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Abstract

Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the

effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various

trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced
representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE).

Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both

rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500bp), while at the same time
avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by

aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The

RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining
presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness

than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees.

Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses.
We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the

most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or

extracting RELEC loci from other amniote groups.

Keywords: marker selection, reduced representation, sequence capture, anchored hybrid enrichment, ultraconserved

elements, phylogenetics.

Introduction

Though large phylogenomic data sets have become relatively

easy to obtain in recent years and have led to many highly

resolved phylogenetic estimates, it has become clear that the

sheer quantity of sequence data that can now be gathered

will not unambiguously resolve some of the most difficult

nodes in the tree of life. These difficulties may be caused by

a number of factors including systematic error from nonphy-

logenetic signal or model inadequacy (Hahn and Nakhleh

2016; Reddy et al. 2017), gene tree estimation error from

insufficient phylogenetic signal (Blom et al. 2017), or from

natural processes such as incomplete lineage sorting and in-

trogression (Maddison 1997; Edwards 2009) and positive se-

lection (Castoe et al. 2009). Even as whole genomes have

become easier to sequence for phylogenomics, they must still

be subsetted to make aligned sets of orthologous loci.

Appropriate marker selection is therefore a critical part of

phylogenomics, and it is still under considerable debate

what kinds of markers are the best for resolving difficult
branches at various evolutionary depths. For example, ques-
tions remain whether to use coding or noncoding sequence
data (Chen et al. 2017; Reddy et al. 2017), conserved or highly
variable loci (Salichos and Rokas 2013; Betancur-R et al. 2014),
long or short alignments (Edwards et al. 2016; Springer and
Gatesy 2016), single nucleotide polymorphisms alone (SNP)
or full sequence alignments (Leach�e and Oaks 2017), or other
types ofmarkers thatmay be relatively free of homoplasy (e.g.,
indels, Simmons andOchoterena 2000; SINEs, Ray 2006; trans-
posable elements, Han et al. 2011; micro RNAs, Tarver et al.
2013). Each kind of marker possesses different trade-offs of
phylogenetic information content (PIC), maintenance across
evolutionary scales, susceptibility to error, and computational
tractability, and these factors must be balanced during
marker selection. A universal marker type for all kinds of
phylogenetic questions is unlikely to exist, which may neces-
sitate filtering for question-specific markers (Chen et al. 2015)
as just a small number of loci out of thousands may have the
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power to resolve specific questions or drive a contentious
pattern (Brown and Thomson 2017; Shen et al. 2017).
Therefore, careful marker selection before sequencing to pri-
oritize signal and resolving power over sheer quantity of data
may be an important step forward in phylogenomics.

Marker Selection Trade-Offs
Amain trade-off in marker selection is to maximize per-locus
phylogenetic signal without suffering alignment quality or
excessive substitution saturation. In selecting markers, PIC
can be improved either by increasing the length of the locus
or by choosing loci with a faster rate of evolution. Both of
these strategies increase the number of phylogenetically in-
formative sites that can increase phylogenetic resolution
(Graybeal 1994). Given sufficient time, substitution saturation
will eventually erode phylogenetic signal in all types of
markers (Graybeal 1994), but this will occur fastest on loci
that evolvemore rapidly (Yang 1998). At shallow evolutionary
scales it is generally agreed that rapidly evolving markers are
the most effective for resolving trees because substitution
saturation is unlikely to have occurred and variable markers
aremore likely to contain phylogenetic signal for relationships
with short internodes (Dornburg et al. 2017). On the other
hand, it is still under considerable debate whether conserved
or variable markers are more effective at resolving deeper
relationships (Philippe et al. 2011; Salichos and Rokas 2013;
Betancur-R et al. 2014), as one must balance the depth of the
relationships, the rate of character change affecting the
chance that the signal will be masked, and the internode
length since conserved loci may not have undergone any
substitutions along a short branch (Townsend et al. 2012).
A marker with a particular rate can have high phylogenetic
utility when internodes are long, but be positively misleading
when short (Dornburg et al. 2017).

Choosing longer loci will also lead to increased PIC, but one
must balance another trade-off: short loci are more likely to
suffer from gene tree estimation error (GTEE) due to low
signal-to-noise ratio (Betancur-R et al. 2014) while long loci
are more likely to carry past recombination events with dif-
ferent parts holding different genealogical histories (Degnan
and Rosenberg 2009), and both issues are statistically incon-
sistent under the multispecies coalescent (Arcila et al. 2017).
GTEE has emerged as amajor potential pitfall in phylogenom-
ics with summary coalescent species tree methods being
particularly susceptible (Gatesy and Springer 2014; Mirarab,
Bayzid, et al. 2014; Roch and Warnow 2015). Summary coa-
lescent species tree methods are the most commonly used
application of the multispecies coalescent to phylogenomic
data sets due to computational limitations for conducting full
Bayesian coalescent approaches (Mirarab, Reaz, et al. 2014).
The negative implications of GTEE on summary methods has
prompted the implementation of tactics such as binning
alignments based on information content (which involves
concatenating alignments that return similar topologies in
the hope of obtaining more accurate “gene tree” estimates;
Mirarab, Bayzid, et al. 2014), or limiting data sets to high-
resolution genes (Chen et al. 2015). Some methods that in-
terpret gene trees based on quartet subtrees may be more

robust to GTEE when large amounts of data (millions of SNPs
or several thousands of loci) are provided, such as ASTRAL
(Mirarab and Warnow 2015) or SVDquartets (Chifman and
Kubatko 2014) though they should be tested more rigorously
(Roch and Warnow 2015). It may be preferable to initially
select markers that hold high PIC in order to directly reduce
per-locus GTEE instead of post hoc methods to reduce it. As
computational resources continue to improve, future studies
may be able to use preferable full Bayesian coalescent species
tree methods if they instead target a reduced number of
particularly informative loci (Ogilvie et al. 2016). For example,
StarBEAST2 (Ogilvie et al. 2017) is faster than previous meth-
ods such as *BEAST (Ogilvie et al. 2016; Posada 2016) and
these methods have both been used either by subsetting loci
(Blom et al. 2017) or tips (Bragg et al. 2018). These factors
indicate the necessity for a shift in the current paradigm in
phylogenomic data acquisition and analysis. Future phyloge-
nomic studies should focus on sequencing fewer loci that are
longer and provide greater phylogenetic signal and optimal
evolutionary rates to answer specific questions (Leach�e et al.
2016). These kinds ofmarkers are the least likely to suffer from
GTEE and will also provide higher resolution for estimating
the species tree (Salichos and Rokas 2013; Mirarab, Bayzid,
et al. 2014; Roch and Warnow 2015).

Another important consideration in marker selection is
the difference between protein-coding and noncoding
sequences, as in some systems each data type has produced
quite different phylogenetic estimates (Lavou�e et al. 2003;
Nikolaev et al. 2007; Shaw et al. 2007; Reddy et al. 2017).
Natural selection on noncoding regions can range from highly
purifying (e.g., ultraconserved elements, Katzman et al. 2007)
to relatively neutral (e.g., introns, Prychitko and Moore 1997;
Chamary et al. 2006). Of markers that can be confidently
determined to be orthologous, introns may have the fastest
rate of evolution and have been used with success to produce
well-resolved phylogenies (Jarvis et al. 2014; Chen et al. 2017),
yet alignments can be problematic for distantly related taxa as
evolution is relatively unconstrained (Li et al. 2017). Coding
sequences also evolve under a broad range of selective
regimes, but are likely to always undergo some purifying se-
lection on the resulting protein structure (Graur and Li 2000).
For example, frame-shifts from indels causing premature stop
codons are likely to be highly deleterious. Furthermore, codon
positions can evolve at substantially different rates due to
their propensity for synonymous versus nonsynonymous
mutations, though substitutions even in more neutrally
evolving third codon positionsmay still be biased. In the avian
phylogeny, initial concerns about the utility of coding data
were that genomic-scale molecular convergence in coding
sequences due to GC-biased gene conversion or other means
may bias phylogenetic estimates (Jarvis et al. 2014). Instead, it
is most likely that model inadequacy directly associated with
at least one of the data types explains the different estimates
(Reddy et al. 2017). Still, more complex models of nucleotide
evolution that incorporate additional parameters for such
observed differences as individual codon substitution rates
(Yang and Nielsen 2002), corresponding protein structures
(Whelan and Goldman 2001), or biased conversion at
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synonymous sites (Galtier andGouy 1998; Holland et al. 2013)
are likely to improve model fit and phylogenetic estimates for
coding sequences (Dornburg et al. 2017).

Phylogenomic Data Set Types
Several targeted hybrid enrichment data sets have been de-
veloped for phylogenomics (Faircloth et al. 2012; Lemmon
et al. 2012; Singhal et al. 2017) that enable researchers to
capture the same sets of markers across all taxa of interest
and exclude repetitive or otherwise phylogenetically mislead-
ing parts of the genome (such as pseudogenes and paralogs).
The benefit of consistently using the same sets of markers
across studies is that it will eventually allow for meta-analyses
as more data accumulates (Lemmon et al. 2012; Streicher and
Wiens 2017). Within amniotes, the most commonly used
reduced representation data sets for phylogenomics are ultra-
conserved elements (UCEs, Faircloth et al. 2012) and
Anchored Hybrid Enrichment (AHE, Lemmon et al. 2012),
both of which were developed to target the variable flanking
regions surrounding highly conserved anchor points, and we
describe these in more detail below. Conserved nonexonic
elements (CNEEs; Edwards et al. 2017) are another recently
proposed reduced representation data set, though these loci
may suffer from gene trees with low per-locus bootstrap sup-
port when compared with UCEs and introns and their utility
has yet to be rigorously tested. Transcriptome data itself can
be used for phylogenomics (Figuet et al. 2014; Wickett et al.
2014; Brandley et al. 2015), however, in order for data sets to
be consistent the transcriptomes must be gathered from the
same tissue types and when analyzing transcriptome data it
can be difficult to accurately assess orthologs and align dif-
ferent isoforms. Finally, exon capture is commonly used to
sequence orthologous exons across taxa for phylogenomics,
though the loci are usually not consistent across studies, as
researchers usually build unique probes for their focal group.
In nonmodel organisms, exon capture probes are usually
designed by first sequencing a transcriptome (TBEC; Bi
et al. 2012), but it can be difficult to determine intron–
exon boundaries for TBEC probe design, which in some cases
could reduce capture efficiency (but see Portik et al. 2016).

UCEs are regions of the genome (�100 bp in length) that
have high sequence identity (�80%) across extremely diver-
gent taxa (Faircloth et al. 2012). UCEs are often in noncoding
genomic regions, though some UCEs correspond to exons
(Bejerano et al. 2004). A unifying functional role of UCEs is
not fully understood (Harmston et al. 2013), though they
have been shown to often play a role in gene regulation
(Lenhard et al. 2003; Woolfe et al. 2004; Ni et al. 2007;
Warnefors et al. 2016) and development (Dickel et al. 2018)
and are undergoing purifying selection about three times
higher than coding regions (Katzman et al. 2007). The UCE
tetrapod probeset includes �5,000 loci, captured using
120 bp probes (Faircloth et al. 2012). The AHE vertebrate
data set targets a much smaller number of loci compared
with UCEs (400–500 depending on the study), similarly fo-
cusing on regions of the genome that are conserved across
vertebrates (but not as high identity as UCEs) and flanked by
more variable regions (see Lemmon et al. 2012 for additional

criteria). Over 90% of AHE probe regions correspond to exons,
however, the flanking regions include a higher proportion of
introns or other genomic elements (see fig. 2 of Lemmon et al.
2012). In both of these sets, the majority of the phylogenet-
ically informative sites are expected to exist in the flanking
regions rather than the more conserved probe regions, in
theory to allow for the most effective capture during hybrid-
ization. However, since its inception (Lemmon et al. 2012),
AHE has shifted from this “anchor” method toward tiling
probes across a substantially longer target region for a re-
duced number of loci (Prum et al. 2015; Ruane et al. 2015),
highlighting the advances in sequence capture technology
allowing for hybridization to highly diverged sequences (e.g.,
Li et al. 2013). When employed, both the UCE and AHE data
sets have often been able to resolve previously difficult nodes
(e.g., Crawford et al. 2012, 2015; Prum et al. 2015; Bryson et al.
2016; Streicher and Wiens 2017), though short length and/or
or slow evolutionary rate may make both methods suscepti-
ble to GTEE as we show in this study.

Rapidly Evolving Long Exon Capture
Here, we introduce a set of loci optimized for high-resolution
phylogenomic inference: Rapidly Evolving Long Exon Capture
(RELEC). We selected these loci to maximize PIC while main-
taining presence, orthology, and alignment quality across
broad evolutionary scales. RELEC loci may provide the most
accurate phylogenetic resolution at deep and shallow diver-
gences, while also remaining computationally tractable.While
UCEs, and AHE in a similar but less extreme extent, were
developed by applying a maximum evolutionary rate cutoff
within a core probe region, our RELEC approach is unique in
that we apply a minimum rate cutoff across long orthologous
regions in order to maximize PIC and to produce robust gene
trees.

Long and rapidly evolving genes hold abundant phyloge-
netic signal, thus increasing the chance of producing reliable
individual gene trees and decreasing stochastic error associ-
ated with short genes (Salichos and Rokas 2013; Lanier et al.
2014; Mirarab, Bayzid, et al. 2014; Shen et al. 2016) while
retaining many other benefits of exons that have led to their
continued use in phylogenetics and phylogenomics. Benefits
of exons include: 1) nucleotide evolution can be modeled
more complexly than noncoding regions based upon ob-
served rate differences between different kinds of substitu-
tions. 2) Protein functions are often known, which in some
cases may allow for studies of phenotypic or functional differ-
ences between organisms; 3) Aligning protein-coding regions
is straightforward, and translation-based alignment algo-
rithms are accurate (Abascal et al. 2010). No other kind of
marker can be easily aligned at up to 40% sequence diver-
gence. 4) Indels can be accurately aligned in exons because
they occur predictably in multiples of 3 bp due to selection
against reading frame shifts and can also be valuable phylo-
genetic characters on their own (Simmons and Ochoterena
2000; Luan et al. 2013).

We compared the utility of RELEC, AHE, and UCE loci
within the squamate phylogeny by extracting the markers
from 17 genomes spanning �200 Ma divergence. We also
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provide sequence data for the RELEC loci extracted from
available mammal and bird genomes, making these loci
easy to implement in phylogenomic studies in any amniote
group (Supplementary Material online; https://github.com/
benrkarin/RELEC). We find that the selected RELEC loci are
long and highly informative and can still be accurately aligned
at deep divergences, while at the same time avoiding the
difficulties of orthology detection. No other set of loci for
phylogenomics encompasses sequences that are as long
and as variable without running into alignment problems
at deeper evolutionary scales. This therefore sets up the
RELEC loci to be a powerful tool for resolving recalcitrant
nodes in the tree of life.

Results and Discussion

Assembling the RELEC Loci
By aligning and comparing exons across mammal, bird, and
squamate genomes, we found 179 exons that fit the RELEC
criteria (see Materials and Methods for more details). Likely
due to their rapid evolutionary rate, many of the RELEC genes
are poorly annotated in nonmammalian genomes, which re-
quired us to manually extract and compare each candidate
locus using translated sequence TBlastN searches. By carefully
assembling the data set in this way, we are highly confident
that they all are both present among amniotes and will not
present issues of paralogy that would lead to incorrect tree
estimates. Still, not all lineages have the complete set of 179
long exons, often due to missing data in the genomes or in a
few cases from deletions (see supplementary table S4,
Supplementary Material online). For example, ENAM cannot
be found in the chicken and painted turtle genomes, likely
because these lineages do not have teeth and do not need the
enamolin protein. RIKEN appears to be deleted in the human
genome, but is present in mouse and other mammal
genomes. We found only two cases of duplications within
amniotes for the final set of RELEC loci, but we chose to retain
them because they are highly informative and the paralogy
histories are clear and easy to trace. The exceptions are the
sperm receptor protein, PKDREJ, which shows three tandem
duplicates within squamates, and CKAP5L, which was dupli-
cated from CKAP5 (which does not have a single long exon)
near the reptile ancestor, as it is present in crocodiles, turtles,
squamates, tuatara, and some birds, but is not present in
mammals, Xenopus, coelacanth, gar, and zebrafish.

After extracting the loci, we used TBlastN searches to
Ensembl to confirm presence and proper annotation in other
tetrapod lineages. In the human genome, all RELEC genes
were correctly annotated, but nonmammalian genomes
had much less accurate annotations (see fig. 1). The chicken,
painted turtle, and saltwater crocodile genomes had 81–87%
of RELC loci properly annotated, while Anolis had only 72%,
and Xenopus only 65%. Annotation errors included incor-
rectly placed intron–exon boundaries, missing data, and no
annotation at all. We found 161 loci in Xenopus, though 11 of
these are reduced in size<1,400 bp, whereas in amniotes they
are all retained >1,500 bp (with a few slight exceptions just
below the cutoff; see supplementary table S4, Supplementary

Material online). This indicates that a subset of the RELEC loci
are retained at evolutionary scales beyond amniotes or tetra-
pods, and RELEC orthologs can likely be found in other groups
as well.

Gene Tree-Species Tree Discordance
In this study, we estimated maximum likelihood (ML) gene
trees and coalescent species trees using our newly designed
RELEC data set, and independently using the AHE and UCE
data sets, as well as combined analyses of all three data types
(which we refer to as the “species tree”). All three data sets
(RELEC: 179 loci, 651,434 bp; AHE: 320 loci, 427,251 bp; UCEs:
1,517 loci, 1,031,286 bp; see table 1) reconstruct the squamate
phylogeny according to the species tree with minor differ-
ences at poorly supported nodes (fig. 2; Wiens et al. 2012;
Pyron et al. 2013; Zheng andWiens 2016; Streicher andWiens
2017). Our comparison of sequence alignments for each set
show that the RELEC loci as a whole are significantly longer
and contain many more parsimony informative sites than
both the UCE and AHE loci (fig. 3). The AHE alignments
show significantly lower proportions as gaps compared
with RELEC and UCEs (Mean 6 SD; RELEC: 0.0856 0.076;
AHE: 0.0496 0.081; UCEs: 0.0766 0.051; see supplementary
fig. S6, Supplementary Material online, for other gap metrics).

We first assess accuracy by comparing the ASTRAL and
concatenated species tree estimates of the squamate tree for

FIG. 1. Tetrapod cladogram indicating the number of RELEC genes

present in the model species for each of the main lineages, and in

parentheses the percent of the total after accounting for the indi-

cated duplication events. In red the percent of RELEC genes that are

correctly annotated on Ensembl. Poor genome annotation outside of

mammals is likely due to the rapid evolutionary rate of RELEC genes,

as well as missing data in those genomes. Vertical dashes show the

two exceptions where we allowed paralogs to be retained: two tan-

demduplications in PKDREJ in squamates and a duplication of CKAP5

in reptiles. Most of the RELEC genes are present in Xenopus, though

some are reduced in length, and many are likely present in higher

vertebrate lineages as well. Silhouttes from http://phylopic.org, used

under the Creative Commons (https://creativecommons.org/

licenses/by/3.0/), with drawings of Xenopus and Anolis by Sarah

Werning, and painted turtle by Scott Hartman.
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each data set. All ASTRAL species tree nodes display strong
100% bootstrap (BS) support with two exceptions (also see
open node circles in fig. 2). 1) Both RELEC and UCEs support
Dopasia gracilis as sister to the iguanians, Anolis carolinensis
and Pogona vitticeps (BS, RELEC: 60; UCEs: 73; Combined: 73)
in agreement with the combined species tree, our RELEC
StarBEAST2 estimate, and other published trees (e.g.,
Streicher and Wiens 2017). In contrast, both the ASTRAL
and concatenated AHE trees recover support for D. gracilis
sister to a clade composed of Iguania with snakes (BS, AHE:
80). Incomplete lineage sorting may explain the discordance
on this short branch, as there are roughly equal 33% propor-
tions for three quartet topologies at the node in each data set
(see fig. 2), and low taxon sampling and insufficient phyloge-
netic signal are other possible explanations. Despite this, the
RELEC StarBEAST2 analysis recovered strong (PP¼ 1.0)

support for this placement (supplementary fig. S1,
Supplementary Material online), suggesting a benefit to using
full Bayesian methods to coestimate the gene trees and spe-
cies tree together. 2)Within Gekkota, the ASTRAL trees for all
three data sets recover the same topology, though there exists
reduced support for the placement of Eublepharis macularius

(BS, RELEC: 57; AHE: 55; UCEs: 51; Combined: 55) and the
concatenated trees showed different placements of
E. macularius (supplementary fig. S2, Supplementary
Material online). The translated RELEC amino acid data
ASTRAL and concatenated trees matched the species tree
exactly and showed similar support to the RELEC nucleotide
analyses (supplementary fig. S3, Supplementary Material on-
line). Separate MP-EST (Liu et al. 2010) analyses on the same
sets of gene trees showed nearly identical results to those
presented here (results not shown).

FIG. 2. Time adjusted phylogenetic species tree for 17 squamate species using Rapidly Evolving Long Exon Capture (RELEC), Anchored Hybrid

Enrichment (AHE), andUltraconserved Element (UCE) data sets. The topology is the resultingASTRAL species tree of the combinedUCE, AHE, and

RELEC data set, which matches the UCE and RELEC ASTRAL trees as well as the StarBEAST2 species tree for RELEC. Values to the left of the node

represent the proportion ofmaximum likelihood gene trees that support a given node (RELEC/AHE/UCE). Circles on nodes correspond to support

values from ASTRAL analyses; filled circles represent 100% support for all species tree analyses (including StarBEAST2) and open circles represent

any node with than 100% in any of the data sets. Values to the right of the nodes give ASTRAL support values for branches with<100% support.

The ASTRAL topology for AHE is inset, with support for the differential node shown.

Table 1. General Comparison of the Three Data Sets, As Acquired from the Squamate Genomes for This Study.

Data Set Number of Markers Mean Aligned Length (SD) Range Aligned Length Total Number Aligned Bases Completeness (% w/17 Taxa)

RELEC 179 3,639 (2,015) 1,407–12,726 651,434 98

AHE 320 1,335 (453) 213–2,164 427,251 100

UCEs 1,517 680 (90) 179–985 1,031,286 100

Karin et al. . doi:10.1093/molbev/msz263 MBE
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To assess the relative power of a gene to resolve a node
at a given time period in the phylogeny, we generated
phylogenetic informativeness profiles for each locus in
each of the three data sets. Indeed, RELEC loci show con-
siderably higher phylogenetic informativeness of each
marker over the past 200 Ma (fig. 4). This is due in part
to their length, which is significantly correlated with infor-
mativeness (fig. 4d), as well as their rate of evolution. RELEC
loci also show a much higher proportion of parsimony
informative sites than both UCEs and AHE (fig. 3c). The
informativeness profiles also show that RELEC loci are most
informative at resolving younger nodes compared with
AHE and UCEs (see fig. 4e). Overall, our results show
that the length and rate of RELEC loci provides them
with extremely high phylogenetic informativeness across
most relevant timescales and should therefore produce a
greater proportion of individually reliable gene trees than
do AHE and UCEs.

We quantified GTEE between data sets using average
gene tree bootstrap scores, which provide a measure of
gene tree confidence (Edwards et al. 2017), and by com-
paring each ML gene tree to the species tree. RELEC gene
trees hold significantly higher average BS support (fig. 5b)
and display higher per-node support than AHE and UCEs
for all nodes in the tree that had <100% of the gene trees
matching that node (fig. 2). Similar to the results of Singhal
et al. (2017) who compared UCEs with AHE in squamates,
we also find that AHE gene trees show higher average BS
support and equal or higher per-node support than UCEs

(figs. 2 and 5b). RELEC and AHE performed similarly when
gene trees were divided into equal-sized bins of loci ana-
lyzed with ASTRAL, with many of the jackknife replicates
matching the full (data set-specific) species tree with a bin
size of �120 loci, whereas UCEs required 500–1,000 loci to
reach a similar accuracy for the species tree estimate
(fig. 5a). The robustness of individual RELEC gene trees
was especially apparent in four uncontroversial nodes in
the squamate tree where 93–97% of RELEC gene trees
matched the species tree for that node while AHE and/
or UCEs showed substantially lower proportional accuracy
(AHE: 69–84%; UCEs: 51–60%); the Anolis–Pogona node,
the Thamnophis–Pantherophis node, the Protobothrops–

Crotalus node, and the Deinagkistrodon–Protobothrops–
Crotalus node (see fig. 2). This suggests that RELEC gene
trees are more likely to accurately resolve well-established
nodes than AHE or UCEs, and this will likely apply to more
difficult nodes as well. Furthermore, RELEC gene trees, on
an average, showed lower RF distances to the species tree
than AHE or UCEs (mean RF distance, RELEC: 4, AHE, 6,
UCEs: 8), indicating not only higher per-node support but
more gene trees matching the species tree in its entirety
(fig. 3a).

We expect that RELEC markers will be most useful at re-
solving more recent divergences, so we also compared gene
trees to the species tree for the colubroid snakes subclade,
which is the most-sampled clade in our analysis (see fig. 2).
Pyron et al. (2014) found substantial gene tree-species tree
discordance among AHE loci for colubroid snakes (though
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FIG. 3. Histograms comparing features of RELEC, AHE, and UCE loci, with the y axis in each corresponding to the proportion out of 1. (a and b)

Robinson–Foulds distances of maximum likelihood gene trees to full squamate species tree (combined RELEC, AHE, and UCE data set ASTRAL

topology of fig. 1) and species tree limited to colubroid snakes. (c) Proportion per-locus of parsimony informative sites. (d) Comparison of aligned

length of each locus in each data set, with dashed vertical lines indicating the mean length in each data set.
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these same difficult nodes are not present in this study). We
find that RELEC gene trees show reduced discordance in
colubroid snakes than AHE or UCE gene trees (percent of

gene trees matching species tree, RELEC: 87%; AHE: 49%,
UCEs: 19%; see fig. 3b). We therefore expect that RELEC loci
maymore accurately resolve this clade if applied to the group
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FIG. 4. Phylogenetic informativeness of individual loci in the three data sets: (a) RELEC; (b) AHE; and (c) UCEs. The y axis is relative, and corresponds

to the normalized, asymptotic likelihood that there will exist a mutation that accurately resolves a node at that point in time. The timescale

corresponds to the same time-adjusted phylogeny in figure 1. (d) The significant relationship between alignment length and themaximumvalue of

phylogenetic informativeness reached for each locus along the curve. (e) Violin plots of the time for which each locus reaches its maximum

phylogenetic informativeness, with RELEC loci optimized to have high information content at significantly younger timescales thanAHE andUCEs.
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FIG. 5. (a) RF Distance of gene trees of various bin size, divided between RELEC, AHE, and UCEs. ASTRAL analyses were run on gene tree bins of

increasing size with 100 random jackknife replicates each, and then compared with the species tree estimated from the largest bin. The mean RF

distance is depicted by the dark line, with 1 SD shown by the surrounding shaded area. (b) Boxplots of mean bootstrap scores for ML gene trees of

each data set, with ANOVA and all comparisons significant by Tukey HSD test.
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as a whole, and be powerful at resolving recent radiations in
general.

When examining the entire squamate tree,<1% of UCE or
AHE gene trees match the species tree exactly, while 8.0% of
RELEC gene trees match it. Though given the poor-support
for the placement of D. gracilis in most analyses and possible
incomplete lineage sorting on this short branch, if we include
gene trees that differ by one node (fig. 3b, RF¼ 2) then a
much larger proportion of gene trees are accurate (RELEC:
28.8%; AHE: 9.0%; UCEs: 3.8%). Despite this low overall rate, all
three methods stand in stark contrast to the results of studies
with expansive genomic-scale data sets where none of the
individual gene trees matches the species tree (Salichos and
Rokas 2013; but see Betancur-R et al. 2014; Jarvis et al. 2014;
Arcila et al. 2017). Higher discordance and GTEE in UCEs may
be due to their shorter alignment lengths, lower phylogenetic
signal, and less clocklike rates (Singhal et al. 2017), potentially
leading to increased stochastic error for individual UCE gene
trees compared with AHE or RELEC gene trees. Substitutions
along short branches are less likely to have occurred for con-
served loci, which may explain why relatively conserved AHE
and UCE data sets have previously shown poor support for
areas of the trees undergoing rapid diversification
(McCormack et al. 2013; Pyron et al. 2014). As GTEE can
have strong negative impacts on summary-coalescent spe-
cies-tree analyses (Roch and Warnow 2015), RELEC loci that
minimize it may also be the most effective for these tree-
building methods.

Utilizing Full Bayesian Coalescent Species Tree
Methods
Though normally too computationally demanding to be uti-
lized in phylogenomic-sized data sets, given the relatively
small taxon-set in this study, we were able to carry out a
Bayesian coalescent species tree analysis on the RELEC data
set using StarBEAST2.We visualized results frombothMCMC
chains in Tracer 1.6 (Rambaut et al. 2018) and both runs
reached stationarity relatively quickly, with total computation
times between 70 and 75 h using 24 threads. The analysis
converged on the same species tree as the combined data
set ASTRAL species tree, with posterior probabilities of 1.0 for
all nodes (supplementary fig. S1, Supplementary Material on-
line). Furthermore, there appeared to be little species-tree
discordance even at poorly supported nodes in ASTRAL anal-
yses (fig. 2), indicating strong support for the sister relation-
ship between Anguidae and Iguania. Given current
computational power available to most researchers, we are
unsure if it is possible to use StarBEAST2 for analyses of data
sets much larger than this study as number of tips increases
computation time rapidly (Ogilvie et al. 2016, 2017), however,
our results show promise for the future possibility of using
these comprehensive Bayesian coalescent species tree analy-
ses for phylogenomic data sets with fewer but longer and
highly informative loci.

Substitution Saturation
Substitution saturation decreases phylogenetic signal in se-
quence data by masking relevant mutations for

phylogenetic inference, and has negatively affected the abil-
ity to reconstruct deep nodes in the tree of life. It is espe-
cially common in mitochondrial genes, as they evolve
quickly and have a lower effective population size
(Jackman et al. 1999). Researchers may be concerned that
some RELEC markers may experience saturation at even
moderate divergences because they evolve so rapidly, as
substitution saturation has often been implicated as a prob-
lem for phylogenomics (Jeffroy et al. 2006; Parks et al. 2012;
Breinholt and Kawahara 2013; Dornburg et al. 2014).
However, saturation of nuclear genes normally only affects
studies attempting to reconstruct deep relationships, such
as the placement of turtles with respect to other reptiles
(Chiari et al. 2012) and crown vertebrate lineages (Dornburg
et al. 2014). RELEC loci should primarily be used to recover
younger relationships within (not between) the major am-
niote groups, such as relationships among or within snake,
gecko, or iguanian families. Within these timescales, satura-
tion plots for each RELEC locus up to 200 Ma divergence
times overall show little evidence of substitution saturation
at moderate timescales (fig. 6 and supplementary fig. S4,
Supplementary Material online). In just a few cases the third
codon position appears to show a signature of saturation by
160 Ma (e.g., RAI1, PTGER4, FBXO34; fig. 6 and supplemen-
tary fig. S4, Supplementary Material online), though the
other codon positions appear unsaturated and are still ac-
cumulating raw pairwise distance. Even the third codon
position of some of the most rapidly evolving genes (e.g.,
ASXL1, BRCA1, SETX) show linearly increasing divergence up
to the oldest divergence times at �200 Ma. In comparison,
the third codon position for mitochondrial ND2 sequences
from each taxon shows rapid substitution saturation, as
expected, by �60 Ma (see fig. 6). Given the limited evidence
for saturation even at divergences spanning all squamates,
we expect that most researchers will not encounter any
substitution saturation in RELEC loci at the moderate evo-
lutionary scales usually encountered in the majority of phy-
logenomic studies. The phylogenetic informativeness profiles
suggest that RELEC loci peak in informativeness between
�25 and 150 Ma (fig. 4), and we therefore recommend
these scales as the regions where RELEC loci would be
most effective. Still, we do not expect slight third codon
position saturation to strongly skew phylogenetic analyses if
there is sufficient signal at the other sites.

Exons that have roughly equal rates of evolution at all

three codons are unusual (fig. 6d) but we observed this

pattern for 22 RELEC exons (10%). Typically, third codon

positions evolve much faster and this pattern is often ob-

served across large multilocus data sets (e.g., Baker et al.

2014 for 594 protein-coding loci). These loci may be under-

going relaxation of purifying selection and are a reflection of

the increased phylogenetic utility of RELEC loci. However,

for the entire RELEC data set, the difference in slopes be-

tween third position and first and second positions is not

significantly correlated with the RF distance from the species

tree as might be expected if equal rates at all positions were

associated with more accurate gene trees.
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Recombination and Linkage
The chance of a gene carrying a past recombination event
increases for longer genes and if recombination occurs can
lead to neighboring segments of DNA with different genea-
logical histories that can skew phylogenetic estimates (Posada
and Crandall 2002; Degnan and Rosenberg 2009). A benefit of
using UCEs or RADseq is that one may gather large numbers
of loci that can be analyzed independently with one SNP per
locus, disregarding potential linkage disequilibrium
(Leach�e and Oaks 2017), but this method would not be ap-
propriate if only capturing a small number of RELEC loci.
Transcriptome datawith loci that spanmultiple distant exons
are themost likely kind of data to be susceptible to intragenic
recombination (Springer and Gatesy 2016) that do indeed
violate assumptions of the multispecies coalescent
(Edwards et al. 2016). RELEC loci span from �1,500 to
12,000 bp in aligned length (table 1), so it is possible that
recombination could occur within them, albeit with lower
frequency than with transcriptome data that can span hun-
dreds of thousands of bases. Still, we do not expect recom-
bination to be a severe problem for RELEC as recombination
events leading to incomplete lineage sorting appear to be rare
in real-world data sets (Edwards et al. 2016), and unrecog-
nized intralocus recombination events have been shown to
have little effect on summary-coalescent species tree analyses
(Lanier and Knowles 2012). We hypothesize that except in

rare cases it is more valuable to capture longer genes that
contain greater phylogenetic signal (Edwards et al. 2016) and
are more likely to recover the true species tree (supplemen-
tary fig. S5, Supplementary Material online; Mirarab, Bayzid,
et al. 2014; Roch and Warnow 2015).

We assessed potential linkage of markers by comparing
map distances of loci on the Anolis macrochromosomes
(fig. 7). For RELEC, only in the few cases where two exons
were from a single gene (APOB, CSPG4, MACF1, PHF3,
TRANK1) were loci within 50,000 bp of another RELEC locus.
In more complex data sets, linkage should perhaps be
assessed for these closely spaced loci, but in general, we do
not expect linkage to pose a problem for RELEC. In contrast,
�20% of UCE loci are within 10,000 bp of another UCE locus,
and more than half are within 50,000 bp of another. This is
likely simply due to the sheer number of UCE probes, but this
potential linkage could pose a bias if not accounted for as
certain gene tree genealogies from loci in areas of tight linkage
may be more common than others and affect species tree
analyses. AHE loci show similar map distances as the RELEC
loci, but in examining this, we encountered some previously
unidentified aspects of the AHE loci. The updated AHE ver-
tebrate probes from version 1 vertebrate (Lemmon et al.
2012) to version 2 removed originally separate markers
with overlapping flanking sequencing that would lead to du-
plicated data and also attempted to combine multiple AHE

(a) (b)

(c) (d)

FIG. 6. Plots to assess substitution saturation for three RELEC loci: (b) RAI1, (c) GPATCH8, and (d) BRCA1 based on comparison of raw pairwise

sequence distance versus divergence time. (a) Mitchondrial ND2 is shown for reference. A signature of saturation is present where pairwise

distance does not increase despite increasing divergence time, which is prevalent in all three codon positions in ND2. Most RELEC loci show a

pattern similar to GPATCH8 or BRCA1, with a linear increase in pairwise distance over time, while RAI1 shows some evidence of third codon

saturation after 160 Ma (see arrow). For all saturation plots, see supplementary figure S4, Supplementary Material online.
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loci on a single gene into one locus (Prum et al. 2015; Ruane
et al. 2015; Tucker et al. 2016), however, there remain several
cases of multiple AHE loci on a single gene (supplementary
table S2, Supplementary Material online). For example, in
version 2, we found 11 independent AHE loci representing
multiple regions of a single gene, TTN, spanning over
240,000 bp in length. Furthermore, FAT4 and RHOV each
have three AHE markers representing these genes, and 12
other genes have two AHE markers associated with them.
In total, 41 of the AHE version 2 vertebrate loci show dupli-
cates, and many of the targets are within 10,000 bp of each
other on the Anolis chromosomes (see supplementary table
S2, Supplementary Material online). It is therefore important
that studies utilizing AHE do not treat closely separated loci
independently and are careful to account for potential linkage
or functional similarity. We also found using BLAST searches
to the www.ensembl.org database (last accessed November
24, 2019) that the proportion of target regions containing
coding sequence has increased from 90% in version 1
(Lemmon et al. 2012) to 98% in version 2 (this study; probes
from Ruane et al. 2015), suggesting that it is now primarily a
protein coding data set yet studies have not utilized known
rate differences among codon positions in evolutionary mod-
els or partitioning schemes.

Coding versus Noncoding Markers
There has been speculation that phylogenomic analysis of
exonsmay bemisleading due to biased gene conversion caus-
ing genomic-scale molecular convergence of protein-coding
sequences (Jarvis et al. 2014). Jarvis et al. (2014) proposed that
potentially misleading phylogenetic results in birds may be
due to GC-biased gene conversion that acts most strongly in
highly recombining regions, as they found rapidly evolving
genes near the ends of chromosomes had increased GC con-
tent. However, Reddy et al. (2017) rejected this hypothesis by
showing that the discordance between coding and noncod-
ing data sets was likely caused by data-type effects due to
violation of models, and GC-bias has been shown to lead to
gene tree incongruence in noncoding data sets as well
(Bossert et al. 2017). Still, the problem of GC-biased gene
conversion is less likely to occur in squamates because squa-
mates show decreased GC3-content heterogeneity compared

with other amniotes (Fujita et al. 2011; Figuet et al. 2014). We
plotted GC and GC3 content variation for loci between the
three data sets on the A. carolinensis macrochromosomes
(fig. 7). While there does exist some variation in GC content,
it is scattered across the chromosomes, and we do not ob-
serve a pattern of increased GC content (or third codon GC
content) at the chromosome ends where recombination
rates are highest and GC-biased gene conversion tends to
occur. As biased gene conversion has been implicated in
many systems and can negatively impact phylogenetic recon-
struction (Marais 2003; Gruber et al. 2007), future studies
should implement alternate models that allow for base fre-
quency nonstationarity and should assess model fit in both
coding and noncoding regions (Lockhart et al. 1994; Gowri-
Shankar and Rattray 2007).

Despite concerns that selection on protein-coding regions
could lead to misleading phylogenetic relationships, we em-
phasize that selection is not necessarily more intense on cod-
ing sequences relative to other genomic regions. For example,
introns likely undergo relaxed selection (Chamary et al. 2006)
while UCEs must be undergoing strong purifying selection to
remain conserved across such distant groups (Katzman et al.
2007). Gene-averaged dN/dS ratios provide a rough measure
of selection intensity on coding regions (though site-specific
ratios are more appropriate for searching for more detailed
evidence of selection). We found that RELEC loci in general
undergo purifying selection to near neutral evolution, with
per-locus mean dN/dS ratios usually <1 (mean¼ 0.48; sd¼
0.19; range ¼ 0.16–1.08). A higher nonsynonymous rate for
RELEC markers as opposed to average rates across coding
sequences in other organisms (0.15–0.3; Jordan et al. 2004;
Buschiazzo et al. 2012) suggests relaxed purifying selection is
common in RELECmarkers, which likely partially accounts for
their faster evolutionary rates. This ability tomodel nucleotide
evolution and the strength of selection (McDonald and
Kreitman 1991) is a distinct advantage of using protein-
coding DNA sequences for phylogenetics. Rate differences
among first, second, and third codon positions, for example,
are a well-understood biproduct of selection acting more
strongly against nonsynonymous versus synonymous muta-
tions (Jackman et al. 1999) and this among-site rate variation
in coding sequences may be beneficial to phylogenetic

FIG. 7. The genomic positions of UCE (top), AHE (middle), and RELEC (bottom) loci on the six Anolis carolinensismacrochromosomes. Markers

that correspond to microchromosomes or unmapped regions are not shown. The y axis shows the % GC content at each locus in A. carolinensis,

with dots outlined in magenta in the RELEC panel corresponding to third codon GC content. A pattern of GC content increase at chromosome

ends (where recombination is highest) would be evidence for GC-biased gene conversion, though this pattern is not apparent in any data set.
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reconstruction (Klopfstein et al. 2017). Translations to amino
acid sequences are also commonly used for phylogenetic
analysis (supplementary fig. S3, Supplementary Material on-
line) and detailed codon models can accurately parameterize
for rate differences between nonsynonymous and synony-
mous substitutions or between all codons (Yang 2007), and
can now be rapidly implemented in recent versions of IQtree
(Nguyen et al. 2015). Finally, relaxed-clock models can allow
for accurate phylogenetic reconstruction by accommodating
for lineage-specific evolutionary rate differences. Analyses of
RELEC data sets will benefit by making use of our increased
understanding of protein evolution andmay allow for greater
confidence in phylogenetic hypotheses.

Biological Processes
There is unlikely to be a unifying functional role of RELEC loci,
nor one single process that maintains long exons that also
rapidly change. We searched for functional patterns among
RELEC genes by investigating expression levels across human
tissues (data of Fagerberg et al. 2014). We found that RELEC
genes are expressed in humans at significantly different levels
compared with the background of all genes (see fig. 8; v2 ¼
27.3; P¼ 0.00029). Specifically, the largest proportional cate-
gory of RELEC genes (46.2%) are those that are expressed in
low levels across all tissues, over a background level of (32.4%),
while very few RELEC genes are expressed at high levels across
all tissues (7.0%), compared with a higher background rate
(13.8%). Furthermore, almost none (0.6%) of the RELEC genes
are highly tissue enriched. These results are interesting as
widely expressed genes tend to have slower substitution rates
when compared with tissue-specific genes (Zhang and Li
2004), so one may expect the rapidly evolving RELEC genes
to be tissue-specific. However, it is important to note that
RELEC genes are not the fastest evolving genes in the genome,
but the fastest that still maintain very long exons. These
patterns suggest that in general RELEC genes function as im-
portant proteins that are used in all tissue types, with low
expression rates loosening constraints on substitution rate
(P�al et al. 2001), but broad expression across all tissue types
may lead to maintenance of the size of the longest exon and
the corresponding protein. An important caveat of this anal-
ysis is that some RELEC gene isoforms (in humans) are much
shorter and do not contain the long RELEC exon we selected
for phylogenomics. Therefore, the isoform containing the
RELEC exon may not be expressed as broadly as shorter iso-
forms of the gene, and the long isoform may serve a more
specific function. Other exceptions to these patterns are
genes that are only expressed briefly in development and/
or in limited tissue types. For example, ENAM (enamelin),
encodes the largest protein of the enamel matrix and is
only expressed during tooth growth (https://ghr.nlm.nih.
gov/gene/ENAM; last accessed November 24, 2019). RAG1
is involved in immune response and is only expressed in
lymphocytes, and likely evolves rapidly to facilitate binding
to changing substrates (https://ghr.nlm.nih.gov/gene/RAG1;
last accessed November 24, 2019).

We also assessed enrichment of Gene Ontology (GO)
functional categories of the RELEC genes as a whole on the

PANTHER classification system. We found significant over-
representation of RELEC genes for three molecular function
categories associated with binding: tubulin binding (13 hits),
DNA binding (41 hits), and ion binding (77 hits), which to-
gether constituted for more than half (91) of the RELEC genes
after accounting for duplicates. The enrichment for binding
suggests that the long RELEC proteins might be subject to
rapid change in amino acid sequence in order to complete
their designated binding task. For example, the BRCA1 and
BRCA2 genes are well-studied and known to be used to repair
damaged DNA (Moynahan et al. 1999, 2001), and we specu-
late that this function may also require rapid amino acid
replacement to account for different kinds of DNA damage.
We also found significant overrepresentation in several bio-
logical process categories, includingmicrotubule cytoskeleton
organization (19 hits), organelle localization (18 hits), cell cycle
process (24 hits), and developmental process (73 hits), ac-
counting for 92 unique genes. Microtubule organization, in
particular, is interesting as it often requires a protein to bind
to both the microtubule and another location such as the
cytoskeleton, plasma membrane, or other molecules (e.g.,
MACF1, MAP1A, MAP1B, MAP2). We assessed the number
of protein interactors for each RELEC gene on BioGRID, hy-
pothesizing that RELEC genes might have fewer protein inter-
actors because more interactions might act as a purifying
selective pressure. We found that numbers of protein inter-
actors ranged from zero or one to several hundred, with no
distinct pattern emerging (supplementary table S1,
Supplementary Material online), suggesting that there are
many possible functional roles that can still permit rapid
evolution. It is important that sets of phylogenomic loci do
not all contribute to the same function or pathway, as this
might lead to linked evolutionary histories among loci that
could bias phylogenetic estimates. Our functional analyses
clearly show that RELEC encoded proteins provide a wide
variety of biological functions, and therefore are unlikely to
be susceptible to this bias.
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expressed in all tissues at low rates, while fewer are expressed in all

tissues at high rates (v2¼27.3; P¼ 0.00029).
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Practical Implementation
Applying RELEC to any amniote group is relatively straight-
forward. Probes can be designed from transcriptomes or
genomes and can be sequenced using many available meth-
ods (e.g., Illimuna and Fluidigm). Target enrichment for
conserved long exons among divergent taxa has been well-
established in numerous studies (Bi et al. 2012; Li et al. 2013).
We are currently in the process of using Illumina sequencing
for RELEC loci in diplodactylid geckos using probes designed
from Correlophus ciliatus. We also extracted the target
sequences from the Gallus gallus genome for use in avian
phylogenomics. For the geckos, we developed custom bioti-
nylated RNA bait libraries using the MYBaits target enrich-
ment system (MYcroarray, Ann Arbor, Michigan). Based on
the 179 RELEC exons, we designed�10,000 probes consisting
of 120 bp baits with 60 bp overlap between baits, targeting
exons 120 bp or larger. The baits were filtered for repetitive
sequences by MYcroarray using RepeatMasker (http://www.
repeatmasker.org/; last accessed November 24, 2019) and
compared with the entire Correlophus genome to ensure
unique binding of baits. Our procedure for capturing RELEC
baits follows the detailed protocol for exon capture in sharks
(Li et al. 2013) which captures divergent sequences by both
decreasing the temperature of hybridization successively and
increasing the time of hybridization of the baits to the target.
The use of RELEC loci in future studies would involve design-
ing a set of RELEC bait libraries based on the genome of a
member or close relative of the group of interest. We
extracted the RELEC loci from several mammal and bird
genomes, and provide these sequences for users to build
probes or to use them to extract RELEC loci from other
genomes using custom scripts (https://github.com/benr-
karin/RELEC).

It is possible that substantial genetic divergences arising
from rapidly evolving markers could lead to poor hybrid-
ization efficiency in distant taxa. Though drop-off in exon
capture efficiency for divergent taxa has been shown to
occur in some experiments (Bi et al. 2012; Bragg et al.
2016), it is common for sequences to still be effectively
captured at high enough levels for phylogenetic analysis
even across extremely divergent taxa (Li et al. 2013; Ilves
and L�opez-Fern�andez 2014; Portik et al. 2016; Bragg et al.
2018). By coupling tiling across these relatively long probe
regions and sequencing longer read lengths (e.g., MiSeq
paired-end 300 bp reads), we expect to maintain capture
efficiency for the RELEC markers even at substantial ge-
netic divergences.

As it is becoming easier and less expensive to sequence full
genomes or very large sets of loci, we expect that RELEC loci
will most commonly be applied to new systems in two ways:
1) targeted directly using bait capture, possibly in conjunction
with other sets of loci, or 2) extracted fromwhole genomes as
a unique marker set for comparison with other sets. With the
bait capture approach, we expect that RELEC loci will often be
targeted in combination with other exons of known func-
tional interest, and often in combination with other sets such
as the Squamate Conserved Loci (SqCL) probes of Singhal
et al. (2017), which combine AHE, UCEs, and other commonly

used squamate markers (Wiens et al. 2012), and CNEEs
(Edwards et al. 2017). If a strongly supported phylogeny is
the primary goal of a study, these reduced representation
data sets are the most cost-effective strategy. If the researcher
has other questions, such as phenotype–genotype associa-
tions, and genome architecture, then whole genomes can
provide themeans to investigate these topics and also extract
different loci sets, such as RELEC, for estimating the phylogeny
of the group. When whole genomes are sequenced, RELEC
loci may be used as a preferred set that can be run as a whole
using intensive full Bayesian coalescent species tree methods
that are powerful at dealing with incomplete lineage sorting,
as we have done in this study.

Conclusion
The recent acceleration in the generation of full genomes has
allowed for the development of unique sets of markers that
can be tailored for particular research questions in nonmodel
organisms. RELEC is one such example of a set of loci primarily
intended to be capable of resolving difficult nodes in the tree
of life, focusing on maximizing phylogenetic signal while
maintaining orthology across evolutionary scales and remain-
ing computationally tractable for comprehensive phyloge-
netic analyses. In the future, choosing an appropriate
strategy for selecting sets of sequences to make reliable
gene trees will become increasingly important. As more
whole genomes are sequenced and published, our approach
to finding and utilizing long stretches of comparable coding
sequences can be used effectively to generate a set of reliable
gene trees. We look forward to future phylogenomic studies
that will assess the utility of RELEC loci at resolving difficult
nodes.

Materials and Methods

We generated and tested the set of RELEC markers for an
amniote data set under the following criteria: 1) Exons at least
1,500 bp in length (with one exception, OMG); 2) Rapidly
evolving with the raw percent divergence greater than or
equal to that of RAG1 for both deep and shallow splits (cal-
culated by comparing A. carolinensis with Gallus gallus and
Python molurus). RAG1 has shown utility for reconstructing
phylogenies at both deep and shallow levels (Groth and
Barrowclough 1999) and has become one of the most com-
monly used nuclear markers in vertebrates (Barker et al. 2004;
Townsend et al. 2004; Gruber et al. 2007; Hugall et al. 2007;
Fuchs et al. 2011; Portik et al. 2011; Pyron 2011; Gamble et al.
2012; Harrington and Near 2012; Gartner et al. 2013); 3)
Presence in all amniote groups (confirmed inmammals, birds,
and squamates with a few exceptions); and 4) Single copy,
with paralogs only allowed for duplications that predate the
common ancestor minimally of squamates (though in most
markers it predates the common ancestor of all amniotes).

We identified many of the RELEC loci by querying the
Ensembl database (Aken et al. 2017) for exons in A. caroli-

nensis and other genomes. However, annotation errors are
common on Ensembl especially for long exons (such as pre-
mature or incorrect boundaries or missing annotations) so
we individually considered each locus to assess correct
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annotation and other criteria. We gathered additional exons
by querying and inspecting all long mammalian exons on the
Orthomam database (Douzery et al. 2014) and cross compar-
ing the results on Ensembl for Anolis and across the amniote
tree using BLAST searches. For example, for the 43 RELEC
exons that are 4,000 bp and longer, 27 were annotated by
Ensembl on theAnolis genome and were easily identified, and
16 more were identified following searches on Orthomam
and were not originally found because they were missing
annotations or had errors on Ensembl. Using these methods,
we are confident that we have gathered all or nearly all single
copy exons that show this length and evolutionary rate and
are also present among amniotes.

To avoid issues of gene duplications, we limited the set of
loci in the RELEC data set to those that were present in all
amniote groups, and only included genes with known paral-
ogs if duplications occurred on very deep lineages (e.g., for all
mammals) and had beenmaintained.We also excluded some
exons that present high levels of repeats that could bias phy-
logenetic analyses (e.g., TTN). Unlike other rapidly evolving
regions of the genome that may mutate beyond recognition
over deep time scales, exons are much more readily main-
tained across distantly related organisms, likely due to their
direct functional role. For example, the major exons for the
rapidly evolving genes BRCA1 and EXPH5 can be aligned and
compared across all amniotes, whereas the intervening
introns have accumulated substantial indels (see www.
ensembl.org gene tree browser). After assembling the set of
loci, we checked for presence and proper annotation of
RELEC loci across six major tetrapod lineages using the
chicken, saltwater crocodile, painted turtle, Anolis, human,
and Xenopus genomes. We did this first by querying
Ensembl gene names to extract annotation information for
the longest exon. However, many genes did not have proper
names on Ensembl, and for these, we manually used TBlastN
searches on Ensembl to confirm presence. In these cases, we
noted poor annotations when the exon or gene was either
not annotated at all or had incorrect intron–exon boundaries,
and determined the length of unannotated exons by search-
ing for open reading frames surrounding the highest TBlastN
hit (supplementary table S4, Supplementary Material online).
The final RELEC data set includes 179 exons, representing 173
unique genes (6 genes with two exons each).

Squamate Genomes
We queried 15 published and 2 unpublished squamate
genomes to build the RELEC, UCE, and AHE data sets for
comparison in this study. Assembled genomes were down-
loaded from NCBI(1), GigaScience(2), or unpublished(3). This
includes the snakes Python molurus1 (Castoe et al. 2013), Boa
constrictor2 (Bradnam et al. 2013), Vipera berus1, Crotalus
horridus1, Crotalus mitchellii1 (Gilbert et al. 2014),
Deinagkistrodon acutus2 (Yin et al. 2016), Protobothrops
mucrosquamatus1 (Aird et al. 2017), Ophiophagus hannah1
(Vonk et al. 2013), Thamnophis sirtalis1 (Perry et al. 2018), and
Pantherophis guttatus1 (Ullate-Agote et al. 2014), and the
lizards Gekko japonicus1 (Liu et al. 2015), E. macularius2
(Xiong et al. 2016), C. ciliatus3, Christinus marmoratus3,

D. gracilis2 (Song et al. 2015), P. vitticeps2 (Georges et al.
2015), and A. carolinensis1 (Alföldi et al. 2011). At the time
of data acquisition, three more squamate species genomes
were available for Thamnophis elegans (Vicoso et al. 2013),
Sistrurus miliarus (Vicoso et al. 2013), and Sceloporus occiden-
talis (Genomic Resources Development Consortium et al.
2015), though due to short read lengths and/or missing
data, we chose not to use them (the purpose of these studies
was not to acquire the high coverage or long read lengths
needed for our purposes). The genomes of other squamates
were published after our analyses were completed
(Shinisaurus crocodilurus, Gao et al. 2017; Salvator merianae,
Roscito et al. 2018; Lacerta viridis and Lacerta bilineata, Kolora
et al. 2019; Varanus komodoensis, Lind et al. 2019; Zootoca
vivipara, Yurchenko et al. 2019) and we were not able to
include them. The genomes we used encompass several di-
vergent squamate lineages, but are primarily focused on
snakes and geckos. Since geckos represent the sister clade
to remaining squamates (Streicher and Wiens 2017), the
data set provides satisfactory depth for comparisons of the
different methods.

Data Generation and Alignments
We extracted and aligned sequences from the 17 genomes
using customized scripts and using similar (though slightly
adjusted) methods for each data set. To extract both the
RELEC and AHE loci from the genomes, we employed the
BLASTþ command line tools (Camacho et al. 2009) to build
local BLAST databases for each genome assembly. We devel-
oped the initial data set for the RELEC loci with the genome of
the gecko C. ciliatus. After confirming the translation frame
visually, we translated the sequences using the program
Geneious v9.0.4 (Kearse et al. 2012), and then used the
TBlastN command from the BLASTþ toolkit to search for
similar amino acid sequences in any frame in each genome.
This method allowed for proper identification and extraction
of orthologous exon regions even for rapidly evolving genes
and the most divergent lineages. For the AHE data set, we
searched the genomes using the 389 version 2 vertebrate loci
from Ruane et al. (2015). Since AHE markers include a com-
bination of coding and noncoding regions, and because there
is no detailed list of whichmarkers are associated with specific
genomic regions, we used the nontranslated BlastN search
algorithm for each AHE search sequence.

BLAST searches for highly divergent sequences often pro-
duce multiple segmented hits for a single locus, rather than
the entire length of the marker. In order to extract the entire
orthologous sequence for each locus, we designed a script,
Ortholog Assembly and Concatenation (OAC), in R v3.1.13 (R
Core Team 2016) to combine coordinates of sequences that
had more than one BLAST hit within close proximity on a
single assembled contig, and extract and align the new se-
quence with a flanking region that was later trimmed to the
initial query sequence (available at https://github.com/benr-
karin/RELEC). This ensured that the maximum hit sequence
length would be captured despite potential indels causing
segmentation of BLAST hits to the same contig. Though on
occasion some sequences were clearly split into multiple
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assembled contigs, we refrained from extracting the whole
sequence to eliminate the possibility of unintentionally cap-
turing paralogous sequences from different genomic regions.
We indexed the genome assemblies using SAMtools (Li et al.
2009), and extracted the sequences based on the combined
BLAST search coordinates for each marker with the faidx

command. We then aligned individually extracted sequences
by locus using MAFFT v7.130b (Katoh and Standley 2013),
allowing the program to automatically determine sequence
direction to accommodate for reversed sequences. All se-
quence alignments for RELEC and AHE were visually
inspected in Geneious to confirm successful sequence cap-
ture and manually trimmed to reduce ragged ends. We con-
ducted additional BLAST searches for any missing sequences,
and to confirm, we had captured the maximal sequence
length available in the genomes. We conducted further
BLAST searches of RELEC loci extracted from the C. ciliatus
genome against a combined transcriptome for C. ciliatus gen-
erated from six tissue types (eye, brain, tail, testis, ovary, whole
embryo). We found transcripts corresponding to all RELEC
loci in the transcriptome, confirming that RELEC genes are
actually transcribed into mRNA.

For RELEC, we allowed incomplete alignments with less
than the total 17 taxa for four exons: PKDREJ_B, which is
absent in gekkotans and D. gracilis, but is a very rapidly evolv-
ing and informativemarker that will be useful in shallow-scale
phylogenetic studies; TRANK1 exons 1 and 2, which are ab-
sent in the genomes ofO. hannah, T. sirtalis, and Pantherophis
guttatus, and partially deleted in V. berus; and NAIP, which is
absent from the P. vitticeps genome. For AHE, we only used
completely sampled 17-taxa alignments.

For the UCE data set, we followed the phyluce software
packagemanual (Faircloth 2016) using the providedAnolis 5k
probeset (available from https://github.com/faircloth-lab/
phyluce; last accessed November 24, 2019), and extracted a
flanking region of 300 bp for each UCE marker. This flanking
region is comparable to mean aligned sequence lengths gen-
erated in empirical studies (e.g., Crawford et al. 2015: 820 bp;
Grismer et al. 2016: 645 bp). For the UCE data set, we used a
complete matrix containing data for all 17 taxa for the main
analysis (1,517 loci), but also generated data sets for loci with
at least 15 taxa (additional 1,151 loci) and at least 9 taxa
(additional 741 loci) for comparison (see supplementary fig.
S8, Supplementary Material online, other results are compa-
rable to the complete set and are not shown).

We used reciprocal BLAST searches to assess overlap be-
tween data sets. We found that 17 AHE loci match UCE loci;
none of the RELEC loci matches any UCE loci; and 28 RELEC
loci match AHE loci (4 of which are from Wiens et al. 2012).
Though for these overlapping regions it is important to note
that RELEC targets the entire exon rather than a portion of it
or the flanking intron.

Phylogenetic Analyses
We conducted summary-coalescent species tree analyses us-
ing ASTRAL-III (Zhang et al. 2018) based on sets of 100 max-
imum likelihood bootstrap replicates generated on each locus
individually in RAxML v8.1.15 (Stamatakis 2014), and

specified all four of the gekkotans as the rooting taxa. We
chose the GTRGAMMAmodel for all analyses, as Stamatakis
(2015) suggests that other models may be inappropriate for
data sets with relatively few taxa such as this one. We also
generated gene trees for RELEC loci translated to amino acid
sequences in RAxML, allowing the program to choose the
model with the PROTGAMMAAUTO setting. We conducted
a final ASTRAL analysis on a combined data set of all AHE,
UCE, and RELEC loci (2,016 loci after excluding any overlap-
ping loci). We also conducted parallel analyses in IQTree
(Nguyen et al. 2015) allowing for automatic model selection
(Kalyaanamoorthy et al. 2017) and recovered nearly identical
results for gene tree and ASTRAL estimates (not shown).

Concatenated data sets and partition files were generated
using the perl program, BeforePhylo v0.9.0 (Zhu 2014), and
concatenatedmaximum likelihood trees were generated with
1,000 bootstrap replicates with RAxML, under the same root-
ing and model settings as the gene trees. To maintain con-
sistency across data sets, we partitioned the concatenated
analyses by each locus, without specifying different partitions
for codon positions in the RELEC data set. To improve com-
puting time, we ran the concatenated analyses on the CIPRES
Science Gateway (Miller et al. 2010).

We analyzed concordance and accuracy of the maximum
likelihood gene trees in R by incorporating functions from the
ape (Paradis et al. 2004) and phangorn (Schliep 2011) pack-
ages to compute the proportion of the highest scoring max-
imum likelihood trees in each data set that display a particular
node in the species tree. This is similar to the gene concor-
dance factor that can be estimated in IQTree (Minh et al.
2018) (results in supplementary table S3, Supplementary
Material online), but our technique uses a different rooting
method that allows for a proportional value to be calculated
at every node, whereas the concordance factor excludes some
nodes. We also examined the Robinson–Foulds (RF) distance
between the best scoring individual gene trees and the species
tree. RF distances quantify the accuracy of gene trees, with
values of 0 corresponding to an exact match, a value of 2
corresponding to one node difference, and so on. To examine
the accuracy of gene trees at a finer scale, we conducted the
same analysis restricted to the eight colubroid snakes in the
tree. We assessed the robustness of gene trees to correctly
build the species tree (using the data set-specific ASTRAL
species tree to reduce bias) by iteratively running ASTRAL
on randomly selected jackknife replicate bins of varying num-
bers of gene trees from two gene trees to the full number in
each data set using a python script provided by Daniel Portik.

We used the multispecies coalescent to estimate species
trees from the complete set of 179 RELEC loci using
StarBEAST2 (Ogilvie et al. 2017), part of the BEAST2 package
(Bouckaert et al. 2014). This is a new implementation of the
*BEAST method (Heled and Drummond 2010) but is consid-
erably faster and enables the use of dozens or hundreds of
loci.We used the analytical population size integration, with a
strict molecular clocks and general time reversible (GTR) plus
gamma model for each locus. We initiated two analyses for
50 million generations each with a pre burn-in of 1 million
generations, sampling every 5,000 generations. The program
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Tracer v1.7.1 (Rambaut et al. 2018) was used to visually assess
stationarity and convergence between runs and determine
the burn-in. The posterior distribution of post burn-in species
trees was visualized using DensiTree v2.2.2 (Bouckaert and
Heled 2014). BEAST analyses were conducted on a high per-
formance computer with 32 2.4GHz processing cores and
512 GB RAM running CentOS 7.

Summary Statistics
We computed general summary statistics (see supplementary
table S1, SupplementaryMaterial online) for eachmarker in R
using the packages ape (Paradis et al. 2004), phyloch (Heibl
2016), and adephylo (Jombart and Dray 2016). These included
the GC content across all sites, GC content at codon position
3 (GC3), average pairwise identity for alignments, proportion
of variable and parsimony informative sites, and raw pairwise
genetic distance between Gekko japonicus and A. carolinensis
as a rough relative measure of evolutionary rate (supplemen-
tary table S1, Supplementary Material online). We also calcu-
lated the number of segregating sites (supplementary fig. S5,
Supplementary Material online), and assessed the size and
width of alignment gaps (supplementary fig. S6,
Supplementary Material online).

Phylogenetic Informativeness and Substitution
Saturation
We profiled the phylogenetic informativeness (Townsend
2007) of each marker using the web-based tool PhyDesign
(L�opez-Gir�aldez and Townsend 2011), specifying the
DNArates algorithm. This method provides an estimate of
the relative power of each locus to resolve a given node in the
tree. The program requires a timetree as input, so we trans-
formed the output ASTRAL phylogeny (AHE, UCE, and
RELEC combined data set topology) into a timetree using
the ape package and ScalePhylo (Hunt 2011) script in
R. ScalePhylo allowed us to force a time-calibration on the
nodes of the tree based on input divergence dates, which we
acquired from the date estimate for each pair of taxa from
http://timetree.org/ (last accessed November 24, 2019)
(Hedges et al. 2015). We downloaded the output from the
PhyDesign web portal, and plotted the measures of phyloge-
netic informativeness for each data set separately in R to allow
for comparison between data sets. We visually examined sub-
stitution saturation in the RELEC loci by generating plots of
raw sequence divergence at divergence date estimates from
the http://timetree.org/ database. We used the output in R to
compare how maximum informativeness scales with align-
ment length, and also the time of maximum informativeness.
We also scaled the curves by alignment length in order to
assess the informativeness independent of length (results
shown in supplementary fig. S7, Supplementary Material
online).

Biological Processes
We sought to investigate if RELEC loci are subject to unique
biological processes that contribute to their rapid evolution
and maintenance of long exon length. We compared the
expression levels across human tissues using the transcript

abundance categorization of Fagerberg et al. (2014), and also
compared expression of RELEC genes relative to the back-
ground within individual tissue types. We searched the Swiss-
Prot database (http://www.uniprot.org; last accessed
November 24, 2019) for the number of GO terms associated
with each protein for Homo sapiens from any of the three GO
categories (biological process, molecular function, and cellular
component). This gives an approximation of the breadth of
functional utility for each protein, and may potentially influ-
ence the rate of molecular evolution. We also searched the
BioGRID database (http://thebiogrid.org; last accessed
November 24, 2019) for the number of unique protein inter-
actors associated with each protein in Homo sapiens, for
which the data are most extensive. Finally, we looked for
GO term statistical overrepresentation for human genes using
the web server for the PANTHER 14.1 classification system
(http://pantherdb.org; last accessed November 24, 2019), us-
ing Fisher’s exact test and a Bonferroni correction formultiple
testing.

Data Availability

Scripts, sequence alignments, and other resources for mam-
mals, birds, and squamates are available at https://github.
com/benrkarin/RELEC.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard
MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software plat-
form for Bayesian evolutionary analysis. PLoS Comput Biol.
10(4):e1003537.

Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I,
Boisvert S, Chapman JA, Chapuis G, Chikhi R, et al. 2013.
Assemblathon 2: evaluating de novo methods of genome assembly
in three vertebrate species. GigaScience 2(1):31.

Bragg JG, Potter S, Afonso Silva AC, Hoskin CJ, Bai BYH, Moritz C. 2018.
Phylogenomics of a rapid radiation: the Australian rainbow skinks.
BMC Evol Biol. 18(1):12.

Bragg JG, Potter S, Bi K, Moritz C. 2016. Exon capture phylogenomics:
efficacy across scales of divergence. Mol Ecol Resour.
16(5):1059–1068.

Brandley MC, Bragg JG, Singhal S, Chapple DG, Jennings CK, Lemmon
AR, Lemmon EM, Thompson MB, Moritz C. 2015. Evaluating the
performance of anchored hybrid enrichment at the tips of the tree
of life: a phylogenetic analysis of Australian Eugongylus group scincid
lizards. BMC Evol Biol. 15(1):62.

Breinholt JW, Kawahara AY. 2013. Phylotranscriptomics: saturated third
codon positions radically influence the estimation of trees based on
next-gen data. Genome Biol Evol. 5(11):2082–2092.

Brown JM, Thomson RC. 2017. Bayes factors unmask highly variable
information content, bias, and extreme influence in phylogenomic
analyses. Syst Biol. 66(4):517–530.

Bryson RW, Faircloth BC, Tsai WLE, McCormack JE, Klicka J. 2016. Target
enrichment of thousands of ultraconserved elements sheds new
light on early relationships within New World sparrows (Aves:
Passerellidae). Auk 133(3):451–458.

Buschiazzo E, Ritland C, Bohlmann J, Ritland K. 2012. Slow but not low:
genomic comparisons reveal slower evolutionary rate and higher
dN/dS in conifers compared to angiosperms. BMC Evol Biol. 12(1):8.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. 2009. BLASTþ: architecture and applications. BMC
Bioinformatics 10(1):421.

Castoe TA, de Koning APJ, Hall KT, Card DC, Schield DR, Fujita MK,
Ruggiero RP, Degner JF, Daza JM, Gu W, et al. 2013. The Burmese
python genome reveals the molecular basis for extreme adaptation
in snakes. Proc Natl Acad Sci U S A. 110(51):20645–20650.

Castoe TA, de Koning APJ, Kim H-M, GuW, Noonan BP, Naylor G, Jiang
ZJ, Parkinson CL, Pollock DD. 2009. Evidence for an ancient adaptive
episode of convergentmolecular evolution. Proc Natl Acad Sci U S A.
106(22):8986–8991.

Chamary JV, Parmley JL, Hurst LD. 2006. Hearing silence: non-neutral
evolution at synonymous sites in mammals. Nat Rev Genet.
7(2):98–108.

Chen MY, Liang D, Zhang P. 2015. Selecting question-specific genes to
reduce incongruence in phylogenomics: a case study of jawed ver-
tebrate backbone phylogeny. Syst Biol. 64(6):1104–1120.

Chen MY, Liang D, Zhang P. 2017. Phylogenomic resolution of the phy-
logeny of laurasiatherian mammals: exploring phylogenetic signals
within coding and noncoding sequences. Genome Biol Evol.
9(8):1998–2012.

Chiari Y, Cahais V, Galtier N, Delsuc F. 2012. Phylogenomic analyses
support the position of turtles as the sister group of birds and
crocodiles (Archosauria). BMC Biol. 10(1):14.

Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the
coalescent model. Bioinformatics 30(23):3317–3324.

Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K,
Glenn TC. 2012. More than 1000 ultraconserved elements provide
evidence that turtles are the sister group of archosaurs. Biol Lett.
8(5):783–786.

Crawford NG, Parham JF, Sellas AB, Faircloth BC, Glenn TC, Papenfuss TJ,
Henderson JB, Hansen MH, Simison WB. 2015. A phylogenomic
analysis of turtles. Mol Phylogenet Evol. 83:250–257.

Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic
inference and the multispecies coalescent. Trends Ecol Evol.
24(6):332–340.

Dickel DE, Ypsilanti AR, Pla R, Zhu Y, Barozzi I, Mannion BJ, Khin YS,
Fukuda-Yuzawa Y, Plajzer-Frick I, Pickle CS, et al. 2018.
Ultraconserved enhancers are required for normal development.
Cell 172(3):491–499.

Dornburg A, Townsend JP, Friedman M, Near TJ. 2014. Phylogenetic
informativeness reconciles ray-finned fish molecular divergence
times. BMC Evol Biol. 14(1):169.

Dornburg A, Townsend JP, Wang Z. 2017. Maximizing power in phylo-
genetics and phylogenomics: a perspective illuminated by fungal big
data. In: Townsend JP, Wang Z, editors. Fungal Phylogenetics and
Phylogenomics. Cambridge (MA): Academic Press. p. 1–47.

Douzery EJP, Scornavacca C, Romiguier J, Belkhir K, Galtier N, Delsuc F,
Ranwez V. 2014. OrthoMaM v8: a database of orthologous exons
and coding sequences for comparative genomics in mammals. Mol
Biol Evol. 31(7):1923–1928.

Edwards SV, Cloutier A, Baker AJ. 2017. Conserved nonexonic elements:
a novel class of marker for phylogenomics. Syst Biol.
66(6):1028–1044.

Edwards SV, Xi Z, JankeA, Faircloth BC,McCormack JE, Glenn TC, Zhong
B, Wu S, Lemmon EM, Lemmon AR, et al. 2016. Implementing and
testing the multispecies coalescent model: a valuable paradigm for
phylogenomics. Mol Phylogenet Evol. 94:447–462.

Edwards SV. 2009. Is a new and general theory of molecular systematics
emerging? Evolution 63:1–19.

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg
J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al. 2014.
Analysis of the human tissue-specific expression by genome-wide
integration of transcriptomics and antibody-based proteomics.Mol
Cell Proteomics. 13(2):397–406.

Faircloth BC. 2016. PHYLUCE is a software package for the analysis of
conserved genomic loci. Bioinformatics 32(5):786–788.

Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT,
Glenn TC. 2012. Ultraconserved elements anchor thousands of

Optimizing Phylogenomics with Rapidly Evolving Long Exons . doi:10.1093/molbev/msz263 MBE

919

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

-a
b
s
tra

c
t/3

7
/3

/9
0
4
/5

6
1
8
7
2
9
 b

y
 g

u
e

s
t o

n
 0

3
 M

a
rc

h
 2

0
2
0



genetic markers spanning multiple evolutionary timescales. Syst Biol.
61(5):717–726.

Figuet E, Ballenghien M, Romiguier J, Galtier N. 2014. Biased gene con-
version and GC-content evolution in the coding sequences of rep-
tiles and vertebrates. Genome Biol Evol. 7:240–250.

Fuchs J, Chen S, Johnson JA, Mindell DP. 2011. Pliocene diversification
within the South American Forest falcons (Falconidae: Micrastur).
Mol Phylogenet Evol. 60(3):398–407.

Fujita MK, Edwards SV, Ponting CP. 2011. The Anolis lizard genome: an
amniote genome without isochores. Genome Biol Evol. 3:974–984.

Galtier N, Gouy M. 1998. Inferring pattern and process: maximum-
likelihood implementation of a nonhomogeneous model of DNA
sequence evolution for phylogenetic analysis. Mol Biol Evol.
15(7):871–879.

Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM. 2012.
Repeated origin and loss of adhesive toepads in geckos. PLoS ONE
7:e39429.

Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, Xiong Z, Wang J, Yang H,
Zhang G. 2017. Sequencing, de novo assembling, and annotating the
genome of the endangered Chinese crocodile lizard Shinisaurus
crocodilurus. GigaScience 6(7):1–6.

Gartner GEA, Gamble T, Jaffe AL, Harrison A, Losos JB. 2013. Left-right
dewlap asymmetry and phylogeography of Anolis lineatus on Aruba
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