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Only numerical relativity simulations can capture the full complexities of binary black hole mergers. These

simulations, however, are prohibitively expensive for direct data analysis applications such as parameter

estimation. We present two fast and accurate surrogate models for the outputs of these simulations: the first

model, NRSur7dq4, predicts the gravitational waveform and the second model, NRSur7dq4Remnant, predicts

the properties of the remnant black hole. These models extend previous seven-dimensional, noneccentric

precessing models to higher mass ratios and have been trained against 1528 simulations with mass ratios

q � 4 and spin magnitudes χ1, χ2 � 0.8, with generic spin directions. The waveform model, NRSur7dq4,

which begins about 20 orbits before merger, includes all ℓ � 4 spin-weighted spherical harmonic modes, as

well as the precession frame dynamics and spin evolution of the black holes. The final black hole model,

NRSur7dq4Remnant, models the mass, spin, and recoil kick velocity of the remnant black hole. In their training

parameter range, both models are shown to be more accurate than existing models by at least an order of

magnitude, with errors comparable to the estimated errors in the numerical relativity simulations. We also show

that the surrogate models work well even when extrapolated outside their training parameter space range, up to

mass ratios q = 6.

DOI: 10.1103/PhysRevResearch.1.033015

I. INTRODUCTION

As the LIGO [1] and Virgo [2] detectors reach their de-

sign sensitivity, gravitational wave (GW) detections [3–9] are

becoming routine [10,11]. To maximize the science output of

the data collected by the network of detectors, it is crucial

to accurately model the source of the GWs. Among the most

important sources for these detectors are binary black hole

(BBH) systems, in which two black holes (BHs) lose energy

through GWs, causing them to inspiral and eventually merge.

Numerical relativity (NR) simulations are necessary to

accurately model the late inspiral and merger stages of the

BBH evolution. These simulations accurately solve Einstein’s

equations to predict the evolution of the BBH spacetime. The

most important outputs of NR simulations are the gravita-

tional waveform and the mass, spin, and recoil kick velocity

of the remnant BH left after the merger.
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For interpreting detected signals, model waveforms are

used in comparison with detector data so we can infer the

properties of the source [12–14]. The mass and spin of

the remnant determine the black hole ringdown frequencies,

which are used in testing general relativity [15–17]. In ad-

dition, the recoil kick is astrophysically important because it

can cause the remnant BH to be ejected from its host galaxy

[18–20].

Unfortunately, NR simulations are too expensive to be di-

rectly used in data analysis applications and incorporated into

astrophysical models. As a result, several approximate models

that are much faster to evaluate have been developed for both

waveforms [21–31] and remnant properties [18,19,32–50].

These models typically assume an underlying phenomenology

based on physical motivations and calibrate any remaining

free parameters to NR simulations.

Among BBHs, systems with BH spins that are misaligned

with respect to the orbital angular momentum are complicated

to model analytically or semianalytically. For these systems,

the spins interact with both the orbital angular momentum

and each other, causing the system to precess about the

direction of the total angular momentum [51]. This precession

is imprinted on the waveform as characteristic modulations

in the amplitude and frequency of the GWs and can be used

to extract information about the spins of the source. One
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important application of the extracted spins is to distinguish

between formation channels of BBHs [52–55].

The precessing BBH problem for quasicircular orbits

is parametrized by seven parameters: the mass ratio q =

m1/m2 � 1 and two spin vectors χ1,2, where the index 1

(2) refers to the heavier (lighter) BH. The total mass scales

out of the problem and does not constitute an additional

parameter for modeling. The surrogate models of Ref. [56]

for the gravitational waveform and Ref. [57] for the remnant

properties were the first to model the seven-dimensional space

of generically precessing BBH systems, although restricted

to mass ratios q � 2 and dimensionless spin magnitudes

χ1,2 � 0.8. Trained directly against numerical simulations,

these models do not need to introduce additional assumptions

about the underlying phenomenology of the waveform or

remnant properties that necessarily introduce some systematic

error. Through cross-validation studies, it was shown that both

these models achieve accuracies comparable to the numerical

simulations themselves [56,57], and as a result, are the most

accurate models currently available for precessing systems,

within their parameter space of validity.

In this paper, we present extensions of the above surrogate

models to larger mass ratios. Our new surrogate models are

called NRSur7dq4 and NRSur7dq4Remnant, for the gravita-

tional waveform and remnant properties, respectively. They

are trained against 1528 precessing NR simulations with mass

ratios q � 4, spin magnitudes χ1, χ2 � 0.8, and generic spin

directions. Both models are made publicly available through

the gwsurrogate [58] and surfinBH [59] PYTHON packages;

example evaluation codes are provided at Refs. [60] and [59],

respectively, for NRSur7dq4 and NRSur7dq4Remnant.

The rest of the paper is organized as follows. Section II

covers some preliminaries to set up the modeling prob-

lem for precessing BBH systems. Section III describes the

training simulations. Section IV describes the NRSur7dq4

waveform surrogate model. Section V describes the NR-

Sur7dq4Remnant remnant properties surrogate model. Sec-

tion VI compares these models against NR simulations to

assess their accuracy. Finally, Sec. VII presents some con-

cluding remarks. In Appendix A, we examine how accurate

these models are when extrapolated beyond mass ratio q = 4,

and in Appendix B, we investigate some features in the error

distribution of the NR simulations.

II. PRELIMINARIES AND NOTATION

It is convenient to combine the two polarizations of the

waveform into a single complex, dimensionless strain h =

h+ − ih× and to represent the waveform on a sphere as a sum

of spin-weighted spherical harmonic modes:

h (t, ι, ϕ0) =

∞
∑

ℓ=2

l
∑

m=−l

h ℓm(t ) −2Yℓm(ι, ϕ0). (1)

Here, −2Yℓm are the spin = −2 weighted spherical harmonics,

and ι and ϕ0 are the polar and azimuthal angles on the sky in

the source frame.

For nonprecessing systems, the direction of orbital angular

momentum (L) is fixed and the ẑ direction of the source frame

is chosen to be along L̂ by convention. The gravitational

FIG. 1. The real part of the (2,2) and (2,1) modes of the grav-

itational waveform in the inertial (top), coprecessing (middle), and

coorbital (bottom) frames. In the inertial frame, the amplitude of

the (2,1) mode can be comparable to that of the (2,2) mode. In

the coprecessing frame, on the other hand, the (2,2) mode always

dominates. In addition, most effects of precession are removed by

the rotation and the waveform in the coprecessing frame resembles

that of a nonprecessing system. In the co-orbital frame, finally, the

waveform is further simplified and does not oscillate about zero.

Mass ratio and initial spins used to produce this figure are indicated

in the text within the figure.

radiation is strongest along the directions parallel and an-

tiparallel to L̂. Therefore, for nonprecessing systems, the

quadrupole modes (ℓ = 2, m = ±2) dominate the sum in

Eq. (1), but the nonquadrupole modes can become important

at large mass ratios or ι close to π/2 [61–70].

By contrast, for precessing systems the direction of L

varies due to precession [51] and so there is not a fixed axis

along which the radiation is dominant. The standard practice

is to choose ẑ of the source frame along the direction of L (or

the total angular momentum) at a reference time or frequency.

Heuristically, one can think of a precessing system as a

nonprecessing system with time-dependent frame rotations

applied to it. In this noninertial frame, the rotation causes

mixing of power between modes of fixed ℓ. For example, the

power of the (2,±2) modes leaks into the (2,±1) and (2,0)

modes. This means that all ℓ = 2 modes can be dominant

in Eq. (1). While this rotating-frame picture ignores some

dynamical features such as nutation, it accounts for most of

the effects of precession in the waveform.

By the same logic, one could apply a time-dependent

rotation to a precessing system such that ẑ always lies along

L̂(t ). In this noninertial frame, referred to as the coprecessing

frame [71–73], the radiation is always strongest along ẑ, and

the (ℓ = 2, m = ±2) modes are dominant. In fact, since most

precessional effects are accounted for by the frame rotation,

the waveform in the coprecessing frame is qualitatively

similar to that of a nonprecessing system (cf. Fig. 1). This
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observation has been exploited in the literature

[21,24,27,56,74] to simplify the modeling of precessing

systems. Here, we proceed similarly, using the coprecessing

frame described in Ref. [73] and denoting the strain in this

frame as h
copr

ℓm .

The waveform can be made even simpler, and therefore

easier to model, by applying an additional rotation about the

z axis of the coprecessing frame by an amount equal to the

instantaneous orbital phase:

h coorb
ℓm (t ) = h

copr

ℓm (t ) eimφ(t ). (2)

Here, we define the orbital phase,

φ(t ) =
arg

[

h
copr

2,−2(t )
]

− arg
[

h
copr

2,2 (t )
]

4
, (3)

using the coprecessing frame strain. The waveform h coorb
ℓm (t )

corresponds to a new frame, called the co-orbital frame, in

which the BHs are always on the x axis, with the heavier BH

on the positive x axis.1 More importantly, the waveform in

the co-orbital frame is nearly nonoscillatory, simplifying the

modeling problem greatly. Figure 1 shows an example of a

waveform in the inertial, coprecessing, and co-orbital frames.

III. NR SIMULATIONS

Our NR simulations are performed using the spectral

Einstein code (SpEC) [75–80] developed by the SXS [81]

Collaboration.

A. Parameter space coverage

We use 890 precessing NR simulations used in the con-

struction of the surrogate models of Refs. [56,57], which

provide coverage in the q � 2 and χ1, χ2 � 0.8 regions of the

parameter space. We also make use of 64 aligned-spin simu-

lations with q � 4 and χ1, χ2 � 0.8 used in the construction

of the surrogate model presented in Ref. [82]. Finally, we per-

formed 574 new simulations with 2 < q � 4, χ1, χ2 � 0.8,

and generic spin directions. The parameters for the first 204 of

these are chosen based on sparse grids as detailed in Appendix

A of Ref. [56]. The remaining parameters are chosen as

follows. We randomly sample 1000 points uniformly in mass

ratio, spin magnitude, and spin direction on the sphere. We

compute the distance between points a and b using the metric

ds2 =

(

qa − qb

�q

)2

+
∑

i∈{1,2}

(
∣

∣χa
i − χb

i

∣

∣

�χ

)2

, (4)

where �q = 4 − 1 = 3 and �χ = 0.8 are the ranges of

these parameters. These normalization factors are somewhat

arbitrary, although any choice of order unity should provide a

reasonable criteria for point selection. For each sampled

parameter, we compute the minimum distance to all

previously chosen parameters. We then add the sampled

parameter maximizing this minimum distance to the set

1Here, the BH positions are defined from the waveform at fu-

ture null infinity and do not necessarily correspond to the (gauge-

dependent) coordinate BH positions in the NR simulation.

of chosen parameters. This is done iteratively for 370

additional parameters. The new simulations have identifiers

SXS:BBH:1346-1350 and SXS:BBH:1514-2082 and are

made publicly available through the SXS public catalog [83].

The parameter space covered by the 890 + 64 + 574 = 1528

NR simulations used in this work is shown in Fig. 2. Note that

not all of these are independent simulations: For 154 of these

cases, we have q = 1, with χ1 �= χ2; for each of these cases,

we effectively obtain an additional simulation by exchanging

the labels of the two BHs.

The start time of these simulations varies between 4693M

and 5234M before the peak of the waveform amplitude, where

M = m1 + m2 is the total Christodoulou mass measured close

to the beginning of the simulation at the “relaxation time”

[84]. The initial orbital parameters are chosen through an

iterative procedure [85] such that the orbits are quasicircular;

the largest eccentricity for these simulations is 9.8 × 10−4,

while the median value is 3.8 × 10−4.

B. Data extracted from simulations

We make use of the following quantities extracted from

the NR simulations: the waveform modes h ℓm(t ), component

spins χ(t ), mass ratio q, remnant mass m f , spin χ f , and kick

velocity v f .

The waveform is extracted at several extraction spheres at

varying finite radii from the origin and then extrapolated to

future null infinity [84,86]. Then, the extrapolated waveforms

are corrected to account for the initial drift of the center

of mass [87,88]. The time steps during the simulations are

chosen nonuniformly using an adaptive time stepper [84].

Using cubic splines, we interpolate the real and imaginary

parts of the waveform modes to a uniform time step of 0.1M;

this is dense enough to capture all frequencies of interest,

including near merger. The interpolated waveform at future

null infinity, scaled to unit mass and unit distance, is denoted

as h ℓm(t ) in this paper.

The component spins χ1,2(t ) and masses m1,2 are evaluated

on the apparent horizons [77] of the BHs. The masses at the

relaxation time [84] are used to define the mass ratio q =

m1/m2. Unless otherwise specified, all masses in this paper

are given in units of the total mass M = m1 + m2 at relaxation.

The spins are interpolated onto the same time array2 as used

for the waveform, using cubic splines.

The remnant mass m f and spin χ f are determined from

the common apparent horizon long after ringdown, as detailed

in Ref. [84]. The remnant kick velocity is derived from con-

servation of momentum, v f = −P
rad/m f [90]. The radiated

momentum flux P
rad is integrated [91] from the strain h ℓm.

2The waveforms at future null infinity use a time coordinate t that is

different from the simulation time t̃ at which the spins are measured

in the near zone [84]. In this paper, we identify t with t̃ . While

this identification is gauge dependent, the spin directions are already

gauge dependent. We, however, note that the spin and orbital angular

momentum vectors in the damped harmonic gauge used by SpEC

agree quite well with the corresponding vectors in post-Newtonian

(PN) theory [89].
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FIG. 2. Parameters of the 1528 NR simulations used in the construction of the surrogate models in this paper. We show the distribution of

mass ratio q and the spin components in standard spherical polar coordinates (χ , θ , φ) at −4300M from the waveform amplitude peak. The

index 1 (2) refers to the heavier (lighter) BH.

C. Postprocessing the output of NR simulations

After extracting the strain and spins from the simulations,

we apply the following postprocessing steps before building

the surrogate models.

First, we shift the time arrays of all waveforms such that

t = 0 occurs at the peak (see Ref. [56] for how the peak is

determined) of the total waveform amplitude, defined as

A(t ) =

√

∑

ℓm

|h ℓm(t )|2. (5)

Then we rotate the waveform modes such that at a ref-

erence time t0 = −4300M, the inertial frame coincides with

the co-orbital frame. This means that the ẑ direction of the

inertial frame is along the principal eigenvector of the angular

momentum operator [73] at the reference time. In addition,

the x̂ direction of the inertial frame is along the line of

separation from the lighter BH to the heavier BH (in other

words, the orbital phase is zero). The spin vectors χ1,2(t ) are

also transformed into the same inertial frame.

We then truncate the waveform and spin time series by

dropping all times t < −4300M to exclude the initial tran-

sients known as “junk radiation.” After the truncation, the

reference time t = −4300M is also the start time of the

data.

For t > −100M, the spin measurements from the apparent

horizons start to become unreliable as the horizons become

highly distorted. Following Ref. [56], starting at t = −100M,

we extend the spins to later times using PN spin evolution

equations. This evolution is done even past the merger stage,

into the ringdown. We stress that the extended spins are

unphysical but are a useful parametrization to construct fits

at late times.

Finally, we apply a smoothing filter (see Eq. (6) of

Ref. [56]) on the spin time series to remove fast oscillations

taking place on the orbital time scale. This smoothing helps

improve the numerical stability of the ordinary differential

equation (ODE) integrations described in Sec. IV B. Note that

we use the filtered spins for the waveform surrogate (Sec. IV)

but not for the remnant surrogate (Sec. V), for which we just
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FIG. 3. The top panel shows the real part of the (2,2) and (2, −2)

modes of the waveform in the co-orbital frame. Notice that the orbital

timescale oscillations of these two modes have opposite signs. The

bottom panel shows the real parts of h +
2,2 and h −

2,2 [cf. Eq. (6)], we

take advantage of the above fact to move most of the oscillations

from the larger to the smaller data piece.

use the unfiltered spins since there are no ODE integrations

involved.

IV. WAVEFORM SURROGATE

To construct the waveform surrogate, we closely follow the

model of Ref. [56], with some modifications to adapt it to

higher mass ratios. We refer to the new waveform model as

NRSur7dq4.

A. Co-orbital frame surrogate

We find that the surrogate accuracy improves when work-

ing with slowly varying functions, rather than oscillatory ones.

Therefore, we first decompose the strain into several “data

pieces,” each of which is a slowly varying function of time,

and build a surrogate for each of them. At evaluation time,

we combine the various data pieces to reconstruct the inertial

frame strain. To reduce the cost of these transformations, we

first downsample the inertial frame strain onto a set of 2000

time values t coorb
i that are approximately uniformly spaced in

the orbital phase (using the method described in Appendix B

of Ref. [56]).

As described in Sec. II, the waveform is simpler in the

co-orbital frame. A further simplification is possible by con-

sidering combinations of m > 0 and m < 0 counterparts of a

fixed ℓ mode:

h ±
ℓm =

h coorb
ℓ,m ± h coorb

ℓ,−m
∗

2
. (6)

Figure 3 shows an example of the simplification obtained with

this combination. For all m �= 0 modes, we model the real

and imaginary parts of h ±
ℓm. For m = 0 modes, we directly

model the real and imaginary parts of the co-orbital frame

strain h coorb
ℓ,m . We construct an independent surrogate model

for each of these data pieces and refer to the combination of

these models as the co-orbital frame surrogate.

As described in Ref. [56], for each waveform data piece,

we construct a linear basis using singular value decomposition

with an rms tolerance of 3 × 10−4. We then construct an

empirical time interpolant with the same number of empirical

time nodes as basis functions for that data piece [92–94].

The empirical time nodes are chosen as a subset of the 2000

co-orbital time values (t coorb
i ) and are specific to each data

piece. Finally, for each empirical time node, we construct

a parametric fit for the waveform data piece. The fits are

parametrized as functions of the mass ratio and the spins in the

co-orbital frame at that time. We describe our fitting procedure

in Sec. IV C. At evaluation time, the co-orbital frame spins at

any time are obtained using the dynamics surrogate described

in Sec. IV B.

B. Dynamics surrogate

The surrogate described in Sec. IV A only models the strain

in the co-orbital frame. We also need to model the following

quantities:

(1) the orbital phase in the coprecessing frame, which is

required to transform the strain from the co-orbital frame to

the coprecessing frame [cf. Eq. (2)];

(2) the quaternions describing the coprecessing frame,

which are required to transform the strain from the coprecess-

ing frame to the inertial frame;

(3) the spins as a function of time, which are used in the

evaluation of the parametric fits described in Sec. IV C.

We refer to the model for these quantities as the dynamics

surrogate. Using the fitting method of Sec. IV C, we first

construct parametric fits for ω(t ), �coorb
x,y (t ), and χ̇coorb

1,2 (t ) at

selected time nodes referred to as the dynamical time nodes

t
dyn
i . Here, χ̇coorb

1,2 (t ) are the time derivatives of the coprecess-

ing frame spins transformed to the co-orbital frame, ω(t ) is

dφ/dt [cf. Eq. (3)], and �coorb
x,y (t ) is the angular velocity of

the coprecessing frame, transformed to the co-orbital frame.

These quantities are described in more detail in Sec. III of

Ref. [56]. Note that �coorb
z (t ) ∼ 0. For the dynamical time

nodes t
dyn
i , we chose 238 time values such that there are

approximately 10 nodes per orbit (see Appendix B of Ref. [56]

for details).

We use a fourth-order Adams-Bashforth scheme to inte-

grate ω(t
dyn
i ), �coorb

x,y (t
dyn
i ), and χ̇coorb

1,2 (t
dyn
i ) over the set of

dynamical time nodes t
dyn
i providing the time evolution of

the orbital phase φ(t
dyn
i ), the coprecessing frame quaternions

Q̂(t
dyn
i ), and the component spins in the co-orbital frame

χcoorb
1,2 (t

dyn
i ). This involves solving a coupled ODE as described

in Sec. V of Ref. [56]. At each step of the ODE integration,

the co-orbital frame spins at the current node t
dyn
i are first

obtained. These are then used to evaluate the parametric fits

for the derivative quantities mentioned above. Note that the

spins used in the dynamics surrogate are the filtered spins

mentioned in Sec. III C; this improves the accuracy of the

ODE integration by making the spin time derivatives easier

to model.

033015-5



VIJAY VARMA et al. PHYSICAL REVIEW RESEARCH 1, 033015 (2019)

C. Parametric fits

For the co-orbital frame surrogate of Sec. IV A, we need

to construct parametric fits at various empirical time nodes

for the different data pieces. Similarly, for the dynamics

surrogate of Sec. IV B, we need to construct fits for various

time derivatives at the dynamical time nodes t
dyn
i . We use the

same procedure for each of these fits. Let us refer to the data

to be fitted as y(�), where � is a seven-dimensional set of

parameters.

For each of these fits, the seven parameters � must

contain information on mass ratio q and co-orbital frame

spins χcoorb
1,2 (ti ) at the time corresponding to the fit. Following

Ref. [57], we parametrize the fits using

� =
[

log(q), χ coorb
1x , χ coorb

1y , χ̂ coorb, χ coorb
2x , χ coorb

2y , χ coorb
a

]

,

(7)

where χ̂ coorb is the spin parameter entering the GW phase at

leading order [12,26,95,96] in the PN expansion

χ̂ coorb =
χ coorb

eff − 38η
(

χ coorb
1z + χ coorb

2z

)

/113

1 − 76η/113
, (8)

χ coorb
eff =

qχ coorb
1z + χ coorb

2z

1 + q
, (9)

η =
q

(1 + q)2
, (10)

and χ coorb
a is the “antisymmetric spin”

χ coorb
a = 1

2

(

χ coorb
1z − χ coorb

2z

)

. (11)

We empirically found this parametrization to perform

more accurately than the more intuitive choice �ref56 =

[q, χ coorb
1x , χ coorb

1y , χ coorb
1z , χ coorb

2x , χ coorb
2y , χ coorb

2z ] used in

Ref. [56].

Fits are constructed using the forward-stepwise greedy

fitting method described in Appendix A of Ref. [74]. We

choose the basis functions to be a tensor product of one-

dimensional (1D) monomials in the components of �. The

components of � are first affine mapped to the interval [−1, 1]

before constructing the tensor product. We consider up to

cubic powers in log(q) and up to quadratic powers in the

spin parameters. We find that going to higher powers does

not significantly improve the fit accuracy within the training

region, but the mass ratio extrapolation errors estimated in

Appendix A become much larger.

It is always possible to improve the accuracy of a fit by

adding more basis functions. However, this can lead to overfit-

ting when the data contain some noise. Our source of noise is

mostly due to NR truncation error, but also systematic errors

such as waveform extrapolation and residual eccentricity. In

order to safeguard against overfitting, we perform 10 trial fits,

leaving a random 10% of the dataset out as validation points

in each trial, to determine the set of basis functions used in

constructing the final fit. We allow a maximum of 100 basis

functions for each fit. See Appendix A of Ref. [74] for more

details.

D. Surrogate evaluation

To evaluate the surrogate, we begin with a user-specified

mass ratio q and spins χcoorb
1,2 at the initial time t = −4300M.

Note that at this time, the inertial frame coincides with

the co-orbital frame. These values are used to initialize the

dynamics surrogate described in Sec. IV B, which predicts

the coprecessing frame quaternions Q̂(t
dyn
i ), the orbital phase

φ(t
dyn
i ) in the coprecessing frame, and the coorbital frame

spins χcoorb
1,2 (t

dyn
i ) at the dynamic time nodes t

dyn
i . We then

use cubic splines to interpolate these quantities on to the

time array for the co-orbital frame surrogate t coorb
i , giving us

Q̂(t coorb
i ), φ(t coorb

i ), and χcoorb
1,2 (t coorb

i ).

The co-orbital frame surrogate described in Sec. IV A is

used to predict the strain in the co-orbital frame. This involves

evaluating the fits at the empirical time nodes for this surro-

gate using χcoorb
1,2 (t coorb

i ) and q. Then, the orbital phase φ(t coorb
i )

is used to transform the strain from the co-orbital frame to

the coprecessing frame [cf. Eq. (2)]. Finally, the coprecessing

frame quaternions Q̂(t coorb
i ) are used to transform the strain

from the coprecessing frame to the inertial frame (this in-

volves Wigner matrices; see Appendix A of Ref. [73]). This

gives us h ℓm(t coorb
i ), which is interpolated onto any required

time array t using cubic splines to get h ℓm(t ).

V. REMNANT SURROGATE

To construct the remnant properties surrogate, we closely

follow the model of Ref. [57]. We refer to the new model

presented here as NRSur7dq4Remnant.

We model the remnant mass m f , spin χ f , and kick velocity

v f . Before constructing the fits, χ f and v f are transformed

into the co-orbital frame at t = −100M. We model each com-

ponent of the vectors independently. The fits are parametrized

by the same � of Eq. (7), but using the component spins at

t = −100M. Unlike the waveform surrogate case, we do not

filter out orbital-timescale oscillations. The filtered spins were

found to be necessary for the accuracy of the time integration

in Sec. IV B, which is not necessary here because the remnant

properties can evaluated from the BBH parameters at a single

time t = −100M.

All fits are performed using Gaussian process regres-

sion (GPR), as described in the supplementary materials of

Ref. [57]. We find that GPR fitting is, in most cases, more

accurate but also significantly more expensive than the poly-

nomial fitting method described in Sec. IV C. GPR becomes

impractical to use for the waveform surrogate as there are

hundreds of fits that need to be evaluated to generate the

waveform. For the remnant fits, however, the additional cost

of GPR is acceptable because one is only fitting seven quan-

tities (m,χ f , v f ). In addition, GPR naturally provides error

estimates which can be useful in data analysis applications.

The efficacy of the GPR error estimate in reproducing the

underlying error of the surrogate models was investigated

thoroughly in the supplementary materials of Ref. [57].

Although NRSur7dq4Remnant is parameterized internally

by input spins specified in the co-orbital frame at t = −100M,

we allow the user to specify input spins at earlier times and

in the inertial frame; this case is handled by two additional

levels of spin evolution. Given the inertial-frame input spins

at an initial orbital frequency f0, we first evolve the spins using

a post-Newtonian (PN) approximant—3.5PN SpinTaylorT4

[89,97,98]—until we reach the domain of validity of the
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(a) Flat noise mismatches (b) LIGO noise mismatches

FIG. 4. Mismatches for NRSur7dq4 and SEOBNRv3 models, when compared against precessing NR simulations using all ℓ � 5 modes

with mass ratios q � 4 and spin magnitudes χ1, χ2 � 0.8. The NRSur7dq4 errors shown are out-of-sample errors. Also shown are the NR

resolution errors. Mismatches are computed at several sky locations using all available modes for each model: ℓ � 4 for NRSur7dq4, and ℓ = 2

for SEOBNRv3. The NR error is computed using all ℓ � 5 modes from the two highest available resolutions. Left panel: Mismatches computed

using a flat noise curve. The square (triangle) markers at the top indicate the median (95th percentile) values. Right panel: Mismatches

computed using the Advanced LIGO design sensitivity noise curve, as a function of total mass. The dashed (solid) lines indicate the median

(95th percentile) values over different NR simulations and points in the sky.

more accurate NRSur7dq4 (t = −4300M from the peak). We

then use the dynamics surrogate of NRSur7dq4 to evolve the

spins until t = −100M. These spins are then transformed to

the co-orbital frame and used to evaluate the remnant fits.

Thus, spins can be specified at any given orbital frequency

and are evolved consistently before estimating the final BH

properties. Note that NRSur7dq4 uses the filtered spins, while

NRSur7dq4Remnant expects unfiltered spins at t = −100M,

but we find that the errors introduced by this discrepancy are

negligible compared to the errors due to PN spin evolution.

VI. RESULTS

We evaluate the accuracy of our surrogate models by

comparing them against the waveform and remnant properties

from the NR simulations used in this work. For this, we

perform a 20-fold cross-validation study to compute “out-of-

sample” errors as follows. We first randomly divide the 1528

training simulations into 20 groups of ≈76 simulations each.

For each group, we build a trial surrogate using the ≈1452

remaining training simulations and test against these ≈76

validation ones, which may include points on the boundary

of the training set.

A. Waveform surrogate errors

To estimate the difference between two waveforms, h 1 and

h 2, we use the mismatch

MM = 1 −
〈h 1, h 2〉

√

〈h 1, h 1〉〈h 2, h 2〉
, (12)

〈h 1, h 2〉 = 4Re

∫ fmax

fmin

h̃ 1( f )h̃
∗

2( f )

Sn( f )
df , (13)

where h̃ ( f ) indicates the Fourier transform of the complex

strain h (t ), ∗ indicates a complex conjugation, Re indicates

the real part, and Sn( f ) is the one-sided power spectral density

of a GW detector. We taper the time domain waveform using

a Planck window [99] and then zero pad to the nearest power

of 2. We further zero pad the waveform to increase the length

by a factor of 8 before performing the Fourier transform. The

tapering at the start of the waveform is done over 1.5 cycles

of the (2,2) mode. The tapering at the end is done over the last

30M. Note that our model contains times up to 100M after the

peak of the waveform amplitude, and the signal has essentially

died down by the last 30M. We take fmin to be twice the

waveform angular velocity (as defined by Ref. [100]) at the

end of the initial tapering window, and fmax is chosen to

be four times the waveform angular velocity at t = 0; the

extra factor of 4 is chosen to resolve up to m = 4 spherical-

harmonic modes, with an extra margin of a factor of 2.

We compute mismatches with a flat noise curve (Sn = 1)

as well as with the advanced-LIGO design sensitivity noise

curve [101]. Mismatches are computed following the pro-

cedure described in Appendix D of Ref. [74]. In partic-

ular, we optimize over shifts in time, polarization angle,

and initial orbital phase. Both plus and cross polarizations

are treated on an equal footing by using a two-detector

setup where one detector sees only the plus and the other

only the cross polarization. We compute the mismatches at

37 points uniformly distributed on the sky in the source

frame, and we use all available modes of a given waveform

model.

Figure 4 summarizes the out-of-sample mismatches for

NRSur7dq4 against the NR waveforms. In Fig. 4(a), we show

mismatches computed using a flat noise curve. We compare

this with the truncation error in the NR waveforms them-

selves, estimated by computing the mismatch between the

two highest available resolutions of each NR simulation. The

errors in the surrogate model are well within the estimated

truncation errors of the NR simulations. In addition, we also

show the errors for the waveform model SEOBNRv3 [24,31],
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FIG. 5. The plus polarization of the waveforms for the cases that result in the largest mismatch for NRSur7dq4 (top) and SEOBNRv3

(bottom) in Fig. 4(a). We also show the corresponding NR waveforms. Each waveform is projected using all available modes for that model,

along the direction that results in the largest mismatch for NRSur7dq4 (SEOBNRv3) in the top (bottom) panel. Note that NRSur7dq4 is

evaluated using trial surrogates that are not trained using these cases. The binary parameters and the direction in the source frame are indicated

in the figure text. All waveforms are time shifted such that the peak of the total amplitude occurs at t = 0 [using all available modes, according

to Eq. (5)]. The waveform modes are then rotated to have their orbital angular momentum aligned with the z axis and such that the orbital

phase is equal to zero at t = −4300M.

which also includes spin precession effects.3 The surrogate

errors are at least an order of magnitude lower than those of

SEOBNRv3.

Apart from SEOBNRv3, another model commonly used

in data analysis applications is IMRPhemomPv2 [27]. IM-

RPhemomPv2 was shown to be comparable in accuracy to

SEOBNRv3 in Ref. [56], at least in order of magnitude.

Therefore, for simplicity, we do not show comparisons of

IMRPhemomPv2 to NR here. Note that updated versions of

both SEOBNRv3 (based on Ref. [22]) and IMRPhemomPv2

(see Ref. [21]) are under development but are not currently

available publicly. We note that these models are calibrated

only against aligned-spin NR simulations, using a much

smaller set of simulations than our model. Both these factors

contribute to the accuracy of these models. On the other hand,

these models are expected to be valid for larger mass ratios

and spin magnitudes than our model, although their accuracy

in that region is unknown due to lack of sufficient number of

simulations.

We note that the NR truncation mismatch distribution in

Fig. 4(a) has a tail extending to MM ∼ 0.1. We find that

these cases occur when the spins of the two highest resolutions

of the simulation are inconsistent with each other because of

unresolved effects during junk-radiation emission, meaning

that the two resolutions represent different physical systems.

This means that comparing the resolutions for these cases

gives us an error estimate that is too conservative and does

not reflect the actual truncation error of the simulations. We

3Note that SEOBNRv3 spins are specified at a reference frequency,

rather than a time before merger. We choose the reference frequency

such that the waveform begins at t = −4300M before the waveform

amplitude peak [as defined in Eq. (5)].

expect the actual truncation error to be closer to the errors

reproduced by the surrogate model (which is trained on the

high-resolution data set) in Fig. 4(a). Evidence for these

claims is provided in Appendix B.

Figure 4(b) shows mismatches computed using the Ad-

vanced LIGO design sensitivity noise curve [101]. In this

case, results depend on the total mass M of the system.

Consequently, we show the median and 95th percentile values

at different M, rather than full histograms. Once again, the

surrogate errors are comparable to those of the NR simulations

and are at least an order of magnitude lower than that of

SEOBNRv3. Over the mass range 50–200M⊙, mismatches

for NRSur7dq4 are always � 8 × 10−3 at the 95 percentile

level.
Figure 5 shows a comparison of waveforms computed via

NRSur7dq4, SEOBNRv3, and NR for the cases that lead to
the largest error for NRSur7dq4 and SEOBNRv3 in Fig. 4(a).
The surrogate shows reasonable agreement with NR, even for
its worst case, while SEOBNRv3 shows a noticeably larger
deviation in both cases.

In Figs. 4 and 5, we use all available modes for NR-

Sur7dq4 and SEOBNRv3. NRSur7dq4 models all modes ℓ �

4, while SEOBNRv3 models only the ℓ = 2 modes. For the

NR waveforms in Figs. 4 and 5, we include all modes ℓ �

5 to account for the error due to neglecting ℓ > 4 modes

in NRSur7dq4. To better understand what fraction of the

SEOBNRv3 error comes from neglecting modes with ℓ > 2,

we repeat the calculations leading to the SEOBNRv3 his-

togram in Fig. 4(a) in Fig. 6, while restricting all waveforms

to ℓ = 2. While there is a noticeable move toward lower

mismatches when restricted to ℓ = 2, the median and 95th

percentile values change only marginally, suggesting that

the main error source for SEOBNRv3 are the ℓ = 2 modes

themselves.
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FIG. 6. Same as Fig. 4(a) but using only ℓ = 2 modes for NR

when compared to SEOBNRv3. The blue histogram from Fig. 4(a),

where SEOBNRv3 is compared to NR with all ℓ � 5 modes, is

reproduced here for comparison. The square (triangle) markers at the

top indicate the median (95th percentile) values.

B. Remnant surrogate errors

We evaluate the accuracy of the remnant surrogate NR-

Sur7dq4Remnant by comparing against the NR simulations

through a cross-validation study as in Sec. VI A. Out-of-

sample errors for the remnant properties predicted by NR-

Sur7dq4Remnant are shown in Fig. 7. The 95th percentile

errors are ≈5 × 10−4M for mass, ≈2 × 10−3 for spin mag-

nitude, ≈4−3 radians for spin direction, ≈4 × 10−4 c for kick

magnitude, and ≈0.2 rad for kick direction. Our errors are

at the same level as the NR resolution error, estimated by

comparing the two highest NR resolutions. The largest errors

in the kick direction can be of order ≈1 rad. The bottom-right

panel of Fig. 7 shows the joint distribution of kick magnitude

and kick direction error for NRSur7dq4Remnant, showing

that direction errors are larger at low kick magnitudes. Our

error in kick direction is below ≈0.2 rad whenever v f �
2 × 10−3c.

We also compare the performance of our fits against several

existing fitting formulas for remnant mass, spin, and kick

which we denote as follows: HBMR ([32,33] with nM = nJ =

3), UIB [34], HL [35], HLZ [36], and CLZM ([37–41] as sum-

marized in Ref. [42]). To partially account for spin precession,

these fits are corrected as described in Ref. [102] and used

in current LIGO-Virgo analyses [6,103]: Spins are evolved

using PN from relaxation to the Schwarzschild innermost

stable circular orbit, and final UIB and HL spins are postpro-

cessed by adding the sum of the in-plane spins in quadrature.

Figure 7 shows that our procedure to predict remnant mass,

spin magnitude, and kick magnitude for precessing systems is

more accurate than these existing fits by at least an order of

magnitude.

Our fits appear to outperform the NR simulations when

estimating the spin direction. Once again, this is due to the

post-junk-radiation initial spins of the two highest resolutions

being inconsistent with each other for some of our simula-

tions, so that different resolutions represent different physical

systems (cf. Appendix B). Therefore, the errors estimated by

comparing the two highest resolutions is a poor estimate of the

actual truncation error for these cases. The actual truncation

error is likely to be close to the errors reproduced by the

surrogate.

The NRSur7dq4Remnant fits in Fig. 7 are evaluated using

the NR spins at t = −100M as inputs. In typical applications,

one may have access to the spins only at the start of the wave-

form, rather than at t = −100M. For this case, as described in

Sec. V, we use a combination of PN and NRSur7dq4 to evolve

the spins from any given starting frequency to t = −100M.

These spins are then used to evaluate the NRSur7dq4Remnant

fits. Thus, spins can be specified at any given orbital frequency

and are evolved consistently before estimating the final BH

properties. This is a crucial improvement (introduced by

Ref. [57]) over previous results, which, being calibrated solely

to nonprecessing systems, suffer from ambiguities regarding

the time and frequency at which spins are defined.

Figure 8 shows the errors in NRSur7dq4Remnant when

the spins are specified at an orbital frequency f0 =10 Hz.

These errors are computed by comparing against 23 long NR

(3 × 104M to 105M in length) simulations [84] with mass

ratios q � 4 and generically oriented spins with magnitudes

χ1, χ2 ∼ 0.5. None of these simulations were used to train the

fits. Longer PN evolutions are needed at lower total masses,

and the errors are therefore larger. These errors will decrease

with an improved spin evolution procedure. Note, however,

that our predictions are still more accurate than those of

existing fitting formulas (cf. Fig. 7).

VII. CONCLUSION

We present NR surrogate models for precessing BBH

systems with generic spins and unequal masses. In particular,

we model the two most-used outputs of NR simulations:

the gravitational waveform and the properties (mass, spin,

and recoil kick) of the final BH formed after the merger.

Trained against 1528 NR simulations with mass ratios q � 4,

spin magnitudes χ1,2 � 0.8, and generic spin directions, both

these models are shown to reproduce the NR simulations with

accuracies comparable to those of the simulations themselves.

The waveform model, NRSur7dq4, includes all spin-

weighted spherical harmonic modes up to ℓ = 4. The preces-

sion frame dynamics and spin evolution of the BHs are also

modeled as by-products. Through a cross-validation study,

we show that the mismatches for NRSur7dq4 against NR

computed with the Advanced LIGO design sensitivity noise

curve are always � 8 × 10−3 at the 95 percentile level over the

mass range 50–200M⊙. This is at least an order of magnitude

improvement over existing waveform models. NRSur7dq4 is

made publicly available through the gwsurrogate [58] PYTHON

package, with example evaluation code at Ref. [60].

For the final BH model, NRSur7dq4Remnant, the 95th

percentile errors are ≈5 × 10−4M for mass, ≈2 × 10−3 for

spin magnitude, and ≈4 × 10−4 c for kick magnitude. Once

again, these are lower than that of existing models by at least

an order of magnitude. In addition, we also model the spin

and kick directions. Moreover, the GPR methods employed

here naturally provide error estimates along with the fitted

values. These uncertainty estimates can be incorporated into

data analysis applications to marginalize over systematic un-

certainties. NRSur7dq4Remnant is made publicly available
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FIG. 7. Error histograms for NRSur7dq4Remnant for the remnant mass, spin magnitude, spin direction, kick magnitude, and kick direction

for precessing BBH with mass ratios q � 4 and spin magnitudes χ1, χ2 � 0.8. The direction error is the angle between the predicted vector

and a fiducial vector, taken to be the high-resolution NR case and indicated by ⋆. Square (triangle) markers indicate median (95th percentile)

values. Also shown are the NR resolution errors and errors for different existing fitting formulas. In the bottom-right panel, we show the joint

distribution of kick magnitude and kick-direction error.

through the surfinBH [59] PYTHON package, which includes

an example evaluation code.

A. Future work

In Appendix A, we test the performance of these surrogate

models when extrapolated outside their training range to q =

6. We find that our models become worse at these mass

ratios but are still comparable or better than existing models.

Unfortunately, suitable precessing simulations are currently

not available for testing at intermediate mass ratios 4 < q < 6.

In general, we advise caution with extrapolation. A natural

improvement of both NRSur7dq4 and NRSur7dq4Remnant is

to extend their range of validity with new training simulations

at higher mass ratios and spin magnitudes. We note, however,

that both these regimes are increasingly expensive to model

in NR.

Another important limitation of these models is that they

are restricted to the same length as the NR simulations (start-

ing time of ≈4300M before the peak or about 20 orbits).

For LIGO, assuming a starting GW frequency of 20 Hz, the

(2, 2) mode of the surrogate is valid for total masses M �
66M⊙. This number, however, depends on the mass ratio.

Figure 9 shows the mass range of validity of NRSur7dq4 as

a function of mass ratio. We compare this with the param-

eters of the 10 BBH detections seen by LIGO and Virgo

in the first two observing runs [9]. NRSur7dq4 sufficiently

covers the posterior spread of most but not all of these detec-

tions, the main limitation being the number of orbits covered

by the model. However, see Ref. [104] for an example of NR

surrogates used in data analysis with GW signals.

A promising avenue to extend the length of the waveforms

is to “hybridize” the simulations using PN waveforms in

the early inspiral. This approach already was found to be
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FIG. 8. Errors for NRSur7dq4Remnant in predicting remnant

properties when spins are specified at an orbital frequency of f0 =

10 Hz. For four different total masses, we compute the differences

between the surrogate prediction of various remnant properties with

the value obtained in the NR simulation. For each mass, these differ-

ences are shown as a vertical histogram. Note that the distributions

in these plots are normalized to have a fixed height, not fixed area.

successful for the case of aligned-spin BBH [82] but still

needs to be generalized to precessing spins. Furthermore, it

is not clear if the current length of the NR simulations is

sufficient to guarantee good attachment of the PN and NR

waveforms for precessing BBH.

Despite these limitations, in their regime of validity, the

models presented in the paper are the most accurate models

currently available for precessing BBHs. As shown in this

paper, our models rival the accuracy of the NR simulations,

while being very cheap to evaluate. As more BBHs are de-

tected at higher signal-to-noise ratios, fast yet accurate models

FIG. 9. The shaded region shows the regime of validity of the

(2,2) mode of NRSur7dq4 with a starting frequency of 20 Hz. Also

shown are the parameter ranges for the 10 BBH signals seen by

LIGO and Virgo during the first two observing runs [9]. The markers

indicate the median values of the marginalized posteriors for the

detector frame total mass M and mass ratio q. The error bars indicate

the range between the 5th percentile and 95th percentile values of the

posteriors.

such as these will contribute to turning GW astronomy into

high precision science.
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APPENDIX A: EVALUATING SURROGATES

AT LARGER MASS RATIOS

In this Appendix, we assess the performance of the NR-

Sur7dq4 and NRSur7dq4Remnant models when evaluated at

mass ratio q = 6. Doing so is effectively an extrapolation

because q = 6 is outside the training range of the surrogates

(q � 4). The surrogate models are compared against 100 NR

simulations with q = 6 and generically precessing spins with

magnitudes χ1, χ2 � 0.8. These simulations have been as-

signed the identifiers SXS:BBH:2164–SXS:BBH:2263 and

are made publicly available through the SXS public catalog

[83].

Figure 10 shows the q = 6 extrapolation mismatches for

NRSur7dq4. Also shown are the mismatches for SEOB-

NRv3 when compared against the same simulations. The

mismatches are computed in the same manner as in Fig. 4(a),

which we reproduce here for comparison. The surrogate er-

rors become noticeably worse when extrapolating to q = 6,

but are still much smaller than the corresponding errors for

SEOBNRv3.

Figure 11 shows the performance of NRSur7dq4Remnant

when extrapolating to q = 6. We show the errors when the

fits are evaluated using the NR spins at t = −100M as well

as when the spins are specified at the start of the NR simu-

lations. In the latter case, we use the extrapolated dynamics

surrogate of NRSur7dq4 to evolve the spins to t = −100M
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FIG. 10. Mismatch histogram when extrapolating the NR-

Sur7dq4 waveform model to mass ratio q = 6. Also shown are mis-

matches for SEOBNRv3. The mismatches are computed using a flat

noise curve. The training range errors from Fig. 4(a) are reproduced

here for comparison. The square (triangle) markers indicate median

(95th percentile) values.

and then evaluate the fits. We reproduce the training range

errors from Fig. 7 for comparison. Also shown are the er-

rors for the existing fitting formulas described in Sec. VI B

when compared against the same simulations. We find that

NRSur7dq4Remnant performs noticeably worse when extrap-

olated to q = 6 but is still slightly better than the existing

fitting formulas, except for the final spin where the existing

fitting formulas perform slightly better.

In general, we find that the NRSur7dq4 and NR-

Sur7dq4Remnant models become worse with extrapolation to

q = 6 but are still better or comparable to existing models.

Unfortunately, we do not have enough suitable precessing

simulations with 4 < q < 6 with which to test at what mass

ratio the degradation of these surrogate models becomes sig-

nificant. We leave these tests, as well as extending the models

to larger mass ratios by adding NR simulations, to future

work.

APPENDIX B: ON THE HIGH MISMATCH TAIL

IN NR ERRORS

The histogram of NR errors in Fig. 4(a) shows a significant

tail to the right, i.e., at large mismatches. In Sec. VI A, this

tail was attributed to different resolutions of the same NR

simulation having different physical parameters, namely the

“initial” spins, which are measured at the relaxation time

[84] after the poorly resolved junk-radiation transients have

settled. In this Appendix, we provide some evidence for this

claim. Figure 12 shows the maximum mismatch (with a flat

noise curve) over points in the sky versus the difference

in the relaxation-time dimensionless spins between the two

highest resolutions. We refer to the two highest resolutions

as HiRes and MedRes, and their corresponding relaxation-

time dimensionless spins are denoted by (χHiRes
1 ,χHiRes

2 ) and

(χMedRes
1 ,χMedRes

2 ), respectively. We note that the largest mis-

match occurs when the spin difference is largest between the

two resolutions. For a significant fraction of the simulations,

the spins can be different by about 0.1; for these cases the

two resolutions essentially represent two different physical
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CLZM

FIG. 11. Error histograms of the remnant mass, spin magnitude,

and kick magnitude when extrapolating NRSur7dq4Remnant to mass

ratio q = 6. The training range errors from Fig. 7 are reproduced here

for comparison. We show errors using the NR spins at t = −100M

(yellow) as well as the initial NR spins (blue) as inputs for the model.

Also shown are the errors for existing fitting formulas described in

Sec. VI B; for the final mass and spin, we only show the minimum

error among the HBMR, UIB, and HL fits. The square (triangle)

markers indicate median (95th percentile) values.

systems, so the difference in waveforms between the two

resolutions fails to be a good estimate of the truncation error

in the simulations.

Figure 12 suggests that the high NR mismatch tail of

Fig. 4(a) is artificially large, and if the two resolutions were

to correspond to the same physical system, the tail would

be shorter. We test this in Fig. 13, where we compare the

surrogate against the MedRes simulations, but use the spins

of the MedRes simulation (χMedRes
1 ,χMedRes

2 ) to evaluate the

surrogate. The surrogate mismatches against the HiRes sim-

ulations as well as the NR resolution mismatches (HiRes vs

MedRes) are reproduced from Fig. 4(a) for comparison. We

note that the surrogate mismatches when compared against the

MedRes simulations always lie below ≈10−2 and do not have
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FIG. 12. Dependence of the NR resolution error on the difference

in the relaxation-time spins of the two highest resolutions (labeled

HiRes and MedRes). The horizontal (vertical) axis shows the differ-

ence between the spin of the heavier (lighter) BH. The colors show

the largest (flat noise) mismatch between the waveforms of the two

resolutions over different points in the sky. Large mismatches occur

when the difference between the relaxation-time spins of the two

resolutions is large.

the high mismatch tail seen for the NR resolution mismatches.

In this test, we are treating the surrogate, which is trained

on the HiRes simulations, as a proxy for the HiRes dataset.

Evaluating the surrogate with the parameters of a MedRes

simulation is treated as a proxy for performing the HiRes

simulation with the same parameters. Therefore, the green

histogram in Fig. 13 can be treated as the “true” resolution

error when the parameters of the resolutions are the same.

As expected for this case, this estimate of the resolution error

agrees with the errors for the surrogate model (red histogram).

Together, Figs. 12 and 13 show that the high NR mismatch

tail in Fig. 4(a) is due to the difference in the parameters of

the different NR resolutions. We believe this difference arises

from spurious initial transients known as “junk radiation.”

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

mismatch

NRSur7dq4 vs HiRes

NRSur7dq4 vs MedRes

NR

FIG. 13. Mismatch histograms for NRSur7dq4 when compared

against the two highest available NR simulations (referred to as

HiRes and MedRes). Also shown are mismatches between the two

resolutions (labeled NR). The “NRSur7dq4 vs HiRes” and NR

errors are the same as the red and black histograms, respectively,

in Fig. 4(a). These are flat noise mismatches, computed at several

points in the sky. The square (triangle) markers indicate median (95th

percentile) values.

FIG. 14. NR resolution mismatches for the simulation leading

to the largest NR mismatch in Fig. 4(a). The different samples in

the histogram correspond to comparisons at different angles on the

sky. The blue histogram shows the current resolution errors when

the two resolutions start with the same initial data at the start of

the simulation. All points in the blue histogram are the same as

those included in Fig. 4(a). The green histogram shows the resolution

errors for the same case when the two resolutions start with the same

initial data at ≈1000M after start, at which point the junk radiation

has left the simulation domain.

These transients result from initial data that do not precisely

represent a snapshot of a binary that has evolved from t =

−∞. The transients quickly leave the simulation domain

after about one or two binary orbits. It is computationally

expensive to resolve the high spatial and temporal frequencies

of the transients, so we typically choose not to resolve these

transients at all, and instead we simply discard the initial

part of the waveform. Because some of the transients carry

energy and angular momentum down the BHs, the masses

and spins are modified, so we measure “initial” masses and

spins at a relaxation time [84] deemed sufficiently late that

the transients have decayed away. Because we do not fully

resolve the transients, their effect on the masses and spins are

not always convergent with resolution.

This issue should ideally be resolved with improved, junk-

free initial data (see Ref. [105] for steps in this direction). In

the meantime, we propose a change in how SpEC performs

different resolutions for the same simulation. Currently, initial

data are constructed by solving the Einstein constraint equa-

tions [77,106]. The same constraint-satisfying initial data are

then interpolated onto several grids of different resolution, and

Einstein’s equations are evolved on each grid independently.

Our proposal is to first evolve the initial data using the

high resolution grid until the transients leave the simulation

domain, then interpolate the data at that time onto grids of

lower resolution, and evolve Einstein’s equations on these

lower resolution grids independently. This way all resolutions

start with the same initial data at a time after transients

have decayed away instead of at the start of the simula-

tion, and the masses and spins of the black holes should be

convergent.

This proposal is tested in Fig. 14 for the case leading to the

largest NR mismatch in Fig. 4(a). We perform the resolution

branching at t ∼ 1000M after the start of the high-resolution

simulation. The outer boundary is at ≈600M and this is
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sufficient time for junk radiation to leave the simulation

domain. We find that the mismatches decrease significantly

when the resolution branching is done postjunk, as the resolu-

tions now correspond to the same physical system.
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