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ABSTRACT: Generalized Kohn−Sham density functional theory
is a popular computational tool for the ground state of extended
systems, particularly within range-separated hybrid (RSH) func-
tionals that capture the long-range electronic interaction.
Unfortunately, the heavy computational cost of the nonlocal
exchange operator in RSH-DFT usually confines the approach to
systems with at most a few hundred electrons. A significant
reduction in the computational cost is achieved by representing the
density matrix with stochastic orbitals and a stochastic
decomposition of the Coulomb convolution (J. Phys. Chem. A
2016, 120, 3071). Here, we extend the stochastic RSH approach to excited states within the framework of linear-response
generalized Kohn−Sham time-dependent density functional theory (GKS-TDDFT) based on the plane-wave basis. As a validation of
the stochastic GKS-TDDFT method, the excitation energies of small molecules N2 and CO are calculated and compared to the
deterministic results. The computational efficiency of the stochastic method is demonstrated with a two-dimensional MoS2 sheet
(∼1500 electrons), whose excitation energy, exciton charge density, and (excited state) geometric relaxation are determined in the
absence and presence of a point defect.

I. INTRODUCTION

Understanding, predicting, and ultimately controlling excited-
state behavior are central to diverse chemical, molecular, and
material problems, including photovoltaics, light-emitting
devices, photocatalysis, photosynthesis, plasmonics, molecular
electronics, and biosensors. Nowadays, time-dependent density
functional theory (TDDFT)1,2 has become one of the most
powerful tools to probe the electronic structure and optical
excitations, balancing computational accuracy and efficiency. In
particular, linear-response TDDFT has been widely employed
to compute the excitation energy, ionic force, and nonadiabatic
coupling of excited states in molecular- and solid-state
materials.3−15

Exchange−correlation (XC) functionals play a critical role in
both DFT and TDDFT. It is well-known that semi-local XC
functionals, such as the generalized-gradient approximation
(GGA) and the local density approximation, do not accurately
predict excited-state properties in extended systems because of
the incorrect description of long-range electron−electron and
electron−hole interaction.16−18 In contrast, generalized
Kohn−Sham (GKS)19,20 DFT and TDDFT methods with a
nonlocal exchange interaction (hybrid functionals)21,22 have
been shown to yield accurate one- and two-particle excitations,
for both molecular and extended systems.23−29 Note that here,
GKS refers specifically to the inclusion of explicit exchange but
not to the use of mixed-spin orbitals.

The majority of existing GKS-TDDFT codes uses atom-
centered (AO) basis sets with target applications in molecular
chemistry.30−32 The most important advantage of AO bases is
that hybrid functionals are readily computed with short-range
AOs; the scaling of operating with a nonlocal exchange is
O(N2) in a local basis (but with a possibly large prefactor,
depending on the AO basis and its degree of localization). In
contrast, a plane-wave basis is a natural choice for periodic and
extended systems, thanks to its simplicity and completeness. In
addition, it is free of Pulay forces that plague AO basis
methods. The drawback of plane waves is that hybrid
functionals are computationally demanding because the
nonlocal exchange is obtained from the density matrix rather
than the density, increasing the scaling from O(N2 log N) in
KS-TDDFT to O(N3 log N) in GKS-TDDFT.
To alleviate the cost of hybrid functionals, one can unitarily

transform all occupied orbitals into spatially localized
ones.33−35 The nonlocal exchange potential and the corre-
sponding exchange energy are then calculated efficiently with
the localized orbitals.36−38 Recently, Lin has introduced an
adaptively compressed exchange operator with a low rank that

Received: November 11, 2019
Published: January 3, 2020

Articlepubs.acs.org/JCTC

© 2020 American Chemical Society
1064

https://dx.doi.org/10.1021/acs.jctc.9b01121
J. Chem. Theory Comput. 2020, 16, 1064−1072

D
ow

nl
oa

de
d 

vi
a 

C
A

LI
FO

R
N

IA
 S

TA
TE

 U
N

IV
 N

O
R

TH
R

ID
G

E 
on

 M
ay

 8
, 2

02
0 

at
 0

5:
40

:3
5 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xu+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gang+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roi+Baer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eran+Rabani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Neuhauser"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.9b01121&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01121?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01121?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01121?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01121?fig=abs1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01121?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf


significantly reduces the computational cost of nonlocal
exchange.39 These methods work well in GKS-DFT, as it
involves only the occupied orbitals.
Here, we extend the recently developed stochastic orbital

method to efficiently describe excited states in plane-wave
based linear-response GKS-TDDFT, by significantly reducing
the cost of the exchange operator. With the stochastic
approach, the numerically expensive explicit-exchange GKS
Hamiltonian becomes, for large systems, as cheap as a local-
potential KS Hamiltonian.40 Recently, a real time GKS-
TDDFT with a stochastic hybrid functional (the same
functional used here) was developed and applied to calculate
absorption spectra for large finite phosphorene sheets
containing up to 2000 electrons.41 Furthermore, stochastic
KS-DFT,42 stochastic GW,43 and stochastic Bethe−Salpeter
equation (BSE)44 were successfully applied to systems with
thousands of electrons.
The present work merges the efficiency of the stochastic

approach in describing hybrid functionals with the efficiency of
frequency-based TDDFT in describing low-frequency excita-
tions. Specifically, we reformulate plane-wave based linear-
response GKS-TDDFT by using a stochastic representation of
hybrid functionals. We concentrate on long-range-separated
hybrid (RSH) functionals with an optimally tuned range-
separation parameter.45−49 In Section II, we first present GKS-
TDDFT with a deterministic RSH functional. The stochastic
formulation of the RSH functional is introduced. Then, we
briefly analyze the cost saving with stochastic GKS-TDDFT.
Lastly, we present the implementation of the projector
augmented-wave (PAW) pseudopotential50,51 and the required
modification of the stochastic exchange formula. In Section III,
the method is validated for two small molecules, N2 and CO,
and is then applied to a two-dimensional (2D) MoS2 sheet
with almost 1500 electrons. Finally, we conclude in Section IV.

II. METHODOLOGY
We only consider the Γ-point in the Brillouin zone, where we
use real KS orbitals. In the following, we use the indices i, j, k ...
to label occupied KS orbitals; σ, τ ... to denote their spins; and
α, β ... to label excited states.
A. TDDFT Formalism Using Deterministic RSHs. The

action of the GKS Hamiltonian on each KS orbital is

H V V k
1
2i i

2
loc NLψ ψ| ⟩ = − ∇ + + + | ⟩σ

σ
σ

σ
γ

σ
i
k
jjj

y
{
zzz (1)

where Vloc
σ is the KS effective local potential, consisting of

Hartree, local XC, and local pseudopotential terms. VNL is the
nonlocal pseudopotential. kσ

γ is the range-separated exchange
operator that acts on the KS orbital as

k r u r r r r r( ) ( ) ( ) ( )di
j

j j iC∫∑ψ ψ ψ ψ| ⟩ = − | − ′| * ′ ′ ′σ
γ

σ σ
γ

σ σ
(2)

Here, uC
γ (r) = r−1 erf(γr) accounts for long-range contributions

to the nonlocal exchange and γ is the range-separation
parameter. The ground-state GKS-DFT equation is then

H i
j

ij j∑ψ ψ| ⟩ = ϵ | ⟩σ
σ σ σ

(3)

with the orthonormal condition ⟨ψiσ|ψjτ⟩ = δijδστ and ϵijσ = δijϵiσ
is the energy of the ith KS orbital.
The excited-state energies and wave functions can be

obtained by solving a non-Hermitian eigenvalue equation
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which is analogous to Casida’s equation.3 Here, ωα is the αth
excitation energy, I is the identity matrix, and ψα

± is the linear-
response orbital. Note that the linear-response orbital |ψiσ

+ ⟩
corresponds to ∑bXibσ|ψbσ⟩ in Casida’s equation and |ψiσ

−⟩
corresponds to ∑bYibσ|ψbσ⟩, where b labels the unoccupied KS
orbitals. ∑i(|ψiσ⟩⟨ψiσ

+ | + |ψiσ
−⟩⟨ψiσ|) represents the KS transition

density matrix. The linear-response orbital is directly expanded
by the plane-wave basis in the virtual space which is orthogonal
to the occupied orbitals. The use of the plane-wave
representation with a projector to remove the contribution
of the occupied space avoids the need to obtain all the
(unknown) virtual orbitals and enables the efficient calcu-
lations of absorption spectra.52,53

The matrix operators A and B act on the linear-response
orbitals

H

P K P

P K P

A

B

( )i
j

ij ij j

j
c i j c j

i
j

c i c j j

∑

∑

∑
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στ

±

(5)

where Pc
σ = 1 − ∑i|ψiσ⟩⟨ψiσ| is a projection operator to the

virtual space which is required to avoid the explicit use of
virtual orbitals and Kστ is the Hartree and XC kernel. The
kernel is labeled as (note that the expression below is a
function of r)

K r
r r
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(6)

Here, nσ(r) is the charge density with spin σ and Exc is the local
XC functional. The last term in eq 6 is the RSH element,
denoted henceforth as ⟨ψjσ|KRSH|ψkτψlτ⟩. We employ an
iterative algorithm54 to determine the low-lying eigenvalues
and eigenvectors of the large non-Hermitian matrix in eq 4.
A Lagrangian is constructed to calculate the ionic force

associated with the αth excited state11

x x Z HZ, , , , ( )

( )

ij
i ij ij j

i j
ij i j ij

,

∑
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α
σ

σ
σ

σ σ

σ
σ σ σ

≥ (7)

by enforcing the Brillouin condition and the orthonormal
condition for the KS orbitals, where x denotes the ionic
coordinate. In the abovementioned equation, the functional
is
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The multipliers Z and Γ are determined from the stationary
condition of the Lagrangian / 0iδ δψ̂ =α . The ionic force in
the excited states is the partial derivative of the Lagrangian
with respect to the ionic coordinate F x/= −∂ ̂ ∂α α , while the
charge density of the αth excited state is obtained from the
derivative of the Lagrangian with respect to the external
potential, V/ex

extρ δ δ= − ̂
α α .

B. Stochastic Representation of RSHs in TDDFT.
Following ref 40, we introduce an occupied-projected random
orbital

i
i i∑η ψ ψ ξ| ⟩ = | ⟩⟨ | ⟩σ σ σ

(9)

Here, ξ(r) = ±1/√ΔV are random functions, with a random
sign at each real-space grid point, and ΔV is the volume per
grid point. A stochastic representation of the identity operator
is expressed as55

1ξ ξ[| ⟩⟨ |] =ξ (10)

where [···]ξ denotes the average over all random functions ξ.
Thus, we use the stochastic orbitals to calculate the zero-order
KS density matrix

ij
i i j j

i
i i∑ ∑η η ψ ψ ξ ξ ψ ψ ψ ψ[| ⟩⟨ |] = [| ⟩⟨ | ⟩⟨ | ⟩⟨ |] = | ⟩⟨ |σ σ ξ σ σ σ σ ξ σ σ

(11)

The range-separated exchange kernel is also determined
stochastically

u r r r r( ) ( ) ( )C ζ ζ| − ′| = [ * ′ ]γ
φ (12)

with

r u k k( )
1

(2 )
( ) e e dC

k k r
3

i ( ) i∫ζ
π

= ̅
γ φ ·

(13)

where u Cγ (k) is the Fourier transform of uC
γ (r) and φ(k) is a

random phase (with a value between 0 and 2π) at each k point.
By defining a stochastic orbital |χσ⟩,

r( )χ ζ η| ⟩ = | ⟩σ σ (14)

we then have the stochastic formulation of the RSH in the
GKS Hamiltonian as

k i i ,ψ χ χ ψ| ⟩ = −[| ⟩⟨ | ⟩]σ
γ

σ σ σ σ ξ φ (15)

In actual applications, we construct and store in memory a
priori a finite number Nχ of pairs of random functions
{ξ(r),ζ(k)}. The stochastic orbitals |χσ⟩ are calculated on the
fly with the updated KS-occupied orbitals |ψiσ⟩.
Next, we present the stochastic formulation of RSHs in the

context of eq 5. The occupied-projected random linear-
response orbital is introduced as

i
i i∑η ψ ψ⟩ = | ⟩⟨ |ξ⟩σ σ σ

± ±

(16)

which leads to a stochastic representation of the first-order KS
density matrix as

( )
i

i i i i∑ ψ ψ ψ ψ η η η η| ⟩⟨ | + | ⟩⟨ | = [| ⟩⟨ | + | ⟩⟨ |]σ σ σ σ σ σ σ σ ξ
± ± ± ±

(17)

The stochastic linear-response orbital |χσ
±⟩ is then defined as

r( )χ ζ η| ⟩ = | ⟩σ σ
± ±

(18)

The RSH components in eq 5 can thus be calculated
stochastically because

K
j

i j j iRSH ,∑ ψ ψ ψ χ χ ψ⟨ | | ⟩ = −[| ⟩⟨ | ⟩]σ σ σ σ σ σ ξ φ
± ±

(19)

and

K
j

i j j iRSH ,∑ ψ ψ ψ χ χ ψ⟨ | | ⟩ = −[| ⟩⟨ | ⟩]σ σ σ σ σ σ ξ φ
± ±

(20)

In linear-response TDDFT, all occupied orbitals |ψiσ⟩ are fixed
and the stochastic linear-response orbitals |χσ

±⟩ are calculated
on the fly by using the updated linear-response orbitals |ψiσ

±⟩.
C. Cost Saving with Stochastic TDDFT. The numerically

dominant cost is the action of the exchange. We now briefly
analyze the savings because of the use of stochastic exchange,
following ref 40. In deterministic GKS-DFT and GKS-
TDDFT, when acting with the exchange kernel on all occupied
orbitals, there are Nocc

2 (i.e., all pairs) Coulomb convolution
integrals, each costing about 10Nplw log2 Nplw double-precision
operations. The number of operations is about 200Nplw for
large system sizes with Nplw ≈ 105−107. Thus, the total cost per
action of the exchange is about 200Nocc

2Nplw. In contrast, in
the stochastic exchange [eqs 15, 19, and 20], the cost per
occupied orbital is twice that of applying Nχ dot products, each
costing 2Nplw, that is, the total exchange-kernel cost per
iteration is circa 4NχNoccNplw. Therefore, the ratio of the cost
between deterministic and stochastic exchange is 50 Nocc/Nχ.
For small systems, where a large range-separation parameter

γ is used, Nχ is around 1000, so the breakeven point is around
20 occupied orbitals, that is, systems with few tens of electrons.
For large systems with thousands of electrons, Nχ ≈ 50−100 is
sufficient to yield converged results. Thus, the stochastic
calculation saves about a factor of around Nocc relative to the
deterministic calculation. For such large systems, the cost of
applying the stochastic exchange is no more than that of local-
exchange (or no-exchange) KS-TDDFT, where the computa-
tionally most demanding step is applying the kinetic energy
(circa 200NoccNplw). Thus, the stochastic exchange GKS-
TDDFT for large systems just approximately doubles the cost
of no-exchange KS-TDDFT (i.e., linear-response random-
phase approximation).
These considerations do not change when we use PAW, as

detailed in the next section. Also, note that the underlying
TDDFT approach is based on the plane-wave basis so that it is
fully converged with respect to the virtual orbital basis. It is
possible to also employ similar stochastic-TDDFT approaches
with any AO basis sets, highly local or not, although this will
not be pursued here.

D. PAW Formalism. Pseudopotentials are routinely used in
conjunction with plane-wave methods. Here, we focus on the
PAW pseudopotential, which provides a higher transferability
and a lower energy cutoff than the norm-conserving
pseudopotentials.56,57 In PAW, the all-electron (AE) wave
function |ψiσ⟩ is a linear transformation of the pseudo-wave-
function (PS) |ψ̃i

p( )i i i
I

I I I i∑ψ ψ ψ ϕ ϕ ψ| ⟩ = |∼ ⟩ = |∼ ⟩ + | ⟩ − |∼⟩ ⟨ ̃ |∼ ⟩σ σ σ σ
(21)

where ϕI, ϕ̃I, and p̃I are AE partial waves, PS partial waves, and
projector functions, respectively, defined in the core region.
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The index I also includes the angular momentum quantum
numbers and an additional index for the reference energy. In
the following, the tilde symbols represent the PS wave
functions and operators, which are evaluated on the plane-
wave grid. By using PAW, the ground-state GKS equation in eq
3 is expressed as

H Si
j

ij j∑ψ ψ̃ |∼ ⟩ = ϵ |̃∼ ⟩σ
σ σ σ

(22)

with the orthonormal condition ⟨ψ̃iσ|S̃|ψ̃jτ⟩ = δijδστ and

S ̃ = † is the overlap operator.
The action of the GKS Hamiltonian on the PS orbital is

given by51,58

H V

p D V D D p

k

1
2

( )

i i

IJ
I IJ IJ IJ J i

i

2
loc
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1 1∑

ψ ψ

ψ

ψ
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+ | ̃ ⟩ ̂ [ ̃ ] + − ̃ ⟨ ̃ |∼ ⟩

+ ̃ |∼ ⟩

σ
σ

σ
σ

σ
σ

σ
γ

σ

i
k
jjj

y
{
zzz

(23)

Here, we have several additional PAW terms compared to eq 1.
The PAW tensor in the Hamiltonian is D̂IJ[Ṽ] = ∑LM∫ Ṽ(r)
Q̂IJ

LM(r)dr and for the definitions of the functions Q̂IJ
LM(r), see,

for example, Eq 27 of ref 51. The difference (DIJ
1 − D̃IJ

1) is
calculated as ∂(E1 − Ẽ1)/∂ρIJ

σ , where E1 and Ẽ1 are parts of the
total energy computed on the radial grid51 and ρIJ

σ = ∑i⟨ψ̃iσ|
p̃I⟩⟨p̃J|ψ̃iσ⟩ is the occupancy of each augmentation channel (I,
J).
Within PAW, the range-separated exchange operator k̃σ

γ acts
on the PS orbital as

k V n n

p D V p

K K p p( )

i
j

ji ji j

j IJ
I IJ J j

I K J L
IJLK IJLK LJ I K i

RSH

,
RSH

( , )( , )

1 1

∑

∑

∑

ψ ψ

ψ

ρ ψ

̃ |∼ ⟩ = − ̃ [ ̃ + ̂ ]|∼ ⟩

− | ̃ ⟩ ̂ [ ̃ ]⟨ ̃ |∼ ⟩

− − ̃ | ̃ ⟩⟨ ̃ |∼ ⟩

σ
γ

σ σ σ σ

σ

σ
σ

(24)

Here, ṼRSH is the range-separated exchange potential, ex-
pressed as

V n n u r r n r n r r( ) ( ) ( ) dji ji C ji jiRSH ∫̃ [ ̃ + ̂ ] = | − ′| [ ̃ ′ + ̂ ′ ] ′σ σ
γ

σ σ

(25)

where ñijσ = ψ̃iσ*ψ̃jσ is the PS charge density and n̂ is the
compensation charge density

n r p p Q r( ) ( )ij
IJ LM

i I J j IJ
LM

,

∑ ψ ψ̂ = ⟨∼ | ̃ ⟩⟨ ̃ |∼ ⟩ ̂σ σ σ
(26)

Both ñ and n̂ are calculated on the uniform plane-wave grid.
KIJLK
1 (K̃IJLK

1 ) is the two-electron four-AE (PS)-partial-wave
integral58 obtained using the range-separated exchange kernel
uC
γ (r).
By using PAW, the kernel in eq 6 becomes15
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E
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E E

p
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j
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2
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2
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ψ
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where ṼH is the Hartree potential. The RSH part in the kernel
functional is expressed by

K V n n

p D V p

K K p p

p p

( )

j k l kj kj l

IJ
I J l

I K J L
IJLK IJLK I K j

k L J l

RSH RSH

RSH

( , )( , )

1 1

∑

∑

ψ ψ ψ ψ

ψ

ψ

ψ ψ

⟨∼ | ̃ |∼ ∼ ⟩ = − ̃ [ ̃ + ̂ ]|∼ ⟩

− | ̃ ⟩ ̂[ ̃ ]⟨ ̃ |∼ ⟩

− − ̃ | ̃ ⟩⟨ ̃ |∼ ⟩

⟨∼ | ̃ ⟩⟨ ̃ |∼ ⟩

σ σ σ σ σ σ

σ

σ

σ σ (28)

The occupied-projected random orbital (eq 9) and random
linear-response orbital (eq 16) in PAW are

S
i

i i
1/2∑η ψ ψ ξ|∼ ⟩ = |∼ ⟩⟨∼ | ̃ | ⟩σ σ σ

(29)

and

S
i

i i
1/2∑η ψ ψ ξ|∼ ⟩ = |∼ ⟩⟨∼ | ̃ | ⟩σ σ σ

± ±

(30)

respectively. The stochastic orbital |χ̃σ⟩ (eq 14) and the
stochastic linear-response orbital |χ̃σ

±⟩ (eq 18) are then

r p p Q r r r( ) ( ) ( )d
IJLM

I J IJ
LM∫∑χ ζ η η ζ|∼ ⟩ = |∼ ⟩ + | ̃ ⟩⟨ ̃ |∼ ⟩ ̂ ′ ′ ′σ σ σ

(31)

and

r p p Q r r r( ) ( ) ( )d
IJLM

I J IJ
LM∫∑χ ζ η η ζ|∼ ⟩ = |∼ ⟩ + | ̃ ⟩⟨ ̃ |∼ ⟩ ̂ ′ ′ ′σ σ σ

± ± ±

(32)

The stochastic RSH (eq 15) is thus reformulated within PAW
as

k K K p

p p p

( )i i
I K J L

IJLK IJLK I

K i J L

,
( , )( , )

1 1∑ψ χ χ ψ

ψ η η

̃ |∼ ⟩ = −[|∼ ⟩⟨∼ |∼ ⟩] − − ̃ | ̃ ⟩

⟨ ̃ |∼ ⟩[ ̃ |∼ ⟩⟨∼ | ̃ ⟩]

σ
γ

σ σ σ σ ξ φ

σ σ σ ξ (33)

Similarly, eqs 19 and 20 are re-expressed as

K

K K p p

p p

( )

j
i j j

i
I K J L

IJLK IJLK I K

i J L

RSH

,
( , )( , )

1 1

∑

∑

ψ ψ ψ

χ χ ψ

ψ η η

⟨∼ | ̃ |∼ ∼ ⟩

= −[|∼ ⟩⟨∼ |∼ ⟩] − − ̃ | ̃ ⟩⟨ ̃ |

∼ ⟩[ ̃ |∼ ⟩⟨∼ | ̃ ⟩

σ σ σ

σ σ σ ξ φ

σ σ σ ξ

±

±

±
(34)
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and

K

K K p p

p p

( )
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i j j

i
I K J L

IJLK IJLK I K

i J L

RSH

,
( , )( , )

1 1
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∼ ⟩[ ̃ |∼ ⟩⟨∼ | ̃ ⟩

σ σ σ

σ σ σ ξ φ

σ σ σ ξ

±

±

±
(35)

The ionic force in the excited state is obtained as the
negative derivative of the Lagrangian ̂

α at its stationary point.

Because ̂
α is fully variational, the first-order derivative with

respect to an ionic coordinate x does not involve any chain-
rule derivatives of its variables, that is, KS orbitals, linear-
response orbitals, and stochastic orbitals. Thus, the partial
derivatives of the RSH elements in ̂

α are entirely because of
the explicit dependence of the PAW projector functions |p̃I⟩
and the function Q̂IJ

LM on x. The partial derivatives of the
stochastic RSH elements in the GKS Hamiltonian is
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x x
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where the partial derivative of an inner product between a KS
orbital and a stochastic orbital is calculated by
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The partial derivative of stochastic RSH elements in the kernel
functional is similarly calculated. For example,
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III. NUMERICAL EXAMPLES

The approach presented here is general and can be
implemented in any plane-wave PAW software package as a
plug-and-compute module. In the present work, the ground-
state calculations are carried out with the Vienna Ab Initio
Simulation Package (VASP).59,60 To expedite the self-
consistent convergence, the fully self-consistent ground-state
GKS-DFT calculations are performed following a few non-self-
consistent DFT iterations without the stochastic RSH
potential. The ground-state charge density and KS orbitals
are then taken as the input for GKS-TDDFT which is used to

Figure 1. Energy difference between the stochastic and deterministic results of the lowest-energy singlet excited state as a function of the number of
stochastic orbitals Nχ for the N2 molecule with (a) γ = 0.2 Å−1 and (b) γ = 0.62 Å−1 and the CO molecule with (c) γ = 0.2 Å−1 and (d) γ = 0.62
Å−1. The error bars scale the statistical errors. The red-dashed lines indicate the zero difference.
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compute the excited-state properties, including excitation
energy, exciton charge density, and ionic force.
To validate the stochastic formulation, we calculate the

excitation energy of the lowest-energy singlet excited state for
two small molecules, N2 and CO. The spin-restricted ground-
state calculations are performed with supercell dimensions of
20 Å × 20 Å × 20 Å. The energy cutoff of the plane-wave basis
is 400 eV. Here, the local adiabatic XC functional is the
Perdew−Burke−Ernzerhof (PBE) GGA.61 The short-range
exchange interaction is incorporated by modifying the
conventional GGA exchange.46

We use γ = 0.62 Å−1 for the range-separation parameter, a
value that has been successfully used for these two molecules.62

To examine the effect of γ on the statistical errors, we have also
considered a smaller range-separation parameter γ = 0.2 Å−1.
Figure 1 depicts the energy difference between the stochastic
and deterministic values of the excitation energy as a function
of the number of stochastic orbitals Nχ. The expectation values
are estimated from 10 samples of independent stochastic
TDDFT simulations, each with a different set of random
functions |ξ⟩. The statistical errors are estimated from the
standard deviation of these 10 samples. Clearly, the excitation
energies converge as Nχ increases. In addition, the stochastic
fluctuations become smaller as the range-separation parameter
decreases. Thus, a smaller value of Nχ is sufficient for
convergence when γ is smaller. For example, with Nχ = 40,
the energy fluctuation of N2 is within 0.05 eV for γ = 0.2 Å−1,
while it is about 0.5 eV for γ = 0.62 Å−1. Similarly, for the
smaller γ, Nχ = 200 converges the excitation energy with a
statistical error less than 0.02 eV. However, for the larger γ, Nχ

> 800 is necessary for a statistical error of less than 0.1 eV.
Similar results have been observed previously in the

calculation of the GKS-DFT orbital energy for hydrogen-
passivated silicon nanocrystals.40 The reduction of stochastic
fluctuations is due to a smaller contribution of the nonlocal
exchange to the one-body Hamiltonian for smaller γ. The fact
that the number of stochastic orbitals decreases with the
system size makes the current method very appealing for
solids, where explicit exchange is needed only at long distances,
that is, the range-separation parameter is usually much smaller
than that in molecules.63 Further, while the reduction in γ (and
therefore the reduction in Nχ) was only studied here for
excitonic states, we expect that an even smaller γ (and
therefore a smaller Nχ) would be required for charge transfer
excitations where the charge is more separated.
As shown in Figure 1, the convergence of the GKS-TDDFT

energy is always from below, that is, at a finite Nχ, the results
will have a slight bias toward smaller excitations. A finite Nχ

simulation yields excitations that have a statistical deviation
(decreasing by N1/ χ ) around an average value which is

slightly different from the infinite-Nχ limit (i.e., the
deterministic) by an amount-labeled “bias”. The bias decreases
by 1/Nχ and is a general phenomenon in stochastic simulations
that involve self-consistency or more general iterations. Such
bias appears, for example, in stochastic DFT42,64 and GF2.65

Next, we apply the method to an extended system of 2D
MoS2. The pristine 2D MoS2 is modeled by (9 × 9) units with
81 Mo atoms and 162 S atoms. There are 1458 valence
electrons in this system. In the GKS-TDDFT calculations, 80
occupied orbitals are included. We confirmed that this number
yields converged results for both energy and ionic force of the
lowest-energy excited state. The GKS-TDDFT calculations are

performed without the spin−orbit coupling. The optimal value
of the range-separation parameter is found to be γ = 0.07 Å−1

for 2D MoS2. Nχ = 80 stochastic orbitals are sufficient for
converging both the fundamental and optical band gaps with a
statistical error of less than 0.01 eV. Furthermore, because of
the small value of γ, the bias is tiny (less than 5 meV) and the
statistical error is also tiny, less than 0.01 eV.
The fundamental band gap (Eg) is found to be 2.78 eV, and

the optical band gap (Eopt) is found to be 1.71 eV. The exciton
binding energy, defined as Eb = Eg − Eopt, is thus 1.07 eV.
These values are in very good agreement with previous GW-
BSE results (Eg = 2.84 eV, Eopt = 1.88 eV, and Eb = 0.96 eV)66

and (Eg = 2.82 eV, Eopt = 1.78 eV, and Eb = 1.04 eV)67 for the
infinite 2D MoS2 sheet. In Figure 2a, we show the charge

density of the lowest-energy singlet exciton in pristine MoS2.
The electron (green) and hole (blue) projections are
delocalized over the 2D plane, characteristic of a Mott−
Wannier exciton. The Bohr radius of the exciton cannot be
extracted from the exciton charge density. Instead, it can be
estimated based on the two-particle wave function and this is
left open for future study. We note that despite the
underestimation of the fundamental band gap Eg = 1.68 eV
and the neglection of excitonic binding, the PBE functional
provides a good estimate of the optical band gap, Eopt = 1.69
eV, due to cancellation of errors.
We also examine a point defect in MoS2, an S vacancy,

which is abundant because of its low formation energy.68 This
vacancy is modeled by removing an S atom in the middle of
the supercell. The local minimum of the ground state (m0) and
first excited state (m1) potential energy surfaces are obtained
through geometric relaxation using GKS-DFT and GKS-
TDDFT, respectively, in the presence of the S vacancy. The
force convergence criterion for geometric relaxation is 0.03
eV/Å.
We find that the exciton induces a local lattice distortion and

is trapped around the S vacancy as manifested by the localized
electron and hole, as shown in Figure 2b. This polaronic effect
is quantitatively characterized by the polaronic binding energy,
Epol, the difference in the total energy (ground-state energy
plus excitation energy) between the m0 and m1 geometries.
The polaronic binding energy obtained using the stochastic
RSH functional is Epol = 0.1 eV. We also performed a
geometric relaxation of the excited state with the PBE
functional that yields a polaronic binding energy of Epol =
0.08 eV, comparing very well with the RSH result. Thus, PBE
could also provide reliable ionic forces of the excited state in
addition to the good estimation of the excitation energy in the
MoS2 system.

Figure 2. Charge densities of lowest-energy singlet excitons in (a)
pristine MoS2 and (b) MoS2 with a single S vacancy. The charge
density of the electron and the hole is colored green and blue,
respectively. The isosurface levels are set at 9 × 10−5 e/Å3 in (a) and 3
× 10−4 e/Å3 in (b). The purple and yellow spheres represent Mo and
S atoms, respectively.
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The S vacancy induces two unoccupied defect levels within
the gap, reducing the fundamental gap from Eg = 2.78 eV in
pristine MoS2 to Eg = 2.16 eV in the m1 geometry. The optical
gap is also decreased from Eg = 1.71 eV in pristine MoS2 to Eg
= 1.09 eV in m1. Despite the significant difference in exciton
charge density between the pristine and defective MoS2, that is,
delocalization versus localization in real space, the exciton
binding energies of the two systems are the same, Eb = 1.07 eV.
Therefore, the S vacancy does not affect the electron−hole
interaction but could drastically influence their mobility in
MoS2. Previous GW-BSE calculations of MoSe2 also found that
the exciton binding energy remained essentially the same in the
presence of the chalcogen vacancy.69

IV. CONCLUSIONS

In summary, we have reformulated plane-wave based GKS-
TDDFT using a stochastic representation of the optimally
tuned RSH functional. The computational cost associated with
the exchange operator is significantly reduced by treating the
zero-order and first-order KS density matrix with stochastic
orbitals and a stochastic decomposition of the Coulomb
convolution. For large systems, the method is almost as
efficient as a local-potential KS-TDDFT.
Applications to small molecules, N2 and CO, show that the

statistical error induced by the stochastic formulation is
controlled by increasing the number of stochastic orbitals and
is significantly reduced by using a smaller range-separation
parameter. This makes the current method very appealing for
extended systems, as demonstrated here by simulating a 2D
MoS2 sheet with ∼1500 valence electrons. The fundamental
gap, optical gap, and exciton binding energy of pristine MoS2
obtained with an optimally tuned range-separation parameter
compare very well with previous GW-BSE results. The
fundamental gap and optical gap are reduced in the presence
of S vacancy because of the defect-induced gap states, while the
exciton binding energy is not changed. The S vacancy could
trap the exciton where both the electron and hole are localized
around the defect with a polaronic binding energy of 0.1 eV.
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(50) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B:
Condens. Matter Mater. Phys. 1994, 50, 17953.
(51) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the
Projector Augmented-wave Method. Phys. Rev. B: Condens. Matter
Mater. Phys. 1999, 59, 1758.
(52) Baer, R.; Neuhauser, D. Real-time Linear Response for Time-
dependent Density-functional Theory. J. Chem. Phys. 2004, 121, 9803.
(53) Neuhauser, D.; Baer, R. Efficient Linear-response Method
Circumventing the Exchange-Correlation Kernel: Theory for
Molecular Conductance Under Finite Bias. J. Chem. Phys. 2005,
123, 204105.
(54) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An Efficient
Implementation of Time-dependent Density-functional Theory for
the Calculation of Excitation Energies of Large Molecules. J. Chem.
Phys. 1998, 109, 8218.
(55) Hutchinson, M. F. A Stochastic Estimator of the Trace of the
Influence Matrix for Laplacian Smoothing Splines. Commun. Stat.
Simulat. Comput. 1990, 19, 433−450.
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