

Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates

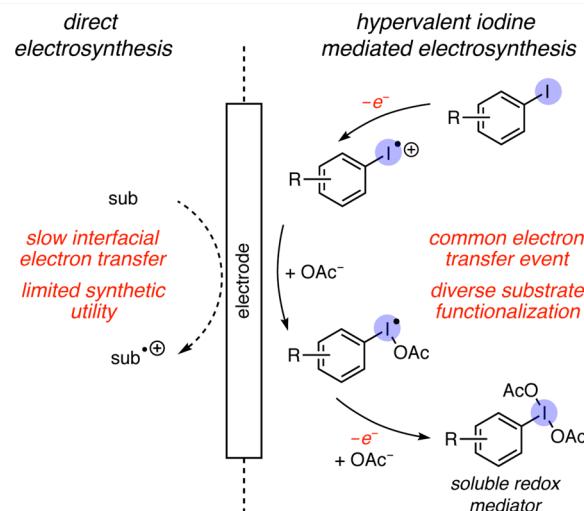
Asim Maity, Brandon L. Frey, Nathanael D. Hoskinson, and David C. Powers*

Cite This: *J. Am. Chem. Soc.* 2020, 142, 4990–4995

Read Online

ACCESS |

Metrics & More


Article Recommendations

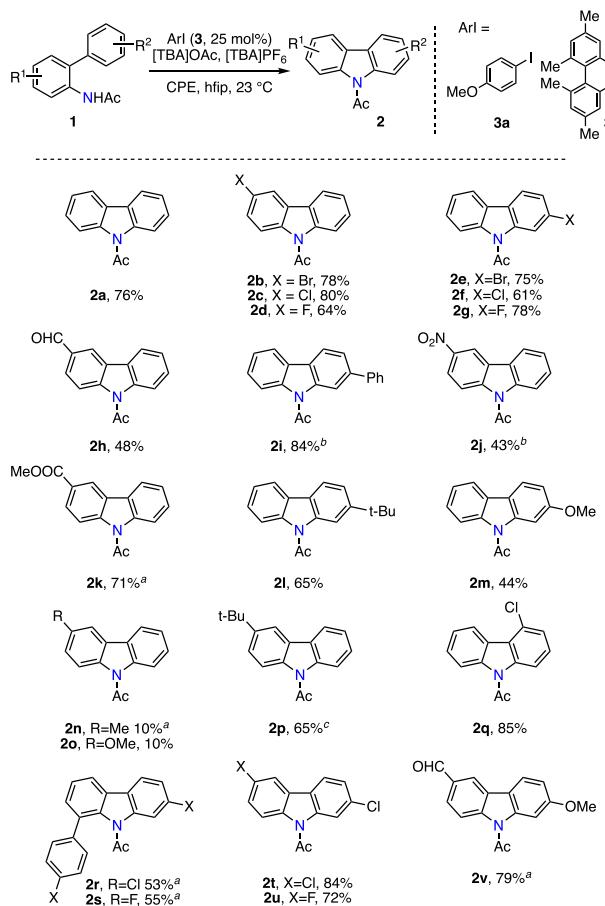
Supporting Information

ABSTRACT: Development of new electrosynthetic chemistry promises to impact the efficiency and sustainability of organic synthesis. Here we demonstrate that anodically generated hypervalent iodine intermediates effectively couple interfacial electron transfer with oxidative C–H/N–H coupling chemistry. The developed hypervalent iodine electrocatalysis is applicable in both intra- and intermolecular C–N bond-forming reactions. Available mechanistic data indicate that anodic oxidation of aryl iodides generates a transient I(II) intermediate that is critically stabilized by added acetate ions. This report represents the first example of metal-free hypervalent iodine electrocatalysis for C–H functionalization and provides mechanistic insight that we anticipate will contribute to the development of hypervalent iodine mediators for synthetic electrochemistry.

Electrochemistry is an attractive approach to sustainable synthesis that obviates the need for stoichiometric redox reagents and, thus, generation of the attendant waste streams.¹ Because of its inherent tunability and scalability, electrosynthesis could impact the enormous variety of organic transformations in which electrons are added to, or removed from, substrates. In practice, challenges such as (1) the sluggish interfacial electron transfer rates for many organic molecules, which necessitate application of substantial overpotential to achieve practical current densities,² and (2) the need to couple the single-electron events that are typical of electrochemistry with the multielectron events required for bond-breaking and -making in organic reactions, can limit direct electrosynthesis (Figure 1).³ Indirect electrocatalysis, in which small molecule redox catalysts (i.e., electrocatalysts) convey applied potential from the working electrode to the bulk reaction medium, has emerged as an important strategy in selective organic electrocatalysis.⁴ Soluble electrocatalysts facilitate interfacial electron transfer, circumvent unselective side reactions, and can couple a diverse array of substrate functionalization mechanisms to the electrochemical stimulus.^{1g} Important methods based on quinone-,⁵ amine-,⁶ nitroxyl radical-,⁷ and transition metal-redox catalysts⁸ have been disclosed.

Hypervalent iodine reagents are a class of organic oxidants that have been deployed in a wide variety of substrate functionalization reactions.⁹ Electrochemical oxidation of aryl iodides typically requires substantial overpotential;¹⁰ thus, hypervalent iodine electrochemistry has largely been limited to *ex cell* applications,¹¹ in which aryl iodides are electrolyzed in the absence of substrate and subsequently used as stoichiometric reagents, or implemented in the context of flow systems.^{12,13} *Ex cell* methods require stoichiometric generation of hypervalent iodine species, which obviate many of the potential advantages of electrochemistry *vis-à-vis* sustainability, and fail to address the central challenge of hypervalent iodine electrocatalysis, which is achieving selective oxidation of aryl iodides in the presence of substrates.^{4d}

Figure 1. Strategies for electrosynthetic chemistry. The generation of soluble redox mediators, such as hypervalent iodine intermediates, provides the opportunities to couple a diverse set of substrate functionalization mechanisms to a common interfacial electron transfer event.


During the development of aerobic hypervalent iodine catalysis,¹⁴ we proposed that the aerobic generation of hypervalent iodine compounds proceeded through the intermediacy of acetate-stabilized iodanyl radicals (i.e., I(II) species; Figure 1).¹⁵ We hypothesized that anodic oxidation of aryl iodides in acetate-rich media could provide access to the

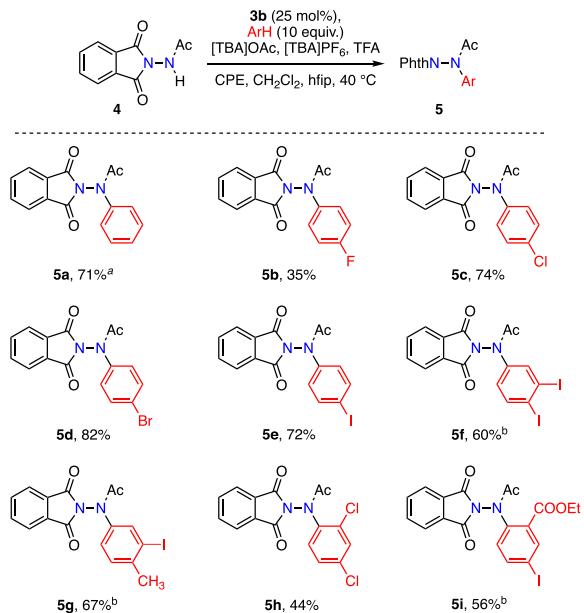
Received: December 27, 2019

Published: March 4, 2020

same acetate-stabilized iodanyl radicals and thus enable the development of hypervalent iodine electrocatalysis. Here, we report that acetate-dependent anodic oxidation of aryl iodides enables hypervalent iodine electrocatalysis of both intra- and intermolecular C–H/N–H coupling reactions. Further, we report a series of mechanistic studies that demonstrate the importance of transient iodanyl radical intermediates in electrocatalysis.

We initiated our investigations of hypervalent iodine electrocatalysis by examining the onset potential for variously substituted iodoarenes by cyclic voltammetry (CV, Table S1) and identified 4-iodoanisole (**3a**) as an attractive initial catalyst target (onset potential ~ 1.40 V vs Ag^+/Ag). We chose the intramolecular C–H/N–H coupling of *N*–([1,1'-biphenyl]-2-yl)acetamide (**1a**) to afford *N*-acetylcarbazole (**2a**, pictured in Figure 2) as an initial reaction target to evaluate hypervalent

Figure 2. Intramolecular C–H/N–H coupling via hypervalent iodine electrocatalysis (yields are of isolated products). Standard conditions: catalyst **3a**, CPE at 1.5 V versus Ag^+/Ag for 80 C, undivided cell, glassy carbon anode, platinum-plated cathode, and Ag^+/Ag reference electrode. *a*, Catalyst **3b**, CPE at 1.9 V versus Ag^+/Ag for 80 C. *b*, Catalyst **3a**, constant current electrolysis (CCE) at 5 mA for 5 F/mol. *c*, CPE in the absence of catalyst.


iodine electrochemistry because this transformation has important precedent both with stoichiometric hypervalent iodine promoters and hypervalent iodine catalysis in the presence of peracid terminal oxidants.¹⁶

Constant potential electrolysis (CPE) of a 1:1 mixture of **1a** and **3a** in 1,1,1,3,3-hexafluoroisopropanol (hFip) with 0.2 M [TBA]PF₆ as supporting electrolyte resulted in no C–N bond-

forming chemistry and partial decomposition of the starting material (87% of **1a** was recovered following electrolysis; TBA = tetrabutylammonium).¹⁷ Based on the hypothesis that acetate ligands can stabilize initially generated iodanyl radicals,¹⁵ we examined the electrolysis of a mixture of **1a** and **3a** with added [TBA]OAc and found that 2.0 equiv of [TBA]OAc, with respect to substrate, promotes electrochemical C–N coupling in 61% yield (see Table S4 for results from varying [TBA]OAc loading). No C–N coupled product was obtained in absence of aryl iodide. The loading of **3a** can be lowered; we find that 25 mol% affords 76% yield.¹⁸ Following intramolecular C–N bond-forming chemistry, analysis of the crude reaction mixture by ¹H NMR indicates $<5\%$ catalyst decomposition. Examination of other solvents, reaction temperatures, *N*-protecting groups, and electrode materials did not result in substantively better reaction efficiency (Tables S5–S7). Redox balance in the observed chemistry is achieved by proton reduction (presumably of hFip) to generate H₂, which was observed by GC analysis of the reaction headspace (Figure S1).

With the optimized conditions in hand, we evaluated the scope of intramolecular C–N bond-forming chemistry (Figure 2). Reactions were run until 80 C of charge was passed (4.15 F/mol), which typically resulted in reaction times of 6–12 h. Using 4-iodoanisole (**3a**) as catalyst, we found that both 5- and 4'-halogenation are well tolerated (**2b**–**2g**), as is the introduction of weakly electron withdrawing groups like 5-formyl (**2h**) or 4'-phenyl (**2i**). Under these conditions, substrates with more electron-withdrawing substituents, such as 5-nitro (**2j**) and 5-methylcarboxylate (**2k**), did not afford the expected carbazole. Based on the hypothesis that these more electron-deficient substrates may require a more oxidizing hypervalent iodine catalyst, we employed 2,2'-diido-4,4',6,6'-tetramethyl-1,1'-biphenyl (**3b**)¹⁹ as catalyst (onset potential for oxidation is 1.68 V vs Ag^+/Ag for **3b** compared to the onset potential of **3a** which is 1.40 V vs Ag^+/Ag). The more oxidizing conditions allowed both **2j** and **2k** to be accessed (43% and 71% yields, respectively). Electron donating groups were tolerated in the 4'-position (i.e., **2l** and **2m**). In contrast, introduction of methyl and methoxy groups at the 5-position (i.e., **1n** and **1o**) led to starting material decomposition and trace amount of carbazole. We speculate that the presence of electron donating substituents at the 5-position decreases the onset potential of the substrate below that of the aryl iodide catalyst and thus leads to direct and unselective substrate activation (for CV analysis of all substrates, see Figures S2–S6 and Table S8). Consistent with this hypothesis, CPE of 5-*t*-butyl acetamide (**1p**) in the absence of aryl iodide catalyst afforded **2p** in 65% yield (background reactions of the other substrates in Figure 2 indicate that only **1p** and **1v** participate in appreciable C–N coupling chemistry in the absence of **3**, Table S9).²⁰ The broader tolerance for substitution in the 4'-position than the 5-position is consistent with the smaller impact of substituents in this position on the onset potential for direct substrate oxidation (Figure S6). Intramolecular cyclization is also tolerant to substitution at the 2'- (2q) and 3- positions (2r and 2s) and can be accomplished in multifunctional substrates, as highlighted by the synthesis of **2v**, a precursor to anti-HIV natural product clauszoline-K.²¹ Robustness analysis²² for electrocatalytic intramolecular C–N bond-forming chemistry, and comparison with both aerobic and peracid-based methods, is summarized in Figure S7.

Hypervalent iodine electrocatalysis can also be applied to intermolecular C–N bond-forming chemistry (Figure 3).

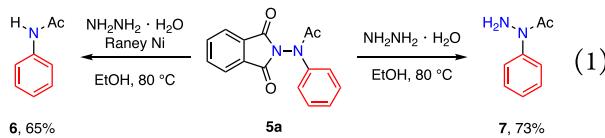
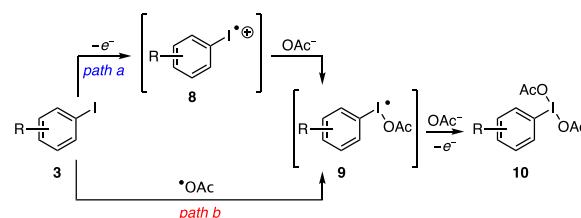


Figure 3. Intermolecular C–H/N–H coupling via hypervalent iodine electrocatalysis (yields are of isolated products). Standard conditions: catalyst **3b**, CPE for 80 °C, 2.0 V versus Ag^+/Ag , undivided cell, glassy carbon anode, platinum-plated cathode, and Ag^+/Ag reference. *a*, CPE at 1.8 V. *b*, 5 equiv of ArH.


Catalyst **3b** was used as the aryl iodide mediator due to its previously reported success in furnishing intermolecular C–H amination reactions (see Table S10 for analysis of other aryl iodide catalysts).²³ CPE of a $\text{CH}_2\text{Cl}_2/\text{hfp}$ solution of hydrazine derivative **4** and 10 equiv of benzene in the presence of 1 equiv of **3b** affords 81% yield of N-phenylated compound **5a**. The catalyst loading can be decreased to 25 mol% without significantly compromising the yield (71% of isolated product). Similar to the above-described intramolecular C–N bond-forming chemistry, no C–N coupling products are observed in the absence of either aryl iodide or [TBA]OAc. Amine derivatives that feature onset potentials for direct oxidation below that of **3b** (i.e., 2.0 V vs Ag^+/Ag), such as TsNHOMe, TrocNHOMe, and PhNHAc, did not engage in intermolecular C–N coupling (for CV analysis of amine derivatives see Figure S8). The intermolecular C–H amination reactions with halogenated aryl group were accomplished in 35–82% yields (**5b–5f**). Positional selectivity for difunctionalized arenes (i.e., **5f–5i**) is consistent with electrophilic aromatic substitution preferences. Electron-rich hydrocarbons like toluene, xylene, and naphthalene were not viable substrates in the intermolecular N–H arylation.

Hydrogenolysis of the N–N bond in compounds **5** leads to *N*-acyl aniline derivatives (**6**), which can be challenging to synthesize by transition-metal-catalyzed cross-coupling reactions due to the stability of ammonia adducts of many transition metals (eq 1).²⁴ Alternately, compounds **5** can be elaborated to the corresponding arylhydrazines (**7**), which are useful precursors to various heterocyclic compounds, by treatment with hydrazine (eq 1).²⁵

With interest in gaining deeper understanding of the observed acetate-dependent hypervalent iodine electrocatal-

ysis, we considered two potential anodic oxidation mechanisms (Figure 4). The initial interfacial electron transfer could be

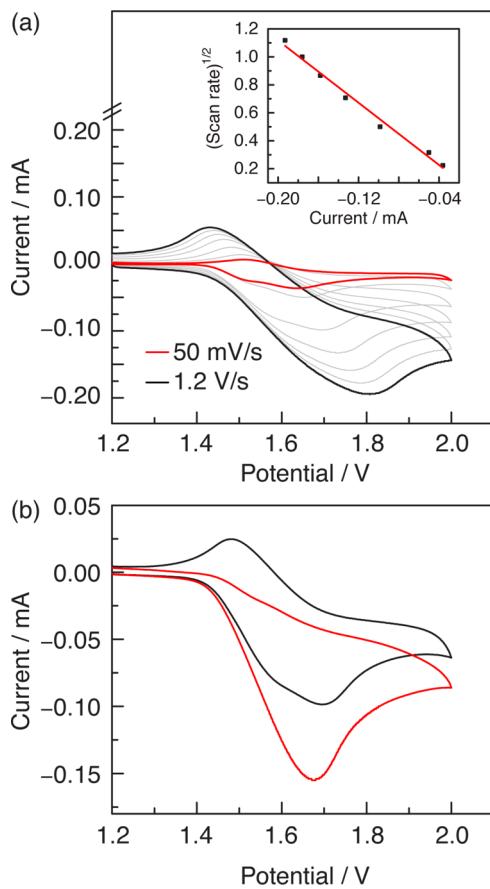


Figure 4. Potential mechanisms for the observed acetate-dependent hypervalent iodine electrocatalysis. (a) Interfacial electron transfer with aryl iodide would initially generate a I(II) cation. (b) Interfacial electron transfer with acetate would initially generate acetoxy radicals.

between the working electrode and the aryl iodide to generate an I(II) intermediate (**8**), which would then be trapped by exogenous acetate ion to generate acetoxy iodanyl radical **9** (Figure 4, path a). Subsequent oxidation chemistry would ultimately lead to I(III) (**10**). Alternatively, the observed acetate-dependent chemistry might arise from an interrupted Kolbe electrolysis²⁶ in which initially formed acetoxy radicals add to aryl iodides to generate iodanyl radical intermediates (**9**), which would subsequently undergo further oxidation to I(III) (**10**) (Figure 4, path b). Available evidence, summarized below, is most consistent with the former mechanistic scenario.

Examination of the CV of **3a** as a function of scan rate in hfp indicates that while the oxidation is irreversible at low scan rates (i.e., < 100 mV/s), electrochemical reversibility emerges at higher scan rates (>250 mV/s, Figure 5a; for corresponding data for 4-iodotoluene, see Figures S9–S11).²⁷ Addition of [TBA]OAc to a CV experiment of **3a** in hfp results in both the loss of reversibility and the substantial increase in the anodic current (I_{pa}), indicating that the electrochemically generated species is trapped by added acetate (Figure 5b). The measured peak potential is linearly correlated with the square root of scan rate, which indicates electron transfer from a solution-borne, not surface adsorbed, species (Figure 5a inset).²⁸ Trapping of electrochemically generated iodanyl radicals is not limited to acetate. A variety of common hypervalent iodine ligands including pyridine, cyanide, trifluoroacetate, and fluoride all give rise to the same enhanced current and suppressed reversibility that is diagnostic of trapping the electrochemically generated species (Figures S12–S15).

Regarding the potential that the reported hypervalent iodine chemistry arises from an interrupted Kolbe electrolysis, we observed that electrolysis of CH_3CN solutions containing [TBA]OAc and [TBA]PF₆ results in the products expected of Kolbe electrolysis: ethane, methane, and CO_2 (observed by GC analysis of reaction headspace, Figure S16). In contrast, acetate oxidation is suppressed in hfp, the solvent in which the chemistry is (uniquely) effective (no volatiles are observed in headspace analysis as well as no oxidation peak in the CV) (Figure S17 and S18). The suppression of Kolbe electrolysis is consistent with strong hydrogen bonding of acetate to the acidic O–H of hfp ($\text{pK}_a = 9.3$).²⁹ Consistent with this

Figure 5. (a) Increasing reversibility of **3a** oxidation in hfpip is observed in CVs collected with increasing scan rate: 0.05 (red), 0.1, 0.25, 0.50, 0.75, 1.0, and 1.2 V/s (black). Inset: Plot of peak anodic current (I_{pa}) of **3a** versus square root of scan rate [$R^2 = 0.99$]. (b) CVs of **3a** in a 0.2 M [TBA]PF₆ solution of hfpip (black) and in the presence of 2.0 equiv of [TBA]OAc (red).

hypothesis, NMR analysis of solutions containing both hfpip and [TBA]OAc reveals a significant downfield shift in the methine resonance (Figure S19). Job analysis indicates a 1:1 adduct is formed between these two species (Figure S20 and Table S11), and NMR analysis provides an equilibrium constant for association of 0.767 (Figures S21–S23 and Table S12).

In summary, we report the first example of hypervalent iodine electrocatalysis for C–H amination chemistry. The developed chemistry is applicable to both intra- and intermolecular C–N bond-forming reactions. Mechanistic experiments indicate the critical role of acetate to stabilize initially generated iodanyl radical intermediates. Given the breadth of the synthetic chemistry available to hypervalent iodine intermediates and the number of reports of hypervalent iodine electrosynthesis, demonstration of strategies to facilitate facile electrochemical generation of hypervalent iodine species promises to significantly impact the sustainable use of hypervalent iodine intermediates in synthesis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications Web site. The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.9b13918>.

Experimental procedures, spectroscopic and electrochemical data (PDF)

AUTHOR INFORMATION

Corresponding Author

David C. Powers – Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States;
 ORCID.org/0000-0003-3717-2001; Email: powers@chem.tamu.edu

Authors

Asim Maity – Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
 Brandon L. Frey – Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
 Nathanael D. Hoskinson – Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

Complete contact information is available at:
<https://pubs.acs.org/10.1021/jacs.9b13918>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Texas A&M University College of Science Strategic Transformative Research Program, the Welch Foundation (A-1907), and the National Science Foundation (CAREER 1848135) for financial support. We also thank Manuel Quiroz for assistance with GC measurements.

REFERENCES

- (1) For review literature, see: (a) Utley, J. H.; Folmer Nielsen, M. *Organic Electro-chemistry*; Lund, H., Hammerich, O., Eds.; M. Dekker: New York, 2001; pp 1227–1258. (b) Lund, H. A Century of Organic Electrochemistry. *J. Electrochem. Soc.* **2002**, *149*, S21–S33. (c) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.; Vasquez-Medrano, A. *Green Chem.* **2010**, *12*, 2099–2119. (d) Horn, E. J.; Rosen, B. R.; Baran, P. S. Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method. *ACS Cent. Sci.* **2016**, *2*, 302–308. (e) Chiba, K.; Okada, Y. Electron-transfer-induced molecular reactions: Electrode processes in organic synthesis. *Curr. Opin. Electrochem.* **2017**, *2*, 53–59. (f) Yan, M.; Kawamata, Y.; Baran, P. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. *Chem. Rev.* **2017**, *117*, 13230–13319. (g) Kärkäs, M. D. Electrochemical Strategies for C–H Functionalization and C–N Bond Formation. *Chem. Soc. Rev.* **2018**, *47*, 5786–5865. (h) Möhle, S.; Zirbes, M.; Rodgrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. *Angew. Chem., Int. Ed.* **2018**, *57*, 6018–6041.
- (2) Amatore, C.; Savéant, J. M.; Tessier, D. Kinetics of Electron Transfer to Organic Molecules at Solid Electrodes in Organic Media. *J. Electroanal. Chem. Interfacial Electrochem.* **1983**, *146*, 37–45.
- (3) Evans, D. H. One-Electron and Two-Electron Transfers in Electrochemistry and Homogeneous Solution Reactions. *Chem. Rev.* **2008**, *108*, 2113–2144.
- (4) (a) Steckhan, E. Indirect Electroorganic Syntheses – a Modern Chapter of Organic Electrochemistry. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 683–701. (b) Steckhan, E. Organic Syntheses with Electrochemically Regenerable Redox Systems. *Top. Curr. Chem.* **1987**, *142*, 1–69. (c) Oginin, Y. N.; Elinson, M. N.; Nikishin, G. I. Mediator Oxidation Systems in Organic Electrosynthesis. *Russ. Chem. Rev.* **2009**, *78*, 89–140. (d) Francke, R.; Little, R. D. Redox Catalysis in Organic Electrosynthesis: Basic Principles and Recent Developments. *Chem. Soc. Rev.* **2014**, *43*, 2492–2521.

(5) (a) Utley, J. H. P.; Rozenberg, G. G. Electroorganic Reactions. Part 57. DDQ Mediated Anodic Oxidation of 2-Methyl-and 2-Benzylnaphthalenes. *J. Appl. Electrochem.* **2003**, *33*, 525–532. (b) Amatore, C.; Cammoun, C.; Jutand, A. Electrochemical Recycling of Benzoquinone in the Pd/Benzoquinone-Catalyzed Heck-Type Reactions from Arenes. *Adv. Synth. Catal.* **2007**, *349*, 292–296.

(6) (a) Shen, Y.; Suzuki, K.; Atobe, M.; Fuchigami, T. Indirect Anodic Fluorodesulfurization of S-Aryl Thiobenzoates Using a Triarylamine Mediator. *J. Electroanal. Chem.* **2003**, *540*, 189–194. (b) Wu, X.; Davis, A. P.; Fry, A. J. Electrocatalytic Oxidative Cleavage of Electron-Deficient Substituted Stilbenes in Acetonitrile-Water Employing a New High Oxidation Potential Electrocatalyst. An Electrochemical Equivalent of Ozonolysis. *Org. Lett.* **2007**, *9*, 5633–5636. (c) Park, Y. S.; Little, R. D. Redox Electron-transfer Reactions: Electrochemically Mediated Rearrangement, Mechanism, and a Total Synthesis of Daucene. *J. Org. Chem.* **2008**, *73*, 6807–6815.

(7) (a) Semmelhack, M. F.; Chou, C. S.; Cortes, D. A. Nitroxyl-Mediated Electrooxidation of Alcohols to Aldehydes and Ketones. *J. Am. Chem. Soc.* **1983**, *105*, 4492–4494. (b) Inokuchi, T.; Matsumoto, S.; Torii, S. Indirect Electrooxidation of Alcohols by a Double Mediator System with Two Redox Couples of $[R_2N^+=O]/R_2NO^\bullet$ and $[Br^\bullet \text{ or } Br^\cdot]/Br^-$ in an Organic-Aqueous Two-Phase Solution. *J. Org. Chem.* **1991**, *56*, 2416–2421. (c) Hickey, D. P.; McCammant, M. S.; Giroud, F.; Sigman, M. S.; Minteer, S. D. Hybrid Enzymatic and Organic Electrocatalytic Cascade for the Complete Oxidation of Glycerol. *J. Am. Chem. Soc.* **2014**, *136*, 15917–15920. (d) Rafiee, M.; Miles, K. C.; Stahl, S. S. Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects. *J. Am. Chem. Soc.* **2015**, *137*, 14751–14757. (e) Cha, H. G.; Choi, K.-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. *Nat. Chem.* **2015**, *7*, 328–333. (f) Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. *Nature* **2016**, *535*, 406–410. (g) Folgueiras-Amador, A. A.; Philipps, K.; Guilbaud, S.; Poelakker, J.; Wirth, T. *Angew. Chem., Int. Ed.* **2017**, *56*, 15446–15450.

(8) (a) Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H. C. Electrocatalytic Generation of Amidyl Radicals for Olefin Hydroamidation: Use of Solvent Effects to Enable Anilide Oxidation. *Angew. Chem., Int. Ed.* **2016**, *55*, 2226–2229. (b) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-Catalyzed Electrochemical Diazidation of Alkenes. *Science* **2017**, *357*, 575–579. (c) Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. Electrochemical Cobalt-Catalyzed C–H Oxygenation at Room Temperature. *J. Am. Chem. Soc.* **2017**, *139*, 18452–18455. (d) Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A. Cobalt-Catalyzed Electrooxidative C–H/N–H [4+2] Annulation with Ethylene or Ethyne. *Nat. Commun.* **2018**, *9*, 798. (e) Tian, C.; Massignan, L.; Meyer, T. H.; Ackermann, L. Electrochemical C–H/N–H Activation by Water-Tolerant Cobalt Catalysis at Room Temperature. *Angew. Chem., Int. Ed.* **2018**, *57*, 2383–2387. (f) Sauermann, N.; Mei, R.; Ackermann, L. Electrochemical C–H Amination by Cobalt Catalysis in a Renewable Solvent. *Angew. Chem., Int. Ed.* **2018**, *57*, 5090–5094. (g) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. Copper-Catalyzed Electrochemical C–H Amination of Arenes with Secondary Amines. *J. Am. Chem. Soc.* **2018**, *140*, 11487–11494. Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Site-Selective C–H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis. *Acc. Chem. Res.* **2020**, *53*, 300.

(9) (a) Brand, J. P.; González, D. F.; Nicolai, S.; Waser, J. Benziodoxole-Based Hypervalent Iodine Reagents for Atom-Transfer Reactions. *Chem. Commun.* **2011**, *47*, 102–115. (b) Charpentier, J.; Früh, N.; Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent Iodine Reagents. *Chem. Rev.* **2015**, *115*, 650–682. (c) Yusubov, M. S.; Yoshimura, A.; Zhdankin, V. V. Iodonium ylides in organic synthesis. *ARKIVOC* **2015**, *2016*, 342–374. (d) Yoshimura, A.; Yusubov, M. S.; Zhdankin, V. V. Synthetic Applications of Pseudocyclic Hypervalent Iodine Compounds. *Org. Biomol. Chem.* **2016**, *14*, 4771–4781. (e) Yoshimura, A.; Zhdankin, V. V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. *Chem. Rev.* **2016**, *116*, 3328–3435. (f) Sousa e Silva, F. C.; Tierno, A. F.; Wengryniuk, S. E. Hypervalent Iodine Reagents in High Valant Transition Metal Chemistry. *Molecules* **2017**, *22*, 780.

(10) Elsherbini, M.; Wirth, T. Hypervalent Iodine Reagents by Anodic Oxidation: A Powerful Green Synthesis. *Chem. - Eur. J.* **2018**, *24*, 13399–13407.

(11) (a) Amano, Y.; Nishiyama, S. Oxidative Synthesis of Azacyclic Derivatives through the Nitrenium Ion: Application of a Hypervalent Iodine Species Electrochemically Generated from Iodobenzene. *Tetrahedron Lett.* **2006**, *47*, 6505–6507. (b) Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. A synthetic approach to carbazoles using electrochemically generated hypervalent iodine oxidant. *Tetrahedron* **2010**, *66*, 9779–9784. (c) Kajiyama, D.; Saitoh, T.; Nishiyama, S. Application of Electrochemically Generated Hypervalent Iodine Oxidant to Natural Product Synthesis. *Electrochemistry* **2013**, *81*, 319–324. (d) Broese, T.; Francke, R. Electrosynthesis Using a Recyclable Mediator-Electrolyte System Based on Ionically Tagged Phenyl Iodide and 1,1,1,3,3-Hexafluoroisopropanol. *Org. Lett.* **2016**, *18*, 5896–5899. (e) Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R. Synthesis of Benzoxazoles Using Electrochemically Generated Hypervalent Iodine Reagents. *J. Org. Chem.* **2017**, *82*, 11669–11681. (f) Roesel, A. F.; Broese, T.; Májek, M.; Francke, R. Iodophenylsulfonates and Iodobenzoates as Redox-Active Supporting Electrolytes for Electrosynthesis. *ChemElectroChem* **2019**, *6*, 4229–4237.

(12) (a) Gao, W.-C.; Xiong, Z.-Y.; Pirhaghani, S.; Wirth, T. Enantioselective Electrochemical Lactonization Using Chiral Iodoarenes as Mediators. *Synthesis* **2019**, *51*, 276–284. (b) Elsherbini, M.; Winterson, B.; Alharbi, H.; Folgueiras-Amador, A. A.; Génot, C.; Wirth, T. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications. *Angew. Chem., Int. Ed.* **2019**, *58*, 9811–9815.

(13) For exceptions: Fuchigami, T.; Fujita, T. Electrolytic Partial Fluorination of Organic Compounds. 14. The First Electrosynthesis of Hypervalent Iodobenzene Difluoride Derivatives and Its Application to Indirect Anodic gem-Difluorination. *J. Org. Chem.* **1994**, *59*, 7190–7192. (b) Yoshiyama, T.; Fuchigami, T. Anodic gem-Difluorination of Dithioacetals. *Chem. Lett.* **1992**, *21*, 1995–1998. (c) Sawamura, T.; Kurabayashi, S.; Inagi, S.; Fuchigami, T. Use of Task-Specific Ionic Liquid for Selective Electrocatalytic Fluorination. *Org. Lett.* **2010**, *12*, 644–646. (d) Sawamura, T.; Kurabayashi, S.; Inagi, S.; Fuchigami, T. Recyclable Polymer-Supported Iodobenzene-Mediated Electrocatalytic Fluorination in Ionic Liquid. *Adv. Synth. Catal.* **2010**, *352*, 2757–2760. (e) Doobary, S.; Sedikides, A. T.; Caldora, H. P.; Poole, D. L.; Lennox, A. J. J. Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electron-rich Substrate. *Angew. Chem., Int. Ed.* **2020**, *59*, 1155–1160.

(14) (a) Maity, A.; Hyun, S.-M.; Powers, D. C. Oxidase Catalysis via Aerobically Generated Hypervalent Iodine Intermediates. *Nat. Chem.* **2018**, *10*, 200–204. (b) Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Oxidation Catalysis by an Aerobically Generated Dess-Martin Periodinane Analogue. *Angew. Chem., Int. Ed.* **2018**, *57*, 7205–7209.

(15) Hyun, S.-M.; Yuan, M.; Maity, A.; Gutierrez, O.; Powers, D. C. The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry. *Chem.* **2019**, *5*, 2388–2404.

(16) (a) Cho, S. H.; Yoon, J.; Chang, S. Intramolecular Oxidative C–N Bond Formation for the Synthesis of Carbazoles: Comparison of Reactivity between the Copper-Catalyzed and Metal-Free Conditions. *J. Am. Chem. Soc.* **2011**, *133*, 5996–6005. (b) Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Organocatalytic, Oxidative, Intramolecular C–H Bond Amination and Metal-free Cross-Amination of Unactivated Arenes at Ambient Temperature. *Angew. Chem., Int. Ed.* **2011**, *50*, 8605–8608. (c) Samanta, R.; Kulikov, K.; Strohmann, C.; Antonchick, A. P. Metal-Free Electrocyclization at Ambient Temperature: Synthesis of 1-Arylcarbazoles. *Synthesis* **2012**, *44*, 2325–2332.

(17) For a discussion of the role of electrolyte in synthetic electrochemistry, see: Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner's Guide to Cyclic Voltammetry. *J. Chem. Educ.* **2018**, *95*, 197–206 For analysis of the impact of electrolyte concentration of the oxidative C–N bond-forming reaction of **1a** to afford **2a**, see Table S2, and for comparison of electrolyte concentration with other electrocatalytic methods, see Table S3.

(18) Further reduction of the catalyst loading leads to attenuation of the reaction efficiency (Table S5).

(19) Dohi, T.; Sasa, H.; Dohi, M.; Yasui, C.; Kita, Y. Oxidative Coupling of *N*-Methoxyamides and Related Compounds toward Aromatic Hydrocarbons by Designer μ -Oxo Hypervalent Iodine Catalyst. *Synthesis* **2019**, *51*, 1185–1195.

(20) We speculate that the presence of oxidatively labile C–H bonds in **1n** and **1o** prevent observation of direct substrate activation under electrochemical conditions.

(21) (a) Ito, C.; Katsuno, S.; Ohta, H.; Omura, M.; Kajiura, I.; Furukawa, H. Constituents of *Clausena excavata*. Isolation and Structural Elucidation of New Carbazole Alkaloids. *Chem. Pharm. Bull.* **1997**, *45*, 48–52. (b) Meragelman, K. M.; McKee, T. C.; Boyd, M. R. Siamenol, a New Carbazole Alkaloid from *Murraya siamensis*. *J. Nat. Prod.* **2000**, *63*, 427–428.

(22) Collins, K. D.; Glorius, F. A Robustness Screen for the Rapid Assessment of Chemical Reactions. *Nat. Chem.* **2013**, *5*, 597–601.

(23) (a) Samanta, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P. Organocatalytic, Oxidative, Intermolecular Amination and Hydrazination of Simple Arenes at Ambient Temperature. *Org. Lett.* **2012**, *14*, 5518–5521. (b) Lucchetti, N.; Scalzone, M.; Fantasia, S.; Muñiz, K. An Improved Catalyst for Iodine(I/III)-Catalysed Intermolecular C–H Amination. *Adv. Synth. Catal.* **2016**, *358*, 2093–2099.

(24) Ragnarsson, U. Synthetic Methodology for Alkyl Substituted Hydrazines. *Chem. Soc. Rev.* **2001**, *30*, 205–213.

(25) van der Vlugt, J. I. Advances in selective activation and application of ammonia in homogeneous catalysis. *Chem. Soc. Rev.* **2010**, *39*, 2302–2322.

(26) Galicia, M.; Gonzalez, F. Electrochemical Oxidation of Tetrabutylammonium Salts of Aliphatic Carboxylic Acids in Acetonitrile. *J. Electrochem. Soc.* **2002**, *149*, D46–D50.

(27) In contrast to hfp, CVs collected in acetonitrile display irreversible oxidation at all scan rates measured.

(28) (a) Bard, A. J.; Faulkner, L. R. *Electrochemical Methods: Fundamental and Applications*, 2nd ed.; John Wiley & Sons: Hoboken, NJ, 2001. (b) Saveant, J.-M. *Elements of Molecular and Biomolecular Electrochemistry*; John Wiley & Sons: Hoboken, NJ, 2006.

(29) Filler, F.; Schure, R. M. Highly Acidic Perhalogenated Alcohols. A New Synthesis of Perfluoro-*t*-butyl Alcohol. *J. Org. Chem.* **1967**, *32*, 1217–1219.