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Abstract—This paper treats point-to-point, multiple access and
random access lossless source coding in the finite-blocklength
regime. A random coding technique is developed, and its power
in analyzing the third-order coding performance is demonstrated
in all three scenarios. Results include a third-order-optimal
characterization of the Slepian-Wolf rate region and a proof
showing that for dependent sources, the independent encoders
used by Slepian-Wolf codes can achieve the same third-order-
optimal performance as a single joint encoder. The concept of
random access source coding, which generalizes the multiple
access scenario to allow for a subset of participating encoders that
is unknown a priori to both the encoders and the decoder, is intro-
duced. Contributions include a new definition of the probabilistic
model for a random access-discrete multiple source, a general
random access source coding scheme that employs a rateless
code with sporadic feedback, and an analysis demonstrating via
a random coding argument that there exists a deterministic code
of the proposed structure that simultaneously achieves the third-
order-optimal performance of Slepian-Wolf codes for all possible
subsets of encoders.

I. INTRODUCTION

This paper studies the finite-blocklength fundamental limits
of fixed-length lossless source coding in three scenarios:

1) Point-to-point: A single source is compressed by a single
encoder and decompressed by a single decoder.

2) Multiple access: Sources in a fixed set of sources are
compressed by independent encoders and decompressed
by a joint decoder.

3) Random access: Sources in an arbitrary subset of possible
sources are compressed by independent encoders and
decompressed by a joint decoder.

Following [1]–[4], we allow a non-vanishing error probability
and study refined asymptotics of the achievable rates in
encoding blocklength n.

In point-to-point almost-lossless source coding, non-
asymptotic bounds and asymptotic expansions of the minimum
achievable rate appear in [1], [3], [5]–[7]. In [3], Kontoyian-
nis and Verdú analyze the optimal code to give a third-
order-optimal characterization of the minimum achievable
rate R∗(n, ε) at blocklength n and error probability ε. For a
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finite-alphabet stationary memoryless source with single-letter
distribution PX , entropy H(X), and varentropy V (X) > 0,

R∗(n, ε) ≈ H(X)+

√
V (X)

n
Q−1(ε)− log n

2n
, (1)

with any higher-order term bounded by O( 1
n ); here Q−1(·)

denotes the complementary Gaussian distribution function.
In multiple access lossless source coding, also known as

Slepian-Wolf (SW) source coding [8], the object of interest
is the set of achievable rate tuples, known as the rate region.
The best prior asymptotic expansion of the SW rate region for
a stationary memoryless multiple source is the second-order-
optimal rate region, established independently in [9] and [10].
In [9], Tan and Kosut present a vector-form characterization
of the SW rate region, which takes a form similar to the first
two terms of (1). In this case, a quantity known as the entropy
dispersion matrix plays a role similar to the varentropy V (X).
Their result suggests that the third-order term is bounded from
above by +O( log n

n ) and from below by −O( log n
n ).

In this paper, we take a new approach to point-to-point
almost-lossless source coding, combining random code design
and maximum likelihood decoding to obtain a source coding
counterpart to the random-coding union (RCU) bound from
channel coding [2, Th. 16]. This new achievability bound
(Theorem 1) yields a tight asymptotic expansion of R∗(n, ε)
that achieves the first three terms of (1). The fact that our
asymptotic expansion is achieved by a random code rather
than the optimal code from [3] demonstrates that there is no
loss (up to the third-order term) due to random code design,
which implies that there are many good codes. Furthermore,
our RCU bound can be generalized to source coding scenarios
where the optimal code is not known; this is crucial since
knowledge of the optimal code in the case of point-to-point
almost-lossless source coding is quite exceptional.

While finding optimal SW codes is intractable in general,
our derivation of the source coding RCU bound generalizes
to SW source coding. The resulting achievability bound and a
new converse based on composite hypothesis testing together
yield the third-order-optimal rate region for SW source coding
on a stationary memoryless multiple source (Theorem 2). Our
result reveals a third-order term of − log n

2n that is independent
of the number of encoders. This tightens the +O( log n

n )
third-order bound from [9], which grows linearly with the
source alphabet size and exponentially with the number of
encoders. Our third-order-optimal characterization implies that



for dependent sources, the SW code’s independent encoders
suffer no loss up to the third-order performance relative to
joint encoding with a point-to-point code.

The prior information theory literature studies multiple ac-
cess source coding for scenarios where the number of encoders
is fixed and known. In applications like sensor networks,
the internet of things, and random access communication,
however, the number of transmitters communicating with a
given access point may be unknown or time-varying. The
information theory of random access channel coding is in-
vestigated in papers such as [11]–[13]. Here, we introduce the
notion of random access (RA) source coding, which extends
multiple access source coding to scenarios where the set of
active encoders is unknown a priori.

To begin our study, we first establish a probabilistic model
for the object being compressed in RA source coding, here
called the random access-discrete multiple source (RA-DMS).
We then develop a robust coding scheme to achieve reli-
able compression of an arbitrary subset of the sources even
when a priori knowledge of that subset is unavailable to the
encoders and the decoder. Since the SW rate region varies
with the source set, one might expect the encoders to vary
their encoding strategy accordingly. In this case, however, the
encoders do not know the source set, so we instead employ a
rateless code. The encoders transmit their codewords symbol-
by-symbol until the decoder informs them all to stop, with
the decoder selecting a decoding time from a predetermined
collection of potential decoding times based on the encoder
activity pattern it observes in the network. Single-bit feedback
from the decoder at each potential decoding time tells all
encoders whether or not to continue transmitting.

We demonstrate (Theorem 3) that there exists a single de-
terministic code that simultaneously achieves, for all possible
sets of active encoders, the third-order-optimal performance of
SW codes. Since traditional random coding arguments do not
demonstrate the existence of a single deterministic code that
meets multiple independent constraints, prior code designs for
multiple-constraint scenarios (see, for example, [14]) employ
randomness shared between independent communicators. We
here propose an alternative to that approach, deriving a refined
random coding argument (Lemma 1) that demonstrates the
existence of a single deterministic code that meets multiple
constraints; this result eliminates the need for shared random-
ness in a variety of communication scenarios.

The paper is organized in the following way. In the rest
of this section, we define notation. Section II, III, and IV
are devoted to almost-lossless (point-to-point) source coding,
SW (multiple access) source coding, and RA source coding,
respectively. Except where noted, all source coding results
presented here apply to both finite and countably infinite
source alphabets. Further details appear in [15].

For any positive integer i, let [i] , {1, . . . , i}. We use
upper case for random variables (e.g., X), lower case for
scalar values (e.g., x), and both bold face and superscripts
for vectors (e.g., x = xn, and 1 = (1, . . . , 1)). Given vector
u ∈ Rd and set S ⊂ Rd, u+S denotes the Minkowski

sum of {u} and S . Inequalities between two vectors of the
same dimension indicate elementwise inequalities. Given a
vector xn and an ordered subset of its indices T ⊆ [n], we
define xT , (xi, i ∈ T ) ∈ R|T |. For any finite set A,
P(A) represents the power set of A excluding the empty set,
giving P(A) , {T : T ⊆ A}\∅. For functions u(n) and
f(n), u(n) = O(f(n)) if there exist c, n0 ∈ R+ such that
0 ≤ u(n) ≤ cf(n) for all n > n0. For a multi-dimensional
function u : N → Rd, u(n) = O(f(n))1 for some function
f(n) indicates that ui(n) = O(f(n)) for all i ∈ [d]. All uses
of ‘log’ and ‘exp’ employ an arbitrary common base, which
determines the information unit.

Given an ordered set T ⊂ N, let PXT be a distribution
defined on countable alphabet XT . For any A,B ⊆ T with
A∩B = ∅ and any (xA,xB) ∈ XA×XB, the information and
conditional information are defined as

ı(xA) , log
1

PXA(xA)
(2)

ı(xA|xB) , log
1

PXA|XB(xA|xB)
. (3)

The corresponding (conditional) entropy, varentropy, and third
centered moment of information are defined by, respectively,

H(XA) , E [ı(XA)] (4)

H(XA|XB) , E [ı(XA|XB)] (5)

V (XA) , Var [ı(XA)] (6)

V (XA|XB) , Var [ı(XA|XB)] (7)

T (XA) , E
[
|ı(XA)−H(XA)|3

]
(8)

T (XA|XB) , E
[
|ı(XA|XB)−H(XA|XB)|3

]
. (9)

II. ALMOST-LOSSLESS SOURCE CODING

Definition 1 (Almost-Lossless Source Code). An (M, ε) code
for a random variable X with alphabet X comprises an encod-
ing function f : X → [M ] and a decoding function g : [M ]→
X such that the error probability P [g(f(X)) 6= X] ≤ ε.

Definition 2 (Block Almost-Lossless Source Code). A code
for a random vector Xn defined on Xn is called an (n,M, ε)
code.

Definition 3 (Minimum Achievable Rate). The minimum code
size and rate achievable at blocklength n and error probability
ε are defined by, respectively,

M∗(n, ε) = min {M : ∃ (n,M, ε) code} (10)

R∗(n, ε) =
1

n
logM∗(n, ε). (11)

Our new non-asymptotic achievability bound given in The-
orem 1, stated next, is derived using i.i.d. uniform random
codeword generation and maximum likelihood decoding.

Theorem 1 (RCU Bound). There exists an (M, ε) code for
discrete random variable X such that

ε ≤ E
[

min

{
1,

1

M
E
[

exp
(
ı(X̄)

)
1{ı(X̄) ≤ ı(X)}|X

]}]
,

(12)



where PXX̄(a, b) = PX(a)PX(b) for all a, b ∈ X .

Particularizing Theorem 1 to a stationary memoryless
source with single-letter distribution PX satisfying V (X) > 0
and T (X) < ∞ and invoking [2, Lemma 47] and the Berry-
Esseen inequality gives an asymptotic achievabability bound
on R∗(n, ε) that is identical to (1) in its first three terms.

III. SLEPIAN-WOLF SOURCE CODING

For notational brevity, we present our analysis on SW source
coding for two encoders. All definitions and results generalize
to scenarios with multiple encoders. (See [15].)

Definition 4 (SW Code). An (M1,M2, ε) SW code for a pair
of random variables (X1, X2) defined on X1×X2 comprises
encoding functions f1 : X1 → [M1] and f2 : X2 → [M2] and
a decoding function g : [M1]× [M2] → X1×X2 with error
probability P[g(f1(X1), f2(X2)) 6= (X1, X2)] ≤ ε.

Definition 5 (Block SW Code). A SW code for a pair of
random vectors (Xn

1 , X
n
2 ) defined on Xn

1 ×Xn
2 is called an

(n,M1,M2, ε) SW code.

Definition 6 ((n, ε)-Rate Region). A rate pair (R1, R2) is
(n, ε)-achievable if there exists an (n,M1,M2, ε) SW code
with R1 = 1

n logM1 and R2 = 1
n logM2. The (n, ε)-rate

region R∗(n, ε) is the set of (n, ε)-achievable rate pairs.

Let Z be a zero-mean Gaussian random vector in Rd with
covariance matrix V. Define set

Qinv(V, ε) , {z ∈ Rd : P[Z ≤ z] ≥ 1−ε} ⊂ Rd. (13)

For any ordered set T ⊂ N, any distribution PXT defined on
XT , and any xT ∈ XT , define

(
2|T |−1

)
-dimensional vectors

ıP(T )(xT ) ,
(
ı
(
xA|xT \A

)
, A ∈ P(T )

)
(14)

HP(T ) , E
[
ıP(T )(XT )

]
, (15)

and
(
2|T |−1

)
×
(
2|T |−1

)
matrix

VP(T ) , Cov
[
ıP(T )(XT )

]
. (16)

VP(T ) is known as the entropy dispersion matrix (see [9,
Def. 7]). For any vector RT ∈ R|T |, define the

(
2|T |−1

)
-

dimensional vector of its partial sums as

RP(T ) ,

(∑
i∈A

Ri, A ∈ P(T )

)
. (17)

Finally, define sets

R∗in,T (n, ε) ,

{
RT ∈ R|T | :

RP(T ) ∈ HP(T ) +
Qinv

(
VP(T ), ε

)
√
n

− log n

2n
1+O

(
1

n

)
1

}
(18)

R∗out,T (n, ε) ,

{
RT ∈ R|T | :

RP(T ) ∈ HP(T ) +
Qinv

(
VP(T ), ε

)
√
n

− log n

2n
1−O

(
1

n

)
1

}
.

(19)

Our main result for SW source coding is presented below
for two encoders.

Theorem 2 (Third-Order-Optimal SW Rate Region). Consider
a pair of stationary memoryless sources with single-letter joint
distribution PX1X2

satisfying

(a.1) V (X1|X2) > 0, V (X2|X1) > 0, V (X1, X2) > 0
(a.2) T (X1|X2) <∞, T (X2|X1) <∞, T (X1, X2) <∞.

For any 0 < ε < 1, the (n, ε)-rate region R∗(n, ε) satisfies

R∗in,[2](n, ε) ⊆ R∗(n, ε) ⊆ R∗out,[2](n, ε). (20)

The proof of Theorem 2 applies an RCU bound to prove
SW achievability and composite hypothesis testing with the
asymptotics from [16] to establish a new converse.

When X1 and X2 are dependent, Theorem 2 implies that a
SW code operating at rate point (R1, R2) on the boundary of
R∗(n, ε) achieves a sum rate that is equal (up to the third-order
term) to the minimum achievable rate of a point-to-point code
applied to vector source (Xn

1 , X
n
2 ) provided that R1 < H(X1)

and R2 < H(X2).

IV. RANDOM ACCESS SOURCE CODING

Associate each encoder with a source from some fixed set
of sources. In the RA source coding scenario, each encoder
chooses whether to be active or not; only sources associated
with the active encoders are compressed. We here establish the
probabilistic model for the object being compressed in this sce-
nario. Let K <∞ be the maximal number of active encoders
in the network and T ∈ P([K]) be an arbitrary ordered set.

Definition 7 (RA-DMS). An RA-DMS is a DMS where an
unknown subset of sources is compressed. It is specified by
joint distribution PX[K]

such that when a subset of encoders
indexed by T is active, the source distribution is the marginal

PXT (xT ) =
∑

x[K]\T ∈X[K]\T

PX[K]
(x[K]), ∀xT ∈ XT . (21)

We propose a communication scheme in the RA source
coding scenario in which communication occurs in epochs.
At the beginning of each epoch, each of the K encoders
independently chooses whether to be active or not and retains
its activity state until the end of the epoch. As a result, the set
of active encoders T in a given epoch is fixed. In an epoch,
each active encoder i ∈ T observes only its own source output
Xi from a countable alphabet Xi and independently maps it to
a codeword consisting of a sequence of code symbols drawn
from code symbol alphabet [Qi]. All of the |T | codewords are
sent to the decoder symbol-by-symbol simultaneously. Since
the set T of active encoders is unknown a priori, the encoder
behavior cannot vary with it. The decoder, however, sees T
and hence decides a time mT , called the decoding blocklength,
at which it simultaneously decodes all the partial codewords it
has received. The collection of potential decoding blocklengths
M , (mT : T ∈ P([K])) is part of the code design and is
known to all of the encoders and the decoder.



Fig. 1: Coding scheme in one epoch where the active encoder set
T = [k].

Figure 1 illustrates our coding scheme in one epoch. At
decoding blocklength mT , the decoder reconstructs the |T |-
dimensional source vector XT only from the first mT code
symbols sent from each active encoder and immediately tells
those encoders to stop sending code symbols. In order to
accomplish this termination of transmission, we let the decoder
broadcast a single-bit acknowledgment (ACK) to all encoders
at each time m in the set {m ∈M : m ≤ mT }. For each
m < mT , the decoder sends a “0” to indicate that it is not
yet able to decode; in this case, the encoders keep sending
code symbols. At time mT , the decoder sends a “1” to signal
the end of one epoch and the start of the next. To avoid
wasting time in an epoch with no active encoders, the decoder
also sends an ACK at time m∅ = 1 to signal whether (“0”)
or not (“1”) there is any active encoder. As a result, when
the active encoder set is T , the encoders only need to tune
in to receive ACKs at the predetermined times in the set{
m ∈M : m ≤ mT

}
instead of listening to the feedback

channel constantly. Given any possible set of active encoders,
this scheme uses at most 2K bits of feedback.

For the coding scheme described above, we define the
following rateless code that can be employed in each epoch to
accommodate any nonempty subset of active encoders. Define(
2K−1

)
-dimensional vectors

εP([K]) , (εT , T ∈ P([K])) (22)

mP([K]) , (mT , T ∈ P([K])) (23)

and the maximal decoding blocklength

mmax , max {mT : T ∈ P([K])} . (24)

Definition 8 (Random Access Source Code (RASC)). An(
mP([K]),Q[K], εP([K])

)
RASC for an RA-DMS with source

alphabet X[K] comprises a collection of encoding functions

fi : Xi → [Qi]
mmax , i ∈ [K], (25)

where fi is the encoding function employed by encoder i, and
a collection of decoding functions

gT :
∏
i∈T

[Qi]
mT → XT , T ∈ P([K]), (26)

where gT is the decoding function used when the active
encoder set is T , such that for each T ∈ P([K]), source

Fig. 2: The relationship between decoding blocklength mT , code
symbol alphabet sizes (Q1, Q2), and source coding rate vector RT ,
illustrated for T = [2].

vector XT is decoded at time mT with error probability
P
[
gT
(
fi(Xi)[mT ], i ∈ T

)
6= XT

]
≤ εT . Here, fi(xi)[mT ]

represents the first mT code symbols of codeword fi(xi).

For each set of active encoders T , the RASC reduces to a(
(QmT

i , i ∈ T ), εT
)

SW code (see Definition 4) with a finite
number |{m ∈M : m ≤ mT }| of feedback bits. However,
the RASC is one code that adopts a prefix structure (i.e.,
for each xi ∈ Xi, fi(xi)[mT ′ ] is a prefix of fi(xi)[mT ]

if mT ′ < mT ) and satisfies the error constraints for all
T ∈ P([K]) simultaneously.

Definition 9 (Block RASC). An RASC for an RA-DMS with
source alphabet Xn

[K] is called an
(
n,mP([K]),Q[K], εP([K])

)
RASC.

Definition 10 (n-Valid Rate Collection). A collection of rate
vectors (RT )T ∈P([K]), each indexed by its active encoder set
T , is n-valid if there exists a tuple

(
mP([K]),Q[K]

)
such that

RT =
1

n
(mT logQi, i ∈ T ) , ∀ T ∈ P([K]). (27)

Definition 10 reflects a key fact in the RASC design: while
the decoding blocklength mT can be chosen independently for
each T , the code symbol alphabet sizes Q[K] are fixed and do
not vary with the active encoder set. Thus, the rate vectors for
different values of T are coupled as illustrated in Figure 2.

Definition 11 (
(
n, εP([K])

)
-Rate Set). An n-valid rate collec-

tion (RT )T ∈P([K]) is
(
n, εP([K])

)
-achievable if there exists

an
(
n,mP([K]),Q[K], εP([K])

)
RASC. The

(
n, εP([K])

)
-rate

set R∗
(
n, εP([K])

)
is the set of

(
n, εP([K])

)
-achievable rate

collections.

Theorem 3 presents our third-order-optimal characterization
of the

(
n, εP([K])

)
-rate set. Define sets

R∗in
(
n, εP([K])

)
,
{
n-valid (RT )T ∈P([K]) :

RT ∈ R∗in,T (n, εT ), ∀ T ∈ P([K])
}

(28)

R∗out

(
n, εP([K])

)
,
{
n-valid (RT )T ∈P([K]) :

RT ∈ R∗out,T (n, εT ), ∀ T ∈ P([K])
}
, (29)

where R∗in,T (n, ε) and R∗out,T (n, ε) are the third-order bound-
ing SW sets for source distribution PXT (see (18) and (19)).



Theorem 3 (Third-Order-Optimal Performance of RASC).
For any K <∞, consider a stationary memoryless RA-DMS
specified by single-letter joint distribution PX[K]

that satisfies

(b.1) V (XA|XT \A) > 0, ∀A ⊆ T ⊆ [K], A, T 6= ∅
(b.2) T (XA|XT \A) <∞, ∀A ⊆ T ⊆ [K], A, T 6= ∅.

For any 0 < εP([K]) < 1, the
(
n, εP([K])

)
-rate set satisfies

R∗in
(
n, εP([K])

)
⊆ R∗

(
n, εP([K])

)
⊆ R∗out

(
n, εP([K])

)
.

(30)

It follows from Theorem 3 that given any Q[K], we can
always find an mP([K]) that yields a collection of rate vectors
where each rate vector RT for T ∈ P([K]) gives a point
on the boundary of the third-order-optimal SW rate region
corresponding to T . Each Q[K] determines one collection
of such boundary points. Therefore, on a class of stationary
memoryless RA-DMSs that satisfy (b.1)-(b.2), our rateless
coding scheme, which is agnostic to the set of active encoders
a priori, is able to perform as well (up to the third order
term) as a collection of SW codes with the same code symbol
alphabets, where each SW code is optimally designed for a
known active encoder set T ∈ P([K]).

An RASC with Qi = Q for all i ∈ [K] operates at
the symmetrical rate point for every T ∈ P([K]). If the
source distribution PX[K]

is permutation-invariant and satisfies
P
[⋃

i,j∈[K], i 6=j{Xi = Xj}
]
< 1, we can significantly reduce

the complexity of the code design by employing identical en-
coding for all encoders and identity-blind decoding (see [15]).

A. Converse Proof of Theorem 3
When analyzing the converse of the RASC, we relax the

constraints by allowing prior knowledge of the active encoder
set and exactly 2K bits of feedback. We show that any constant
bits of feedback does not change the SW rate region in the
first three terms. Thus, we obtain the converse for the RASC
from the converse for the SW code for each T ∈ P([K]).

B. Achievability Proof of Theorem 3
We first analyze rate collections that are

(
n, εP([K])

)
-

achievable when the encoders and decoder share common
randomness used to generate a random code. Since proving
the existence of a random code ensemble with expected error
probabilities satisfying all error constraints does not guarantee
the existence of a single deterministic code satisfying those
constraints simultaneously, we require a new approach.

Lemma 1 below bounds the probability (with respect to
a random code ensemble) that the error probability of a
randomly chosen code exceeds a certain threshold.

Lemma 1. Let C be any class of codes. For any code c ∈ C,
let Pe(c) denote the error probability associated with code c,
and let

ε∗(C) , min
c∈C

Pe(c) (31)

denote the error probability of the best code in C. Then any
random code ensemble C defined over C satisfies

P [Pe(C) > ε] ≤ E [Pe(C)]−ε∗(C)
ε−ε∗(C)

, ∀ ε > ε∗(C). (32)

Let Pe,T (c) denote the error probability of RASC code
c provided that the active encoder set is T , for each T ∈
P([K]). When applying Lemma 1, we use our bound on
each E[Pe,T (C)] and the minimal error probability of the
corresponding SW code at a given choice of mP([K]) and
Q[K] to evaluate the probability

P
[⋃

T ∈P([K]) {Pe,T (C) > εT }
]

(33)

that a randomly drawn RASC C has error probability Pe,T (C)
greater than εT for some T . We show that for any Q[K], with
a choice of mP([K]) such that

mT = min
{
m :

1

n
(m logQi, i ∈ T ) ∈ R∗in,T (n, εT )

}
(34)

for each T ∈ P([K]), we can bound the probability of
each event in the union in (33) from above by 2−K , which
makes (33) strictly less than 1, implying the existence of a
deterministic

(
n,mP([K]),Q[K], εP([K])

)
RASC.
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