construct the confidence intervals for f1(x) with all x’s on the 500 grid points on [0, 1].

The significance levels of these confidence intervals are adjusted via Bonferroni correction (Efron,

2012) in order to be fairly compared with our method.

The results are summarized in Figure 2 and Table 1. In Table 1, the “area” of the confidence

band Cbn,α is defined as
∫
z∈X 2ĉn(α)(nh)−1/2σ̂n(z)dz. In the simulation, we calculate the integration

via discretizing the interval into grids and averaging the results across 500 repetitions. We can

see in Table 1 that the coverage probability of the oracle method in Kozbur (2015) is close to 1,

however the area of the confidence band is much larger comparing to our method. This is because

Bonferroni correction is used for the confidence band of Kozbur (2015). This makes the confidence

band too conservative and not nominal in coverage probability.
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Figure 3: Kernel-sieve hybrid estimators for the d = 600 dimensional ATLAS model Y = a1f1(X1)+∑4
j=2 aj(X1)fj(Xj) + ε, for n = 400, 500, 600 and the noise ε ∼ N(0, 1.52). The confidence bands

at significant level 95% cover f∗1 = a1f1 for a1 ∈ {0, 1} respectively.
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Figure 4: Kernel-sieve hybrid estimators for the two dimensional surface a2(x1)f2(x2).

Example 5.2. We generate data from the following ATLAS model

Yi = a1f1(Xi1) +

4∑
j=2

aj(Xi1)fj(Xij) + εi,

where the additive functions are designed as follows

f1(t) = −2 sin(2πt), f2(t) = t2 − 1/3, f3(t) = t− 1/2, f4(t) = et + e−1 − 1;

a1 ∈ {0, 1}, a2(t) = 2Kquad(4t− 1), a2(t) = 3 cos(2πt), a3(t) = 4.

Here two values of a1 ∈ {0, 1} correspond to two scenarios that the true function is zero and nonzero.

The noise εi ∼ N(0, σ2) for i = 1, . . . , n with σ = 1.5. This ATLAS model is constructed based

on the synthetic example in Ravikumar et al. (2009) by adding aj(t)’s according to Example 4.2.
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n Method
Zero function Non-zero function

Coverage
probability

Area
Coverage

probability
Area

SpAM 0.824 0.398 0.932 0.145
400 ATLAS 0.924 0.402 0.912 0.210

Kozbur (2015) 0.984 3.583 0.992 3.543
SpAM 0.836 0.377 0.928 0.137

500 ATLAS 0.922 0.346 0.924 0.158
Kozbur (2015) 0.984 1.089 0.994 0.827

SpAM 0.874 0.390 0.932 0.102
600 ATLAS 0.948 0.441 0.944 0.127

Kozbur (2015) 0.988 1.791 0.984 1.550

Table 1: Comparison of coverage probability for confidence bands at significant level 95% for
the zero function f5 and non-zero function f1 in SpAM model Y =

∑4
j=1 fj(Xj) + ε as long as

the zero function a1f1 for a1 = 1 and non-zero function a1f1 for a1 = 0 in the ATLAS model
Y = a1f1(X1) +

∑4
j=2 aj(X1)fj(Xj) + ε. We also compare the numerical performance of the oracle

method in Kozbur (2015) on the SpAM model. Here we set dimension d = 600, sample size
n = 400, 500, 600 and ε ∼ N(0, 1.52). The covering probability and area are averaged based on the
500 repetitions.

The covariates Xij are independently and identically generated from Uniform[0, 1] distributions for

i = 1, . . . , n and j = 1, . . . , d. It can be checked that this model follows the identifiability condition

in (4.3). According to the argument in Example 4.2, the true function f∗1 (t) = a1f1(t) . We set the

dimension of covariates to be d = 600 and consider three sample sizes n ∈ {400, 500, 600}. We again

use the cubic B-spline basis with nine evenly distributed knots and m = 5. We again tune λ and h

through cross validation by minimizing the BIC criterion. The confidence bands are constructed

at the significance level 95% and the quantile estimator ĉn(α) is computed by bootstrap with 500

repetitions. The coverage probability is computed via the same method as in the previous example.

The numerical results are reported in Figure 3 and Table 1.

5.2 Real Data

We apply the kernel-sieve estimator to two types of real datasets: a genomic dataset and a neural

imaging dataset. We aim to test our model’s performance in variable selection and inferential

analysis under real applications.
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Figure 5: Kernel-sieve hybrid estimators for the riboflavin dataset using ATLAS model.

5.2.1 Genomic Data

We first consider the genomic dataset on the relation between gene and riboflavin (vitamin B2)

production with bacillus subtilis. Instead of evaluating the performance of variable selection in

the previous neural imaging application, we aim to demonstrate the inference analysis of our

method. The dataset is provided by DSM (Kaiseraugst, Switzerland) and it is publicly available

in Supplementary Section A.1 of Bühlmann et al. (2014). The response variable Y represents the

logarithm of the riboflavin production rate. The covariates are the logarithm of gene expression

levels with dimension d = 4, 088 and sample size n = 71. van de Geer et al. (2014), Bühlmann et al.

(2014) and Javanmard and Montanari (2014) use the linear model to find potentially significant

genes. van de Geer et al. (2014) finds no significant genes, Bühlmann et al. (2014) finds the

gene YXLD-at and Javanmard and Montanari (2014) finds two genes YXLD-at and YXLE-at to be

significant. In this paper, we use the sparse additive model to find whether the two genes YXLD-at

and YXLE-at are significant. We first normalize the covariates onto [0, 1] and use (2.19) to construct

confidence bands for the two genes YXLD-at and YXLE-at at significance level 95%. The results are

illustrated in Figure 5. We can see that both genes have significantly nonzero effects. However, the

gene YXLE-at has a larger part of the domain where zero is located within the confidence band

compared to YXLD-at. Moreover, the magnitude of regression function on YXLE-at is smaller than

YXLD-at. These explain the reason why YXLE-at is less significant than YXLD-at in the previous

analysis.
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Figure 6: The estimated surfaces of first eight voxels with largest maximum norms. The radii of
the balls in the brain represent the duration the voxels being active and the colors represent the
maximum norms of the surfaces, whose corresponding values are indicated by the colorbar on the
right bottom of the figure.

5.2.2 Neural Imaging Data

The second application we consider is the ADHD-200 dataset (Biswal et al., 2010) on the resting-

state fMRI of 195 children and adolescents diagnosed with attention deficit hyperactive disorder

(ADHD) along with 491 typically developing controls. Among them, 246 individuals are measured

by the ADHD index (Conners, 2008) which assesses the level of disorder. In order to explore the

connection between ADHD and the brain activities, we aim to regress the ADHD index by the

fMRI data of 264 voxels selected by Power et al. (2011) as the representative functional cerebral

areas. Phenotypic information including age, gender and intelligence quotient (IQ) is also provided.

Several studies have revealed that the maturation of the brains for the youth with ADHD

is delayed in some cortical regions, compared to the ones without disorder (Mann et al., 1992;

El-Sayed et al., 2003; Shaw et al., 2007). For example, Shaw et al. (2007) find that the cortical

development for the individuals with ADHD is significantly slower in the frontal lobe and temporal

lobe. Therefore, the functioning voxels related to ADHD vary with age and the ATLAS model can
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Figure 7: Active voxels varying with age. Each column shows the active voxels at each age. The
radii and colors of the balls in a brain represent the duration and maximum norms of the active
voxels as in Figure 6.

characterize such variation, while the sparse additive model cannot. We set the age as the longitude

variable and the fMRI of 264 voxels as the other covariates. All the covariates are normalized to

[0, 1]. Each of the 246 subjects with ADHD indices has 76 to 276 scans and all the scans are treated

as independent observations.

The results of the regression are illustrated in Figure 6 and Figure 7. We show the first eight

estimated surfaces with largest maximum norms among {f̂j(xj , x1)}dj=1 in Figure 6. In the center

of Figure 6, we demonstrate all voxels being activated (nonzero) at certain times by small balls.

The radius of a ball represents the length of time the corresponding voxel is activated and the

maximum norm is represented by the ball’s color where red means the largest values and yellow

means the smallest (see the colorbar on the right bottom of Figure 6). We can see that most of

the voxels with strongest signal strength are in the frontal and temporal lobes, which matches the

results in Shaw et al. (2007). Moreover, the different flat zero areas of different surfaces in Figure 6

imply that the voxels are not activated simultaneously, which supports the necessity of the ATLAS

model. In Figure 7, we show the activated voxels at different ages. The radii and colors of the balls

are the same as Figure 6. We observe that, with the increasing age, the number of activated voxels

first ascends and then reduces. This is similar to the results in Shaw et al. (2007) showing that 50%

cortical points of ADHD groups attain peak thickness around the age of 10.5 years. The decreasing
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number of activated voxels after age 15 is also congruent with the discovery in Shaw et al. (2007).

6 Discussion

In this paper, we consider a novel nonparametric model, ATLAS, which is a generalization of

the sparse additive model. ATLAS naturally models high-dimensional nonparametric functions

having different sparsity in different local regions of the domain. We consider the kernel-sieve

hybrid regression to estimate the unknown function. Since we consider functions in the 2nd order

Hölder class, only Nadaraya-Watson-type kernel estimator is considered. However, it is not hard to

generalize the loss function in (2.6) to local polynomial regression

Lz(α,β) =
1

n

n∑
i=1

Kh(Xi1 − z)
(
Yi − Ȳ − α−

p∑
`=1

(Xi1 − z)`

`!
−

d∑
j=2

m∑
k=1

ψjk(Xij)βjk

)2

.

We can apply a similar proof technique to show the statistical rate of the estimator based on the

generalized loss in higher order Hölder classes. Corresponding methods to construct confidence

bands can also be applied.
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