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Distinct patterns of pigment development
underlie convergent hyperpigmentation
between nocturnal and diurnal geckos
(Squamata: Gekkota)
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Abstract

Background: Evolutionary transitions in temporal niche necessitates specialized morphology, physiology, and

behaviors. Diurnal, heliothermic squamates (lizards and snakes) that bask require protection from ultraviolet

radiation (UV) that can damage internal organs such as the brain, viscera, and gonads. Many smaller squamates

have accomplished this protection by hyperpigmentation of the peritoneum and subcutaneous dorsum. Typically,

nocturnal species do not require these protections from ultraviolet light. However, some nocturnal species that

exhibit extreme crypsis may be exposed to sunlight and UV and require some means of mediating that damage.

One such species is Gekko (Ptychozoon) kuhli, a nocturnal, arboreal gecko that uses extreme crypsis to blend in with

tree bark. Hiding motionless on tree trunks leaves geckos exposed to sunlight during the day. Thus, we predict that

G. kuhli will have independently evolved a hyperpigmented phenotype. To investigate this hypothesized association

between temporal niche, behavior, and morphology, we characterized adult subcutaneous pigment for eight gecko

species and embryonic pigment accumulation for a subset of four of these species, exhibiting diverse temporal

niche and thermoregulatory behaviors. We predicted that nocturnal/potentially-heliothermic G. kuhli would exhibit

hyperpigmentation of internal structures like that of diurnal/heliothermic geckos. We further predicted that

embryonic pigment accumulation of G. kuhli would resemble that of diurnal/heliothermic as opposed to nocturnal/

thigmothermic geckos.

Results: We found that temporal niche and thermoregulatory behavior predicted the degree of subcutaneous

pigment in the eight gecko species examined. We demonstrate that G. kuhli accumulates pigment extremely early

in embryonic development, unlike a diurnal/heliothermic gecko species, despite having a similar adult phenotype.

Conclusions: The evolution of hyperpigmentation in G. kuhli is likely an adaptation to limit damage from

occasional daytime UV exposure caused by crypsis-associated basking behavior. Gekko kuhli achieves its

hyperpigmented phenotype through a derived developmental pattern, not seen in any other lizard species

investigated to date, suggesting novel temporal differences in the migration and/or differentiation of reptilian

neural crest derivatives.
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Background

Temporal niche, also known as diel activity niche, is an

important aspect of the biology of an organism, necessi-

tating the evolution of specialized morphology, physi-

ology, ecology, and behavior (e.g. [19, 41, 56, 72]). For

example, many diurnal ectotherms thermoregulate

through basking behavior (i.e. heliothermy), whereas

nocturnal ectotherms thermoregulate through contact

with surfaces of different temperatures (i.e. thig-

mothermy; [1, 16, 51]). Temporal niche appears to be

phylogenetically conserved across major tetrapod clades

[2] and thus many adaptations to specific temporal

niches (diurnal, nocturnal, crepuscular, or cathemeral)

are shared among closely related species. Despite its

conservation in tetrapod evolutionary history [2], several

squamate clades do exhibit temporal niche turnover.

The crown group of geckos (Infraorder Gekkota) are hy-

pothesized to be ancestrally nocturnal, with reversals to

diurnality occurring in at least 10 lineages [2, 24, 76].

Many of these lineages exhibit an array of diurnal-

specialized adaptations, most notably eye morphologies,

with oil droplets which aid in light filtering and spectral

tuning [9, 55, 70, 76], concaviclivate temporal fovea to

aid in binocular vision [57, 71], and ovoid retinal pig-

mented epithelia (RPE) to aid in light filtering and ab-

sorption [31, 65].

Another phenotype that is typically correlated with di-

urnal temporal niche in vertebrates is the hyperpigmen-

tation of internal structures, such as the overlaying

connective tissues of the brain, gonads, subcutaneous

dorsum, and peritoneum [13, 34, 39, 50]. These dense

collections of melanophores are hypothesized to protect

internal structures from injurious and mutagenic UV ra-

diation, which heliotherms encounter more frequently

than thigmotherms [12, 13, 38, 50, 52]. Though

heliothermy is correlated with hyperpigmentation of in-

ternal structures, some gecko species exhibit a discon-

nect between thermoregulatory behavior and temporal

niche. For example, Sphaerodactylus geckos (Sphaero-

dactylidae) are primarily diurnal, but are active under-

neath leaf-litter and are thus thigmothermic [33].

Alternatively, Strophurus geckos (Diplodactylidae) are

primarily nocturnal, yet occasionally bask during day-

light hours [25]. This “occasionally-heliothermic” classi-

fication is supported by Strophurus exhibiting

hyperpigmented peritonea [25].

Parachute geckos (Subgenus Ptychozoon) of the genus

Gekko comprise 12 described species which inhabit dip-

terocarp forests of southeast Asia [11, 32, 68, 81]. This

clade is characterized, in part, by a suite of specialized

traits, including expanded trunk folds, expanded caudo-

lateral folds, and elaborate interdigital webbing, which

allow for a gliding predator escape behavior [8]. Follow-

ing Russell’s [59] step-wise hypothesis, gliding behavior

through these elaborate cutaneous folds was exapted

from use of the folds to reduce shadows (i.e. cryptic be-

havior) and thus, in conjunction with cryptic coloration,

conceal the animal from predators [5, 28–30, 49, 58, 64,

67, 73]. Though chiefly nocturnal, Gekko (Ptychozoon)

kuhli can occasionally be found on exposed tree trunks

and branches during the day [28–30, 66]. This is likely a

byproduct of cryptic behavior, as remaining motionless

on tree trunks and branches throughout the day may re-

sult in exposure to direct sunlight and suggests an

occasionally-heliothermic thermoregulatory classifica-

tion. As mentioned previously, prolonged exposure to

direct sunlight necessitates adaptations to tolerate higher

temperatures and increased UV. We therefore

hypothesize that behavioral crypsis, as implemented by

G. kuhli, can lead to occasional heliothermy and the cor-

related phenotypic changes despite exhibiting a noctur-

nal temporal niche. To further investigate this

hypothesized association between temporal niche, be-

havior, and pigment phenotype, we qualitatively charac-

terized subcutaneous (fascial, visceral, and peritoneal)

pigment for eight gecko species exhibiting diverse tem-

poral niche and thermoregulatory behaviors. We pre-

dicted that nocturnal/potentially-heliothermic G. kuhli

would exhibit hyperpigmentation of internal structures

like that of diurnal/heliothermic geckos. Furthermore, to

characterize patterns of pigment accumulation through

embryonic development, we examined embryos at vari-

ous stages of development from four gecko species exhi-

biting all combinations of temporal niche and

thermoregulatory character states. We predicted that

embryonic pigment accumulation of G. kuhli should also

resemble that of diurnal/heliothermic as opposed to noc-

turnal/thigmothermic geckos.

Results

Adult nocturnal/thigmothermic species exhibited no

pigment on the subcutaneous dorsal fascial surface

(Fig. 1). Of these five species, only Hemidactylus pla-

tyurus exhibits pigment on the inside of the body

cavity — the gonadal serosa is lightly pigmented, the

peritoneum is lightly pigmented, and the intestinal

serosa is black (Fig. 2; Table 1). The only diurnal/

thigmothermic species, Sphaerodactylus leonardoval-

desi, exhibits no pigment on the subcutaneous dorsal

fascial surface, with the exception of a lightly pigmen-

ted area posterior to the parietals (Fig. 1). Internally,

S. leonardovaldesi exhibits a lightly pigmented peri-

toneum and liver (Fig. 2; Table 1). The diurnal/

heliothermic Phelsuma laticauda exhibits a black sub-

cutaneous dorsal fascia surface along the skull,

through the parietal region and along the trunk, shift-

ing from black to dark pigmentation near the pelvic

region (Fig. 1). Internally, P. laticauda exhibits a
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lightly pigmented liver, darkly pigmented gonadal ser-

osa, both light and black areas of the peritoneum,

and black intestinal serosa (Fig. 2; Table 1). Finally,

the nocturnal/potentially-heliothermic Gekko kuhli ex-

hibits a black subcutaneous dorsal fascial surface

along the trunk and a darkly pigmented parietal re-

gion and remaining skull (Fig. 1). Internally, G. kuhli

exhibits a lightly pigmented peritoneum and no pig-

ment on the remaining viscera Fig. 2; (Table 1).

The first external pigment cells to accumulate in all

gecko embryos are restricted to the RPE (Fig. 3 [31];).

Accumulation of melanophores, outside of the RPE,

during embryonic development of G. kuhli begins

shortly after oviposition Stage 29 (i.e. mid-limb bud

stage; Fig. 3a,b). These initial sparse accumulations

are located in the epidermis along the dorsum, out-

side of the developing optic tectum, and adjacent to

the eye (Fig. 3a,b). At Stage 30, sparse melanophore

accumulation spreads over the pharyngeal arches and

the majority of the craniofacial region (Fig. 3a,b). By

Stage 31, sparse accumulation has reached the fore-

limbs and the pigment accumulation along the

Fig. 1 Convergent evolution of subcutaneous dorsal hyperpigmentation in the geckos. Phylogenetic relationships of eight gekkotan taxa,

exhibiting a variety of temporal niche and basking behavior character states, following the topology of Gamble et al. [24]. Dorsal views of the

skinned parietal region (brown) and the mid trunk region (green) correspond to adjacent tips of the phylogeny. Gecko photographs:

Stuart Nielsen
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dorsum and craniofacial region is more dense

(Fig. 3a,b). From Stage 31 to Stage 36, melanophore

accumulation becomes denser and covers the entire

surface of the embryo and begins to resemble the

color pattern of near-hatchling G. kuhli: little pigment

on the ventral surface, dense pigment on the dorsum

creating faint chevron patterns, and dense pigment

adjacent to the eye forming a dorsolateral stripe

(Fig. 3a–c). By comparison, embryos of L. lugubris do

not exhibit visible melanophores outside of the RPE

during equivalent stages of development (Stages 29–

36; Fig. 3d–f). Indeed, regardless of temporal niche or

basking behavior, all gecko embryos examined, with

the exception of G. kuhli, lacked visible accumulation

of pigment outside of the RPE until Stage 38–39

(Fig. 4). Sparse pigment accumulates along the center

of the dorsum in Stage 38, and eventually spreads to

the craniofacial region in Stage 39 (Fig. 4). During

Stage 39, the pigment faintly resembles the eventual

pattern of the near-hatchling animal and is coloca-

lized with the epidermal papillae that will give rise to

scales (i.e. Stage 42; Fig. 4).

Discussion

As predicted, G. kuhli exhibits darkly pigmented to

black subcutaneous dorsal fascia while none of the

other nocturnal gecko species examined exhibit dorsal

fascia pigmentation (Fig. 1). As expected, and similar

to G. kuhli, the diurnal/heliothermic gecko, P. lati-

cauda, also exhibits black dorsal fascia pigmentation

(Fig. 1). Furthermore, the diurnal/thigmothermic

gecko, S. leonardovaldesi exhibits an intermediate

phenotype: light dorsal fascia pigmentation near the

braincase (Fig. 1). The only previous in-depth

Fig. 2 Diversity of pigmented visceral serosae and peritonea in geckos. a ovaries and lightly pigmented peritoneum of G. kuhli. b Black intestines

of H. platyurus. c Lightly pigmented ovaries and peritoneum of H. platyurus. d Black and lightly pigmented peritoneum of P. laticauda. e Lightly

pigmented liver of P. laticauda. f Black intestines and darkly pigmented testes of P. laticauda. g Lightly pigmented liver of S. leonardovaldesi. h

Ovaries and lightly pigmented peritoneum of S. leonardovaldesi. i Completely unpigmented viscera and peritoneum of C. brevis which is identical

to all other species investigated lacking internal melanophores. i, intestines; li, liver; o, ovaries; p, peritoneum; t, testes. Scale bars =1 mm
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investigations into gecko subcutaneous pigmentation

was performed by Duncker [20–22], who examined

20 species. Duncker, who noted the extreme pigmen-

tation of Phelsuma spp., also described fascial pig-

mentation in the largely nocturnal but often

heliothermic Tarentola spp. [61] as well as pigmented

nervous and vascular tissue of the largely nocturnal

but heliothermic Ptyodactylus hasselquistii [3, 79].

The peritonea and the serosa of various visceral ele-

ments are pigmented in G. kuhli, P. laticauda, and S.

leonardovaldesi. Duncker [21] reported pigmented in-

testine of G. kuhli, though we did not find this. There

are multiple explanations for this discrepancy. First,

Duncker’s G. kuhli specimens may represent a differ-

ent species from the G. kuhli specimens we examined,

and G. kuhli, like many other species in the genus,

may be a species complex comprised of multiple

undescribed taxa [11, 17]. Second, G. kuhli is a wide-

spread species in Southeast Asia [11] and there may

be intraspecific, regional variation. Interestingly, the

gonads, intestines, and peritoneum of H. platyurus

are pigmented. Hemidactylus platyurus, similar to G.

kuhli, is known to parachute, use elaborate body folds

to aid in cryptic behavior, and is occasionally known

to bask [35, 59, 62, 64, 69], supporting the hypothesis

that nocturnal geckos with cryptic diurnal behavior

are exposed to ultraviolet radiation more frequently

than other nocturnal gecko species and therefore re-

quire specialized protection. Indeed, the nocturnal

and behaviorally cryptic, Uroplatus fimbriatus exhibits

pigmentation in the digestive tract and the cloaca

[77]. These hyperpigmented patterns represent similar

evolutionary routes to protect the various internal

delicate organs from UV and suggests species can

take similar evolutionary paths to achieve similar

functional goals in different structures [7, 44, 75].

When compared to G. kuhli, the lower degree of sub-

cutaneous pigmentation exhibited by H. platyurus

may be explained by behavioral differences between

the species. Though H. platyurus is indeed behavior-

ally cryptic, anecdotal evidence suggests its behavioral

crypsis is less effective than that of G. kuhli [64].

Taylor [66] noted that Gekko (Ptychozoon) lionotus

can be reluctant to move from their cryptic positions

and will flee only following “considerable disturbance,

” whereas H. platyurus flee from similar positions

with little disturbance [62]. Field observations also

suggest that H. platyurus regularly use crevices in

trees, rocks, gardens, and houses near human activity

as day-time hiding locations ([10, 64, 66]; pers. obser-

vation in Philippines by AHG and TG) and are less

likely to be exposed during the day compared to G.

kuhli. This preliminary association between cryptic

behavior and hyperpigmented phenotype, though

promising, requires further corroboration through ro-

bust taxon sampling.

Vertebrate pigment cells are ultimately derived from

neural crest cells, which begin migrating from the

neural tube during the 6–9 somite stage in Chamae-

leo calyptratus [18, 40]. In avian reptiles and mam-

mals, these unpigmented precursor cells migrate to

the epidermis where mature melanocytes synthesize

pigment which can then be deposited to epidermal

appendages such as hair or feathers [63, 82].

Table 1 Hyperpigmentation in geckos

Species Temporal niche / thermoregulatory
behavior

Fascial Pigment (Anterior,
Posterior)

Peritoneal
Pigment

Visceral Pigment

G. kuhli N/H 2, 3 1 liver (0), stomach/ intestines (0),
gonads (0)

G. badenii N/T 0, 0 0 liver (0), stomach/ intestines (0),
gonads (0)

L. lugubris N/T 0, 0 0 liver (0), stomach/ intestines (0),
gonads (0)

H. frenatus N/T 0, 0 0 liver (0), stomach/ intestines (0),
gonads (0)

H. platyurus N/T 0, 0 1 liver (0), stomach/ intestines (3),
gonads (1)

P. laticauda D/H 3, 3 1–3 liver (1), stomach/ intestines (3),
gonads (2)

S.
leonardovaldesi

D/T 1, 0 1 liver (1), stomach/ intestines (0),
gonads (0)

C. brevis N/T 0, 0 0 liver (0), stomach/ intestines (0),
gonads (0)

Pigment levels are coded as follows: 0, no melanophores or no pigment; 1, scattered melanophores or lightly pigmented; 2, many melanophores or darkly

pigmented; and 3, opaque coating of melanophores or black. D, diurnal; H, heliothermic; N, nocturnal; T, thigmothermic. Names of organs are listed with their

associated serosal pigment level
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Alternatively, non-avian reptiles, amphibians, and

fishes produce three common types of chromato-

phores (xanthophores, iridophores, or melanophores)

as well as more phylogenetically restricted pigment

cell types (e.g. cyanophores, leucophores), for which

developmental trajectories are still not well under-

stood [4, 23, 36, 48]. Despite this diversity, there is

considerable conservation in molecular pathways re-

sponsible for melanocyte and chromatophore develop-

ment [15, 47, 48]. The overall spatial pattern of

pigment accumulation exhibited by G. kuhli appears

similar the other gecko species examined — pigment

accumulates along the epidermis overlaying the devel-

oping brain and the dorsum, adjacent to the anterior

portion of the neural tube. However, the early onset

temporal pattern of pigment development exhibited

by G. kuhli has not been described in any other

gecko species to date [26, 31, 37, 43, 45, 74, 78, 80,

83], let alone other lizard species (e.g. [18, 42, 46,

53]). Heterochrony, specifically an early onset of me-

lanophore migration, maturation, or pigment produc-

tion, may explain the hyperpigmented adult

phenotype of G. kuhli (Fig. 3). However, the same

cannot be said for the hyperpigmented adult pheno-

type of P. laticauda or the intermediate pigmented

phenotype of S. macrolepis (Fig. 4) highlighting how

distinct developmental programs can lead to conver-

gent phenotypes [60, 75]. Further studies of squamate

Fig. 3 Embryonic comparison between two nocturnal gekkonids: potentially heliothermic, cryptic Gekko kuhli and thigmothermic, non-cryptic

Lepidodactylus lugubris. Note the early accumulation of dorsal and craniofacial pigment in G. kuhli while none is visible in L. lugubris. Row a Lateral

view of whole G. kuhli embryos, stages 29–36. Row b Lateral view of G. kuhli embryos craniofacial region, stages 29–33. Row c Lateral view of G.

kuhli embryos craniofacial region, stages 34–36. Row d Lateral view of whole L. lugubris embryos, stages 29–36. Row e Lateral view of L. lugubris

embryos craniofacial region, stages 29–33. Row f Lateral view of L. lugubris embryos craniofacial region, stages 34–36. White arrows indicate area

of pigment accumulation. Scale bars = 2 mm
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neural crest development are necessary to investigate

interspecific variation in melanophore migration, spe-

cifically with regards to hyperpigmented peritonea or

dorsal fascia [18, 54].

Conclusions

Herein we propose the hypothesis that behavioral crypsis

can lead to situations which require heliothermic adap-

tation. Gekko kuhli, a nocturnal gliding gecko with be-

havioral crypsis, exhibits a degree of subcutaneous

pigmentation that is typically only seen in diurnal/

heliothermic geckos such as Phelsuma spp. Another be-

haviorally cryptic, nocturnal gecko, H. platyurus, exhibits

similar elaborate pigmentation on some viscera but not

the dorsal fascia. Further investigations into this connec-

tion between thermoregulatory behavior and pigment

phenotypes should test whether G. kuhli and H. pla-

tyurus can tolerate higher temperatures and are exposed

to less ultraviolet damage than sister taxa with less pig-

ment. Furthermore, G. kuhli appears to exhibit hyperpig-

mentation throughout most of postovipositional

embryonic development, a developmental pattern which

differs from other geckos, including heliothermic species.

Due to this unique pattern, we suggest G. kuhli as a

model to study temporal changes to typical reptilian pat-

terns of neural crest derivative migration.

Methods

We qualitatively characterized subcutaneous (fascial, vis-

ceral, and peritoneal) pigment for six gekkonid gecko

species exhibiting a diversity of temporal niche and

thermoregulatory behaviors: Gekko kuhli (nocturnal/

Fig. 4 Three embryonic stages of four gecko species showcasing lack of dorsal and craniofacial pigment (stage 36), early visible accumulation of

dorsal and craniofacial pigment (stage 39), and near-hatching dorsal and craniofacial pigment (stage 42). Gekko kuhli stages 36 (a), 39 (b), and 42

(c). Lepidodactylus lugubris stages 36 (d), 39 (e), and 42 (f). Phelsuma laticauda stages 36 (g), 39 (h), and 42 (i). Sphaerodactylus macrolepis stages

36 (j), 39 (k), and 42 (l). Scale bars = 2 mm

Griffing et al. BMC Evolutionary Biology           (2020) 20:40 Page 7 of 10



potentially-heliothermic), Gekko badenii (nocturnal/thig-

mothermic), Lepidodactylus lugubris (nocturnal/thig-

mothermic), Hemidactylus frenatus (nocturnal/

thigmothermic), Hemidactylus platyurus (nocturnal/

thigmothermic), and Phelsuma laticauda (diurnal/

heliothermic). This taxon sampling allows us to compare

dorsal fascial pigmentation of 3 of the 4 possible charac-

ter state combinations and spanning the diversity of the

Gekkonidae [24]. We also compare two outgroups: one

sphaerodactylid (Sphaerodactylus leonardovaldesi) and

one eublepharid (Coleonyx brevis) which exhibit diurnal/

thigmothermic and nocturnal/thigmothermic charter

states, respectively. Each individual (N = 8) was eutha-

nized humanely using MS222 following Conroy et al.

[14], skinned and eviscerated to reveal subcutaneous pig-

ment, and finally observed and photographed using a

Nikon SMZ 74ST stereoscope. We characterized degree

of pigmentation following Bauer [6]: no melanophores

(no pigment), scattered melanophores present (lightly

pigmented), many melanophores present (darkly pig-

mented), and complete opaque coating of melanophores

present (black).

We collected eggs from captive colonies of four gecko

species exhibiting all combinations of character states to

observe embryonic patterns of pigment development: 49

embryos of G. kuhli (nocturnal/potentially-heliothermic),

141 embryos of L. lugubris (nocturnal/thigmothermic),

13 embryos of P. laticauda (diurnal/heliothermic), and

26 embryos of Sphaerodactylus macrolepis (diurnal/thig-

mothermic). Because embryos of S. leonardoveldesi were

unavailable, we collected embryos of S. macrolepis as a

congeneric proxy. We collected embryos (N = 229) fol-

lowing protocols described by Griffing et al. [27]. To

briefly summarize, we removed embryos from eggs using

#5 watchmaker’s forceps while immersed in diethyl pyr-

ocarbonate (DEPC) treated, RNase free 1% phosphate-

buffered saline, and visualized and photographed using a

Nikon SMZ 74ST stereoscope. As geckos exhibit inter-

specific variation between the precise time points (days

post-oviposition; DPO) of developmental stages (Noro

et al., 2009 [26, 37, 74, 80, 83];), we discretized and

assigned developmental stages based on external morph-

ology using previous embryonic staging series of geckos

rather than characterizing by DPO [26, 80].
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