European Journal of Combinatorics 86 (2020) 103081

Contents lists available at ScienceDirect European Journal

of Combinatorics

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Snake graphs and continued fractions™ ]

ilke Canakg¢1?, Ralf Schiffler® s

2 Department of Mathematics, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
b Department of Mathematics, University of Connecticut, Storrs, CT 06269-1009, USA

ARTICLE INFO ABSTRACT

Article history: This paper is a sequel to our previous work in which we found
Received 23 July 2019 a combinatorial realization of continued fractions as quotients
Accepted 7 January 2020 of the number of perfect matchings of snake graphs. We show

Available online 30 January 2020 how this realization reflects the convergents of the continued

fractions as well as the Euclidean division algorithm. We apply
our findings to establish results on sums of squares, palindromic
continued fractions, Markov numbers and other statements in
elementary number theory.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Snake graphs are planar graphs that appeared first in the theory of cluster algebras. Cluster
algebras are subalgebras of a field of rational functions generated by cluster variables [20]. A special
type of cluster algebras are those associated to marked surfaces, see [18,19], which have been
studied by many people, see for example [8,15,17,21,28]. For these cluster algebras it was shown
in [24,25] that for every cluster variable there is a snake graph such that the cluster variable is
given as a sum over all perfect matchings of the snake graph, where each term in this sum is a
Laurent monomial in two types of variables xq, x5, ..., xy and y1, yo, ..., ¥n. In [26], this formula
was used to construct canonical bases for the cluster algebra using snake graphs and also band
graphs, which are obtained from snake graphs by identifying two edges. One special case was later
provided in [10]. These results were generalized to orbifolds in [14,16].

In our previous work, [11-13], we studied snake graphs from an abstract point of view, and
constructed a ring of snake graphs and band graphs which reflects the relations between the
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elements of cluster algebras of surface type in terms of bijections between sets of perfect matchings
of unions of snake and band graphs.

In our most recent paper [9], we established a bijection between continued fractions [a4, as, .. .,
a,] and snake graphs Glay, ay, ..., a,], such that the number of perfect matchings of the snake
graph equals the numerator of the continued fraction. Moreover, we showed that this equation of
natural numbers can be lifted to the cluster algebra by expressing the cluster variables as Laurent
polynomials in X1, X5, . .., Xy. In this formula the y-variables were set to 1, meaning that the cluster
algebra has trivial coefficients. In [29], this formula was generalized to include the y-variables.

Thus we have a formula that writes a cluster variable u, which is a Laurent polynomial in vari-

ables x1, X2, ..., XN, Y1, Y2, - - -, YN, @s the numerator of a continued fraction of Laurent polynomials
Ly, Ly, ..., L, such that, when we specialize all variables x; = y; = 1, we obtain
m(G) = numerator of [aq, ay, ..., a,],
where m(G) is the number of perfect matchings of the snake graph G = Glay, as, .. ., a;] and q; is
the specialization of L;.
A different specialization has been studied in [23], setting x; = 1,y, = y3 = --- = yy = —t 7,

and y; = t2. Curiously, this specialization computes the Jones polynomial of the 2-bridge link
associated to the continued fraction.

In this paper, we concentrate on the specialization x; = y; = 1. We apply our results from
[9,11-13] to establish several statements in elementary number theory. First, we note how certain
automorphisms of the snake graph translate to the continued fractions.

Theorem A (Theorem 3.7). A snake graph has a rotational symmetry at its center tile if and only if the
corresponding continued fraction is palindromic of even length.

Given a snake graph ¢ = Glay, as, ..., a,], we introduce its palindromification as the snake
graph G.. associated to [ay, ..., a3, ay, ay, az, . .., a,]. Then we show the following.
Theorem B (Theorem 3.10). Let G = G[ay, a, . .., a,] be a snake graph and G.. its palindromification.

Let ¢’ = Glay, ..., a,]. Then
m(G..) = m(G)* + m(G')*.

As a consequence we obtain the following corollary.

Corollary A (Corollary 3.14).

(a) If M is a sum of two relatively prime squares then there exists a palindromic continued fraction of
even length whose numerator is M.

(b) For each positive integer M, the number of ways M can be written as a sum of two relatively
prime squares is exactly one half of the number of palindromic even length continued fractions
with numerator M.

We also study palindromic snake graphs of odd length and give a formula whose numerator is
a difference of two squares; however this formula is not reduced.

We then apply our results to Markov numbers. By definition, these are the integer solutions to
the Markov equation x> + y? + z2 = 3xyz. It was shown in [4,27] that Markov numbers correspond
to the cluster variables of the cluster algebra of the torus with one puncture. The snake graphs of
these cluster variables are therefore called Markov snake graphs. Each Markov number, hence each
Markov snake graph, is determined by a line segment from (0, 0) to a point (q, p) with a pair of
relatively prime integers and 0 < p < q. We give a simple realization of the Markov snake graph
using the Christoffel path from the origin to the point (g, p), Section 4.2. This is the maximal height
lattice path that lies below the line segment from the origin to (g, p). The Markov snake graph is
obtained by arranging tiles of side length 1/2 along the Christoffel path. It follows that the Markov
snake graphs have palindromic continued fractions and we obtain the following.
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Table 1
Initial segments of continued fractions of Markov numbers according to
their slope.
Slope Continued fraction
0<p/q<1/2 [2,1,1...]
p/q=1/2 (2,2]
1/2 <p/q<2/3 (2,2,2,1,1..1]
p/q=2/3 [2,2,2,2]
2/3 <p/q < 3/4 2,2,2,2,2,1,1...]
p/q=3/4 [2,2,2,2,2,2]
3/4 <p/q <4/5 [2,2,2,2,2,2,2,1,1...]

Theorem C (Theorem 4.1). Every Markov number my,q is the numerator of a palindromic continued
fraction [ay, ..., a3, ay, ay, az, ..., a,] of even length such that

(1) a; € {1,2}, an = 2;
(2) Ifp+1=qthenn=panda; =2 for all i;
(3) Ifp+ 1 < q then C;—‘ < % < ﬁ,for a unique positive integer ¢ and
(a) there are at most p + 1 subsequences of 2s; the first and last are of odd length 2c — 1 and
all others are of even length 2c or 2c + 2;

(b) there are at most p maximal subsequences of 1s; each of these is either 2 L%J or

2(LE]-1)

The initial segments of the continued fractions are listed in Table 1.

Let us mention that infinite continued fractions were used in [30] to express the Lagrange
number +/9 m? — 4/m of a Markov number m. Our approach here is different, since we express the
Markov number itself as the numerator of a finite continued fraction. See also [31] for an explicit
connection between geodesics on the modular surface (the quotient of the hyperbolic plane by the
modular group) and continued fractions.

Finally, we study Markov band graphs which are constructed from the Markov snake graphs by
adding 3 tiles and then identifying two edges. Geometrically, the Markov band graphs correspond
to the closed simple curves obtained by moving the arc of the Markov snake graph infinitesimally
away from the puncture.

Theorem D (Theorem 4.9). Let m be a Markov number and let G°(m) be its Markov band graph. Then
the number of perfect matchings of G°(m) is 3 m.

This result has an interesting connection to number theory, because if (mq, m,, ms) is a solution
of the Markov equation x*> + y? 4+ z?> = 3xyz then (3mj;, 3m,, 3ms) is a solution of the equation
x> +y? + 7% =xyz.

Let us point out some other combinatorial approaches to continued fractions. In [5] the authors
gave a combinatorial interpretation of continued fractions as the number of ways to tile a strip of
length n with dominoes of length two and stackable squares of length one. This was used in [6] to
prove that every prime of the form 4 m+1 is the sum of two relatively prime squares. In [2], certain
palindromic conditions on the coefficients of an infinite continued fraction [aq, ao, . ...] were used
to deduce transcendence of the corresponding real number. The authors also considered weaker
quasi-palindromic conditions of which our ‘almost palindromes’ of Section 3.3 are a special case.
See also section 9 of the survey [1].

The paper is organized as follows. In Section 2 we recall results from earlier work and give a
snake graph interpretation of the convergents of the continued fraction as well as for the Euclidean
division algorithm. We study palindromic snake graphs in Section 3 and Markov numbers in
Section 4.
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Fig. 1. The snake graphs with 4 tiles together with their sign sequences and continued fractions.

2. Continued fractions in terms of snake graphs

A continued fraction is an expression of the form

[a]7a27"-aan]:a1+

S 1
=
Qn
where the g; are integers (unless stated otherwise) and a, # 0. A continued fraction is called positive
if each q; is a positive integer, and it is called even if each q; is a nonzero even (possibly negative)
integer. A continued fraction [a, as, ..., a,] is called simple if for each i > 1 we have q; > 1 and
aq is an arbitrary integer.
In this paper, continued fractions are positive unless stated otherwise. Even continued fractions
and their snake graphs have been studied in [23], and we recall some of their results below.

2.1. The snake graph of a continued fraction

Following [9], for every positive continued fraction [aq, ay, .. ., a,], we construct a snake graph
Glay, ay, ..., ay] in such a way that the number of perfect matchings of the snake graph is equal
to the numerator of the continued fraction. A perfect matching of a graph is a subset P of the set of
edges such that every vertex of the graph is incident to exactly one edge in P.

Recall that a snake graph G is a connected planar graph consisting of a finite sequence of tiles
G1, Gy, ..., Gg with d > 1, such that G; and G;;; share exactly one edge e; and this edge is either
the north edge of G; and the south edge of G, or the east edge of G; and the west edge of Gi,1,
foreachi=1,...,d — 1. See Fig. 1 for a complete list of snake graphs with 4 tiles. We denote by
swG the 2 element set containing the south and the west edge of the first tile of G and by G"E the
2 element set containing the north and the east edge of the last tile of G. A snake graph ¢ is called
straight if all its tiles lie in one column or one row, and a snake graph is called zigzag if no three
consecutive tiles are straight. We say that two snake graphs are isomorphic if they are isomorphic
as graphs.

A sign function f on a snake graph G is a map f from the set of edges of G to the set {+, —} such
that on every tile in G the north and the west edge have the same sign, the south and the east edge
have the same sign and the sign on the north edge is opposite to the sign on the south edge. The

snake graph G is determined by a sequence of tiles Gy, ..., Gg and a sign function f on the interior
edges eq, ..., eq_1 of G. Denote by ey € s G the south edge of the first tile and choose an edge
eq € GNE. Then we obtain a sign sequence

(f(eo), f(e1), ..., f(ea—1), f(eq)). (2.1)
This sequence uniquely determines the snake graph together with a choice of a northeast edge
ey € GNE,

Now let [ay, ay, ..., a,] be a continued fraction with allg; > 1,and letd = a;+ay +---+a, — 1.

Consider the following sign sequence

(—€,...,—€, €,...,€, —€,...,—€, ..., =e,...,=xe),

aq a as PN ay
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Fig. 2. The snake graph of the continued fraction [2, 3, 1, 2, 3]. The sign sequence (—, —, +, +, +, —, +, +, —, —, —) =
(f(eo), fe1), ..., f(e1w)) is given in red. The sign changes occur in the tiles G, with ¢; = 2,5,6,8. The subgraphs
Hiy oo ey ‘Hs, on the right are obtained by removing the boundary edges of the tiles G, fori=1,..., n—1
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Fig. 3. Small snake graphs and their perfect matchings, ¢[2] (left), g[3] (center), G[2, 2] (right).
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a; corresponds to a maximal subsequence of constant sign sgn(q;) in the sequence (2.2). We let ¢;
denote the position of the last term in the ith subsequence, thus ¢; = Z]'-:] a;.

The snake graph Glay, ay, ..., a,] of the continued fraction [aq, ay, ..., a,] is the snake graph
with d tiles determined by the sign sequence (2.2). Examples are given in Figs. 1 and 2. Note that
the two choices of the edge e; in 6™ will produce the two continued fractions [ay, a3, . . ., G,]
and [aq, ao, ..., a, — 1, 1]; however these two continued fractions correspond to the same rational

number, since —1— = 1.
ap—1++ an

The following thelorem is the key result of [9]. It gives a combinatorial realization of continued
fractions as quotients of cardinalities of sets.

where € € {—, +}, —e = {i— * We define sgn(a;) = {_6 ifiis odd; ¢ each integer

€ if i is even.

Theorem 2.1 ([9, Theorem 3.4]). If m(G) denotes the number of perfect matchings of G then
[ai,a an] = m(Glay, az, ..., ay])
, Az, ..., = ’
1 n m(glaz, ..., anl)

and the right hand side is a reduced fraction.

Example 2.2. In Fig. 3, we show the set of all perfect matchings of several snake graphs.
2.2. Convergents

Then nth convergent of the continued fraction [aq, ay, . . ., as] is the continued fraction [aq, ao, .. .,
a,], for 1 < n < s. By Theorem 2.1, we have that the numerator of nth convergent is the number of
perfect matchings of the initial segment G[ay, aa, ..., a,] of Gla;, az, ..., as] and the denominator
of the nth convergent is the number of perfect matchings of G[as, ..., a,]. Define

pi=a , pp=ap1+1 , pPp=aPu—1+pPs, forn=3
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and
Gi=1, Q=0 , ¢y=0aqu-1+qu—, forn=>3.

It is well known that the nth convergent of the continued fraction [a;, a;, ..., as] is equal to
Dn/qn, see for example [22, Theorem 149].

Example 2.3. The continued fraction [2, 3, 1, 2, 3] = % has convergents

[23123]—84 [2312]—25 [231]—9 [23]—7 [2]—2
9y Ly & _37 Lt B ) _,1,1 ] _4 b _3 _1

The corresponding snake graphs are the following.

59 |84
34
791625 7o [16]2s] 7]9] (7]
[2]3]>s [2]3]>s [2]3]5 [2]3]5
2637]
15
3af7|n 3 al7]u] 3]4]

2 2 2
where the number in the tile G; indicates the number of perfect matchings of the subsnake graph
given by the first i tiles. The top row shows the snake graphs corresponding to the numerators of
the convergents, and the bottom row those corresponding to the denominators. Note that all the
snake graphs in the top row are initial segments of the first snake graph in that row. The snake
graphs in the second row are obtained from those in the first row by removing the 4 vertices of the
initial tile and all incident edges.

2.3. Combinatorial realization of division algorithm
In this section we illustrate division algorithm in terms of snake graphs for positive continued

fractions and also for even continued fractions.
In [23] the authors associate a snake graph to every even continued fraction, and they show

that if the same rational number is represented as a positive continued fraction [ay, ..., a,] and
as an even continued fraction [by, ..., b;] then the snake graphs associated to [ay, ..., a,] and
[b1, ..., by] are isomorphic.

Remark 2.4 ([23]). Let p, q be relatively prime integers with p > q > 0. Then

(a) if p or q is even, then p/q has a unique even continued fraction expansion.
(b) if p and g are both odd then p/q does not have an even continued fraction expansion.

Example 2.5. Let us compute the continued fraction of Example 2.3. The Euclidean algorithm on
the left gives the continued fraction [2, 3, 1, 2, 3] = 84/37. The algorithm on the right gives the
even continued fraction [2, 4, —4, 2, —2] = 84/37.

84 = 2.37+10 84 = 2.37+10
37 = 3-10+47 37 = 4.10+(-3)
10 = 1.7+3 10 = (—4)(=3)+(-2)
7 = 2.3+41 -3 = 2(-2)+1

3 = 3.1 -2 = (=21

We point out that the remainders can also be realized as numbers of perfect matchings of
subgraphs of the snake graph if one starts counting at the north east end of the snake graph and
the division algorithm can be seen as a sequence of identities of snake graphs as follows.
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3]2] 3]2] 3]2]
4 4
271710 7 = 271710 7 + [10
[84] 47|37 7]
Hi
3]2] 3]2] 3]e
4 _ 4 4
27]17]10] 7 - [10] 7 + 7]
57
H2
3 [ 2 32 [3]2]
4 = 4 +
0] 7 |1 |7 |
H3
e !
4 = +
g
Ha

These identities mean that there is a bijection between the sets of perfect matchings of the snake
graphs on either side. For the even continued fraction, the computation has the following realization
in terms of snake graphs.

3 2| 3 2| 3 2|
4 4 4
= +
27 |17 |10 | 7 27 |17 |10 | 7 |10 7
|84|47 37 37
312 | 312 | | 3 | 2 |
4 4
27 |17 |10 | 7 - 314 | |1() 7
37 2
4 = 4 —_
|10 7 |2 3

3. Palindromification

The rotation of a snake graph by 180 degrees as well as the flips at the linesy = x and y = —x
produce isomorphic snake graphs. We start by describing the action of these isomorphisms on the
continued fractions. First note that we have an equality

Glai, az, ..., a;,] =Glay, a, ..., a, — 1, 1],

because the change in the continued fraction corresponds simply to changing the choice of the edge
€4 € QNE.
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Note that if a, = 1, then in the above equation, the coefficient a, — 1 is zero. However,
it is easy to see that [ay,...,a,0,b,...,a,] = [ay,...,a + b,...,a,).! Thus if @, = 1 then
glar, az,...,an — 1, 1] =Glay, az, ..., ap—1 + 1.

Proposition 3.1. We have the following isomorphisms.

(a) The flip aty = x.

Glar,az, ..., an ] =G[1,a1 — 1,03, ..., anl.

(b) The flip aty = —x.

~ J6l1,a,—1,...,0az,a1] ifeyis north;

glar. az. ... 4] = {g[an...,az,al] if eq4 is east.

(c) The rotation by 180 degrees.

~ J6lan...,az, ai] if e4 is north;

Glar. @z, ... an] = {g[l, an—1,...,0a2,a;] if ey is east.

Proof.
(a) Rotating the snake graph G[ay, az, ..., a,] associated to a continued fraction [ay, aa, ..., a,]
along the line y = x will change its sign function
(—€,...,—€, €,...,€, —€,...,—€, ..., =e,...,*€)
———— —— ————— ————
a a as . ay

to the sign function

(—€, €,...,6, —€,...,—€, €,...,€, ..., TF€,...,Fe€)
~— S——— S———— S—— —
1 a—1 a; as ap

if a; # 1 and vice versa if a; = 1 so the isomorphism of snake graphs follows.

(b) Let G’ be the image of G under the flip. Denote by e/, ..., e,_, the interior edges of G’ and by
ey the south edge of the first tile. The flip is an isomorphism of graphs ¢ — ¢’ that maps the
last tile of G to the first tile of G’. Moreover, if ey is the east edge of the last tile in G then it is
mapped to the south edge e; of the first tile in G, and we have ¢’ = G[ay, ..., a2, a;]. On the
other hand, if ey is the north edge of the last tile in G then it is mapped to the west edge of
the first tile in ¢’ and we have ¢’ = G[a,, ..., az, a;].

(c) Similar to part (b). O

In particular, we obtain a new proof of the following classical result.
Corollary 3.2. The continued fractions [ay, aa, ..., a,] and [a, ..., a3, a;] have the same numerator.

Example 3.3. We illustrate the result on the snake graph G = G[2, 2, 1] = G[2, 3]. We see from
Fig. 1 that the flip at y = x produces G[1, 1, 3], the flip at y = —x produces G[3, 1, 1] and the
rotation produces G[1, 2, 2].

Note that ey is north in G[2,2, 1] and east in G[2, 3]. Therefore from the formulas in the
proposition, we have the desired result.

Definition 3.4. A continued fraction [aq, a3, ..., a,] is said to be of even length if n is even. It is
called palindromic if the sequences (ai, a, ..., a,) and (ay, ..., az, a,) are equal.

1 This follows from a + —+ = a+ b.
[
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Fig. 4. The three snake graphs on the left are rotationally symmetric at their center tile. The three snake graphs on the
right are not.

A snake graph G is called palindromic if it is the snake graph of a palindromic continued fraction.
Moreover ¢ is called palindromic of even length if it is the snake graph of a palindromic continued
fraction of even length.

A snake graph G has a rotational symmetry at its center tile if G has a tile G;, such that the rotation
about 180° at the center of this tile is an automorphism of G.

See Fig. 4 for examples.

Remark 3.5. To avoid confusion, we emphasize that if a snake graph G[a,, aa, . .., a,] is palindromic
of even length, the word “even” refers to the number n of entries in the continued fraction. Thus
“even length” means that the continued fraction is of even length and not that the snake graph
has an even number of tiles. Actually we shall show below that palindromic snake graphs of even
length always have an odd number of tiles.

Remark 3.6. If a snake graph G has a rotational symmetry at its center tile then the number of
tiles of ¢ must be odd and the center tile is the ith tile of G, where i = (d + 1)/2 and d is the total
number of tiles.

Theorem 3.7. A snake graph is palindromic of even length if and only if it has a rotational symmetry
at its center tile.

Proof. Suppose first that G is a palindromic snake graph of even length with corresponding
palindromic continued fraction [ay, ..., a,, a,, ..., a;], and let d be the number of tiles of G. From
the construction in Section 2, we know that the sign sequence determined by the continued fraction
has length d + 1 = 2(a; + ay + - - - + a,). This shows that d is odd. Let i = (d + 1)/2, and let G;
be the ith tile of G. Thus G; is the center tile of G. Therefore, the initial subgraph consisting of the
first i — 1 tiles of G is isomorphic to G[ay, as, ..., a,], the terminal subgraph consisting of the last
i — 1 tiles of G is isomorphic to G[ay, ..., az, a;] and the 3 consecutive tiles G;_1, G;, Gi11 form a
straight subgraph. Therefore the two interior edges e;_; and e; are parallel. Note that the edge e;_;
is the last interior edge of G that belongs to the initial subgraph G[ay, aa, ..., a,] and e; is the first
interior edge of G that belongs to the terminal subgraph Glay,, ..., as, a;]. Thus e;_; and e; being
parallel implies that ey and e4 are parallel as well. Since ey is the south edge of /G it follows that
eq is the north edge in gNE. Now Proposition 3.1 implies that the rotation by 180° at the center of
the tile G; is an automorphism of G.

Conversely, if G has a rotational symmetry at its center tile G;, then the 3 consecutive tiles
Gi—1, Gi, Giy1 form a straight subgraph, and thus the sign changes from the interior edge e;_; to
the interior edge e;. Consequently, if the subgraph given by the first i — 1 tiles of G is of the form

Glai, az, ..., as] and the subgraph given by the last i — 1 tiles of G is of the form G[asy1, ..., ay],
then because of the sign change at the tile G;, we conclude that G = Glay, ..., ds, Gsy1, ..., Qnl.
The rotational symmetry now implies that the sequences (ay, ay, ..., as) and (an, ap—1, ..., Gs+1)

are equal, as long as we choose the edge e; € G'"* to be the north edge such that ey is the image of
the edge ey under this rotation. This shows that G is palindromic of even length. O

Example 3.8. The continued fractions of the 3 snake graphs on the left of Fig. 4 are [1, 1, 1, 1], [3, 3]
and [2, 2, 2, 2], respectively. The snake graphs are rotationally symmetric at their center tile and the
continued fractions are palindromic and of even length. On the other hand, the continued fractions
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of the 3 snake graphs on the right of Fig. 4 are [1, 1, 1], [6] and [2, 2, 2], respectively. Each of these is
palindromic but none is of even length. Accordingly, the snake graphs have no center tile rotational
symmetry.

Given a snake graph G, we can construct a palindromic snake graph of even length G., by
glueing two copies of G to a new center tile. This graph is called the palindromification of G.
More precisely, if G = Glay, as, ..., a,], then its palindromification is the snake graph G., =
Glay,...,ay,ay1,0aq,0ay,...,0,].

Remark 3.9. We note that palindromifications of snake graphs corresponding to the two ex-

pressions of a rational number by [aq, ..., a,] = [a1,...,a, — 1, 1] are isomorphic. Namely, the
palindromification G[1,a, — 1,...,4ay,4ay,...,a, — 1, 1] of the snake graph Glay, ...,a, — 1, 1]
is isomorphic to the palindromification Gla,, ..., as, ay, ..., a,] of the snake graph Gla, ..., a,].
However, the palindromification of G[1,a; — 1, ..., a,] is not necessarily isomorphic to the palin-
dromification of Glay, ..., a,].

Theorem 3.10. Let G = Glay, ay,...,a,] be a snake graph and G., its palindromification. Let

G =¢lay, ..., a,]. Then
m(G..) = m(G)* + m(G')*.

Proof. By definition, we have G.., = Glay,, ..., a2, a1, a1, 0az, ..., ay). Using [9, Theorem 5.1], we
see that multiplying with the single edge b, gives

bnGe = Glan, ..., mlGlay, ..., @l + Glan, ..., a21Glaa, ..., an]
which, by symmetry, is equal to
glay,....q)" +Glay, ..., a,* =96+ d'g.

The result now follows by counting perfect matchings on both sides. O

Remark 3.11. The following identity can be proved in almost the same way.
by Glan—1, ..., a2, a1, 01,0z, ..., an]
=0lan-1, ..., @, q11Glar, az, . .., Gn] + Glan_1, . .., a21G[ay, ..., anl.

As a consequence, we obtain a new proof of the following known result by specializing the
weights of the snake graphs to the integer 1.

Corollary 3.12. Let [aj, ap,...,a;] = f]’—g. Then

Py +4;
DPn—-1Pn + qn-1Gn
Moreover, the expression on the right hand side is a reduced fraction.

[an,...,a, 01,01, 0z, ...,0,] =

m(Ge)
m(Glap_1,...,a3,01,01,0p,...,4n

Proof. The left hand side is equal to 5 and the right hand side is equal to

m(G)m(G) + m(g )m(G")
m(Glay, az, ..., a1 1)M(G) + m(Glay, ..., an_1])m(G’)

The numerators of these two expressions are equal by Theorem 3.10, and the denominators are
equal by Remark 3.11. O

Example 3.13. [2,1,3] = 1, [2,1] = 3 and [3,1,2,2,1,3] = & = 0+
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3.1. Sums of two relatively prime squares

An integer N is called a sum of two relatively prime squares if there exist integers p > q > 1 with
gcd(p, q) = 1 such that N = p? + g2. We have the following corollary.

Corollary 3.14. (a) If N is a sum of two relatively prime squares then there exists a palindromic snake
graph of even length G such that m(G) = N.

(b) For each positive integer N, the number of ways one can write N as a sum of two relatively prime
squares is equal to one half of the number of palindromic snake graphs of even length with N perfect
matchings.

(c) For each positive integer N, the number of ways one can write N as a sum of two relatively
prime squares is equal to one half of the number of palindromic continued fractions of even length with
numerator N.

Proof. Let p > q > 1 be such that N = p? + ¢? and gcd(p, q) = 1, and let [ay, ag, . .., a,] = g
be the continued fraction of the quotient. Combining Corollary 3.12 and Theorem 2.1, we see that
Gla,, ...,az,ay,4as,ax, ..., a,] has N perfect matchings. This shows part (a). Parts (b) and (c) follow
from the bijections of [9, Theorem 4.1]. O

Example 3.15. The integer 5 can be written uniquely as sum of two relatively prime squares as
5 = 22 4 12. The even length palindromic continued fractions with numerator 5 are [2, 2] and

[1, 1, 1, 1], corresponding to the snake graphs (T ﬁ respectively.
3.2. 0dd palindromes

For odd length palindromic continued fractions we have a similar result describing the numer-
ator as a difference of two squares.

Theorem 3.16. Let [aq,ay, ..., a,] = IZ—: and [ay, as, ..., a,] = ‘Z—: Then

2 2
Pn—T

[an,...,az,al,az,...,an]:7.
Pn—1Pn — n—1Tn

Remark 3.17. The fraction on the right hand side of the equation is not reduced. The greatest
common divisor of the numerator and the denominator is a;.

Proof. Because of Theorem 2.1, we have
m(Glay, ..., 0,01, 03, ...,0,])
m(Glan_1, ..., a, ay, a, ..., d;])
Using part(b) of [9, Theorem 5.1] with i = n and j = 0, we see that the numerator is equal to
m(Glay, ..., a;])m(Glay, ..., a,]) —m(Glay, ..., a])m(Glas, ..., a])

[anv"-7a27a17a27"'7an]:

m(glai])
which, by symmetry, is equal to
Pr—Ta
aq ’
Moreover, this is an integer, since it is the number of perfect matchings of a snake graph. On the
other hand, again using [9, Theorem 5.1], but now with i = n — 1 and j = 0, the denominator is
equal to

m(Glan_1, ..., ;) m(Glay, ..., a]) — m(Glay_1, ..., az])m(Glas, ..., a,])
m(Glas])




12 L. Canak¢t and R. Schiffler / European Journal of Combinatorics 86 (2020) 103081

which is equal to
DPn—1Pn — 'n—1Tn
aq '
This proves the theorem. O

Example 3.18. Let [ay, ap, a3] = [2, 1,3] = 11/4 = p,/qy, and thus q,/r, = [1,3] = 4/3, pn—1 =3

and 1,1 = 1. Then [3, 1,2, 1, 3] = 2 and on the other hand, % =12 =230

3.3. Squares and almost palindromes

One can also realize the square of the numerator of a continued fraction [ay, ay, .. ., a,] as the
numerator of a continued fraction that is almost palindromic.

Theorem 3.19. Let [aq,ay, ..., d,] = %. Then

p2

ai,...,0np_1,0 1,a,—1,ap_-1,...,01] = ——
[ 1 n—1, n + n n—1 1] pq+(—1)”
and the expression on the right hand side is reduced.

Proof. It follows from the formula for grafting with a single edge of [12, section 3.3 case 3] that
the numerator of the left hand side is equal to

Nlay, ..., a1, ] Nlan — 1, ap—1, ..., 1] + Naq, ..., Gp ] Nay, an—1, ..., a1],
which can be written as
pWNlaq, ..., an—1, 0y — 1]+ Nlayq, ..., ap-1]),

and from the recursive definition of convergents it follows that the term in parentheses is also equal
to p. This shows that the numerators on both sides agree.

The denominator on the left hand side is equal to M[ay, ..., 041, 0n + 1,0, — 1,051, ..., a41]
and using the grafting with a single edge formula again, this is equal to

Nlaz, ..., a1, ] Nfan — 1, ap—1, ..., a1] + Naz, ..., @] Nlan, ay—1, ..., a1].

Now using part (b) of [9, Theorem 5.2] withi = 2 and i +j = n — 1 on the second summand, we
see that the above expression is equal to

Nldz, ..., @n1, Gl Nl — 1, ap1, -, an] + M@y, - an] Nlag, -0, ap] + (1)
=N[(127 ceey dp—1, an] (N[a]! ceeslp—1,0p — 1] +N[a1, D) anfl]) +(_1)n
=qp+(=1)"
To see the expression is reduced, suppose there exists a > 1 that divides pq + (—1)" and p?. Since

a divides p? there exists b > 1 such that b divides a and p. But then b also divides pq + (—1)", and
hence b divides 1, a contradiction. O

2
Example 320. 1! =[2,1,3]and [2,1,4,2,1,2] = 2 = 1.

Remark 3.21. Removing the first and last coefficients of a palindromic continued fraction gives a
new palindromic continued fraction. The relation between the two is well-known, see [32, Section
9]. More precisely, let g = [a1,ay,...,a,] then [ay, ay, ..., a,] is palindromic if and only if p

2 n
divides g*> +(—1)". Moreover, in this case, the quotient % is the numerator of the palindromic
continued fraction [ay, as, ..., G,_1].
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Example 3.22.

(2,1,1,2,2,1,1,2] = 194/75 75241 _ 99

194
[1,1,2,2,1,1] =29/17 1741 _ 10
— 741 _
[1,2,2,1] = 10/7 L =5
[2,2] =5/2

4. Markov numbers

A triple of positive integers (my, my, m3) is called a Markov triple if it is a solution to the Markov
equation

X+ + 2% = 3xyz.

An integer is called a Markov number if it is a member of a Markov triple. Frobenius conjectured
in 1913 that the largest number in a Markov triple determines the other two. This is known as the
uniqueness conjecture for Markov numbers. For an account of the history and many attempts of
solving this conjecture see the monograph [3].

It is known that every other Fibonacci number is a Markov number and so is every other Pell
number. Examples of Markov triples are

(1,1,1),(2,1,1),(2,5, 1), (13,5, 1), (13, 5, 194), (2897, 5, 194). (4.1)

In this sequence each triple is obtained from the previous one by the exchange relation m;m; =
mj2 + m? or equivalently m; = 3m;my — m;.

4.1. Markov snake graphs

It has been shown in [4,27] that the Markov triples are related to the clusters of the cluster
algebra associated to the torus with one puncture. This relation is given explicitly by sending a
cluster to the triple obtained by setting the three initial cluster variables equal to 1. The sequence
(4.1) of Markov triples corresponds to a sequence of mutations in the cluster algebra. Since the
cluster variables are computed by snake graphs, we can interpret the Markov numbers in terms of
snake graphs.

Given a slope p/q with p < g, gcd(p, q) = 1, there is the associated Markov number m, /4. Take
the torus with one puncture and usual covering in the plane such that the cluster variables x4, x,
correspond to the standard basis vectors eq, e, of the plane. Let x3 correspond to the line segment
between the points (1, 0) and (0, 1). The line segment from (0, 0) to (g, p) represents the cluster
variable whose numerator has m,, terms counting multiplicities, see Fig. 5. This line has slope p/q
and has a crossing pattern with the standard grid of the following form

X2, ..., X2, X1, X2,...,X2, Xq, e X1, X2,...,X2
———— ——— ———
1 vy . Up

meaning that the line crosses v vertical edges, then one horizontal edge, then v, vertical edges,
and so on. The v; are computed using the floor function as follows.

H

V1 =

iq .
v = LpJ—(v1+v2+--‘+vi_1) fori=2,...,p—1;
vy = q—1—(vi+uva+ -+ vp_1)
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2 ] 2 [
1 -’ 1

=
0 0 |
01 2 3 4 5 6 7 01 2 3 4 5 6 7
; , (73)
2 L 2 |
1 C1 11 1 [ T1

L/
0 0 |
01 2 3 4 5 6 7 01 2 3 4 5 6 7

Fig. 5. The line with slope p/q = 3/7 with its lower Christoffel path in red (top left), defining the Christoffel word
xxxyxxyxxy. The corresponding snake graph (top right) is obtained by placing tiles of side length 1/2 on the Christoffel path
leaving the first half step and the last half step empty. Its continued fraction is [2, 1, 1,2,2,1,1,2,2,1, 1, 2] = 2897/1120.
The bottom right picture shows the two unique snake graphs that complete the Markov triple. Their continued fractions
are [2,1,1,2,2,1,1,2] = 194/75 and [2, 2] = 5/2. The bottom left picture shows the Markov graph corresponding to
the mutation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Note that |v; — vj| < 1, and v; = vp41—;. Moreover, since the points (0, 0), (q, p) are the only
lattice points on the line segment we have vy < v;, for alli and vi + - + vi4; < v + - - - viy for
all i, j. The total number of crossings with vertical edges is vi +v, +--- + v, = ¢ — 1 and the total
number of crossings with horizontal edges is p — 1.

In the triangulation corresponding to the initial cluster (xi, X2, x3), the line also crosses the
diagonals xs. In fact, every other crossing is with xs.

Therefore, the corresponding snake graph G has (p — 1) tiles for the crossings with xq, (g — 1)
tiles for the crossings with x, and p 4+ q — 1 tiles for the crossings with x3; and its shape is given
by the continued fraction

2, 1,....1, 22, 1,....1, 22, - 22 1...1 2]
—_—— — ——
2wy — 1) 2v, — 1) . 2(v, — 1)

which has 2 (q—p — 1) times the coefficient 1 and 2 % p times the coefficient 2, for a total of 2q —2
coefficients. Since v; = vp11—;, we have proved the following result.

Theorem 4.1.  Every Markov number m,,, is the numerator of a palindromic continued fraction
lap, ...,a2, 01,01, ao, ..., a,] of even length such that

(D aie{l,2},a,=2;
(2)Ifp+1=gqthenn=pand a; = 2 for all i;

(3) Ifp+1 < q then ‘;—] < % < 7 for a unique positive integer ¢ and

(a) there are at most p + 1 subsequences of 2s; the first and last are of odd length 2c — 1 and
all others are of even length 2c or 2c + 2;

(b) there are at most p maximal subsequences of 1s; each of these is of even length 2(v; — 1)
and |v; —vj| < 1 for all i #j.

Moreover, the resulting map

p/q+— lan, ..., az,0a1,01,0, ..., Gy

from rational numbers between 0 and 1 to palindromic continued fractions is injective.



I. Canaket and R. Schiffler / European Journal of Combinatorics 86 (2020) 103081 15

The snake graphs obtained from a line on the once-punctured torus by the above procedure are
called Markov snake graphs. These have first appeared in [27]. In the textbook [3] these graphs are
called domino graphs. We can reformulate Theorem 4.1 as follows.

Corollary 4.2. Every Markov snake graph is rotationally symmetric at its center tile. Moreover

(1) the snake graph has exactly p horizontal segments each of which has exactly 2(v; — 1) + 3 tiles,
and |v; —vj| < 1 for all i # j;
(2) the snake graph has exactly p — 1 vertical segments each of which has exactly 3 tiles.

As a direct consequence we obtain the following.
Corollary 4.3. Every Markov number, except 1 and 2, is a sum of two relatively prime squares.

Proof. This follows directly from Theorem 4.1 and Corollary 3.12. O

In general, the decomposition of an integer as a sum of two relatively prime squares is not
unique. The smallest? example is the integer 65 which is 82 + 12 and also 72 + 42, and on the other
hand 65 is the numerator of the continued fractions [8, 8] and [3, 1, 1, 1, 1, 3]. The smallest example
among the Markov numbers is the Fibonacci number 610, which is 232 4+ 92 and also 212 + 132
Note that 21/13 = [1,1, 1,1, 1, 2] and its palindromification [2,1,1,1,1,1,1,1,1,1,1,2] is a
Markov snake graph (corresponding to the slope 1/7). On the other hand, 23/9 = [2, 1, 1, 4] and
its palindromification [4, 1, 1, 2, 2, 1, 1, 4] is not Markov.

We can sharpen Corollary 4.3 as follows. Whenever b/a = [ay, ay, . .., a,], we use the notation
G(b/a) for the snake graph G[ay, a,, . . ., a,], and we call the snake graph Gla,, ..., ay, a1, a4, az, ...,
a,] the palindromification of G(b/a).

Corollary 44. Let m > 2 be a Markov number. Then there exist positive integers a < b with
gcd(a, b) = 1 such that m = a*> + b* and

(a) the palindromification of the snake graph G(b/a) is a Markov snake graph;

(b) the continued fraction expansion of the quotient b/a contains only 1s and 2s.

Proof. Let p/q be a slope such that m = m,/, and let [ay, ..., d, ay, ..., a,] be the palindromic
continued fraction given by Theorem 4.1. In particular, the numerator of [a,, ..., a, ay, ..., a] is
m, and the snake graph Gla,, ..., aj, ay, ..., a,] is Markov. Define a and b by b/a = [a4, ay, . . ., a;]

with 0 < a < b and gcd(a, b) = 1. Then Corollary 3.14 implies m = a® + b?, and this proves (a).
Part (b) follows directly, since the continued fraction of any Markov snake graph contains only 1s
and 2s. O

We conjecture that the pair (a, b) in Corollary 4.4(a) and (b) is uniquely determined by the
Markov number.

Conjecture 4.5. Let m > 2 be a Markov number. Then there exist unique positive integers a < b with
gcd(a, b) = 1 such that m = a® 4 b? and the palindromification of the snake graph G(b/a) is a Markov
snake graph.

The following conjecture is stronger.

Conjecture 4.6. Let m > 2 be a Markov number. Then there exist unique positive integers a < b with
gcd(a, b) = 1 such that m = a® + b? and the continued fraction expansion of the quotient b/a contains
only 1s and 2s.

2 Note that 50 = 72 + 12 = 52 + 52, however the expression 52 + 52 is not a sum of two relatively prime squares
since gcd(5,5) # 1.
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Remark 4.7. We have checked these conjectures by computer for all Markov numbers of slope p/q
with p < g < 70. This is a total of 1493 Markov numbers, the largest of which is

56790444570379838361685067712119508786523129590198509.
This number is larger than 5.679 x 10°2.

Theorem 4.8. (a) Conjecture 4.6 implies Conjecture 4.5.
(b) Conjecture 4.5 is equivalent to the Uniqueness Conjecture for Markov numbers.

Proof. (a) The existence of the pair (a, b) in both conjectures follows from Corollary 4.4. Thus we
need to show that the uniqueness in Conjecture 4.6 implies the uniqueness in Conjecture 4.5. Since
every Markov snake graph has a continued fraction that contains only 1s and 2s, the condition
in Conjecture 4.6 is weaker than the condition in Conjecture 4.5. If the pair (a, b) is uniquely
determined by the weaker condition then it is also uniquely determined by the stronger condition.
This proves (a).

(b) First assume that Conjecture 4.5 holds. Let m be a Markov number. For m = 1,2, the
uniqueness conjecture is known, so we may assume m > 3. We want to show that m is the
maximum of a unique Markov triple, or equivalently, that there is a unique slope p/qwith0 < p < ¢
and gcd(p, q) = 1 such that m = my,q.

For every slope p/q, the proof of Corollary 4.4 constructs a pair (a, b) satisfying the conditions
in the corollary, in particular my;q = a® + b?.

Suppose that there are two slopes p/q and p’/q’ such that the corresponding Markov numbers
my,q and my,y are equal. Denote by [a,, ..., 02,a1,01,02,...,a,] and [ay, ..., d,, d},ad},4d;, ...,
a;,] the corresponding continued fractions that are given by Theorem 4.1. Define a, b,d’, b’ by
bja=laj,a,...,a;]and b'/d' = [d, d), ..., a;,]. Then the two pairs (a, b) and (a’, b’) both satisfy
the condition in Corollary 4.4. Our assumption that Conjecture 4.6 holds implies that (a, b) = (a’, b’).
Therefore [ay, ay, ..., a;] = [d},d,,...,a,] and hence p/q = p'/q’, by Theorem 4.1. Thus the
uniqueness conjecture holds.

Conversely, let us now assume that the uniqueness conjecture for Markov numbers holds. Let
m > 3 be a Markov number. We want to show that the pair (a, b) of Corollary 4.4 is unique. Assume
there is another pair (c, d) that satisfies the conditions of the corollary. Then m = a? + b?> =
c?> 4+ d® and m is the number of perfect matchings of the palindromifications of both G(b/a)
and G(d/c). Since both palindromifications are Markov snake graphs, both define a slope p/q and
r/s such that m = m,;,; = m, ;. Our assumption that the uniqueness conjecture holds implies
that p/q = r/s, and therefore the snake graphs G(b/a) and G(d/c) are equal. It follows that
(a,b)=(c,d). O

4.2. Markov snake graphs in terms of Christoffel words

We give another construction for the Markov snake graph. The line with slope p/q defines a
lattice path, the lower Christoffel path, which is the lattice path from (0, 0) to (q, p) that satisfies the
conditions:

(a) The path lies below the line segment from (0, 0) to (g, p).
(b) The region enclosed by the path and the line segment contains no lattice point besides those
on the path.

We give an example in the upper left picture in Fig. 5, where the line segment is drawn in blue and
the lower Christoffel path in red.

The Christoffel word of slope p/q is obtained from the Christoffel path by writing the letter x
for each horizontal step, and writing the letter y for each vertical step. In the example of Fig. 5, the
Christoffel word is xxxyxxyxxy. We refer the reader to [7] for further results on Christoffel words.

To obtain the Markov snake graph we use tiles of side length 1/2 and place them along the
Christoffel path such that the horizontal steps of the Christoffel path become the south boundary
of the snake graph and the vertical steps of the Christoffel path become the east boundary of the
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g_ /7 *—4

2
—0

Fig. 6. Construction of a Markov band graph. On the left, the band ¢ is obtained from the arc y by avoiding the puncture.
The pictures on the right show the difference between the snake graph G, and the band graph G;. The band graph has
3 additional tiles.

snake graph. Moreover, we leave the first and the last half step of the Christoffel path empty, see
the upper right picture in Fig. 5.

Frobenius’ uniqueness conjecture is equivalent to the conjecture that no two Markov snake
graphs have the same number of perfect matchings. It is known that every Markov snake graph G
determines a unique pair of Markov snake graphs G’, G” such that the three graphs form a Markov
triple in which G is the largest graph. In fact ¢’ and G” are subgraphs of G.

The description of the Markov snake graph in terms of the Christoffel path is useful to determine
the two smaller Markov snake graphs ¢’ and G” from G. The Christoffel path decomposes in a unique
way as a concatenation of two Christoffel paths at the lattice point L that is closest to the diagonal,
see [7]. In our example, this point is the point (5, 2) and the Christoffel word factors as follows
(xxxyxxy)(xxy). The Markov snake graphs G’ and G” are the graphs of these shorter Christoffel paths.

We obtain ¢’ and G” from the original Markov snake graph G simply by removing the 3 tiles
that are incident to the lattice point L, see the bottom right picture in Fig. 5. In that example, the
Markov triple is (2897, 194, 5).

The mutation of the Markov triple (m;, m, m3) — (m/, m,, m3) is given by the formula mym/ =
m3 +m3. The Markov snake graph g} of m is also easily obtained from our picture. Let L, L’ be the
lattice points that are closest to the diagonal from below and above, respectively. In our example, we
have L = (5,2)and L' = (7, 3)—(5, 2) = (2, 1), see the bottom left picture in Fig. 5. Then the Markov
snake graph @] is the one determined by the line segment between L’ and L. In our example g’ is
a straight snake graph with 5 tiles. It has 13 perfect matchings, confirming the mutation formula
13 =3-194-5 — 2897 = (1942 + 52)/2897.

4.3. Markov band graphs

Let m be a Markov number and G(m) = G, its snake graph, where y is the corresponding arc
in the torus with one puncture. This arc starts and ends at the puncture. Moving its endpoints
infinitesimally away from the puncture but keeping them together, we obtain a closed loop ¢. In
other words, ¢ is running parallel to y except in a small neighborhood of the puncture, where ¢
goes halfway around the puncture while y goes directly to the puncture. There are precisely two
ways of doing this, namely passing the puncture on the left or on the right. Both cases are illustrated
in Fig. 6. In both cases, going halfway around the puncture creates three additional crossings with
the triangulation. Notice that the two pictures with the curves y and ¢ are rotationally symmetric.
Therefore both cases are essentially the same. We will also verify this now on the level of band
graphs.

The band graph g of ¢ has exactly 3 more tiles than the snake graph G, of y. In Fig. 6, we
show the last 3 tiles of G, in gray and the 3 new tiles of g7 in white. The black dots indicate that
these vertices (respectively the edge between them) are identified with the two southern vertices
(respectively the edge between them) of the first tile of G, to form the band graph g
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G°(5) g* g g, G~ G- g,

Fig. 7. An example illustrating the proof of Theorem 4.9.

Consider the horizontal segments in G- In the first case, the last horizontal segment of G,
is extended by two tiles and all other horizontal segments of Gy are of the same length as the
horizontal segments of G, . In the second case, it is the first horizontal segment of G, that is extended
by two tiles and all other horizontal segments of G; are of the same length as the horizontal
segments of G,. However, since G, is a palindromic snake graph, we see that the result in both
cases is the same, and thus the band graph g7 is uniquely determined by g, .

In this way we have associated a band graph G; to every Markov number m. We shall often use
the notation G°(m) = g; in order to emphasize this relation.

Theorem 4.9. The number of perfect matchings of G°(m) is 3 m.

Proof. The proof is a relatively simple computation with snake graphs. In Fig. 7, we show this
computation in the case where m = 5, omitting single edge snake graphs since they have exactly
one perfect matching. Let d be the number of tiles in the Markov snake graph g,. Denote by g* the
snake graph obtained from G°(m) by cutting along the glueing edge. Thus G* has d + 3 tiles and
its initial d tiles form the Markov snake graph G, . Let e be the first interior edge in G* that has the
same sign as the glueing edge, and let ¢’ be the last interior edge in G* that has the same sign as
the glueing edge. The self-grafting formula [ 12, Section 3.4] describes a relation between the band
graph G°(m) and its cut g* in the snake ring. It says that G* = Gg°(m) - (glueing edge) + G_, where
G_ is the snake graph obtained from G* by removing the tiles that precede the interior edge e and
also removing the tiles that succeed the interior edge e’. Since our snake graph G* is constructed
from the Markov snake graph, we know exactly which tiles to remove, namely, G_ is obtained from
G* by removing the first 2 tiles and the last 3 tiles. Equivalently, G_ is obtained from the Markov
snake graph G, by removing the first two tiles.

On the other hand, using the formula for grafting with a single edge from [12, Section 3.3 case 3],
we also see that Gt -(single edge) = G, G'+¢ ™ -(single edge), where ¢’ is the snake graph consisting
of the last two tiles of g™ and ¢~ is the snake graph obtained from the Markov snake graph g, by
removing the last two tiles. In particular, the two snake graphs G_ and G~ are isomorphic, since
the Markov snake graph is rotationally symmetric.

Putting these results together, we see that up to multiplying by single edges we have the
following identity in the snake ring

¢m=¢t-¢.=¢,6d+¢ —g¢_=g,g.

Now the result follows since the number of perfect matchings of G, is m and the number of perfect
matchings of g’ is 3. O

Remark 4.10. This result has an interesting interpretation in number theory, because the triple
(my, my, m3) is a solution of the Markov equation x*> + y?> + z> = 3xyz if and only if the triple
(3my, 3my, 3m3) is a solution of the equation x*> +y%4z2 = xyz. On the other hand, the Diophantine
equation x*> + y?> + z2 = kxyz has a positive integer solution if and only if k = 1 or k = 3.
Geometrically, it was known that the solution (m;, m,, m3) corresponds to a triangulation T of
the torus with one puncture. And the theorem above shows that the solution (3my, 3m;, 3mj3)
corresponds to the three closed loops obtained by moving the arcs of T infinitesimally away from
the puncture.
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