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ABSTRACT: Development of new electrosynthetic chemistry promises to impact the efficiency and sustainability of organic
synthesis. Here we demonstrate that anodically generated hypervalent iodine intermediates effectively couple interfacial electron
transfer with oxidative C—H/N—H coupling chemistry. The developed hypervalent iodine electrocatalysis is applicable in both intra-
and intermolecular C—N bond-forming reactions. Available mechanistic data indicate that anodic oxidation of aryl iodides generates
a transient I(I) intermediate that is critically stabilized by added acetate ions. This report represents the first example of metal-free
hypervalent iodine electrocatalysis for C—H functionalization and provides mechanistic insight that we anticipate will contribute to
the development of hypervalent iodine mediators for synthetic electrochemistry.

lectrochemistry is an attractive approach to sustainable
synthesis that obviates the need for stoichiometric redox
reagents and, thus, generation of the attendant waste streams.’
Because of its inherent tunability and scalability, electrosyn-
thesis could impact the enormous variety of organic trans-
formations in which electrons are added to, or removed from,
substrates. In practice, challenges such as (1) the sluggish
interfacial electron transfer rates for many organic molecules,
which necessitate application of substantial overpotential to
achieve practical current densities,” and (2) the need to couple
the single-electron events that are typical of electrochemistry
with the multielectron events required for bond-breaking and
-making in organic reactions, can limit direct electrosynthesis
(Figure 1).> Indirect electrocatalysis, in which small molecule
redox catalysts (i.e., electrocatalysts) convey applied potential
from the working electrode to the bulk reaction medium, has
emerged as an important strategy in selective organic
electrocatalysis.* Soluble electrocatalysts facilitate interfacial
electron transfer, circumvent unselective side reactions, and
can couple a diverse array of substrate functionalization
mechanisms to the electrochemical stimulus.'® Important
methods based on quinone-,5 amine-,’ nitroxyl radical-,” and
transition metal-redox catalysts® have been disclosed.
Hypervalent iodine reagents are a class of organic oxidants
that have been deployed in a wide variety of substrate
functionalization reactions.” Electrochemical oxidation of aryl
iodides typically requires substantial overpotential;10 thus,
hypervalent iodine electrochemistry has largely been limited to
ex cell applications,"" in which aryl iodides are electrolyzed in
the absence of substrate and subsequently used as stoichio-
metric rea%ents, or implemented in the context of flow
systems.'>"” Ex cell methods require stoichiometric generation
of hypervalent iodine species, which obviate many of the
potential advantages of electrochemistry vis-a-vis sustainability,
and fail to address the central challenge of hypervalent iodine
electrocatalysis, which is achieving selective oxidation of aryl
iodides in the presence of substrates.*
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Figure 1. Strategies for electrosynthetic chemistry. The generation of
soluble redox mediators, such as hypervalent iodine intermediates,
provides the opportunities to couple a diverse set of substrate
functionalization mechanisms to a common interfacial electron
transfer event.

During the development of aerobic hypervalent iodine
catalysis,'* we proposed that the aerobic generation of
hypervalent iodine compounds proceeded through the
intermediacy of acetate-stabilized iodanyl radicals (i.e., I(II)
species; Figure 1)."> We hypothesized that anodic oxidation of
aryl iodides in acetate-rich media could provide access to the
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same acetate-stabilized iodanyl radicals and thus enable the
development of hypervalent iodine electrocatalysis. Here, we
report that acetate-dependent anodic oxidation of aryl iodides
enables hypervalent iodine electrocatalysis of both intra- and
intermolecular C—H/N—H coupling reactions. Further, we
report a series of mechanistic studies that demonstrate the
importance of transient iodanyl radical intermediates in
electrocatalysis.

We initiated our investigations of hypervalent iodine
electrocatalysis by examining the onset potential for variously
substituted iodoarenes by cyclic voltammetry (CV, Table S1)
and identified 4-iodoanisole (3a) as an attractive initial catalyst
target (onset potential ~1.40 V vs Ag'/Ag). We chose the
intramolecular C—H/N—H coupling of N-([1,1’-biphenyl]-2-
yl)acetamide (1a) to afford N-acetylcarbazole (2a, pictured in
Figure 2) as an initial reaction target to evaluate hypervalent
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Figure 2. Intramolecular C—H/N—H coupling via hypervalent iodine
electrocatalysis (yields are of isolated products). Standard conditions:
catalyst 3a, CPE at 1.5 V versus Ag'/Ag for 80 C, undivided cell,
glassy carbon anode, platinum-plated cathode, and Ag*/Ag reference
electrode. a, Catalyst 3b, CPE at 1.9 V versus Ag"/Ag for 80 C. b,
Catalyst 3a, constant current electrolysis (CCE) at S mA for S F/mol.
¢, CPE in the absence of catalyst.

iodine electrochemistry because this transformation has
important precedent both with stoichiometric hypervalent
iodine promoters and hypervalent 10d1ne catalysis in the
presence of peracid terminal oxidants."®

Constant potential electrolysis (CPE) of a 1:1 mixture of 1a
and 3a in 1,1,1,3,3,3-hexafluoroisopropanol (hfip) with 0.2 M
[TBA]PF; as supporting electrolyte resulted in no C—N bond-
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forming chemistry and partial decomposition of the starting
material (87% of 1a was recovered following electrolysis; TBA
tetrabutylammonium).'” Based on the hypothesis that
acetate hgands can stabilize initially generated iodanyl
radicals,”” we examined the electrolysis of a mixture of la
and 3a with added [TBA]JOAc and found that 2.0 equiv of
[TBA]JOAc, with respect to substrate, promotes electro-
chemical C—N coupling in 61% yield (see Table S4 for results
from varying [TBA]JOAc loading). No C—N coupled product
was obtained in absence of aryl iodide. The loading of 3a can
be lowered; we find that 25 mol% affords 76% vyield."®
Following intramolecular C—N bond-forming chemistry,
analysis of the crude reaction mixture by "H NMR indicates
<5% catalyst decomposition. Examination of other solvents,
reaction temperatures, N-protecting groups, and electrode
materials did not result in substantively better reaction
efficiency (Tables S5—S7). Redox balance in the observed
chemistry is achieved by proton reduction (presumably of
hfip) to generate H,, which was observed by GC analysis of the
reaction headspace (Figure S1).

With the optimized conditions in hand, we evaluated the
scope of intramolecular C—N bond-forming chemistry (Figure
2). Reactions were run until 80 C of charge was passed (4.15
F/mol), which typically resulted in reaction times of 6—12 h.
Using 4-iodoanisole (3a) as catalyst, we found that both S- and
4’-halogenation are well tolerated (2b—2g), as is the
introduction of weakly electron withdrawing groups like S-
formyl (2h) or 4'-phenyl (2i). Under these conditions,
substrates with more electron-withdrawing substituents, such
as S-nitro (2j) and S-methylcarboxylate (2k), did not afford
the expected carbazole. Based on the hypothesis that these
more electron-deficient substrates may require a more
oxidizing hypervalent iodine catalyst, we employed 2,2'-
diiodo-4,4,6,6'-tetramethyl-1,1"-biphenyl (3b)'" as catalyst
(onset potential for oxidation is 1.68 V vs Ag'/Ag for 3b
compared to the onset potential of 3a which is 1.40 V vs Ag*/
Ag). The more oxidizing conditions allowed both 2j and 2k to
be accessed (43% and 71% yields, respectively). Electron
donating groups were tolerated in the 4’-position (ie., 21 and
2m). In contrast, introduction of methyl and methoxy groups
at the S-position (i.e., In and lo) led to starting material
decomposition and trace amount of carbazole. We speculate
that the presence of electron donating substituents at the S-
position decreases the onset potential of the substrate below
that of the aryl iodide catalyst and thus leads to direct and
unselective substrate activation (for CV analysis of all
substrates, see Figures S2—S6 and Table S8). Consistent
with this hypothesis, CPE of S-t-butyl acetamide (1p) in the
absence of aryl iodide catalyst afforded 2p in 65% yield
(background reactions of the other substrates in Figure 2
indicate that only 1p and 1v participate in appreciable C—N
coupling chemistry in the absence of 3, Table $9).”° The
broader tolerance for substitution in the 4’-position than the 5-
position is consistent with the smaller impact of substituents in
this position on the onset potential for direct substrate
oxidation (Figure S6). Intramolecular cyclization is also
tolerant to substitution at the 2’- (2q) and 3- positions (2r
and 2s) and can be accomplished in multifunctional substrates,
as highlighted by the synthesis of 2v, a precursor to ant1 HIV
natural product clauszoline-K.* Robustness analysis*> for
electrocatalytic intramolecular C—N bond-forming chemistry,
and comparison with both aerobic and peracid—based
methods, is summarized in Figure S7.
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Figure 3. Intermolecular C—H/N—H coupling via hypervalent iodine

electrocatalysis (yields are of isolated products). Standard conditions:

catalyst 3b, CPE for 80 C, 2.0 V versus Ag*/Ag, undivided cell, glassy

carbon anode, platinum-plated cathode, and Ag'/Ag reference. g,

CPE at 1.8 V. b, S equiv of ArH.

Catalyst 3b was used as the aryl iodide mediator due to its
previously reported success in furnishing intermolecular C—H
amination reactions (see Table S10 for analysis of other aryl
iodide catalysts).”> CPE of a CH,Cl,/hfip solution of
hydrazine derivative 4 and 10 equiv of benzene in the presence
of 1 equiv of 3b affords 81% yield of N-phenylated compound
Sa. The catalyst loading can be decreased to 25 mol% without
significantly compromising the yield (71% of isolated product).
Similar to the above-described intramolecular C—N bond-
forming chemistry, no C—N coupling products are observed in
the absence of either aryl iodide or [TBA]OAc. Amine
derivatives that feature onset potentials for direct oxidation
below that of 3b (ie., 2.0 V vs Ag*/Ag), such as TsSNHOMe,
TrocNHOMe, and PhNHAg, did not engage in intermolecular
C—N coupling (for CV analysis of amine derivatives see Figure
S8). The intermolecular C—H amination reactions with
halogenated aryl group were accomplished in 35—82% yields
(5b—5f). Positional selectivity for difunctionalized arenes (i.e.,
5f—Si) is consistent with electrophilic aromatic substitution
preferences. Electron-rich hydrocarbons like toluene, xylene,
and naphthalene were not viable substrates in the intermo-
lecular N—H arylation.

Hydrogenolysis of the N—N bond in compounds $ leads to
N-acyl aniline derivatives (6), which can be challenging to
synthesize by transition-metal-catalyzed cross-coupling reac-
tions due to the stability of ammonia adducts of many
transition metals (eq 1).>* Alternately, compounds § can be
elaborated to the corresponding arylhydrazines (7), which are
useful precursors to various heterocyclic compounds, by
treatment with hydrazine(eq 1).*

With interest in gaining deeper understanding of the
observed acetate-dependent hypervalent iodine electrocatal-
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hypervalent iodine electrocatalysis. (a) Interfacial electron transfer
with aryl iodide would initially generate a I(II) cation. (b) Interfacial
electron transfer with acetate would initially generate acetoxy radicals.

between the working electrode and the aryl iodide to generate
an I(I) intermediate (8), which would then be trapped by
exogenous acetate ion to generate acetoxy iodanyl radical 9
(Figure 4, path a). Subsequent oxidation chemistry would
ultimately lead to I(III) (10). Alternatively, the observed
acetate-dependent chemistry might arise from an interrupted
Kolbe electrolysis®® in which initially formed acetoxy radicals
add to aryl iodides to generate iodanyl radical intermediates
(9), which would subsequently undergo further oxidation to
I(III) (10) (Figure 4, path b). Available evidence, summarized
below, is most consistent with the former mechanistic scenario.

Examination of the CV of 3a as a function of scan rate in
hfip indicates that while the oxidation is irreversible at low scan
rates (i.e,, < 100 mV/s), electrochemical reversibility emerges
at higher scan rates (>250 mV/s, Figure Sa; for corresponding
data for 4-iodotoluene, see Figures S9—S11).”” Addition of
[TBA]OACc to a CV experiment of 3a in hfip results in both the
loss of reversibility and the substantial increase in the anodic
current (I,,), indicating that the electrochemically generated
species is trapped by added acetate (Figure Sb). The measured
peak potential is linearly correlated with the square root of scan
rate, which indicates electron transfer from a solution-borne,
not surface adsorbed, species (Figure 5a inset).”® Trapping of
electrochemically generated iodanyl radicals is not limited to
acetate. A variety of common hypervalent iodine ligands
including pyridine, cyanide, trifluoroacetate, and fluoride all
give rise to the same enhanced current and suppressed
reversibility that is diagnostic of trapping the electrochemically
generated species (Figures S12—S15).

Regarding the potential that the reported hypervalent iodine
chemistry arises from an interrupted Kolbe electrolysis, we
observed that electrolysis of CH;CN solutions containing
[TBA]OAc and [TBA]PF results in the products expected of
Kolbe electrolysis: ethane, methane, and CO, (observed by
GC analysis of reaction headspace, Figure S16). In contrast,
acetate oxidation is suppressed in hfip, the solvent in which the
chemistry is (uniquely) effective (no volatiles are observed in
headspace analysis as well as no oxidation peak in the CV)
(Figure S17 and S18). The suppression of Kolbe electrolysis is
consistent with strong hydrogen bonding of acetate to the
acidic O—H of hfip (pK, = 9.3).”” Consistent with this
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Figure S. (a) Increasing reversibility of 3a oxidation in hfip is
observed in CVs collected with increasing scan rate: 0.0S (red), 0.1,
0.25, 0.50, 0.75, 1.0, and 1.2 V/s (black). Inset: Plot of peak anodic
current (Ipa) of 3a versus square root of scan rate [R* = 0.99]. (b)
CVs of 3a in a 0.2 M [TBA]PF solution of hfip (black) and in the
presence of 2.0 equiv of [TBA]OAc (red).

hypothesis, NMR analysis of solutions containing both hfip
and [TBA]JOAc reveals a significant downfield shift in the
methine resonance (Figure S19). Job analysis indicates a 1:1
adduct is formed between these two species (Figure S20 and
Table S11), and NMR analysis provides an equilibrium
constant for association of 0.767 (Figures S21—S23 and
Table S12).

In summary, we report the first example of hypervalent
iodine electrocatalysis for C—H amination chemistry. The
developed chemistry is applicable to both intra- and
intermolecular C—N bond-forming reactions. Mechanistic
experiments indicate the critical role of acetate to stabilize
initially generated iodanyl radical intermediates. Given the
breadth of the synthetic chemistry available to hypervalent
iodine intermediates and the number of reports of hypervalent
iodine electrosynthesis, demonstration of strategies to facilitate
facile electrochemical generation of hypervalent iodine species
promises to significantly impact the sustainable use of
hypervalent iodine intermediates in synthesis.
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