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We present 12 new simulations of unequal mass neutron star mergers. The simulations are performed

with the SpEC code, and utilize nuclear-theory-based equations of state and a two-moment gray neutrino

transport scheme with an improved energy estimate based on evolving the number density. We model the

neutron stars with the SFHo, LS220, and DD2 equations of state (EOS) and we study the neutrino and

matter emission of all 12 models to search for robust trends between binary parameters and emission

characteristics. We find that the total mass of the dynamical ejecta exceeds 0.01 M⊙ only for SFHo with

weak dependence on the mass ratio across all models. We find that the ejecta have a broad electron fraction

(Ye) distribution (≈0.06–0.48), with mean 0.2. Ye increases with neutrino irradiation over time, but

decreases with increasing binary asymmetry. We also find that the models have ejecta with a broad

asymptotic velocity distribution (≈0.05–0.7c). The average velocity lies in the range 0.2c − 0.3c and

decreases with binary asymmetry. Furthermore, we find that disk mass increases with binary asymmetry

and stiffness of the EOS. The Ye of the disk increases with softness of the EOS. The strongest neutrino

emission occurs for the models with soft EOS. For (anti) electron neutrinos we find no significant

dependence of the magnitude or angular distribution or neutrino luminosity with mass ratio. The heavier

neutrino species have a luminosity dependence on mass ratio but an angular distribution which does not

change with mass ratio.

DOI: 10.1103/PhysRevD.101.044053

I. INTRODUCTION

The binary neutron star (BNS) merger GW170817 was a

landmark event combining the first detection of gravita-

tional waves with an observation of a short gamma-ray

burst and a kilonova [1–4]. Following the event, studies

emerged analyzing many aspects of GW170817, from the

internal structure of neutron stars [5], to the production of

short gamma-ray bursts [2,3,6–9] and the synthesis of

r-process elements [10–28]. With the increasing sensitivity

of advanced gravitational-wave interferometers many BNS

detections are expected in the next decade [29].
Numerical simulations of mergers play a crucial role in

efforts to model the gravitational-wave signal, predict the

properties of its electromagnetic counterparts, and estimate
the production of r-process elements from the merger. In
this work, we focus on the matter and neutrino emissions
from BNS mergers. In particular we look at the ejecta and
neutrino emission from a new set of 12 BNS simulations
which extends a previous set of four equal mass BNS
simulations [30] to include mass ratios not equal to 1.
While asymmetric mass-ratio BNS simulations have been
studied before in the context of general-relativistic-
radiation hydrodynamics, e.g., [31–33], these previous
studies use either a simpler neutrino scheme and/or differ-
ent mass ratios and equations of state (EOSs). Thus this
paper adds to the ongoing effort to simulate BNS systems
and characterize their observables.
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Neutrino interactions were first included in general
relativistic simulations of neutron star mergers through a
simple leakage scheme [34] based on approximate methods
developed for Newtonian simulations [35,36]. A leakage
scheme uses the local properties of the fluid and an estimate
of the neutrino optical depth to determine the amount of
energy lost locally to neutrino-matter interactions, and the
associated change in the composition of the fluid. Leakage
schemes provide an order-of-magnitude accurate estimate of
neutrino cooling in the postmerger remnant, and have thus
been used to capture the first-order effect of neutrino-matter
interactions in general relativistic simulations of compact
binary mergers [32–34,37–40]. The inclusion of neutrino-
matter effects with the leakage scheme, while crude,
significantly affected the composition, morphology, and
total mass of the outflows, with some studies showing a
factor 2 difference in total ejecta mass [33]. However, most
implementations of leakage do not account for irradiation of
low-density regions by neutrinos emitted from hot, dense
regions. This potentially leads to large errors in the compo-
sition of the outflows, mostly by underestimating the number
of protons [41,42]. Accordingly, the simplest leakage
schemes are very inaccurate when attempting to predict
the properties of postmerger electromagnetic signals. The
only general relativistic simulations going beyond leakage
use a moment formalism with an analytic closure to
approximate the Boltzmann equation [43,44]. In particular,
neutron star merger simulations have been performed with a
gray two-moment scheme [31,41,42,45], in which the
energy density and flux density of each neutrino species
are evolved. In BNS mergers, the use of this moment
formalism showed that a range of compositions and thus
of nucleosynthesis outcomes, exists in the material ejected
by the merger [37].
Previous studies of asymmetric mass-ratio BNS systems

with fully general-relativistic-radiation hydrodynamics
include [31,32,46]. Sekiguchi et al. [31] studied two
EOSs, SFHo and DD2 with mass ratios between 0.86
and 1.0 and a fixed total mass of 2.7 M⊙ to around 30 ms
postmerger using a two-moment neutrino transport scheme.
They found that for SFHo the ejecta mass depended weakly
on mass ratio, but the average electron number per baryon
decreased with mass ratio. For DD2 these trends were
reversed. They also found that only the soft EOS, SFHo,
produced ejecta mass above 0.01 M⊙. Lehner et al. [32]
studied three EOSs, NL3, SFHo, and DD2 with mass ratios
between 0.76 and 1.0 and a fixed total mass of 2.7 M⊙ at
3 ms postmerger using a neutrino leakage scheme. They
found that there was a greater ejecta mass with increasing
binary asymmetry. Unlike Sekiguchi et al., Lehner et al.
found that none of the EOSs produced ejecta above
0.01 M⊙. Finally, Radice et al. [46] studied four EOSs,
BHBΛϕ, SFHo, DD2, and LS220, with mass ratios
between 0.85 and 1.0 and a fixed total mass of 2.7 M⊙

to around 20 ms postmerger using a neutrino leakage

scheme and a viscous hydrodynamics scheme. Radice et al.
[46] found that none of their models produced ejecta over
0.01 M⊙ and their numbers agreed with Lehner et al. [32].
The discrepancy between these results could however be
due to different choices for the definition of the unbound
material in these studies. This paper adds onto previous
works in the following ways. First, we look at a different set
of parameters not found in the above studies. We use the
SFHo, LS220, and DD2 EOSs to study the effects of EOSs
on the merger emissions. We use mass ratios ranging from
q ∼ 0.76 to 1 to study the effects of mass asymmetry on
emissions. Unlike the previous studies, we do not fix the
total mass and allow it to vary from ∼2.5 to 2.9 M⊙. On top
of this, we use a new two-moment neutrino transport
scheme which evolves the number density, allowing for
consistent lepton number evolution [47].
We organize the paper as follows. In Sec. II, we discuss

the numerical implementation we use and the equations we
solve, including the gray two-moment scheme for neutrino
transport. In the following sections of the paper, we discuss
the matter and neutrino emission from a new set of 12
binary neutron star merger simulations ranging in mass
ratio and equation of state. Finally we conclude with ideas
for future work. We use a system of units such that
c ¼ G ¼ M⊙ ¼ 1, where c is the speed of light in vacuum,
G is the gravitational constant, and M⊙ is the mass of the
Sun. We use Einstein’s convention of summation over
repeated indices. Latin indices run over 1, 2, 3, while greek
indices run over 0, 1, 2, 3. The spacetime metric signature
is ð−;þ;þ;þÞ.

II. NUMERICAL IMPLEMENTATION

A. General overview

We evolve Einstein’s equations and the general relativ-

istic equations of ideal radiation hydrodynamics using the

Spectral Einstein Code (SpEC) [48]. SpEC evolves those

equations on two separate grids: a pseudospectral grid for

Einstein’s equations written in the generalized harmonic

formulation [49], and a finite volume grid for the general

relativistic equations of neutrino hydrodynamics written in

conservative form. The latter makes use of an approxi-

mate Riemann solver (HLL [50]) and high-order shock-

capturing methods (fifth-order WENO scheme [51,52]),

resulting in a second-order accurate evolution scheme. For

the time evolution, we use a third-order Runge-Kutta

algorithm. Finally, after each time step, the two grids

communicate the required source terms, using a third-order

accurate spatial interpolation scheme. Those source terms

are the metric and its derivatives (from the pseudospectral

grid to the finite volume grid) and the fluid variables, which

are rest-mass density, pressure, spatial velocity, the Lorentz

factor, and enthalpy. The following sections will give more

detail on individual segments of this numerical method.
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In the following sections, we make use the 3þ 1

decomposition of the metric

ds2 ¼ gαβdx
αdxβ ð1Þ

¼ −α2dt2 þ γijðdxi þ βiÞðdxj þ βjÞ ð2Þ

where α is the lapse, βi the shift, and γij the 3-metric on a
slice of constant coordinate t. The extension of γij to the full
four-dimensional space is the projection operator:

γαβ ¼ gαβ þ nαnβ; ð3Þ
with nμ ¼ ð−α; 0; 0; 0Þ the unit normal to a t ¼
constant slice.

B. Initial data

Initial data for this simulation were produced by a BNS
initial data solver based on the work of Foucart et al. for
black hole–neutron star systems [53], which was built upon
the elliptic solver Spells [54] and further improved for BNS
systems in [55,56]. We start by considering systems in
quasiequilibrium, where time derivatives vanish in a
corotating frame. We take the metric to be conformally
flat and solve for the lapse, shift, and conformal factor
using the extended conformal thin sandwich equations
[57]. The matter in the stars is modeled as a cold perfect
fluid with an irrotational velocity profile.
Low eccentricity can be achieved through an iterative

procedure requiring the evolution of the system for two to
three orbits in each iteration [58]. All of the simulations in
this paper use that algorithm to achieve estimated eccen-
tricities of approximately e ∼ 0.001.
Neutrinos are initialized in thermal equilibrium with the

fluid. As the initial data are composed of two cold neutron
stars (T ¼ 0.1 MeV), the initial energy density of neutrinos
is negligible compared to its value at any later time in the
evolution.

C. Spacetime evolution

The Einstein field equations can be written in the form

Rαβ ¼ 8π

�

Tαβ −
1

2
gαβT

�

; ð4Þ

where Rαβ is the Ricci tensor, gαβ is the metric tensor, and
Tαβ is the stress-energy tensor with trace T. SpEC uses the
generalized harmonic decomposition [49] to write the
Einstein field equations in a form that allows stable
numerical computation.
In the generalized harmonic formalism, the evolution of

the coordinates follows the wave equation

gαβ∇
ζ∇ζx

β ¼ HαðxϵÞ; ð5Þ

where gab is the spacetime metric, and HαðxcÞ a set of four
arbitrary functions. Using Eq. (5) we can rewrite Eq. (4)
as [59]

gδγ∂γ∂δgαβ þ ∂βg
γδ∂γgαδ þ ∂αg

γδ∂γgβδ þ 2∂ðβ;HαÞ

− 2HδΓ
δ
αβ þ 2Γ

γ
δβΓ

δ
γα ¼ −8πð2Tαβ − gαβTÞ; ð6Þ

where the Christoffel symbols Γδ
αβ are defined by

Γ
γ
αβ ¼

1

2
gγϵð∂βgαϵ þ ∂αgβϵ − ∂ϵgαβÞ: ð7Þ

Equation (6) introduces four independent gauge functions
Hα, which need to be chosen. At t ¼ 0, we set

Hαðxic; tÞ ¼ Hαðxic; 0Þ exp
�

−
t2

τ2

�

; ð8Þ

with τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d3
0
=M∞

q

, d0 the initial separation, M∞ is the

total mass of the binary at infinite separation, and xic are
comoving spatial coordinates which follow the rotation and
inspiral of the binary. The initial data are constructed in a

gauge Hinitial
a that assumes the time derivatives in the

comoving frame are zero. At the beginning of the simu-

lation, we set Hαðxic; 0Þ ¼ Ĥα, where Ĥα is a tensor that

agrees withHinitial
a in a frame comoving with the grid and is

constant in time. The gauge will thus evolve into the
harmonic condition Hα ¼ 0. During merger, we find that
transitioning to the “damped harmonic” gauge condition
leads to more accurate numerical evolution [60]. Defining

Hα ¼
�

log

ffiffiffi

γ
p

α

�

2
�

ffiffiffi

γ
p

α
tα − γαi

βi

α

�

; ð9Þ

we transition according to

HαðtÞ ¼ Hα

�

1 − exp
−ðt − tDHÞ2

τ2m

�

; ð10Þ

with tDH the time at which we turn on the damped harmonic
gauge and τm ¼ 100M.
With these gauge choices we solve a first-order repre-

sentation of the generalized harmonic system [Eq. (6)] in
which the fundamental variables are the spacetime metric
gab, its spatial first derivatives ϕiab, and its first derivatives
in the direction normal to the t ¼ constant slice
Πab ¼ tc∂cgab. The generalized harmonic first-order sys-
tem is then:

∂tgαβ − ð1þ γ1Þβk∂kgαβ ¼ −αΠαβ − γ1β
i
Φiαβ; ð11Þ

∂tΠαβ − βk∂kΠαβ þ αγki∂kΦiαβ − γ1γ2β
k∂kgαβ

¼ 2αgζδðγijΦiζαΦjδβ − ΠζαΠδβ − gϵσΓαζϵΓβδσÞ

− 2α∇ðαHβÞ −
1

2
αtζtδΠζδΠαβ − αtζΠζiγ

ij
Φjαβ

þ αγ0½2δcðαtβÞ − gαβt
ζ�ðHζ þ ΓζÞ − γ1γ2β

i
Φiαβ

− 2α

�

Tαβ −
1

2
gαβT

ζδgζδ

�

; ð12Þ
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∂tϕiαβ − βk∂kϕiαβ þ α∂iΠαβ − γ2α∂igαβ

¼ 1

2
αtζtδΦiζδΠαβ þ αγjktζΦijζΦkαβ − αγ2Φiαβ: ð13Þ

This amounts to a symmetric hyperbolic system of 50
coupled nonlinear equations. The constraint damping
parameters fγ0; γ1; γ2g are additional free parameters which
dampen any constraint-violating modes which may grow
due to small numerical errors in the evolution. To set the γ
parameters we use a trial-and-error process which con-
cludes when we find that the constraint-violating modes do
not grow significantly over time. In practice, we set the
parameters to

γ0 ¼
:005

M
þ :2

M1

fðri
1
; 2.5R1Þ

þ :2

M2

fðri
2
; 2.5R2Þ þ

:075

M2

fðric; 2.5dÞ; ð14Þ

γ1 ¼ 0.999ðfðrc; 10dÞ − 1Þ; ð15Þ

γ2 ¼
:005

M
þ 3

M1

fðri
1
; 2.5R1Þ

þ 3

M2

fðri
2
; 2.5R2Þ þ

:075

M2

fðric; 2.5dÞ; ð16Þ

fðri; wÞ ¼ expð−jrij2=w2Þ; ð17Þ

where ri
1;2;c correspond to the coordinate locations of the

first neutron star, second neutron star, and center of mass
respectively, R1=M1 is the radius and mass of the first
neutron star, R2=M2 is the radius and mass of the second
neutron star, M ¼ M1 þM2, and d is the separation of the
two neutron star centers.

D. Neutrino evolution

We use a gray two-moment scheme for neutrino trans-
port introduced in [61]. By evolving the number density of
neutrinos in addition to their energy and flux densities, this
new scheme guarantees exact conservation of the total
lepton number. It also provides us with a local estimate
of the average neutrino energy, an important quantity given
the strong dependence of neutrino-matter cross sections on
the energy of neutrinos. In this section we will give an
overview of this algorithm.
For each species of (anti) neutrino νi we can describe the

neutrinos by their distribution function fνðxμ; pμÞ where
xμ ¼ ðt; xiÞ gives the time and the position of the neutrinos
and pα is the 4-momentum of the neutrinos. The distribu-
tion function fðνÞ evolves according to the Boltzmann
equation:

pα

�

∂fðνÞ
∂xα

− Γ
β
αγp

γ
∂fðνÞ
∂pβ

�

¼ C½fðνÞ�; ð18Þ

where the right-hand side includes all collisional processes
(emissions, absorptions, scatterings). In general, this is a
seven-dimensional problem which is extremely expensive
to solve numerically. Approximations to the Boltzmann
equation have thus been developed for numerical applica-
tions. In this work, we consider the moment formalism
developed by Thorne [43] and Shibata et al. [44], in which
only the lowest moments of the distribution function in
momentum space are evolved. We limit ourselves to the use
of this formalism in the gray approximation; that is we only
consider energy-integrated moments. We will consider
three independent neutrino species: the electron neutrino
νe, the electron antineutrinos ν̄e, and the heavy lepton
neutrinos νx. The latter represents the four species
ðνμ; ν̄μ; ντ; ν̄τÞ. This merging is justified because the tem-
peratures and neutrino energies reached in our merger
calculations are low enough to suppress the formation of
the corresponding heavy leptons. The presence of heavy
leptons would then require including the charged-current
neutrino interactions that differentiate among these indi-
vidual species.
In the gray approximation with the first two moments of

the distribution function, we evolve for each species
projections of the stress-energy tensor of the neutrino
radiation T

μν
rad. We write

T
μν
rad ¼ Juμuν þHμuν þHνuμ þ Sμν; ð19Þ

with Hμuμ ¼ Sμνuμ ¼ 0 and uμ the 4-velocity of the fluid.
We can decompose the momentum as follows:

pα ¼ νðuα þ lαÞ; ð20Þ

with lαuα ¼ 0 and lαlα ¼ 1. With this decomposition, the
energy J, flux Hμ, and stress tensor Sμν of the neutrino
radiation as observed by an observer comoving with the
fluid are related to the neutrino distribution function by

J ¼
Z

∞

0

dνν3
Z

dΩfðνÞðxα; ν;ΩÞ; ð21Þ

Hμ ¼
Z

∞

0

dνν3
Z

dΩfðνÞðxα; ν;ΩÞlμ; ð22Þ

Sμν ¼
Z

∞

0

dνν3
Z

dΩfðνÞðxα; ν;ΩÞlμlν; ð23Þ

where ν is the neutrino energy in the fluid frame, and
R

dΩ
denotes integrals over solid angle on a unit sphere in
momentum space. We also utilize the decomposition of T

μν
rad

in terms of the energy, flux, and stress tensor observed by
an inertial observer (i.e., an observer whose worldline is
tangent to the normal vector nμ),
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T
μν
rad ¼ Enμnν þ Fμnν þ Fνnμ þ Pμν; ð24Þ

with Fμnν ¼ Pμνnμ ¼ Ft ¼ Ptν ¼ 0.
We define a projection operator on the reference frame of

an observer comoving with the fluid:

hαβ ¼ gαβ þ uαuβ: ð25Þ

We can then write equations relating the fluid frame
moments to the inertial frame moments

E ¼ W2J þ 2WvμH
μ þ vμvνS

μν; ð26Þ

Fμ ¼ W2vμJ þWðgμν − nμvνÞHν þWvμvνH
ν

þ ðgμν − nμvνÞHν þWvμvνH
ν

þ ðgμν þ nμvνÞvρSνρ; ð27Þ

Pμν ¼ W2vμvνJ þWðgμν − nμvρÞvνHρ

þ ðgμρ − nμvρÞðgνκ − nνvκÞSρκ

þWðgρν − nρvνÞvμHρ; ð28Þ

using the decomposition of the 4-velocity

uμ ¼ Wðnμ þ vμÞ; ð29Þ

where vμnμ ¼ 0 and W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ viv
i

p

.
By taking moments of the Boltzmann equation, the

evolution equations for Ẽ ¼ ffiffiffi

γ
p

E and F̃i ¼ ffiffiffi

γ
p

Fi can then
be written in conservative form

∂tẼþ ∂jðαF̃j
− βjẼÞ ¼ αðP̃ijKij − F̃j∂j ln α − S̃αradnαÞ;

ð30Þ

∂tF̃i þ ∂jðαP̃j
i − βjF̃iÞ

¼
�

−Ẽ∂iαþ F̃k∂iβ
k þ α

2
P̃jk∂iγjk þ αS̃αradγiα

�

; ð31Þ

where γ is the determinant of γij, P̃ij ¼
ffiffiffi

γ
p

Pij, and S̃αrad ¼
ffiffiffi

γ
p

Sαrad includes all collisional source terms. Additionally,
we consider the number current density for each species of
neutrino:

Nμ ¼ Nnμ þ F μ; ð32Þ

where N is the number density of neutrinos, and F μ the
number flux density. We can define the number current in
the fluid frame by

Nμ ¼ Juμ

hνi þ
Hμ

hνFi ; ð33Þ

where hνi is the average neutrino energy and hνFi is the
flux-weighted average neutrino energy. Using Eq. (33) we
can get an estimate for the energy

hνi ¼ W
ðE − Fiv

iÞ
N

; ð34Þ

where W is the Lorentz factor introduced in Eq. (29). The
evolution equation for Ñ ≔

ffiffiffi

γ
p

N is

∂tÑ þ ∂jðα
ffiffiffi

γ
p

F j
− βjÑÞ ¼ α

ffiffiffi

γ
p

Cð0Þ; ð35Þ

where the source term accounts for neutrino-matter
interactions.
To close this system of equations we need three addi-

tional ingredients: a prescription for the computation of
PijðE;FiÞ which is called the closure relation, a prescrip-
tion for the computation of the number flux F j (specific to
the evolution of the number density N in this paper), and
the collisional source terms S̃αrad; Cð0Þ.
For PijðE;FiÞwe interpolate between optically thick and

thin limits:

Pij ¼ 3p − 1

2
P
ij
thin þ

3ð1 − pÞ
2

P
ij
thick: ð36Þ

Here the parameter p is known as the variable Eddington
factor and our choice for the functional form of p in terms
of the lower momentsH, J is known as the Minerbo closure
[62]. Our choices for P

ij
thin; P

ij
thick, and p are discussed in the

Appendix of [63].
For F i, by definition we have

F i ¼ JWvi

hνi þ γiμH
μ

hνFi ð37Þ

where the flux-weighted average neutrino energy hνFi is
computed in such a way to take the effects of a finite optical
depth on the spectrum into account; see [30] for details.
For the source terms S̃α, we assume that the fluid has an

energy-integrated emissivity η̄ due to the charged-current
reactions

pþ e− → nþ νe; ð38Þ

nþ eþ → pþ ν̄e; ð39Þ

as well as electron-positron pair annihilation

eþ þ e− → νiν̄i; ð40Þ

plasmon decay

γ → νiν̄i; ð41Þ

and nucleon-nucleon bremsstrahlung

N þ N → N þ N þ νi þ ν̄i: ð42Þ
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The inverse reactions are responsible for an energy-
averaged absorption opacity κ̄a. We also consider an
energy-averaged scattering opacity κ̄s due to elastic scatter-
ing of neutrinos on nucleons and heavy nuclei. Neglecting
other reactions (e.g., inelastic scatterings and νν̄ annihila-
tion) the source terms Sα can then be shown to be [64]

S̃αrad ¼
ffiffiffi

γ
p ½η̄uα − κ̄αJu

α
− ðκ̄a þ κ̄sÞHα�: ð43Þ

The collisional source term for the number density N̄ is
given by

Cð0Þ ¼ η̄N − κ̄N
J

hνi ¼ η̄N −
κ̄NJN̄

WðĒ − F̄iv
iÞ : ð44Þ

Thus we need the energy-integrated emissivities ðη̄; η̄NÞ and
the energy-averaged opacities ðκ̄A; κ̄S; κ̄NÞ to compute the
source terms. We begin by computing the energy-integrated
energy and number emissivities ðη̄; η̄NÞ and energy-
averaged equilibrium opacities ðκ̄eqA ; κ̄

eq
S Þ, which assume

a thermal distribution of neutrinos in equilibrium with the
fluid. The emissivities are computed following Ruffert
et al. [35], except for nucleon-nucleon bremsstrahlung
for which the emissivity is computed following Burrows
et al. [65]. The equilibrium opacities are computed using
Kirchoff’s law:

η̄ ¼ κ̄eq
Z

BðνÞdν; ð45Þ

where BðνÞ is the blackbody spectrum in equilibrium with
the fluid. This ensures that, in regions where neutrinos are
in thermal equilibrium with the fluid, they have the correct
energy density η̄=κ̄eq. To account for the fact that the
average energy of neutrinos may be very different from its
equilibrium value, we then correct the opacities by making
use of the fact that processes computed here have cross
sections scaling as T2

ν:

κ̄A ¼ κ̄
eq
A

T2
ν

T2

fluid

; ð46Þ

κ̄S ¼ κ̄
eq
S

T2
ν

T2

fluid

; ð47Þ

where Tν is the neutrino temperature computed from the
neutrino energy and number density, assuming a blackbody
spectrum (see [61] for more details). Lastly we set

κ̄N ¼ κ̄A
η̄N

η̄

F3ðηνÞTfluid

F2ðηνÞ
; ð48Þ

where ην ¼ μν=T, μν is the chemical potential of neutrinos
in equilibrium with the fluid, and FkðηνÞ is the Fermi
integral

FkðηνÞ ¼
Z

∞

0

xk

1þ expðx − ηνÞ
dx: ð49Þ

This choice ensures that the average energy of neutrinos in
equilibrium with the fluid takes its expected value,

hνieq ¼ η̄

κ̄
eq
A

κ̄
eq
N

η̄N
¼ F3ðηνÞ

F2ðηνÞ
Tfluid: ð50Þ

E. Fluid evolution

The neutron stars are described by ideal fluids with stress
tensor

Tμν ¼ ρ0huμuν þ Pgμν; ð51Þ
where ρ0 is the rest-mass density, h the specific enthalpy, P
the pressure, and uμ the 4-velocity. The general relativistic
equations of hydrodynamics are evolved in conservative
form, using the conservative variables

ρ� ¼ −
ffiffiffi

γ
p

nμu
μρ0; ð52Þ

τ ¼ ffiffiffi

γ
p

nμnνT
μν
− ρ�; ð53Þ

Sk ¼ −
ffiffiffi

γ
p

nμT
μ
k: ð54Þ

The 3þ 1 stress-energy conservation equations for radia-
tion hydrodynamics ∇νT

μν ¼ −S
μ
rad and the baryon con-

servation equations ∇μðρ0uμÞ ¼ 0 then become [64]

∂tρ� þ ∂jðρ�vjtÞ≕ 0; ð55Þ

∂tτ þ ∂iðα2
ffiffiffi

γ
p

T0i
− ρ�v

i
tÞ ¼ −α

ffiffiffi

γ
p

Tμν∇νnμ þ αS̃αradnα;

ð56Þ

∂tSi þ ∂jðα
ffiffiffi

γ
p

T
j
iÞ≕

1

2
α

ffiffiffi

γ
p

Tμν∂iγμν − αS̃αradγiα; ð57Þ

where vit ¼ ui=u0 is the transport velocity.
We evolve these equations using the standard high-

order shock-capturing finite volume method. We compute
values of the physical quantities ðρ0; T; uiÞ on cell faces
from their cell-average values using fifth-order WENO5
reconstruction [66], and compute numerical fluxes on faces
using the approximate HLL Riemann solver [50].

F. Composition evolution

The fluid composition in our simulations is described by
the electron fraction:

Ye ¼
np

np þ nn
; ð58Þ

where np and nn are the proton and neutron number
densities, respectively (the net electron number density

TREVOR VINCENT et al. PHYS. REV. D 101, 044053 (2020)

044053-6



ne− − neþ ¼ np, due to charge neutrality in the fluid). From
lepton number conservation, we have

∂tðρ�YeÞ þ ∂iðρ�Yev
i
tÞ ¼ −

X

ν

signðνÞα ffiffiffi

γ
p

Cν
ð0Þ; ð59Þ

where
P

ν sums over neutrino species with signðνÞ set to 1
for νe, −1 for ν̄e, and 0 for νx. Importantly for the electron
fraction, evolving the neutrino number density N frees us
from having to guess at the average neutrino energy when
computing the coupling to the fluid. It also guarantees that
the source term for the evolution of the electron fraction of
the fluid is fully consistent with the evolution of the
neutrino number density, thus conserving the total lepton
number of the system [61].

G. Equation of state

We use three finite-temperature, composition-dependent
nuclear-theory-based equations of state. Two of them are
based on relativistic mean field (RMF) models [67] and one
based on the single nucleus approximation for heavy nuclei
[68]. They are
(1) DD2 [69]: This EOS is based on nuclear statis-

tical equilibrium with a finite volume correction
coupled to a relativistic mean field theory for trea-
ting high-density nuclear matter. DD2 contains
neutrons, protons, light nuclei such as deuterons,
helions, tritons, and alpha particles, and heavy
nuclei. DD2 does not satisfy the so-called flow
constraint [70].

(2) LS220 [68]: This EOS is based on the single nucleus
approximation for heavy nuclei where the thermal
distribution of different nuclear species is replaced
by a single representative heavy nucleus. LS220
contains neutrons, protons, alpha particles, and
heavy nuclei. LS220 does not satisfy the constraints
from chiral effective field theory [70].

(3) SFHo [71]: This EOS, like DD2, also uses a RMF
model containing neutrons, protons, light nuclei such
as deuterons, helions, tritons, and alpha particles, and
heavy nuclei. However, SFHo uses a different RMF
parametrization, specifically designed to match neu-
tron star properties as inferred by observations. SFHo
shows some minor deviations from chiral effective
field theory calculations [70].

While each EOS shows deviations from theoretical
calculations, they all have a radius, maximum mass, and
tidal deformability that are compatible with observations of
isolated neutron stars [70,72]. The LS220 and SFHo EOSs
are also compatible with all constraints derived from the
gravitational-wave signal emitted by GW170817 [5,73],
while the DD2 equation of state has a tidal deformability
for 1.4 M⊙ neutron stars just outside of the strictest bound
derived using parametrized equation of state models [73].
For all three equations of state, we show mass-radius curves

in Fig. 1. These curves were computed by integrating the
Tolman-Oppenheimer-Volkoff equations for the EOS by
using the table values at T ¼ 0.1 MeV in beta equilibrium.
From Fig. 1, we can clearly see that for each EOS there is a
maximum mass for nonrotating isolated neutron stars.
Furthermore we can associate with each EOS an average
density at this maximum mass as hρi ≔ 3Mmax=4πR

3
max

and the ratio of this average density and the central density
ρc of the star is an indication of how “stiff” the EOS is.
Higher values of hρi=ρc correspond to stiffer EOSs, while
lower values correspond to softer EOSs [74]. In our case,
from stiffest to softest, the EOSs are ranked DD2, LS220,
and SFHo. Softer EOSs tend to make smaller stars at a fixed
mass. For a fiducial mass of 1.4 M⊙, the radii are 13.2,
12.7, 11.9 km for DD2, LS220, and SFHo respectively. We
can also introduce a useful quantity called the compactness,
which is defined by C ¼ M=R. Softer EOSs tend to make
more compact stars. The maximum mass however is not a
good indicator of whether the postmerger remnant will
promptly collapse to a black hole (BH) after merger
because the remnant will most likely be differentially
rotating and held up by centrifugal and thermal forces
against collapse. A more accurate estimate for the maxi-
mum mass at which the merger promptly collapses to a BH
is given by Bauswein et al. [74] who ran simulations of
BNS mergers with a smoothed particle hydrodynamics
code that employs the conformal flatness approximation of
the Einstein field equations and includes a GW back-
reaction scheme to determine a threshold mass for prompt
collapse across 12 different realistic EOSs. Bauswein et al.
found the threshold masses for SFHo, LS220, and DD2
were 2.95, 3.05, and 3.35 M⊙ respectively. Thus the SFHo
and LS220 models are more likely to undergo prompt
collapse for the higher end of the total masses considered in
this paper (∼2.9 M⊙; see Sec. II H).

H. Initial models

We extend our previous work [30] and study the merger
of unequal mass neutron star binaries with the neutrino

FIG. 1. M-R curves for each of the equations of state used in
this work.
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transport scheme introduced in [61] and discussed above.
We study mass ratios between 0.76 and 1 and masses
between 1.2 and 1.56 M⊙ which are both within the ranges
of current binary neutron star observations (see e.g., [75]).
We focus here on the late stages of the coalescence,
comprising the last three to five orbits (depending on the
EOS) before merger and we stop evolving any systems
once they collapse. The parameters for the initial models
and the type of postmerger remnants they create (before or
as of 7.5 ms postmerger) are shown in Table I. The specific
grid setup for each model will be discussed in the following
section.

I. Grid setup

Before the two neutron stars enter into contact, the

pseudospectral grid on which we evolve Einstein’s equa-

tions takes advantage of the approximate spherical sym-

metry of the neighborhood of each star, and in the far-field

region. The evolved spatial slice is decomposed into two

small balls around the center of each neutron star, sets of

spherical shells around each star, spherical shells in the

wave-zone region far from the stars, and distorted cubes to

connect the three spherically symmetric regions. The inner

ball is expanded into Zernike polynomials, the shells into

Chebyshev polynomials (in radius) and spherical harmon-

ics (in angle), and the distorted cubes in Chebyshev

polynomials. The grid follows the centers of the neutron

stars defined as the center of mass of the matter in the x < 0

and x > 0 half planes, through a simple rotation and scaling

of the grid coordinates.
We maintain this grid decomposition for the evolution of

Einstein’s equations up to the point at which the maximum
density on the grid increases beyond the low-level

oscillations observed during the inspiral. This rise in the
density signifies the transition from two well-separated
neutron star cores to a single, more massive object. At that
point we switch to a grid which is fully centered on the
coordinate center of mass of the system. This grid is made
of a ball at the origin of the coordinate system, surrounded
by 59 spherical shells extending to the outer edge of the
computational domain. Both before and after merger, the
outer boundary is located at 40d0, with d0 the initial
separation of the binary, provided in Table I.
The finite volume grid on which we evolve the general

relativistic equations of hydrodynamics is very simple.
Before the two neutron stars get into contact, it is composed
of two cubes, each centered on a neutron star and composed
of 963 cells. In the coordinate system comoving with the
neutron star centers, the neutron stars expand as the binary
inspirals. To avoid losing matter to the outer boundary of
the finite volume grid, we expand the grid by 4.5% every
time the flux of matter across the outer boundary exceeds
0.015 M⊙ s−1. As the inspiral lasts less than 10 ms, this
implies a mass loss well below 10−4 M⊙ before merger. As
the two neutron stars approach each other, the two finite
volume boxes will eventually intersect. During merger, we
would like to follow the forming massive neutron star
remnant, the tidal tails, the accretion disk, and any ejected
material. We switch to a finite difference grid centered on
the forming remnant with three levels of refinement. Each
level has, at our standard resolution 2002 × 100 cells, with
the finest grid spacing listed in Table II and each coarser
level increasing the grid spacing by a factor of 2. The lower
number of cells in the vertical direction reflects the fact that
the remnant is less extended in that direction, and thus that
we do not need the finest grid to extend as far vertically as
horizontally.

TABLE I. Parameters for the initial models presented in this paper.M1 andM2 are the gravitational masses of the

two neutron stars, C1 and C2 are the compactness of the respective neutron stars, and d0 is the initial coordinate
distance between the centers of stars. The last column gives the postmerger remnant as of 7.5 ms postmerger. If the
binary collapsed before 7.5 ms a rough estimate for the time of collapse is shown in parentheses. We have code
named each simulation by joining the first letter of the EOS name with the digits of the gravitational masses for that
system, e.g., the DD2 1.2 M⊙ þ 1.44 M⊙ run is abbreviated D12144 throughout the paper.

Model EOS M1 M2 q C1 C2 d0 (km) Collapse?

D144144 DD2 1.44 1.44 1.0 0.161 0.161 48.7 No
D12132 DD2 1.2 1.32 0.91 0.134 0.147 48.7 No
D12144 DD2 1.2 1.44 0.83 0.134 0.161 48.7 No
D12156 DD2 1.2 1.56 0.77 0.134 0.173 48.7 No

L144144 LS220 1.44 1.44 1.0 0.175 0.175 44.3 ð∼2 ms)
L12132 LS220 1.2 1.32 0.91 0.146 0.161 44.3 No
L12144 LS220 1.2 1.44 0.83 0.146 0.175 44.1 No
L12156 LS220 1.2 1.56 0.77 0.146 0.191 44.3 ð∼4.5 msÞ
S144144 SFHo 1.44 1.44 1.0 0.179 0.179 44.3 ð∼:5 msÞ
S12132 SFHo 1.2 1.32 0.91 0.148 0.163 44.3 No
S12144 SFHo 1.2 1.44 0.83 0.148 0.179 44.3 No
S12156 SFHo 1.2 1.56 0.77 0.148 0.195 44.3 ð∼1.4 msÞ
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J. Ejecta analysis

In a BNS merger, matter expelled at high velocity may
ultimately become unbound from the central gravitational
potential. Two indicators have been used to label matter
unbound:
(1) ut < −1: For a stationary spacetime, ut (the pro-

jection of the 4-velocity along the timelike Killing
vector field) is a constant of motion for geodesics.
Assuming the space is also asymptotically flat, the
Lorentz factor W satisfies W ¼ −ut at infinity.
Therefore we may flag matter as unbound using
the condition ut < −1. This assumes that the out-
flow is made of isolated particles following geo-
desics, thus neglecting the impact of pressure
gradients and r-process heating on the fluid. It also
assumes that the metric is time independent. Neither
assumption is entirely correct in the dynamical
spacetime of a postmerger remnant.

(2) hut < −1: For a stationary relativistic fluid flow, the
relativistic Bernoulli equation [76] implies hut is
constant along fluid worldlines. In an asymptotically
flat spacetime, we would expect W ¼ −ut (if the
fluid particles follow geodesics). The relativistic
enthalpy h is only defined up to a constant factor
which can be set such that h ← 1 at spatial infinity.
Therefore, we may flag matter as unbound using the
condition hut < −1. The main difference with the
previous criteria is that all of the thermal energy of
the fluid is now assumed to be transformed into
kinetic energy as the fluid decompresses. Energy
deposition due to r-process heating is also treated
differently. We implicitly assume that the difference
in binding energy between particles in nuclear
statistical equilibrium (NSE) at the current density,
temperature, and composition, and their binding
energy at low density and temperature but for the

same Ye, is entirely deposited/removed from the
fluid’s kinetic energy. This neglects significant out-
of-NSE evolution during r-process nucleosynthesis
(see [77]).

We have found previously [30] that the second indicator
hut < −1, the Bernoulli criterion, produces qualitatively
more accurate results in SpEC; therefore all material labeled
unbound in this paper uses this indicator. It is important to
note that no indicator is exact. In fact, the Bernoulli
criterion has been shown to result in as much as twice
the ejected matter as the ut condition [78].
With the Bernoulli criterion, we flag matter that is still on

the grid if it is at least 50 M⊙ away from the center of the
remnant and compute the ejected mass as follows:

Mon
ejðtÞ ¼

Z

r>50 M⊙

ρ0WHð−hut − 1Þ ffiffiffi

γ
p

d3x; ð60Þ

where Hð·Þ is the Heaviside function. While the 50 M⊙

threshold is arbitrary, we have found that it comfortably
excludes any ejecta very close to the remnant which may
not ultimately become unbound.
We also measure unbound material that leaves the

computational grid (for each run, the grid is roughly
200 M⊙ × 200 M⊙ × 100 M⊙) using

Moff
ej ðtÞ ¼

Z

t

0

Z

S

ρ0Hð−hut − 1ÞWðαvi − βiÞnidSdt0:

ð61Þ

Here vi is the fluid 3-velocity, W is the Lorentz factor
defined by W ≔ ð1 − viviÞ−1=2, S is the grid boundary and
ρ0Hð−hut − 1ÞWðαvi − βiÞni represents the flux of
unbound material leaving the boundary. At a time t, we
estimate the full ejecta as

MejðtÞ ¼ Mon
ej þMoff

ej : ð62Þ

Finally, to compute average quantities for the ejected
matter, we use the following definition of the mass-
weighted average for a quantity X,

hXi ¼ 1

Mej

Z

XdMej; ð63Þ

K. Errors

Since we performed simulations only at one resolution, it
is difficult to derive error estimates. However, Hotokezaka
et al. [79] find an ∼10% relative error for their mass ejecta
properties for unequal mass binaries and we have inde-
pendently confirmed their results with our code using the
same piecewise polytropes EOS they use at similar reso-
lution. However in this work, we use a tabulated EOS and
have a slightly coarser resolution. Furthermore, in equal

TABLE II. Finite difference grid sizes for the initial models. All

simulations were set so that they would have a 300 m resolution
during merger. For reference, the DD2 1.44 M⊙ star has an
∼10.48 km radius in our grid coordinates.

Name dxins (m) dxmer (m)

D12132 279 300
D12144 280 300
D12156 279 300
D144144 273 300

S12132 251 300
S12144 250 300
S12156 238 300
S144144 238 300

L12132 252 300
L12144 253 300
L12156 252 300
L144144 245 300
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mass runs (see [30]) we have found that relative errors can
be as high as ∼50%. Hotokezaka et al. [79] find similar
variations in the mass ejected by equal mass binaries, with
some systems showing little sign of convergence even at
higher resolution. We therefore conclude that our errors in
the ejected mass may be as high as ∼50% and conserva-
tively set our error as

ΔMej ¼ :5Mej þ 10−4 M⊙; ð64Þ

with the lower bound 10−4 M⊙ coming from the fact that
we ignore outflows of this size during the regridding in the
inspiral stage. Practically speaking, this is likely to be a
significant overestimate of the error for the average
simulation in our dataset and is more representative of
the error for the worst simulations presented here. Our
numerical setup also ignores magnetic fields. Over the short
timescales considered here, magnetohydrodynamics
(MHD) effects are not expected to affect the evolution
of the neutron star remnant, but could drive additional
outflows from the disk [80,81]. Over longer timescales,
magnetic fields would be critical to the spin evolution of the

remnant neutron star, angular momentum transport, heating
in the disk, and possibly the formation of relativistic jets
and magnetically driven outflows. General relativistic
MHD simulations of postmerger disks show that up to
∼40% of the accretion disk can be ejected over 9 s [82]. We
discuss the difference magnetic fields and long-term
neutrino winds could make on ejecta estimates in
Sec. III B 3.

III. NUMERICAL RESULTS

A. General overview

Prior to merger, which is defined as the peak of the
gravitational-wave amplitude, the compact objects inspiral
around each other for three to five orbits, with the actual
number varying between EOS. This stage is shown in the
first panel of Fig. 2 for the DD2 1.44 M⊙ þ 1.44 M⊙

model and takes approximately 18 ms. After the stars start
merging, which is shown in the second panel of Fig. 2, the
properties of the system are then largely determined by the
compactness and the mass ratio of the premerger neutron
stars. These parameters control two important mechanisms.
The first mechanism is tidal forces, which rip off matter as

FIG. 2. The evolution of rest-mass density ρ0 for the D144144 model. For the first ∼18 ms the stars orbit each other before merging at
∼0 ms. At around ∼3 ms we can see a postmerger remnant almost fully formed with two tidal tails. At ∼7.5 ms the postmerger remnant
has largely settled and most of the unbound material has left the grid.
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the binary gets closer, ejecting matter at angles close to the
orbital plane. The second mechanism is the contraction and
recoil of the cores (called core bounce), which produces
shock waves that eject matter quasispherically. From these
two mechanisms, we can make predictions on expected
trends. For example, as the mass ratio increases, the less
massive star gets more tidally disrupted and thus on merger,
the effect of the shock on ejection of matter is lessened, but
the effect of tidal torque propelling ejecta off the grid is
increased. Similarly, as the EOS softens, the compactness
of the star increases and the effect of core bounces on the
ejection of matter increases. In general we might expect that

changing the mass ratio might have a small effect on the
emission of SFHo and LS220, but a larger effect on the
ejecta of DD2 (see e.g., [31]). As we see in the third panel
of Fig 2, the DD2 EOS showcases well-defined tidal tails
larger than 80 km in length around 3 ms postmerger. This is
to be expected from a very stiff EOS, which creates large
stars that are torn apart by tidal forces in the late inspiral.
A few milliseconds after this, at around 7.5 ms postmerger
(as shown in the fourth panel of Fig. 2), the tidal tails have
left the grid and we are left with a large, circularized,
125 km radii disk surrounding the remnant with matter
outflows continuously pouring off and leaving the grid.

FIG. 3. Density (ρ0), temperature (T), and electron fraction (Ye) at 3 ms postmerger for the 1.2 M⊙ þ 1.44 M⊙ models. For the
temperature and electron fraction plots we threshold on densities above ∼107 g=cm3 to remove the atmosphere; points below this
threshold are colored white. At this time, DD2 and LS220 have much more defined tidal tails than SFHo, but SFHo has a hotter core and

higher Ye in many regions.
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Differences in the EOS can have a large impact on the
evolution and emission of the system. With the SFHo
equation of state, i.e., for the most compact neutron stars, a
compact core forms rapidly. In the higher total mass
models, the SFHo star collapses promptly to a BH, within
a few ms. For the other equations of state (LS220, DD2),
more strongly developed tidal features appear at merger.
Figure 3 shows each of the 1.2 M⊙ þ 1.44 M⊙ models
across the three EOSs at 3 ms postmerger.
Finally, at around 7.5 ms after merger, the tidal tail has

left the computational grid and the remnant is fully formed
with an accretion torus. Figure 4 shows a snapshot of the

density profile, temperature profile, and electron fraction
profile of the binaries at 7.5 ms for the mass ratio (1∶1.2)
initial models. As we can see the SFHo EOS has a more
dense and hot core than the other two EOSs. This is
expected as the core bounce for SFHo is much more violent
and it occurs deeper in the gravitational potential of the
system due to the softness of the EOS. The outflow from
the SFHo remnant is also more symmetric because out-
flows powered by core bounce tend to have a more
quasispherical morphology than outflows from tidal tails.
Stiff EOSs like DD2 undergo less shock heating, but tend to
have larger tidal tails. As cold tidal tails are typically

FIG. 4. Density (ρ0), temperature (T), and electron fraction (Ye) at 7.5 ms for the 1.2 M⊙ þ 1.44 M⊙ models. At this time, the tidal tail
and its associated ejecta has left the grid, leaving behind a remnant core with an accretion torus. SFHo has a hotter core than the other
two EOSs and a much higher Ye in the accretion torus.
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neutron rich, the ejecta in the z ¼ 0 plane also has a lower
Ye. The electron fraction is also noticeably higher in the
disk region for SFHo. This could be due to the fact the
SFHo remnant is much hotter and therefore neutrino
irradiation effects cause a higher Ye.

B. Matter outflow

1. General properties

We have compiled a table of the general properties of the
ejecta up to either collapse or 7.5 ms postmerger in
Table III. To help analyze the ejecta properties, we
distinguish between two different regions in our grid: polar
and equatorial. The polar ejecta is defined to be any matter
within an angle θ < 30° of the z-axis (the direction of the
total angular momentum of the system), while the equa-
torial ejecta is the rest of the ejected matter. From Table III
we first notice that for each EOS, the majority of the ejecta
is equatorial. This is not surprising because tidal disruption
tends to produce outflows that remain close to the orbital
plane, while the main contribution to the dynamical polar
ejecta is from quasispherical matter ejection during core
bounce and subsequent oscillations of the postmerger
remnant. Given that for spherical mass ejection only
∼13% of the matter has θ < 30°, even that quasispherical
ejecta contributes more to the mass of equatorial ejecta than
to the polar ejecta. A more accurate analysis of this table is
thus that simulations with the DD2 EOS and mass ratio
(1∶1, 1∶1.1), as well as the (1∶1.1) simulation with the
LS220 EOS have (10–12)% of their ejecta at θ < 30° and
are thus nearly compatible with spherically symmetric mass
ejection. The other configurations have a clear excess of
equatorial ejecta, particularly the more asymmetric binaries
with the stiffest (DD2) EOS, which have the strongest tidal
features.

Second, Table III shows that the LS220 and SFHo
1.44 M⊙ þ 1.44 M⊙ models, which collapse promptly
after the merger, have little to no ejecta. Third, the softest
EOS, SFHo, has the most ejecta if the remnant avoids
prompt collapse (∼0.02 M⊙), while the LS220 models
eject, on average, less mass than the DD2 models. Since
LS220 is considered to be softer than DD2, it may be a bit
surprising that it ejects less matter. However, as the LS220
EOS has a lower maximummass than the DD2 EOS, two of
the LS220 models lead to relatively rapid collapse of the
postmerger remnant to a black hole, which is known to
suppress mass ejection. Not all results fit a clear and
understandable narrative, however: None of these argu-
ments explain the low mass ejection of the noncollapsing
model L12132, or the extremely high mass ejection of the
collapsing model S12156. We also note that the depend-
ence of the ejected mass in the mass ratio is clearly
nonmonotonic. This was also observed by Sekiguchi et al.
[31] in their SFHo models (but not their DD2 models). Our
results thus add to the growing evidence that while overall
trends in mass ejection can be associated with the compact-
ness of neutron stars, the mass asymmetry of the binary, the
total mass of the system, and the maximummass of isolated
neutron stars, there is also a significant scatter around “best
fit” models that cannot be easily understood at this point
(see also [46,83]).
Turning to the electron fraction and velocity, we see that

hYei and hv∞i are much higher in the polar regions and
decrease roughly with mass ratio. hYei tends to hover
around ≈0.2 while hv∞i varies between 0.2c and 0.3c.
These trends will be touched on in the coming section,
where we look at the Ye and v∞ distributions.
Table III quantifies the unbound matter both on the grid

(greater than 50 M⊙ from the remnant) and off the grid.
The material on the grid that is still labeled unbound
at 7.5 ms is most likely due to neutrino-driven wind.

TABLE III. The first two wide columns provide the mass (Mej), average electron fraction (hYei), and average asymptotic velocity
(hv∞i) of the matter labeled unbound from time t ¼ 0 up to 7.5 ms postmerger (or collapse) in the polar and equatorial regions. The last
wide column gives the mass (Mej), average electron fraction (hYei), and average asymptotic velocity (hv∞i) over all regions.

Polar ðθ < 30°Þ Equatorial ðθ > 30°Þ Total

Model Mejð10−2 M⊙Þ hYei hv∞i Mejð10−2 M⊙Þ hYei hv∞i Mejð10−2 M⊙Þ hYei hv∞i
D12132 0.054 0.392 0.392 0.406 0.186 0.258 0.460 0.210 0.273
D12144 0.016 0.309 0.327 0.319 0.157 0.198 0.335 0.164 0.204
D12156 0.010 0.342 0.365 0.463 0.179 0.161 0.473 0.182 0.165
D144144 0.036 0.351 0.385 0.324 0.201 0.254 0.360 0.216 0.267

L12132 0.011 0.331 0.377 0.083 0.188 0.204 0.094 0.205 0.224
L12144 0.026 0.292 0.345 0.357 0.186 0.185 0.384 0.194 0.196
L12156 0.004 0.302 0.336 0.230 0.190 0.131 0.234 0.192 0.135
L144144 0.000 0.344 0.362 0.012 0.213 0.255 0.012 0.217 0.258

S12132 0.114 0.358 0.346 1.461 0.214 0.221 1.574 0.224 0.230
S12144 0.061 0.317 0.319 0.778 0.197 0.212 0.839 0.206 0.220
S12156 0.097 0.297 0.301 1.704 0.198 0.175 1.802 0.204 0.181
S144144 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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To illustrate that matter ejection continues late in our
simulations, we show in Fig. 5 the 1.2 M⊙ þ 1.32 M⊙

models for all EOSs. The black contours separate the bound
and unbound matter, while the white lines are isocontours
of the density. Lastly, the color map denotes the electron
fraction, Ye. We note that there is still a small amount of
matter labeled unbound, particularly in the SFHo models.
Also we again note that the accretion disk is more proton
rich for the SFHo EOS than for the other two systems. Both
effects are natural consequences of the hotter postmerger
remnant for the SFHo equations of state, which leads to
higher neutrino luminosities, stronger neutrino-driven
winds, and higher neutrino irradiation of the disk.

2. Ye and v∞ distributions

The electron fraction and ejecta velocity are important in
determining the attributes of the kilonova and the outcome
of r-process nucleosynthesis in the outflows. Indeed, the
ejecta velocity has a significant impact on the evolution
timescale and brightness of the electromagnetic emission
[84], while the electron fraction is maybe the most

important parameter in determining which elements are
produced by the r-process. Roughly speaking, for Ye ≲

0.25 nucleosynthesis results in the production of heavy r-
process elements (mass number A≳ 120), while less-
neutron-rich ejecta produces lower mass elements [85].
This has consequences beyond astrophysical nucleosyn-
thesis: In neutron-rich environments, r-process nucleosyn-
thesis produces high-opacity lanthanides and actinides. A
higher opacity means that the thermal emission from the
ejecta only becomes observable at later times, when the
ejecta is cooler. Accordingly, a neutron-rich ejecta typically
produces an infrared, week-long kilonova, while a neutron-
poor ejecta leads to an optical, day-long kilonova [84,86].
Figure 6 shows the inferred velocity of the ejecta at

infinity across EOSs for both the equatorial and polar
regions at 7.5 ms postmerger. First we notice that the polar
ejecta generally have a larger velocity than the equatorial
ejecta. This is most likely due to the polar ejecta originating
primarily from core bounce and the collision of the two
neutron stars, which produce faster-moving ejecta than the
more equatorial-plane bounded tidal ejecta. Furthermore,

FIG. 5. The electron fraction Ye for the 1.2 M⊙ þ 1.32 M⊙

models at 7.5 ms postmerger. Matter that is flagged unbound is
outside of the black contours, e.g., the matter in the polar regions
at the top and bottom of the grid. The white contours encapsulate
material that is above densities 109; 1011; 1013 g=cm3 respec-
tively, with the higher-density contours appearing closer to the

remnant core.

FIG. 6. v∞ distribution of the polar and equatorial ejecta across
different EOSs for the 1.2 M⊙ þ 1.32 M⊙ models.
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the faster-moving core-bounce ejecta traveling in the
equatorial plane may collide with tidal ejecta and be slowed
down. We also notice that overall, most of the ejecta is at
the lower end of the velocity range, v∞ ∼ 0.2c with very
little ejecta at v∞ > 0.8c for any of the models pictured
here. LS220 appears to eject matter with smaller velocities,
although not very conclusively considering the small
amount of matter ejected by that simulation. Thus, across
EOSs, we cannot establish any robust differences in
velocity distribution.
Figure 7 shows the electron fraction of ejected material

for different EOSs in both the equatorial and polar regions.
Qualitatively, the shapes of the distributions appear mostly
EOS independent. The equatorial ejecta have a broad range
of electron fraction values whereas the polar ejecta, which
make a much smaller fraction of the ejected mass, take on
much higher Ye values on average. The production of
dynamical ejecta with a broad Ye distribution and the
presence of higher-Ye outflows in the polar regions are both
robust results observed in all simulations of binary neutron
star mergers using advanced neutrino transport methods
[30,31,37,61].

Figure 6 and 7 investigated EOS dependence at fixed
component masses. We now consider varying the compo-
nent masses, while keeping the EOS fixed. Figure 8 shows
the distribution of v∞ for the SFHo EOS at different mass
ratios. As the system becomes more asymmetric, the
average velocity of the outflows generally decreases, and
the tail of the distribution at high velocities is suppressed.
The lack of high-velocity ejecta for more asymmetric
binaries could affect the ability of these systems to power
fast, blue/UV emission [15]. The decrease in the average
velocity of the ejecta as the binary becomes more asym-
metric is notable, as that trend is exactly the opposite of
what is observed in black hole–neutron star mergers
[87,88]. We interpret this difference as being due to the
impact of the core-bounce ejecta, which is absent in black
hole–neutron star mergers: While the velocity of the tidal
ejecta may increase with the asymmetry of the system, the
relative importance of the (faster) core-bounce ejecta
decreases for more asymmetric systems, thus reducing
the average velocity of the ejecta for binary neutron star
systems.

FIG. 7. Ye distribution of the polar and equatorial ejecta across
different EOSs for the 1.2 M⊙ þ 1.32 M⊙ models.

FIG. 8. v∞ distribution of the polar and equatorial ejecta across
different mass ratios for the SFHo EOS.
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Finally, Fig. 9 shows the distribution of electron fraction
for the SFHo EOS at different mass ratios. We see that as
mass asymmetry increases, the average Ye of the ejecta
decreases. The distributions remain broad, with higher
values in the polar regions.

3. Long-term emission

Analysis of the kilonova emission associated with
GW170817 showed that the ejecta mass was on the order
of ∼0.05 M⊙ [89,90]. This is above the estimates from
dynamical ejecta seen in Table III, or for that matter above
the mass of dynamical ejecta in any low-eccentricity, low-
spin neutron star merger simulation performed to date (see
e.g., [83] for a summary). This is not really a problem,
however: Our analysis ignores other forms of ejecta that
become more important over longer evolution timescales.
After merger, magnetically driven [82,91] and neutrino-
driven [92] winds as well as outflows due to viscous
angular momentum transport and α-particle recombination
[93] should combine to unbind a large fraction of the
remnant disk (∼40% for disks around black holes in [82]).

Based on these results for the long-term evolution of
postmerger disk, we can provide order-of-magnitude esti-
mates of the evolution of the remnant produced at the end
of our simulations. We consider the following definition of
the disk mass:

Mdisk ¼
Z

ρ<1013 g=cm3

ρ0W
ffiffiffi

γ
p

d3x; ð65Þ

which has been used in previous works; see [46,90]. This
definition is used for two reasons. First, based on visual-
izations of the remnant, such as Fig. 5 one can clearly see
that the 1013 g=cm3 density contour encapsulates only the
core of the remnant. Second, it was shown that for densities
approximately below 1013 g=cm3, the matter is rotationally
bound with roughly a r−3=2 falloff [94]. Unfortunately
Mdisk defined by Eq. (65) drifts to larger values over time
and indeed it has not converged yet at 7.5 ms. Nonetheless,
we note similar evolution of this quantity over time for all
EOSs and mass ratios, so using estimates at 7.5 ms will give
us a crude estimate on the lower bound of the disk mass. We
compute the disk masses at 7.5 ms postmerger except for
the models that collapse (e.g., S12156, S144144, L12156,
L144144) where we compute the disk mass right before
collapse. The masses are summarized in Fig. 10.
We first note that the stiffer EOSs produce larger disks.

Moreover, disk mass increases as the degree of binary
asymmetry increases. Most importantly, all but one sim-
ulation (L144144) can potentially eject enough mass to
explain the kilonova observed after GW170917, with
required efficiency for the conversion of disk mass to disk
outflows ranging from ∼25% to ∼50%. This is well within
the (very uncertain) range of efficiencies allowed by current
postmerger evolutions.

C. Neutrino emission

Finally we turn to the neutrino emission of our models.
Neutrinos play an important role in the postmerger

FIG. 9. Ye distribution of the polar and equatorial ejecta across
different mass ratios of the SFHo EOS.

FIG. 10. Disk masses at 7.5 ms postmerger or just before
collapse if the remnant is a black hole.
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evolution, not only cooling the central massive regions, but
also transporting energy into the surface layers of the disk,
providing a long-term outflow. On top of this, neutrinos
deposit net lepton number through weak interactions which
can drastically change the electron fraction of outflows and
thus affect the kilonova emission. Furthermore, they can
deposit large amounts of thermal energy into the polar

regions through νν̄ annihilation, potentially contributing to
the creation of baryon-free regions above the remnant and
helping the production of jetlike emissions.
As seen in the bottom portion of Fig. 11, which shows

the electron antineutrino energy density for the D144144
model at 3 ms postmerger, the main emission regions are
the hot, dense parts of the remnant, the central core, and the
shocked tidal arms. In these dense parts of the remnant the
neutrinos are advected with the flow. The main escape route
for the neutrinos trapped in the dense part of the remnant is
via the polar regions, which show a greater neutrino energy
density in the top portion of Fig. 11 than the equatorial
parts. Due to the more compact and hotter remnants, we
would expect that the SFHo models might show greater
neutrino luminosity than the other EOS and this is con-
firmed in Fig. 12 for the electron neutrino luminosity.
Although we do not plot them, the other species show
exactly the same type of behavior, with SFHo having a
much higher luminosity in all three species evolved in the
transport scheme.
As the mass ratio changes, we find only mild variations

in the neutrino luminosity as shown in Fig. 13. The heavy
neutrino luminosity has the strongest dependence on the
mass ratio, showing a sizable increase as the binary
becomes more asymmetric. This is in contrast to
Sekiguchi et al. [95] which finds a decrease in neutrino
luminosity as the binary asymmetry increases. However,
Sekiguchi et al. fix the total mass at 2.7 M⊙. Since we only
fix the lower mass neutron star in the binary, a larger mass

FIG. 11. Antielectron neutrino energy density (first moment) for
the1.44 M⊙ þ 1.44 M⊙DD2modelat3mspostmerger.Toppanel:

An xz-slice of the antielectron neutrino energy density Eν̄e
with the

arrows showing the effective neutrino transport velocity
viν ¼ α

Eν̄e

Fi
ν̄e

− βi.We see a large energy density near the polar regions
of the remnant, where the density is less and the neutrinos are free to
stream (while an overdensity of neutrinos in the polar region is
expected to be qualitatively correct, we note that the use of the
approximate Minerbo closure leads us to overestimate the neutrino
density at the poles [61]). Bottom panel: An xy-slice of the
antielectron neutrino energy density Eν̄e

with the arrows showing
the effective neutrino transport velocity. We see the neutrinos
advecting with the fluid in the dense regions near the core.

FIG. 12. Electron neutrino luminosity for the 12132 models up
to around 7.5 postmerger. We see that for the softer SFHo EOS,

there is a larger luminosity. Similar trends hold for the other
neutrino species.
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asymmetry implies a higher total mass, more compact
remnants, higher temperatures, and higher neutrino emis-
sion. In our simulations, the impact of the total mass of the
system is canceled out by the change in mass ratio, which,
as Sekiguchi showed, tends to decrease the neutrino
luminosity of the postmerger remnant.
Next we take a look at the angular distribution of the

neutrino emission. Figure 14 shows the neutrino flux
density as a function of its angle with respect to the
equatorial plane at 7.5 ms after merger. From this figure,
one can clearly see that most of the neutrinos are emitted in
the polar directions. Once a disk forms, the neutrinos are
mostly confined within a 40° cone around the poles, with an
amplitude peak at 30°–40° from the poles. As argued in
[61], this peak is probably due to neutrinos beamed from
the shocked tidal arms, which become less optically thick
as time passes. The confinement of the neutrinos to the
polar directions stems from the fact that neutrinos escape

through the low-density regions above and below the disk
and are confined by the optically thick accretion disk. As
the EOS changes, the distributions stay qualitatively the
same. The binary mass ratio has an equally negligible
impact on the angular distribution of neutrinos, and is thus
not depicted here.
While neutrino irradiation of the disk corona can drive

outflows, the total mass of these outflows is negligible,
especially over the fairly short timescales evolved here. We
do however see some effects of neutrino irradiation in the
electron fraction of the outflows. Figure 15 shows the
electron fraction distributions for all outflows escaping
the grid before 7.5 and 10 ms postmerger. As we can see,
the disk outflows observed at the end of the simulation have
a particularly high electron fraction. The reason for this is
that in the presence of strong electron neutrino luminosity,
the neutrino capture processes are activated, increasing the
overall electron fraction.

FIG. 13. Neutrino luminosity for DD2 runs up to around 7.5 ms across neutrino species.

FIG. 14. Neutrino flux density moment as a function of the angle for different EOSs at 7.5 ms postmerger. The angle is defined with
respect to the equatorial plane with 0° being the equator, and �90° being the north and south poles. The different neutrino species are
color coded.
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IV. CONCLUSION AND FUTURE WORK

We presented a first set of SpEC simulations of unequal
mass neutron star mergers using three nuclear-theory-based
equations of state (SFHo, LS220, DD2), and a two-moment
gray neutrino transport scheme with an improved energy
estimate based on evolving the number density. This set of
simulations varied the equation of state of the neutron stars
and the total mass and mass ratio of the binary in order to
determine any robust trends between these parameters and
emission characteristics. We found the following:

(i) For the models that promptly collapsed, namely
L144144 and S144144, there was little to no ejecta
and the disk masses were much smaller. This is
consistent with other simulations of promptly col-
lapsing equal mass neutron star–neutron star binaries.

(ii) The softest models, those of the SFHo EOS, had the
most ejecta and SFHo was the only EOS with
Mej ∼ 10−2 M⊙.

(iii) In a majority of the simulations, we found that
matter was preferentially ejected more than 30° away
from the poles. This result is however not universal:
For near equal mass systems and stiff EOSs, we find
that the outflows are dominated by the more spheri-
cally symmetric matter ejected at core bounce and
during subsequent oscillations of the neutron stars.

(iv) The Ye distributions were very broad ð∼0.06–0.48Þ
and quite similar across the EOS and mass ratio.
hYei is around ∼0.2, but increases over time as the
ejected matter is irradiated by neutrinos. We see a

decrease in the average Ye with increasing binary
asymmetry, but there is some scatter, so the relation-
ship might be more complicated.

(v) The asymptotic velocity distributions were also very
broad ð∼0.05c − 0.7cÞ, with only a small amount of
matter in the high-velocity tail of these distributions
and average velocities within the range ð0.2 − 0.3Þc.
We see a decrease in the average asymptotic velocity
for more asymmetric mass ratios.

(vi) The disk masses of the models at 7.5 ms postmerger
appear to increase with mass ratio and stiffness of the
EOS. The softest EOS, SFHo, has a disk with a
much higher Ye than the other EOS, presumably
because the softest EOSs are associated with more
compact stars, hotter postmerger remnants, and thus
stronger neutrino irradiation of both the disk and the
matter outflows.

(vii) Neutrino emission was accordingly largest for the
SFHo EOS. We found no dependence of the
neutrino luminosity on the mass ratio, however,
except in the case of heavy-lepton neutrinos. Most
of the neutrino emission was in the polar region and
we did not find any dependence of its morphology in
either the mass ratio or the EOS.

The results presented here are limited by two important
assumptions in our simulations. First, the absence of
magnetic fields. Over the short timescales considered here,
magnetohydrodynamics effects are not expected to affect
the evolution of the neutron star remnant, but could drive
additional outflows from the disk [80,81]. Over longer
timescales, magnetic fields would be critical to the spin
evolution of the remnant neutron star, angular momentum
transport, heating in the disk, and possibly the formation of
relativistic jets and magnetically driven outflows. The
second limitation is the relatively small numerical grid
on which we evolve the equations of general relativistic
hydrodynamics. The grid limits our ability to measure the
mass and properties of the outflows accurately. We expect
to address these issues in the future. However, we do not
expect these assumptions to significantly affect the main
results of this work, i.e., the properties of the ejecta and the
trends across the EOS and mass ratio in the first 7.5 ms after
merger.
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higher Ye fractions due to neutrino irradiation.
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