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High-accuracy numerical simulations of merging neutron stars play an important role in testing and
calibrating the waveform models used by gravitational wave observatories. Obtaining high-accuracy
waveforms at a reasonable computational cost, however, remains a significant challenge. One issue is that
high-order convergence of the solution requires the use of smooth evolution variables, while many of the
equations of state used to model the neutron star matter have discontinuities, typically in the first derivative
of the pressure. Spectral formulations of the equation of state have been proposed as a potential solution to
this problem. Here, we report on the numerical implementation of spectral equations of state in the spectral
Einstein code. We show that, in our code, spectral equations of state allow for high-accuracy simulations at
a lower computational cost than commonly used “piecewise polytrope” equations state. We also
demonstrate that not all spectral equations of state are equally useful: different choices for the low-
density part of the equation of state can significantly impact the cost and accuracy of simulations. As a
result, simulations of neutron star mergers present us with a trade-off between the cost of simulations and
the physical realism of the chosen equation of state.
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I. INTRODUCTION

The equation of state of dense, cold matter in the core of
neutron stars remains an important unknown in nuclear
physics today. The recent detection by LIGO and Virgo of
gravitational waves powered by a neutron star merger has
opened a new way to study this problem [1], and provided
some early constraints on the equation of state of neutrons
stars [2,3]. In the future, other bright merger events [4,5],
or the combination of many dimmer detections [6], could
provide tighter constraints on the physics of dense matter.
To determine the parameters of merging compact objects,

including the equation of state of neutron stars, gravitational
wave signals have to be matched against template banks of
semianalytical waveform models. These models are typi-
cally based on approximate solutions to Einstein’s equations
that are accurate at large separation, but break down close to
merger. As a result, the late-time behavior of models has to
be carefully calibrated using general relativistic simulations.
This is particularly important when attempting to extract
information about the equation of state of neutron stars: the
strongest finite-size effect measurable by current gravita-
tional wave detectors is the change in the phase of the
waveformdue to tidal deformation of the neutron star, which

only becomes significant during the last few orbits before
merger [7].
Reliably modeling finite-size effects in numerical sim-

ulations remains a difficult challenge today. The longest
high-accuracy simulations available today are 10–15 orbits
long with typical phase errors of ∼0.5 rad [8–11], while
the phase difference between neutron star merger wave-
forms and waveforms without finite-size effects (i.e., binary
black hole waveforms with objects of the same masses
and spins) is typically a few radians, after allowing for
an arbitrary time and phase shift of the waveforms (see
e.g., [10]). The best-measured finite-size parameter is the
tidal deformability,1

ΛNS ¼
2

3
k2

�

RNSc
2

GMNS

�

5

; ð1Þ

with RNS, MNS being the radius and mass of the neutron
star, c the speed of light, G the gravitational constant, and
k2 the Love number, which varies slightly with the choice

1More accurately, gravitational wave detectors are sensitive to
the effective tidal deformability, a linear combination of the tidal
deformabilities of the two merging compact objects [7].
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of equation of state. At the moment, the impact of ΛNS on
waveforms is sufficiently well captured by simulations to
trust single-event analyses at the signal-to-noise ratio of
GW170817, but it remains unclear how much further these
analyses can be pushed without being affected by potential
systematic errors in the models due to errors in the
numerical waveforms used for calibration.
Obtaining large numbers of high-accuracy numerical

waveforms at a reasonable computational cost thus remains
an important objective in numerical relativity today. The
recent development of high-order methods for the evolution
of the equations of relativistic hydrodynamics has signifi-
cantly improved the accuracy of neutron star simulations
[12]. However, high-order convergence is only really
possible if the solution is sufficiently smooth. This is
potentially problematic. Many of the equations of state
currently used in the numerical relativity community
provide either analytical formulas or tabulated values for
the pressure P as a function of the baryon density ρ,
temperature T and, if evolved, the electron fraction Ye.
Nuclear-theory based tabulated equations of state, as well
as the commonly used piecewise-polytropic (PP) family of
equations of state [13], have discontinuities in the first
derivative of P. Discontinuities in the spatial derivative of
the fluid variables are also present at the surface of the
neutron star, although at lower densities and thus with a
lesser impact on the evolution of the spacetime metric and
on the gravitational wave signal. The only smooth equa-
tions of state currently used in simulations are part of the
simple Γ-law family of equations of state. These equations
of state allow us to evolve a neutron star of chosen mass,
spin, and tidal deformability, and may thus be appropriate
for high-accuracy simulations of black hole-neutron star
systems before disruption of the neutron star. However,
Γ-law equations of state typically have unrealistic mass-
radius relationships for neutron stars away from that chosen
initial mass, making them a poor choice for the study of
unequal mass neutron star-neutron star binary inspiral,
neutron star disruption, or neutron star-neutron star mergers.
The lack of smoothness of the equation of state is

particularly problematic for codes that rely on spectral
methods for the evolution of Einstein’s equations, such as
our spectral Einstein code (SpEC) [14], or codes based on
discontinuous Galerkin methods [15,16], but codes using
high-order finite difference methods are not immune to this
problem. Here, we investigate an alternative family of
equations of state first proposed by Lindblom [17]: spectral
equations of state, for which Γ ¼ d lnðPÞ=d lnðρÞ is
expanded on a set of smooth basis functions.We first review
the theoretical description of these equations of state,
including improvements made here to the smoothness of
the pressure function, then present a cost-effective imple-
mentation of these equations of state, and finally study the
cost and accuracy of neutron star merger simulations when
using these spectral equations of state in SpEC.

II. SPECTRAL EQUATIONS OF STATE

A. Formalism

Our main objective is to construct equations of state that
(a) reasonably approximate the physical properties of
neutron stars measurable through gravitational waves
emitted before merger, and (b) make efficient use of
computational resources for long, high-accuracy simula-
tions of neutron star mergers. Accordingly, we ignore
detailed microphysics (e.g., neutrinos) and magnetic fields.
We also assume that the neutron star matter is in neutrino-
less beta equilibrium. We describe the neutron star matter as
an ideal fluid with stress-energy tensor

Tμν ¼ ðρþ uþ PÞuμuν þ Pgμν; ð2Þ

with u being the internal energy density, uμ the 4-velocity
of the fluid, and gμν the spacetime metric. The evolution
equations are the conservation of baryon number

∇μðρu
μÞ ¼ 0 ð3Þ

and of energy momentum

∇μT
μν ¼ 0; ð4Þ

i.e., five equations for six independent variables (ρ, P,
u, ui). To close the system of equations, we need an
equation of state Pðρ; uÞ that describes the properties of
dense nuclear matter. More precisely, we typically consider
(ρ, T, ui). as independent physical variables, with T being
the temperature. The equation of state then specifies the
two functions Pðρ; TÞ, uðρ; TÞ.
Before merger, finite temperature contributions to

the pressure and internal energy are typically negligible.
Accordingly, we first consider a composition-independent
equation of state for cold matter, ðPcoldðρÞ; ucoldðρÞÞ, and
add a simple ad hoc thermal component later in this section.
The cold energy density and pressure have to satisfy the
first law of thermodynamics for adiabatic evolutions,

d

�

ucold

ρ

�

¼ −PcoldðρÞd

�

1

ρ

�

; ð5Þ

so that the cold equation of state is entirely determined by
choices for PcoldðρÞ and for the specific internal energy ϵ ¼
u=ρ at zero density, ϵcoldð0Þ. Here, we choose ϵcoldð0Þ ¼ 0.2

2In general, a choice of ϵcoldð0Þ is equivalent to a choice for the
mass of a baryon, mb, defined so that the equation
∇μðρu

μÞ ¼ ∇μðmbnnu
μÞ ¼ 0, with nb being the number density

of baryon, indeed imposes conservation of baryon number.
Differences between the masses per baryon of protons, neutrons
and heavy nuclei are accounted for in ϵ as binding energy. For a
composition-dependent equation of state, ϵð0; YeÞ is a function of
Ye and we cannot set ϵð0; YeÞ ¼ 0 anymore.
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The main idea behind the spectral representation of the
neutron star equation of state used in this manuscript was
first presented by Lindblom [17], who also later proposed
an improvement to these equations of state that makes it
easier to guarantee their causality [18], i.e., that the sound
speed in the fluid remains smaller than the speed of light. In
this work we choose a formalism close to the original
spectral equations of state [17], which allows for efficient
numerical evolutions, and simply check that our equations
of state are causal.
We write the equation of state as a function of the

variable x ¼ lnð ρ
ρ0
Þ, for some reference density ρ0. The

adiabatic index ΓðxÞ is defined such that, at T ¼ 0,

d lnP
dx

¼ ΓðxÞ: ð6Þ

The pressure at T ¼ 0 can then be expressed as a function
of x and P0 ¼ Pðx ¼ 0Þ,

PðxÞ ¼ P0 exp

�
Z

x

0

Γðx̃Þdx̃

�

: ð7Þ

The first law of thermodynamics gives us

du

dx
− u ¼ PðxÞ; ð8Þ

which has the solution

uðxÞ ¼ u0e
x þ ex

Z

x

0

dξPðξÞe−ξ: ð9Þ

with u0 ¼ uðx ¼ 0Þ, or

uðxÞ ¼ u0e
x þ P0e

x

Z

x

0

dξe−ξ exp

�
Z

ξ

0

Γðx̃Þdx̃

�

: ð10Þ

Equivalently, we can compute the specific energy density
from

dϵ

dx
¼

P

ρ0
e−x; ð11Þ

which gives us

ϵðxÞ ¼ ϵ0 þ
P0

ρ0

Z

x

0

dξ exp

�
Z

ξ

0

ðΓðx̃Þ − 1Þdx̃

�

: ð12Þ

To fully define the equation of state at zero temperature,
we need
(1) a choice of reference density ρ0, where we fix the

pressure P0 and specific internal energy ϵ0;
(2) a choice for the function ΓðxÞ when ρ > ρ0. We use

ΓðxÞ ¼
P

N
n¼0

γnx
n, which allows us to compute

analytically the inner integral in our formula for ϵ;
(3) a choice of equation of state for ρ < ρ0. We use the

polytropic equation of state P ¼ κ0ρ
Γ0 , ϵ ¼ P

ρðΓ0−1Þ
.

The parameters (ρ0, P0, ϵ0, κ0, Γ0) are not independent. In
practice, we generally consider Γ0, ρ0, and P0 as our free
parameters, together with the γi’s. This fixes the cold part of
the equation of state. An important difference between the
equations of state used in this work and those of Lindblom
[17] is that we additionally require γ0 ¼ Γ0 and γ1 ¼ 0.
With this choice, discontinuities only appear in the third
derivative of the pressure, instead of in its first derivative.
While this is not necessary to obtain a well-defined
equation of state, or to provide good fits to nuclear physics
models, we find that it is a crucial component in order to get
high-accuracy evolution of binary neutron star systems at a
low computational cost (at least when using the SpEC
code). For this first study of spectral equations of state, we
also choose N ¼ 3; the smallest number of free coefficients
that we found allows us to generate a reasonably wide range
of equations of state. In the end, our spectral equations of
state thus have five free parameters: Γ0, ρ0, P0, γ2, γ3. We
investigate two values of Γ0: Γ0 ¼ 2, which leads to better
numerical behavior, and Γ0 ¼ 1.35692, which is a more
accurate representation of the low-density behavior of cold
neutron star matter. We note that for single polytropes, the
choice Γ ¼ 2 leads to higher accuracy evolutions than other
choices for Γ. The reason for this behavior is not fully
understood, though it may be related to the fact that the
density goes linearly to 0 at the surface of the neutron star
for Γ ¼ 2 equations of state.
The temperature dependence of the equation of state is

approximated by the Γ-law

Pðρ; TÞ ¼ Pðρ; 0Þ þ ρT; ð13Þ

ϵðρ; TÞ ¼ ϵðρ; 0Þ þ
T

Γth − 1
ð14Þ

for some constant Γth (we choose Γth ¼ 1.75). Different
choices of Γth can lead to large differences in e.g., the
amount of matter ejected in a neutron star merger [19].
The impact of that choice on the premerger evolution of the
system is, however, expected to be negligible.
For recovery of the primitive variables and computations

of the characteristic speeds of the system, the following
partial derivatives are also useful, and provided here for
completeness:

∂P

∂ρ

�

�

�

�

T

¼
ΓPðρ; 0Þ

ρ
þ T; ð15Þ

∂P

∂T

�

�

�

�

ρ

¼ ρ; ð16Þ

∂ϵ

∂ρ

�

�

�

�

T

¼
Pðρ; 0Þ

ρ2
; ð17Þ

∂ϵ

∂T

�

�

�

�

ρ

¼
1

Γth − 1
; ð18Þ
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κ ¼
∂P

∂ϵ

�

�

�

�

ρ

¼ ðΓth − 1Þρ; ð19Þ

hc2s ¼
∂P

∂ρ

�

�

�

�

ϵ

þ
κP

ρ2
; ð20Þ

c2s ¼
ΓPþ ðΓth − ΓÞρT

ρh
; ð21Þ

with h ¼ 1þ ϵþ P=ρ being the specific enthalpy. We note
that causality requires

cs < 1; ð22Þ

a condition that more advanced versions of spectral
equations of state can automatically satisfy [18], but that
in our formalism we have to verify holds true for our
choices of free parameters. Practically, we only consider
equations of state that satisfy cs < 1 up to the density ρmax
at the center of a neutron star of mass Mmax, with Mmax
being the maximum mass of an isolated, nonrotating
neutron star.

B. Numerical implementation

The main cost associated with the use of a spectral
equation of state is the computation of the integrals in our
formulas for P, u, ϵ. Our choice of spectral expansion
already significantly reduces the cost of these computa-
tions, as the pressure can be explicitly written as

Pðx; TÞ ¼ P0 exp

�

Γ0xþ γ2
x3

3
þ γ3

x4

4

�

þ ρT ð23Þ

for x > 0 and

Pðx; TÞ ¼ P0 exp ðΓ0xÞ þ ρT ð24Þ

otherwise. For the specific internal energy, we have

ϵðx; TÞ ¼ ϵ0 þ

Z

x

0

dξ
Pðξ; 0Þ

ρ0
e−ξ þ

T

Γth − 1
ð25Þ

for x > 0 and, using ϵð0; 0Þ ¼ 0,

ϵðx; TÞ ¼
Pðx; 0Þ

ρðΓ0 − 1Þ
þ

T

Γth − 1
ð26Þ

for x < 0. The value of ϵ0 is set by requiring continuity of ϵ
at x ¼ 0. For efficient computation of the integral remain-
ing in our expression for ϵ, we resort to a hybrid between
tabulation and Gaussian quadrature. We precompute to
round-off accuracy the values of the specific internal energy
at a few points xi > 0,

ϵi ¼ ϵðxi; 0Þ ¼ ϵ0 þ

Z

xi

0

dξ
PðξÞ

ρ0
e−ξ; ð27Þ

with xi ¼ iΔx and then use Gaussian quadrature to evaluate

ϵðx; 0Þ ¼ ϵi þ

Z

x

xi

dξ
PðξÞ

ρ0
e−ξ ð28Þ

for xi < x < xiþ1. Practically, we find that using Δx ∼ 0.5
and a six-points stencil for Gaussian quadrature allows us
to compute ϵ to roundoff accuracy while only requiring six
computations of PðxÞ per computation of ϵ. As we use
ρ0 ∼ 10−4 and ρ≲ 0.005, the table of ϵi has fewer than ten
elements. With these choices, we find that a single time step
of evolution is ∼ð10–20Þ% more expensive with these
spectral equations of state than when using PP equations
of state.

C. Example equations of state

In simulations, we are generally not interested in using
spectral equations of state with given parameters (ρ0, P0,
Γ0, γ2, γ3), but instead want to map physical properties of
the neutron stars such as their radius or tidal deformability
at given masses, or the maximum mass of nonrotating
neutron stars. We would also like spectral equations of state
to have the ability to mimic nuclear-theory-based equations
of state for cold stars in neutrinoless beta equilibrium.
Unfortunately, we find that simply fitting the function ΓðxÞ
or PðxÞ to its desired value for nuclear-theory based
equations of state leads to spectral equations of state that
poorly match the physical properties of the original model,
unless a large number of basis functions are used (N ≳ 10,
by which point the equation of state is mathematically
smooth, but has sharp features that are not resolved in
simulations).
We find that a more powerful method to produce

useful spectral equations of state is to use Markov-chain
Monte Carlo (MCMC) to explore the four-dimensional space
of equations of state (at fixed Γ0, an assumption that could be
abandoned in the future). When performing that search, we
automatically reject equations of state that are not causal, or
that have a maximum mass below 1.97 M⊙. We also check
whether an equation of state satisfies nuclear physics bounds
on the pressure at ρ ¼ 1014.26, 1014.48 g=cm3 (ρ ¼ 0.0003,
0.0005 in units where G ¼ c ¼ M⊙ ¼ 1), taken from
Hebeler et al. [20]. These bounds on the pressure are
not strictly enforced, but instead used to determine the
probability that an equation of state is accepted or rejected
by the MCMC chain. Using this technique, we generate
∼7500 equations of state for each of the two chosen values
of Γ0. Illustrative examples are provided in Fig. 1 and
in Tables III and IV in the appendix, where we have chosen
equations of state on a grid of R1.35

NS (the radius of a 1.35 M⊙

neutron star) and Mmax, with spacing ΔR1.35
NS ¼ 0.5 km,

ΔMmax ¼ 0.05 M⊙. Different constraints could however
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easily be applied to that dataset, and the full set of equations of
state is available upon request.
We use a random walk through the parameter space of

spectral equations of state because only a limited range of
parameters satisfies our definition of an acceptable equation
state (causal, with a sufficiently high maximum mass and
reasonable values of the pressure at our reference densities).
Furthermore, the acceptable region of parameter space
shows strong degeneracies between the input parameters
of the equation of state (e.g., acceptable values of Γ2 and Γ3

are strongly correlated), making a direct exploration of the
parameter space through a Cartesian grid of equations of
state difficult. This is largely a consequence of our con-
tinuity requirements at ρ0: only a narrow set of parameters
can smoothly join the chosen low-density equation of state
to an acceptable high-density equation of state.
In practice, we find that both choices of Γ0 allow us to

generate equations of state covering the “most likely” range
of neutron star parameters, as inferred from gravitational
wave and electromagnetic observations of GW170817
[2,3,21,22] and the observation of high-mass neutron stars
[23,24]: Mmax ∈ ½2; 2.3� M⊙, Λ≲ 800. The Γ0 ¼ 1.35962
choice however allows for exploration of more extreme
equations of state, and a wider range of behavior at fixed
R1.35
NS , Mmax, which may help if attempting to fix a larger

number of neutron star properties.
We also note that another way to allow for a broader

range of equations of state would be to relax the require-
ment that Γ1 ¼ 0. We have so far only experimented with
such equations of state in our initial data code and over
short simulations (≲500M), and found limited accuracy
improvements over piecewise polytropic equations of state,
most likely because of the lower order of convergence of
equations of state with discontinuous pressure derivatives.

D. Potential uses and limits of spectral equations of state

Before considering simulations using spectral equations
of state, it is useful to review some of the assumptions that
went into the construction of our models, and their limi-
tations. Our focus here has been to provide a reasonable
physical behavior for the high-density matter within a
neutron star, which is the main driver for the evolution of
the spacetime, the inspiral of the binary, and the emission
of gravitational waves. This is why we construct equations
of state matching nuclear theory at ρ ∼ 1014.2–14.5 g=cm3,
where some constraints are available, and then allow for
any equations of state satisfying causality at higher den-
sities, where we do not have reliable constraints on the
pressure. On the other hand, our spectral equations of state
are generally a poor representation of the physical state of
matter at densities ρ≲ 1014 g=cm3, especially when choos-
ing Γ0 ¼ 2. This is nearly unescapable: physical equations
of state have sharp variations in Γ at these densities, and
thus we have to make a choice between the smoothness of
the equation of state and its physical realism in that region.
Spectral equations of state with higher order terms and/or
smooth transitions between a low Γ at low density and a
high Γ at high density can be constructed, but if they are to
match the physics of neutron stars, they will inevitably lead
to rapid variations in Γ on length scales that are not resolved
in numerical simulations—thus even if the equation of state
is mathematically smooth, it would still lead to slower
convergence of the numerical simulations at the resolution
that we can practically afford. Finally, our equations of state
do not have any composition dependence, and an over-
simplified temperature dependence.
From these limitations, we can determine the regimes in

which our spectral equations of state are appropriate to use.
These equations of state should be a good description of
matter if we are interested in the gravitational wave signal
coming from inspiraling binaries, disrupting neutron stars,
and possibly merging neutron stars (depending on the
impact of thermal effects on the gravitational wave signal
during mergers, which has not to our knowledge been
clearly quantified so far). They are, however, not appro-
priate for studies of matter outflows, neutrino-matter
interactions, or postmerger accretion disks.

III. NUMERICAL SIMULATIONS

A. Initial data

To test the performance of these equations of state, we
first construct initial data in the extended conformal thin-
sandwich formalism [25,26] by solving for the constraints
in Einstein’s equations, hydrostatic equilibrium, and an
irrotational velocity profile for the neutron star’s fluid.
These equations are solved using our in-house SPELLS code
[27], as adapted for binary neutron star systems [28,29]. For
a given system, the first initial data configuration generated
by SPELLS is a binary in quasicircular orbit (i.e., with zero

FIG. 1. Mass-radius relationships for the grid of spectral equa-
tions of state with Γ0 ¼ 1.35692 (black) and Γ0 ¼ 2 (red) provided
in the appendix, Tables III and IV.Both choices ofΓ0 are compatible
with themost likely range ofmass and radii, but the lowerΓ0 choice
allows for the construction of stiffer equations of state.
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radial velocity), which leads to binaries with an eccentricity
of a few percent. To reduce eccentricity, we use the iterative
procedure of [30]. We aim for eccentricities e≲ 0.001.
Practically, we find that the orbital parameters leading to
low-eccentricity systems do not strongly depend on the
neutron star equation of state. When simulating systems
that only differ in their chosen equation of state, we thus
only need to perform eccentricity reduction for one
equation of state, at least when requiring e≲ 0.001.
Here, all simulations are for equal mass, nonspinning
neutron stars with MNS ¼ 1.36 M⊙ and an initial separa-
tion of d0 ¼ 53 km.
In this work, our main objective is to assess the accuracy

and computational cost of simulations using different
equations of state models. This can usually be done with
fairly short simulations. Accordingly, most simulations in
this manuscript are only evolved long enough to determine
whether the chosen equation of state allows for accurate
and cost-effective simulations. We consider three types of
equation of state: PP equations of state, where Γ is a
piecewise-constant function of density and the first deriva-
tive of the pressure is discontinuous; spectral equations of
state with Γ0 ¼ 1.35; and spectral equations of state with
Γ0 ¼ 2. For the PP case, we take the SLy equation of state
from [13], hereafter SLyPP. We then consider spectral
equations of state SLyΓ2 and SLyΓ1.35 that approxi-
mate the SLy equation of state with Γ0 ¼ ð2; 1.35692Þ
respectively (more precisely, we choose spectral equations
of state with the same radius at 1.35 M⊙ and the same
maximum mass). The exact parameters of the spectral
equations of state are provided in Table I, while the
corresponding mass-radius relationships are plotted on
Fig. 2. We see that the mass-radius relationship of
SLyΓ2 is actually a very good fit to SLy-PP for neutron
stars of realistic masses, while it clearly deviates from SLy-
PP for lower mass objects. SLyΓ1.35 is a better fit for low-
mass objects, but performs more poorly for higher mass
neutron stars. The good match between SLy-PP and
SLyΓ1.35 for low-mass neutron stars is not surprising,
as the SLy-PP equation of state also uses a Γ ¼ 1.35692
polytrope to represent low-density matter.
The different behaviors at low density are also visible on

density profiles of neutron stars of fixed masses, e.g., the
1.35 M⊙ profiles shown on Fig. 3. The SLyΓ2 clearly
differs from the other two equations of state at densities
below ρ ∼ 1014 g=cm3 (ρ ¼ 0.0002 in geometric units).
While all three SLy-like equations of state agree to better
than 1% in the radius of a 1.35 M⊙ neutron star, the

different internal structures lead to ∼5% changes in the
tidal deformability of these neutron stars. Choosing a
spectral equation of state that exactly matches a given
tidal deformability, instead of a given radius, is however
perfectly possible.

B. Numerical methods

Binary evolutions are performed with the SpEC code
[14], using the two-grids method described in more detail
in [31,32]. In the two-grid setup, Einstein’s equations are
evolved on a pseudospectral grid using the generalized
harmonics formalism [33], and adaptive mesh refinement
[34]. The general relativistic equations of hydrodynamics
are evolved using fifth-order shock capturing finite differ-
ence methods [35]. Both sets of equations are evolved in
time using a third-order Runge-Kutta algorithm. The source
terms that couple Einstein’s equations to the fluid (and vice
versa) are communicated at the end of each full time step,
while values of the source terms at intermediate steps of the
Runge-Kutta algorithm are obtained by linear extrapolation
of their value at the beginning of the current and previous
steps. Interpolation from the spectral to finite difference
grid is performed by first refining the spectral grid by a
factor of ∼3 in each dimension (with a limit of 50d basis

TABLE I. Spectral equations of state used in this work. All quantities are in G ¼ c ¼ M⊙ ¼ 1 units, except R1.35
NS ,

which is given in kilometers (for consistency with tables in the appendix).

Model Mmax R1.35
NS Γ0 ρ0 P0 γ2 γ3

SLyΓ2 2.06 11.47 2 1.0118e-4 3.3625e-7 0.4029 −0.1008
SLyΓ1.35 2.05 11.45 1.35692 8.2235e-5 2.5632e-7 0.9297 −0.2523

FIG. 2. Mass-radius relationships for the equations of state
from Table I, and for the piecewise-polytropic equation SLyPP.
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functions for a set of basis spanning a d-dimensional
space), and then using third-order polynomial interpolation
from the colocation points of the refined spectral expansion
to the finite difference grid (this method is a trade-off
between the high cost of a full spectral interpolation and the
low accuracy of a simple polynomial interpolation [31]).
Interpolation from the finite difference grid to the spectral
grid uses fifth-order polynomial interpolation. In the
asymptotic regime, this algorithm should provide third-
order accurate evolutions, though the interplay between the
many numerical methods and orders of convergence
involved in each simulation can make the exact order of
convergence difficult to assess if the error budget is not
dominated by a single source of error.

C. Evolution grids

In our simulations, the spectral grid is composed of a
range of “subdomains” of various shapes that cover the
entire computational domain. Neighboring subdomains
share a surface boundary, but do not otherwise overlap.
Two balls are centered on the neutron stars and surrounded
by 10–15 spherical shells that extend up to about twice the
neutron star radius. The wave zone uses 32 spherical shells
centered on the center of mass of the binary and covering a
range of radii R ¼ ½150; 2100� km. In between these two
regions, filled cylinders cover the axis passing through the
center of the compact objects, and hollow cylinders cover
the regions farther away from that axis. The coordinate
system of the computational grid rotates and contracts so
that the center of the neutron stars is approximately fixed in
the grid frame. The number of basis functions used for each
dimension of a spectral element is chosen adaptively, with

the objective to reach a given truncation error for the
spectral expansion of the solution [34]. For simple equa-
tions of state, the truncation criteria are checked every
∼50GM=c3 at the beginning of the simulation (and more
often as the compact objects inspiral).3 One of the results of
this study is that this does not appear to be sufficient to
accurately capture the early evolution of the system for PP
or spectral equations of state. Here, we present results
where spectral mesh refinement is performed every
∼50GM=c3, and every ∼5GM=c3. The target truncation
error is a function of the grid spacing Δx of the finite
difference grid, and scales as ðΔxÞ5, and thus errors on the
spectral grid are expected to decrease faster than errors on
the finite difference grid.
The finite difference grid is also adaptive, in that it

only covers regions where the fluid density satisfies
ρ≳ 1010 g=cm3. We typically consider three resolutions,
with Δx decreased by 20% for each increase in resolution.
We use setups with initially ∼ð61; 76; 95; 120Þ grid points
across the diameter of a neutron star. The lowest three
resolutions are typical of what we normally use for single-
polytrope equations of state, while the highest resolution is
used to test the impact of an increased resolution of the
finite difference grid while keeping other parameters
constant. As the binary spirals in, the physical grid spacing
decreases because the neutron stars are fixed in the grid
frame. Every time the physical Δx decreases by 20%, we
construct a new grid with Δxnew ¼ 1.25Δxold, thus keeping
Δx approximately fixed during the evolution (and always
smaller than at t ¼ 0). This expansion of the grid typically
happens 2–3 times per simulation when starting 10–15
orbits before merger.

D. Cost analysis

Direct comparison of the cost of simulations at a chosen
finite difference resolution and given requested accuracy on
the spectral grid can be difficult in SpEC. As the spectral
grid used to evolve Einstein’s equations changes over
time, and tries to reach a set accuracy rather than a set
grid spacing, we cannot evaluate the cost efficiency of an
equation of state by simply comparing the accuracy of
simulations with fixed initial parameters. The cost of a
simulation at fixed target accuracy is not a perfect diag-
nostics either, as the grid spacing on the finite difference
grid used to evolve the equation of hydrodynamics is kept
constant when changing equation of state, leading to
different errors in each simulation. In practice, we thus
have to consider a combination of the cost and accuracy of
a simulation in order to draw reliable conclusions.
We consider two measures of the cost of a simulation.

First, we can directly measure the CPU hours used by

FIG. 3. Density profile of a 1.35 M⊙ neutron star for our
SLy-like equations of state. Both the density and radius are in
G ¼ c ¼ M⊙ ¼ 1 units, and we plot the density against the
radius in isotropic coordinates (i.e., for a conformally flat metric).
We note that the isotropic radius differs from the Schwarzschild
radius quoted elsewhere in this paper and more commonly used
in the literature. We use it here as isotropic coordinates are closer
to the coordinates used in our simulations.

3The exact timescale is a multiple of the damping timescale of
the control system used to keep the center of the neutron stars
fixed on the computational grid [31,36].
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simulations, as long as they were performed on the same
machine. Second, for simulations performed on different
machines, we find that the relative size of the time step
chosen by our adaptive time stepping algorithm is a good
proxy for the relative cost of simulations. This is because
the time step is usually set by the adaptively chosen
resolution of the highest-resolution element of the spectral
grid, while the cost of a single time step is roughly identical
for simulations using neutron stars of similar size and at
similar orbital separation. We thus use direct CPU cost
measurements for simulations performed on the same
machine, and the time step size as its proxy for simulations
that are not. The validity of this technique is verified on
simulations for which both measures are available below.
As for the accuracy, we simply compare the orbital phase at
different resolutions.
As in previous work [37], we estimate errors with respect

to an infinite-resolution simulation by considering the
difference between our highest-resolution simulation and
an approximation of the infinite-resolution solution obtai-
ned by Richardson extrapolation of our finite-resolution
results. We perform two Richardson extrapolations: one
using the lowest and highest resolution, and one using the
middle and highest resolution, and estimate simulation
errors from each individually. We then take the worst of
these two as our error estimate. Richardson extrapolation is
performed by assuming second-order convergence of the
simulations. From previous experience, this method leads
to conservative estimates of the simulation errors. The error
in the orbital phase scales with the phase error of the
gravitational wave signal, at least when neglecting the error

due to extrapolation of the gravitational wave signal to null
infinity. Thus, when determining which simulation is most
accurate, the two can be used interchangeably. This is
convenient for the tests presented here, as the simulations
are not evolved long enough to extrapolate the gravitational
wave signal to null infinity. We thus use the orbital motion of
the binary to compare the accuracy of different simulations.
A good estimate of the phase accuracy of the waveform can
be obtained by multiplying the orbital phase error by 2.
In order to study the cost efficiency of spectral equations

of state, we first compare them to PP equations of state. We
then discuss the more technical issue of the impact of
domain decomposition and adaptive mesh refinenent set-
tings on the accuracy of the simulations. Finally, we
compare different spectral equations of state and show
that spectral equations of state with Γ0 ¼ 2 are more cost
efficient than spectral equations of state using the more
realistic low-density behavior Γ0 ¼ 1.35. As this section
involves a large number of simulations varying parameters
that can be quite technical and code specific, we provide a
full list of simulations ordered by the section in which they
are discussed in Table II.

1. Piecewise polytrope vs Γ0 = 1.35
spectral equation of state

Let us first compare simulations using the SLyPP and
SLyΓ1.35 equations of state. We measure the cost of a little
more than one orbit of evolution (from t ¼ 0 to t ¼ 1000 in
units of GM⊙=c

3) at our three highest resolutions on the
Pleiades cluster (Haswell nodes). With the SLyPP equation

TABLE II. Grid setups and accuracy requirements for the simulations compared in Sec. III D. The first column
indicates the section(s) of the text where the simulation is discussed, EOS indicates the chosen equation of state,NFD
the number of points on the finite difference grid at t ¼ 0 across the diameter of the neutron star, ϵsp the required
relative tolerance used by the adaptive time step in the spectral grid far away from the neutron stars (we require 100
times more accuracy at the center of the neutron stars, see [32]), τAMR the timescale between calls to the adaptive
mesh refinement routine changing the resolution of the spectral grid, and Nshells the number of spherical shells
covering each neutron star and its immediate surroundings.

Section EOS Resolution NFD ϵsp τAMRðGM=c3Þ Nshells

III D 1 SLyPP Low 76 3.1e-4 50 10
III D 1 SLyPP Med 95 1.0e-4 50 10
III D 1 SLyPP High 120 0.3e-4 50 10
III D 1 SLyΓ1.35 Low 76 3.1e-4 50 10
III D 1 SLyΓ1.35 Med 95 1.0e-4 50 10
III D 1 SLyΓ1.35 High 120 0.3e-4 50 10

III D 2 SLyΓ2 Low 61 3.1e-4 50 10
III D 2 SLyΓ2 Med 76 1.0e-4 50 10
III D 2 SLyΓ2 High 95 0.3e-4 50 10
III D 2, III D 3 SLyΓ2 Low 61 3.1e-4 5 13
III D 2, III D 3 SLyΓ2 Med 76 1.0e-4 5 13
III D 2, III D 3 SLyΓ2 High 95 0.3e-4 5 13
III D 3 SLyΓ1.35 Low 61 3.1e-4 5 15
III D 3 SLyΓ1.35 Med 76 1.0e-4 5 15
III D 3 SLyΓ1.35 High 95 0.3e-4 5 15
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of state, these three resolutions cost (5.9,18.4,50.2) kCPU-
hrs. With the SLyΓ1.35 equations of state, the same
resolutions cost (5.7,17.2,32.8) kCPU-hrs. We thus measure
comparable costs at low resolution, but a steeper increase in
cost at high resolution for the PP equation of state, when the
spectral grid tries to capture the sharper features of the
neutron star structure. More importantly, the estimated error
in the orbital phase at t ¼ 1000 is Δϕ ¼ 0.0045 rad for
SLyΓ1.35 andΔϕ ¼ 0.014 rad for SLyPP (see alsoFig. 4 for
the time evolution of the phase error). So the SLyΓ1.35
evolution is not only slightly cheaper, it is also very
significantly more accurate.
We can also use these two sets of simulations to support

our argument that the number of time steps at a given
resolution is a reasonably proxy for the cost of the
simulations. The ratio of the number of time steps in the
SLyPP and SLyΓ1.35 simulations is (1.23,1.17,1.67) at our
three resolutions while the ratio of the computational costs
is (1.04,1.07,1.53). The slightly larger cost per time step of
the spectral equation of state is most likely a consequence
of the larger number of operations necessary to compute the
internal energy and pressure functions.
The poor performance of the SLy equation of state in the

SpEC is not a particularly surprising result: PP equations of
state were already shown to be very inaccurate in SpEC
simulations in [37]. These first results, however, already
indicate that spectral equations of state can perform better
than PP equations of state at a lower computational cost.

2. Domain decomposition and adaptive mesh choices

So far, the only differences between the simulations
previously performed with SpEC for waveform generation

[37] and the simulations presented in this work are the use
here of a finer resolution on the finite difference grid
evolving the neutron star fluid. This was not a particularly
inspired change, as it turns out: by varying separately the
spectral and finite difference grid, we find that the spectral
grid actually dominates the error budget in our simulations
with spectral equations of state. This is in contrast with
single-polytrope evolutions, for which the spectral evolu-
tion of Einstein’s equations is typically a subdominant
source of error in high-resolution simulations. To improve
the accuracy of simulations using spectral equations of
state, we make two technical changes to our computational
domain. First, we increase the number of spherical shells
used around each neutron star from 10 to 13–15. When
using spectral methods, a lower number of subdomains
with higher order expansion tends to be more efficient in
regions where the solution is smooth, while a larger number
of subdomains with a lower order expansion performs
better when sharp features are present (here, a discontinuity
in the third derivative of the stress-energy tensor).
More importantly, as the surface of the neutron stars is

smoothed out in the early evolution and the neutron star itself
expands in the coordinates of the computational grid, the
relatively small regions of the grid where higher resolution is
required to capture sharp features in the structure of the
neutron star vary in time. For spectral and PP equations of
state, which require neighboring subdomains to have very
different number of basis functions, this can be an issue if the
adaptive mesh refinement algorithm used to determine the
required number of basis functions and, if needed, split into
smaller elements subdomains that become too expensive to
evolve, is not triggered sufficiently regularly. We find that
the rate of trigger of the mesh refinement algorithm in our
original simulations (every ∼50GM=c3) is insufficient, and
changes to triggering the mesh refinement algorithm every
∼5GM=c3.
To illustrate the resulting accuracy improvement, we

consider two sets of simulations with the SLyΓ2 equation
of state, at our three lowest resolutions for the finite
difference grid (these are the standard resolution choices
from now on). From low to high resolution, the simulations
with frequent mesh refinements have (1.09, 1.13, 0.94) as
many time steps from t ¼ 0 to t ¼ 1000 as the simulations
with low-frequency mesh refinements, and similar costs
as far as can be gathered from simulations performed on
different clusters. The orbital phase error is however
significantly smaller in the simulation using a more
frequent trigger of the mesh refinement algorithm, as
shown on Fig. 5. Some accuracy gains are also observed
for the SLyΓ135 equation of state, although at a higher
computational cost, as discussed in the next section.

3. Γ0 = 1.35 vs Γ0 = 2 spectral equation of state

We can now directly compare the two types of spectral
equations of state used in this study. With updated grid

FIG. 4. Error in the orbital phase of an equal mass neutron star-
neutron star (NSNS) binary evolution as a function of time, using
the SLyΓ135 equation of state and the SLyPP equation of state.
Here and in the following figures, abrupt changes in the slope of
our error estimates occur when the conservative error estimate
switches between using the estimate obtained from comparing the
low and high resolution results and the estimate obtained from
comparing the medium and high resolution results.
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choices the accuracy of our SLyΓ1.35 simulation is worse
than that of the SLyΓ2 simulation (see Fig. 6), but still
better than the higher resolution PP simulation shown in
Fig. 4. The cost of these simulations is also quite different.
In Fig. 7, we show the number of time steps used by our
evolution code for each of these two equations of state, at
our highest resolution. We see that the SLyΓ1.35 requires
about twice as many time steps. We emphasize again that
this is mostly due to the different grid resolutions chosen by
the mesh refinement algorithm to reach that same target
accuracy. While most of the spectral grid is nearly identical
for these two equations of state, the one shell containing the
low-density regions of the neutron star for SLyΓ2 had to be
split into two shells for SLyΓ1.35, each with about the same
number of radial basis functions as the single shell used for
SLyΓ2. As an illustrative example, at t ¼ 800 and at our

highest resolution the total number of points on the spectral
grid used by SLyΓ2 is 9% higher than for SLyΓ1.35 (459
000 vs 422 000), but the smallest radial spacing in the shells
close to the neutron star surface is Δx ∼ 0.01 (SLyΓ2) and
Δx ∼ 0.004 (SLyΓ1.35), leading to about twice as many
steps for SLyΓ1.35, and only small differences in the cost
of a step between the two simulations.
It is of course possible that different choices of grid

structure and/or mesh refinement algorithms could lead to
smaller phase errors for the SLyΓ1.35 simulation as well,
but this comparison clearly shows that when it comes to
reaching a target accuracy at a given computational cost,
the SLyΓ2 equation of state is superior to the SLyΓ1.35
equation of state.

4. Overall cost of the simulations

We conclude this discussion by looking at the overall
cost of the simulations. The high-resolution simulation
using slow mesh refinement and the SLyΓ2 was completed
on the Bluewaters cluster, and cost 200 000 CPU hours up
to merger (defined as the first peak of the maximum density
after collision of the neutron stars, here t ∼ 7000 in
geometrical units, or t=M ∼ 2600 with M being the total
mass of the system). From the scaling discussed in the
previous sections, a similar cost is expected for the
SLyΓ135 and SLyPP equations of state with slow mesh
refinement, and for the SLyΓ2 equation of state with fast
refinement (the most accurate simulations in this work).
The SLy SLyΓ135 simulation with fast mesh refinement is
about twice as expensive, and less accurate.

IV. CONCLUSIONS

We present a first implementation in a general relativ-
istic hydrodynamics code of spectral equations of state

FIG. 5. Error in the orbital phase of an equal mass NSNS binary
evolution as a function of time, using the SLyΓ2 equation of state
and a fast or slow trigger of the spectral adaptive mesh refinement
algorithm. The plot shows ∼6.5 orbits of evolution. Merger
would occur after ∼10 orbits, at t ∼ 7000 in these units.

FIG. 6. Error in the orbital phase of an equal mass NSNS binary
evolution as a function of time, using the SLyΓ2 and SLyΓ135
equations of state.

FIG. 7. Number of time steps taken as a function of time for
equal mass NSNS binary evolutions using the SLyΓ2 and
SLyΓ135 equations of state (high resolution).
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meant to capture the high-density behavior of the cold,
dense matter in the core of neutron stars. These equations
of state are largely inspired by the work of Lindblom
[17,18], but modified so that the fluid pressure and
internal energy only have discontinuities in their third
derivative, including at the matching point between the
low-density and high-density parts of the equation of state,
where the original equations of state had discontinuities in
the first derivative of the fluid variables.
We find, at least in the SpEC code, that because spectral

equations of state are smoother than traditionally used
piecewise-polytrope and tabulated equations of state, their
use leads to significantly higher accuracy at a fixed
computational cost. The error in the orbital phase of the
binary can easily be improved by factors of a few when
using smoother equations of state. This makes spectral
equations of state a promising tool for the generation of
high-accuracy waveforms that can be used to test existing
and future semianalytical models used for parameter
estimation by gravitational wave observatories. The pro-
duction of such waveforms is in progress.
We also note that while our spectral equations of state

can reasonably well capture the potential properties of
high-density matter, the most computationally efficient of
these equations of state requires the use of an unphysical
equation of state for low-density matter. Additionally, all of
our spectral equations of state are composition independent
and use an overly simplistic model for the temperature
dependence of the fluid variables. While this is not
expected to be a major issue for waveform generation

and model testing, it indicates that uses of these spectral
equations of state for the study of matter outflows and/or
postmerger accretion disks would be ill advised.
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APPENDIX: LIST OF SPECTRAL EQUATIONS OF STATE

TABLE III. List of spectral equations of state with Γ0 ¼ 1.35602. Radii are in kilometers and masses in M⊙. R1.35
NS and Λ

1.35
NS are the

radius and tidal deformability of a 1.35 M⊙ neutron star, and Mmax the maximum mass of an isolated, nonrotating neutron star.

Mmax R1.35
NS Λ

1.35
NS Γ0 ρ0 P0 γ2 γ3

1.99992 10.5129 223.125 1.35692 0.000127797 5.13697e-07 1.1343 −0.323266
2.00108 10.997 368.996 1.35692 6.75875e-05 1.01558e-07 0.987569 −0.263106
2.00062 11.5061 364.55 1.35692 0.000102246 4.47771e-07 1.03789 −0.300687
1.99724 11.9992 523.094 1.35692 6.37903e-05 1.7712e-07 0.829266 −0.221229
2.01024 12.5053 598.576 1.35692 7.60147e-05 3.06744e-07 0.930349 −0.266615
2.0113 12.8074 678.516 1.35692 8.00706e-05 3.51137e-07 1.03523 −0.312069
2.04904 10.5119 239.991 1.35692 9.35255e-05 2.62455e-07 0.867112 −0.216584
2.04463 10.9984 306.852 1.35692 9.16453e-05 2.93124e-07 0.919127 −0.242781
2.05325 11.4962 401.966 1.35692 8.2235e-05 2.60576e-07 0.9297 −0.2523
2.04793 12.0011 445.803 1.35692 8.44773e-05 3.78344e-07 0.837305 −0.225113
2.05043 12.4956 566.607 1.35692 8.04569e-05 3.64705e-07 0.897316 −0.252764
2.05197 12.793 678.82 1.35692 8.17646e-05 3.60399e-07 1.05283 −0.316928
2.07671 10.6431 256.511 1.35692 0.000101962 3.19391e-07 0.954798 −0.248017
2.10149 11.0022 348.258 1.35692 7.65352e-05 1.59649e-07 0.933746 −0.242265
2.09785 11.5059 354.424 1.35692 0.000102789 4.79763e-07 0.940025 −0.254744

(Table continued)
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TABLE III. (Continued)

Mmax R1.35
NS Λ

1.35
NS Γ0 ρ0 P0 γ2 γ3

2.10468 11.9997 564.734 1.35692 6.83308e-05 1.71472e-07 0.970032 −0.267077
2.10431 12.4979 714.23 1.35692 5.69806e-05 1.36597e-07 0.882562 −0.238019
2.12443 12.8275 749.89 1.35692 6.45398e-05 2.16281e-07 0.897072 −0.248748
2.1544 11 331.297 1.35692 9.49139e-05 2.67417e-07 1.0373 −0.278442
2.1505 11.503 401.961 1.35692 9.16938e-05 3.20533e-07 0.992598 −0.269978
2.14958 11.9972 456.526 1.35692 9.77005e-05 4.62847e-07 0.997869 −0.280387
2.15152 12.5032 571.235 1.35692 7.9774e-05 3.61383e-07 0.854295 −0.23033
2.16462 12.9555 738.751 1.35692 8.09392e-05 3.568e-07 1.05635 −0.313273
2.19411 11.0029 358.125 1.35692 7.92168e-05 1.6161e-07 0.964422 −0.247026
2.1931 11.5091 379.104 1.35692 0.000106567 4.62662e-07 1.04415 −0.286156
2.19819 12.0026 563.533 1.35692 4.29011e-05 7.96681e-08 0.577 −0.126379
2.20052 12.4932 643.385 1.35692 6.97296e-05 2.3882e-07 0.879873 −0.236148
2.20431 12.9732 748.34 1.35692 8.12841e-05 3.58377e-07 1.05897 −0.312069
2.249 11.0349 359.804 1.35692 8.6169e-05 1.98184e-07 1.00877 −0.260704
2.25359 11.5059 484.788 1.35692 6.98537e-05 1.30252e-07 0.998599 −0.261916
2.2509 12.0114 469.033 1.35692 9.33137e-05 4.23167e-07 0.921714 −0.242409
2.24898 12.4967 792.381 1.35692 6.2016e-05 1.25e-07 1.10654 −0.313508
2.23062 12.9943 758.146 1.35692 8.12459e-05 3.57726e-07 1.05897 −0.310597
2.28747 11.0988 401.316 1.35692 7.15391e-05 1.14959e-07 0.965624 −0.241866
2.29791 11.5047 450.172 1.35692 7.97909e-05 2.03812e-07 0.96555 −0.248432
2.30103 11.9988 564.263 1.35692 7.20651e-05 1.94531e-07 0.938747 −0.245866
2.30105 12.4943 691.419 1.35692 6.81434e-05 2.03217e-07 0.931841 −0.24912
2.29735 12.9984 763.184 1.35692 8.33722e-05 3.72517e-07 1.07531 −0.312832
2.33977 11.5138 515.102 1.35692 6.40598e-05 9.46418e-08 0.992554 −0.253647
2.35249 12.0001 646.505 1.35692 5.58783e-05 8.73988e-08 0.917981 −0.232224
2.35168 12.4962 669.878 1.35692 8.07974e-05 2.88143e-07 1.05415 −0.293308
2.34341 12.9902 768.911 1.35692 8.31747e-05 3.6599e-07 1.0731 −0.309067
2.40481 11.532 516.483 1.35692 7.06947e-05 1.18992e-07 1.0488 −0.270769
2.39962 11.9969 591.885 1.35692 6.95097e-05 1.66063e-07 0.939942 −0.239345
2.40182 12.4946 687.768 1.35692 6.31675e-05 1.84424e-07 0.800003 −0.195247
2.39386 13.0494 797.04 1.35692 8.31747e-05 3.64155e-07 1.08523 −0.310953
2.44245 11.7225 585.851 1.35692 6.48213e-05 9.64132e-08 1.04878 −0.270058
2.45692 12.0054 683.872 1.35692 6.02265e-05 8.59145e-08 1.06694 −0.279817
2.44811 12.5005 788.692 1.35692 5.54727e-05 1.08585e-07 0.89475 −0.226102
2.46926 12.9902 799.071 1.35692 7.22187e-05 2.78566e-07 0.902245 −0.233671
2.48576 11.7384 592.149 1.35692 6.48195e-05 9.63982e-08 1.04269 −0.266077
2.48565 11.9871 635.83 1.35692 7.22697e-05 1.46653e-07 1.11097 −0.296504
2.49157 12.5042 845.198 1.35692 5.09863e-05 7.76165e-08 0.92721 −0.233954
2.50681 12.977 807.332 1.35692 7.02376e-05 2.60042e-07 0.877541 −0.221707
2.54449 12.0157 690.912 1.35692 5.68381e-05 7.78775e-08 0.973419 −0.241326
2.54557 12.4991 860.826 1.35692 5.64829e-05 8.79244e-08 1.05925 −0.279123
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