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It is possible to infer the mass and spin of the remnant black hole from binary black hole mergers by

comparing the ringdown gravitational wave signal to results from studies of perturbed Kerr spacetimes.

Typically, these studies are based on the fundamental quasinormal mode of the dominant l ¼ m ¼ 2

harmonic. By modeling the ringdown of accurate numerical relativity simulations, we find, in agreement

with previous findings, that the fundamental mode alone is insufficient to recover the true underlying mass

and spin, unless the analysis is started very late in the ringdown. Including higher overtones associated with

this l ¼ m ¼ 2 harmonic resolves this issue and provides an unbiased estimate of the true remnant

parameters. Further, including overtones allows for the modeling of the ringdown signal for all times

beyond the peak strain amplitude, indicating that the linear quasinormal regime starts much sooner than

previously expected. This result implies that the spacetime is well described as a linearly perturbed black

hole with a fixed mass and spin as early as the peak. A model for the ringdown beginning at the peak strain

amplitude can exploit the higher signal-to-noise ratio in detectors, reducing uncertainties in the extracted

remnant quantities. These results should be taken into consideration when testing the no-hair theorem.
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I. INTRODUCTION

The end state of astrophysical binary black hole (BBH)

mergers is a perturbed single BH characterized by two

parameters: the final remnant mass Mf and spin angular

momentum Sf [1–3]. The perturbed BH radiates gravita-

tional waves at a specific set of frequencies over character-

istic timescales completely determined by the mass and

spin. The segment of the gravitational wave signal asso-

ciated with the single BH’s oscillations is known as the

“ringdown” phase, as the perturbed BH rings down

analogous to a struck bell. The set of frequencies and

damping times associated with a given BH are known as

quasinormal modes (QNMs), the damped oscillations

connected to the underlying BH geometry. The modes

can be decomposed into spin-weighted spheroidal harmon-

ics with angular indices ðl; mÞ [4–6]. For each ðl; mÞ, there
exists a discrete set of complex frequencies denoted ωlmn,

where n is the “overtone” index. The oscillatory behavior is

described by ReðωlmnÞ, while ImðωlmnÞ is related to the

damping timescale by τlmn ¼ −ImðωlmnÞ
−1. For a given

ðl; mÞ, the overtone index sorts the QNMs in order of

decreasing damping timescales, so n ¼ 0 corresponds to
the least-damped mode (i.e., the longest-lived mode),
which is often referred to as the fundamental mode.
The recent detections of merging BBHs [7–13] by

AdvancedLIGO [14] andVirgo [15], including the ringdown

phase, have stimulated significant interest in measuring the

QNMs from the observations [16–22]. Accurately determin-

ing the QNMs allows for precise tests of general relativity

(GR) [23–29]. In Ref. [16], the frequency and damping time

of the fundamental mode were inferred from the ringdown

data of the first event (GW150914). The analysis was

performed at several time offsets with respect to the time

of peak strain amplitude. For sufficiently late values of this

start time, the frequency and damping time were found to be

in agreement with the prediction from GR for a remnant

consistent with the full waveform. The multiple start times

used in the analysis reflect an uncertainty about when the

fundamental mode becomes a valid description for the

ringdown, as there is noticeable disagreement between

the measured mode and the GR prediction at early times.

This result raises the following question: At what point in the

ringdown does perturbation theory become relevant?

In this paper, we consider the contribution of QNM

overtones to the ringdown. Including overtones allows for
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an excellent description of the waveform well before the

fundamental mode becomes dominant and extends the

regime over which perturbation theory is applicable to

times even before the peak strain amplitude of the wave-

form. Moreover, an improved model for the ringdown

through the inclusion of overtones can provide more

accurate estimates of the remnant mass and spin [30,31].

Furthermore, the inclusion of higher overtones provides a

means to test GR at a more stringent level because the

QNM frequencies of all included overtones are independ-

ently constrained by GR for any given Mf and Sf.
We begin by demonstrating the benefits of including

overtones, in agreement with Refs. [30,31], by analyzing a

numerical relativity (NR) waveform. We then show how

overtones can improve the extraction of information from

noisy LIGO or Virgo data. We show that the overtones are

not subdominant, as is often assumed, but are instead

critically necessary to properly model the linear ringdown

regime. The inclusion of QNM overtones provides a high-

accuracy description of the ringdown as early as the time of

the peak strain amplitude, where the high signal-to-noise

ratio (SNR) can be exploited to significantly reduce the

uncertainty in the extracted remnant properties.

II. PREVIOUS STUDIES

There have been numerous attempts to identify the start

time of ringdown, that is, the point in time where a

transition has occurred from the nonlinear regime into

one where the signal can be described by a linear super-

position of damped sinusoids [19,21,31–34]. To highlight

the existing disagreement in the literature, the following

studies, each using NR waveforms as a test bed, come to

different conclusions regarding this transition time. In

Ref. [32], the start of the ringdown phase is inferred to

be 10M (whereM is the total binary mass, and G ¼ c ¼ 1)

after the peak luminosity of the l ¼ m ¼ 2 component of

the strain h; this is the time at which the frequency of the

l ¼ m ¼ 2 mode roughly agrees with that of the funda-

mental QNM. In Ref. [33], the ringdown portion of the

waveform is considered to be 10M after the peak lumi-

nosity of the Newman-Penrose scalar Ψ4 (related to two

time derivatives of h). A ringdown model with the

fundamental and the first two overtones was built under

this assumed start time and employed in Ref. [21], which

concluded that a start time of 16M after the peak strain

amplitude is optimal. The peak of Ψ4 is implicitly used as

the start time for the ringdown in Ref. [31], where a

superposition of the fundamental mode plus the first two

overtones provides an accurate representation of the rem-

nant properties and the fundamental frequency expected

from perturbation theory. Interestingly, in one of the earliest

analyses of BBH waveforms using NR simulations, despite

the limited numerical accuracy available for simulations at

that time, Buoananno, Cook, and Pretorius [30] were able

to fit three overtones to the NR ringdown waveform by

extending their analysis to times before the peak amplitude

of Ψ4. A superposition of QNMs, including overtones and

pseudo-QNMs, became an integral part of modeling the

merger-ringdown regime in earlier effective one body

models [35–38].

A likely cause of confusion is that start times are defined

with respect to the peak of some waveform quantity, and

different authors choose different waveform quantities for

this purpose. To illuminate the implicit time offsets incurred

by differences in this choice, consider as a specific example

the GW150914-like NR waveform SXS:BBH:0305 in the

Simulating eXtreme Spacetimes (SXS) catalog [39,40].

For this waveform, the peak of h occurs first, followed by

the peak luminosity of h, then the peak of Ψ4, and finally

the peak luminosity ofΨ4. These last 3 times are about 7M,

10M, and 11M after the peak of h. As we will show,

overtones beyond n ∼ 2 are expected to have significantly

decayed by the peak of Ψ4, so relying on the peak of Ψ4 to

begin a ringdown analysis may be problematic.

The miscellany of start times above can be reconciled, to

some extent, by considering the contribution of overtones to

the ringdown. Relying solely on the fundamental mode as a

description for the ringdown should result in only late-time

agreement. Additional consideration of overtones at late

times should result in finding significantly reduced ampli-

tudes in any overtones that remain. As we demonstrate

below, the reduced amplitudes at late times is because the

overtones decay more quickly for larger n; each additional

overtone included leads to a superposition of QNMs that

provides a description of the ringdown at earlier times.

Ignoring the contribution of overtones, by considering them

to be negligible as in Ref. [19], indirectly leads to the

conclusion that remnant properties remain unconstrainable

even in the infinite SNR limit—which we find to be untrue.

III. MODEL

We use the fundamental QNM and a varying number of

overtones to determine when the linear QNM solution best

describes the ðl; mÞ mode extracted from NR simulations.

Throughout, we focus on the aforementioned astrophysi-

cally relevant NR waveform SXS:BBH:0305 in the SXS

catalog, which is modeled after the GW150914 event. The

waveform represents a simulated system with a mass ratio

of 1.22, where the larger BH has dimensionless spin

χ⃗ ¼ 0.33ẑ and the smaller companion BH has dimension-

less spin χ⃗ ¼ −0.44ẑ. The resulting remnant in this

simulation has a final mass Mf ¼ 0.9520M and dimen-

sionless spin χf ¼ Sf=M
2

f ¼ 0.6921. We explore at what

time the linear QNM description provides not only an

optimal fit for the resulting ringdown waveform but also an

optimal estimate of the remnant mass and spin.

We model the ringdown radiation as a sum of damped

sinusoids [41–44] by writing each angular mode of the

complex strain, h ¼ hþ − ih×, as
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hN
lmðtÞ ¼

X

N

n¼0

Clmne
−iωlmnðt−t0Þ t ≥ t0; ð1Þ

with complex frequencies ωlmn ¼ ωlmnðMf; χfÞ as deter-
mined by perturbation theory [45,46]. Here, t0 corresponds
to a specifiable “start time” for themodel, and times before t0
are not included in the model. The complex coefficients

Clmn, which are not known a priori as they depend on the

binary configuration and dynamics near merger, are deter-

mined using unweighted linear least squares in the time

domain.The complex-valued amplitudes can be factored into

a real-valued amplitude and phase,Clmn ¼ jAlmnje
−iϕlmn , of

which we make direct use in Sec. IV C.

Throughout this work, we focus on describing the

dominant spherical harmonic mode in the NR simulation,

the l ¼ m ¼ 2 mode [47]. The natural angular basis in

perturbation theory is spin-weighted spheroidal harmonics

[4–6], which can be written as an expansion in spin-

weighted spherical harmonics [6,48–50]. Decomposing the

ringdown into spherical harmonics results in mixing of the

spheroidal and spherical bases between the angular func-

tions with the same m but different l’s, and this mixing

increases with χf [6,51]. For the SXS:BBH:0305 wave-

form, the l ¼ m ¼ 2 spherical harmonic remains a good

approximation for the l ¼ m ¼ 2 spheroidal harmonic.

The amplitudes of the spheroidal and spherical l ¼ m ¼ 2

modes differ by a maximum of only 0.4%, which occurs

roughly 15M after the peak of h. This difference is

significantly smaller at the peak. The mixing is small

because higher ðl; mÞ harmonics are subdominant for this

waveform, but in a more general case, these higher

harmonics may play a more important role.

IV. RESULTS

A. QNM overtone fits

The linear superposition of the fundamental QNM and N
overtones is an excellent description of the waveform

around and before the peak strain. To demonstrate this

case, we begin by fixing the remnant properties to the final

values provided by the NR simulation. With the mass Mf

and dimensionless spin χf fixed, the set of frequencies

ω22nðMf; χfÞ is fully specified by perturbation theory. The

only remaining free parameters in Eq. (1) are the complex

coefficients C22n and the model start time t0. For N
included overtones, and a given choice of t0, we determine

the (N þ 1) complex C22n’s using unweighted linear least

squares, thus obtaining a model waveform given by Eq. (1).

We construct such a model waveform for t ≥ t0 at many

start times beginning at t0 ¼ tpeak − 25M and extending to

times t0 ¼ tpeak þ 60M, where tpeak is the peak amplitude

of the complex strain. For each start time t0, we compute

the mismatchM between our model waveform hN
22
and the

NR waveform hNR
22

through

M ¼ 1 −
hhNR

22
; hN

22
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhNR
22

; hNR
22

ihhN
22
; hN

22
i

p : ð2Þ

In the above, the inner product between two complex

waveforms, say, xðtÞ and yðtÞ, is defined by

hxðtÞ; yðtÞi ¼

Z

T

t0

xðtÞyðtÞdt; ð3Þ

where the bar denotes the complex conjugate, the lower limit

of the integral is the start time parameter t0 in Eq. (1), and the
upper limit of the integral T is chosen to be a time before

the NR waveform has decayed to numerical noise. For

the aforementionedNR simulation, we set T ¼ tpeak þ 90M.

This procedure results in mismatches as a function of t0
for each set of overtones; these mismatches are presented in

Fig. 1. The figure shows that N ¼ 7 overtones provide the

minimum mismatch at the earliest of times, as compared to

the other overtone models. The waveform corresponding to

the N ¼ 7 overtone model and t0 ¼ tpeak is visualized in

Fig. 2, where the model waveform is compared to the NR

waveform along with the fit residual.

At face value, Fig. 1 provides us with a guide for

determining the times where a linear ringdown model with

N QNM overtones is applicable. However, relying on the

mismatch alone can be deceiving. The n ¼ 7 overtone

decays away very quickly, yet Fig. 1 shows that retaining

this overtone still produces small mismatches at times

beyond when this mode should no longer be numerically

resolvable. This result is due to overfitting to numerical

FIG. 1. Mismatches as a function of time for the eight models,

each including up toN QNM overtones. The mismatch associated

with each model at a given t0 corresponds to the mismatch

computed using Eq. (2), between the model and the NR wave-

form for t ≥ t0, where t0 specifies the lower limit used in

Eq. (3). Each additional overtone decreases the minimum

achievable mismatch, with the minimum consistently shifting to

earlier times.
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noise after the higher overtones in each model have suffi-

ciently decayed. We find that the turnover subsequent to the

firstmismatchminimum inFig. 1 is a goodapproximation for

when each overtone has a negligible amplitude.

It is important that the model not only minimizes the

residual in the waveform quantity but also provides faithful

estimates of the underlying system parameters. In particu-

lar, we may demand that the inferred mass and spin agree

with the true values known from the NR simulation. To

check that the model does indeed faithfully represent the

NR waveform with the correct final mass and spin, we

repeat the fits but we allow Mf and χf to vary, and we set

the frequencies of each overtone to their GR-consistent

values through the perturbation-theory formula for

ω22nðMf; χfÞ. As a measure of error, we use

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδMf=MÞ2 þ ðδχfÞ
2

q

; ð4Þ

where δMf and δχf are the differences between the best-fit

estimates forMf and χf as compared to the remnant values

from the NR simulation. Using a model with N ¼ 7

overtones and t0 ¼ tpeak, the best-fit estimates for Mf

and χf yield a value of ϵ ∼ 2 × 10−4. For reference, by

comparing the two highest resolutions of this simulation,

we estimate the error in the NRmeasured remnant mass and

spin to be δMf ∼ 1.3 × 10−5M and δχf ∼ 2.1 × 10−5,

which corresponds to a value of ϵ ∼ 2 × 10−5.

Furthermore, the difference in the recovered Mf and χf
as compared to the NR values increases as we drop

overtones from the model. This behavior appears to be

robust. Repeating the above analysis on roughly 80 addi-

tional waveforms in the SXS catalog with aligned spins and

mass ratios up to 8 [39,52] yields similar results, with a

median value of ϵ ∼ 10−3. The full distribution of ϵ for this

part of parameter space, with N ¼ 7 overtones at t0 ¼ tpeak,

is shown in Fig. 3.

Returning to our analysis of SXS:BBH:0305, to high-

light the worst-fit and best-fit cases and to visualize the

mismatch as a function of mass and spin, we compute

the mismatch between NR and the model in Eq. (1) with

t0 ¼ tpeak and the C22n’s determined by a least-squares fit

for a grid of Mf and χf values. In Fig. 4, we see that with

N ¼ 7 overtones, the mismatch has a deep minimum

associated with the true remnant quantities. However, using

solely the fundamental mode, N ¼ 0, with t0 ¼ tpeak,

provides largely biased estimates for the remnant Mf

and χf, as is visible in Fig. 5. This result is not surprising

in light of Fig. 1, where at this time the N ¼ 0 model

provides the poorest mismatch; this result is a consequence

of the higher overtones dominating the waveform at this

time. The bias can be overcome by waiting a sufficiently

long time, which allows the overtones to decay away and

the fundamental mode to become dominant. This case can

be seen in Fig. 6, where we repeat the same procedure with

N ¼ 0 and t0 ¼ tpeak þ 47M. Here, the resulting distribu-

tion of mismatches in the Mf − χf plane is on par with the

distribution associated with including N ¼ 7 overtones and

FIG. 3. The distribution of ϵ, Eq. (4), for a range of simulations

in the SXS catalog. The distribution includes systems with mass

ratios up to 8 and orbit-aligned component spins with jχ⃗j ≤ 0.8.

The distributions shown are for N ¼ f0; 3; 7g overtones at the

peak of the strain amplitude. For the best performing model,

N ¼ 7, the median value is 2 × 10−3, and the maximum error in

estimating the mass and spin is about 5 × 10−3.

FIG. 2. Comparison between the plus polarization of the l ¼
m ¼ 2 mode of the NR waveform and the N ¼ 7 linear QNM

model. The QNM model begins at t0 ¼ tpeak. The upper panel

shows both waveforms, and the lower panel shows the residual

for t ≥ tpeak. For reference, the lower panel also shows an estimate

of the error in the NR waveform, jhNR
22

− hNR
22

j, where hNR
22

refers

to the highest resolution waveform of SXS:BBH:0305 and hNR
22

refers to the next highest resolution waveform for this same

system. The two NR waveforms are aligned at t0 ¼ tpeak, in both

time and phase.
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t0 ¼ tpeak, with the N ¼ 7 case producing a smaller

absolute mismatch than the N ¼ 0 case. The key point

is that we can recover similar information about the

underlying remnant at the peak, through the inclusion of

overtones, as we can by analyzing the waveform at late

times. As discussed in more detail in Sec. IV C, extending

the ringdown model to earlier times allows us to access

higher signal-to-noise ratios and can significantly reduce

uncertainties in parameter estimation.

One might be concerned that the additional free param-

eters in the fit, introduced by including the overtones,

simply allow for fitting away any nonlinearities that may be

present, making the fundamental mode more easily resolv-

able and therefore better determining the underlying

remnant mass and spin. A simple test of this idea is to

repeat the fit while still setting the fundamental frequencies

ω220ðMf; χfÞ according to perturbation theory but to inten-

tionally set the frequencies of the overtones to incorrect

values. The fit will then have the same number of degrees of

freedom (d.o.f.) as previously but without the correct

physics. Let ω22nðMf; χfÞ be the set of frequencies deter-

mined by perturbation theory, and take ω̃22nðMf; χfÞ to be

the set of frequencies with the fundamental unmodified, but

with ω̃22nðMf; χfÞ ¼ ω22nðMf; χfÞð1þ δÞ, for n > 0. As a

measure of error, we rely on ϵ, Eq. (4), the root-mean-

squared error in the estimated mass and spin as compared to

the known NR values.

For demonstration purposes, we let δ take on values

from the set �f0.01; 0.05; 0.2g and fit to the spherical

l ¼ m ¼ 2 mode with t0 ¼ tpeak for different numbers of

included overtones N. A comparison between the unmodi-

fied and modified models with the same number of d.o.f. is

presented in Fig. 7. From Fig. 7, it is evident that the

unmodified set of QNMs, ω22nðMf; χfÞ, remains true to the

underlying mass and spin and converges to smaller errors as

the number of included overtones is increased. In the case

where the overtones are given slightly incorrect frequencies

by the δ parameter introduced above, including higher

overtones yields fits that remain biased away from the true

values, leading to larger values of ϵ.

FIG. 4. Mismatches for the l ¼ m ¼ 2 mode between NR and

Eq. (1) for a grid of Mf and χf with N ¼ 7 and t0 ¼ tpeak. The

white horizontal and vertical lines correspond to the NR values

and are in good agreement with the Mf and χf mismatch

distribution using the maximum number of overtones considered.

FIG. 5. The mismatches for the l ¼ m ¼ 2 mode between NR

and Eq. (1) over a grid of χf andMf withN ¼ 0, the fundamental

mode only, and t0 ¼ tpeak. The white horizontal and vertical lines

correspond to the remnant values from NR. As the fundamental

mode is subdominant at this time, this single-mode model is a

poor probe of the underlying remnant mass and spin. Note that

the mass and mismatch scales used in this figure are significantly

different from Fig. 4 because of the discrepant single-mode fit at

early times.

FIG. 6. Mismatches for the l ¼ m ¼ 2 mode between NR and

Eq. (1) for a grid of Mf and χf with N ¼ 0, the fundamental

mode, at a late time t0 ¼ tpeak þ 47M. Here, the fundamental

mode is dominant since the overtones have decayed away by this

time. Again, the white horizontal and vertical lines correspond to

the remnant values from NR and now; at this late time, we find

good agreement between the true values and those recovered by

using only the fundamental mode as a probe for Mf and χf .
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Furthermore, in an additional test, we have allowed for

different values of δ for each n, each independently

sampled from a normal distribution with mean μ ¼ 0

and standard deviation σ ¼ 0.2. In this test, each overtone

frequency is randomly modified to a different extent about

ω22nðMf; χfÞ. In all 100 cases randomly generated from the

above distribution, the ϵ’s associated with the modified

frequencies always remain bounded from below by the ϵ

associated with the GR frequencies of the asymptotic

remnant. A random, representative, subset of these 100

cases is shown as faint grey traces in Fig. 7. The results

suggest that the overtones associated with the asymptotic

remnant provide a sufficiently good linear description of

the perturbations for all times beyond the peak of this

mode, while a similar set of overtones that are inconsistent

with the asymptotic remnant do not.

B. Characterizing the overtones

The behavior in the previous section can be explained by

carefully understanding how the overtones contribute to the

ringdown. As briefly touched on in Sec. I, the overtones are

those modes with n > 0, where n orders the modes based

on decreasing damping time. While these modes are the

least important in a time-weighted sense, describing them

as “overtones” is somewhat of a misnomer. In a classical

description of harmonics, overtones are at higher frequen-

cies than the fundamental, typically multiples of the first

harmonic, and are usually subdominant. However, for

QNMs, the overtones decrease in frequency and are not

necessarily subdominant. As briefly mentioned in Sec. III,

the amplitude of each QNM overtone in the ringdown

depends on the binary configuration and the dynamics

leading up to merger. The dynamics specify the “initial

data” for the ringdown, determining which QNMs are

excited and to what extent. As such, the overtone ampli-

tudes for waveform SXS:BBH:0305 will differ from those

with different initial data, i.e., binary configurations with

different mass ratios or different spin vectors.

To provide a qualitative understanding of the relative

amplitudes of different overtones, we decompose the

ringdown waveform of SXS:BBH:0305 into its constituent

overtones. Using t0 ¼ tpeak and N ¼ 7 overtones, we

determine the C22n’s as in Sec. IVA, with Mf and χf
fixed to the NR simulation values. The corresponding

values An ¼ jC22nðt ¼ t0 ¼ tpeakÞj form the entries in the

bottom row of Table I. For N ¼ 6, we keep t0 ¼ tpeak, so

the amplitudes are measured with respect to the peak;

however, we include in our fit only data for t ≥ tfit, where
tfit corresponds to the earliest minimum in Fig. 1 for this N.

These amplitudes correspond to the penultimate row of

Table I, and the fit time tfit is stated, with respect to tpeak, in

the last column. The result of this procedure for the

remaining N is given in Table I, where we provide our

best estimate of the amplitudes at t ¼ t0 ¼ tpeak associated

with each overtone. The values in Table I are computed

for the highest numerical resolution of the NR waveform

FIG. 7. The root-mean-squared error ϵ defined in Eq. (4), for

different sets of frequencies, as a function of the number of

included overtones N. The fits are performed on the spherical

l ¼ m ¼ 2 mode at t ¼ t0 ¼ tpeak. The label ω22nðMf; χfÞ

represents the set of frequencies consistent with perturbation

theory, while ω̃22nðMf; χfÞ represents the set of frequencies with
the fundamental mode, n ¼ 0, unmodified but with a slight

modification to the overtone frequencies by a factor of (1þ δ).

For each δ, there is an associated dashed line of the same color

that corresponds to δ → −δ. The faint grey lines correspond to

frequencies with a random δ for each n, as explained in the last

paragraph of Sec. IVA. The results suggest that there is

information present in the overtones that contributes to extracting

the remnant properties at the peak, as these outperform a similar

set of functions, with the same d.o.f. for each N but with

frequencies inconsistent with the asymptotic remnant.

TABLE I. Best-fit estimates of the amplitudes An of the

fundamental mode and overtones in the ringdown of NR

simulation SXS:BBH:0305, with t0 ¼ tpeak. Amplitudes are

computed for various values of N, the total number of overtones

included in the fit. Also shown is the time tfit where the fit is

performed for eachN, stated with respect to tpeak. Note that An are

always the amplitudes at t ¼ t0 ¼ tpeak, even if the fit is

performed at a later time. The amplitude values are truncated

such that the last significant figure agrees with the two highest

resolutions for the NR simulation.

N A0 A1 A2 A3 A4 A5 A6 A7 tfit − tpeak

0 0.971 � � � � � � � � � � � � � � � � � � � � � 47.00

1 0.974 3.89 � � � � � � � � � � � � � � � � � � 18.48

2 0.973 4.14 8.1 � � � � � � � � � � � � � � � 11.85

3 0.972 4.19 9.9 11.4 � � � � � � � � � � � � 8.05

4 0.972 4.20 10.6 16.6 11.6 � � � � � � � � � 5.04

5 0.972 4.21 11.0 19.8 21.4 10.1 � � � � � � 3.01

6 0.971 4.22 11.2 21.8 28 21 6.6 � � � 1.50

7 0.971 4.22 11.3 23.0 33 29 14 2.9 0.00
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SXS:BBH:0305, but they are truncated at a level such that

the estimates agree with the next highest resolution.

The initial amplitude of the fundamental mode A0 is

consistently recovered for all models, each model having a

different N and a different fit time that is optimal for that N.

The first few overtones show a similar behavior, while the

higher overtones display larger uncertainties in the recov-

ered amplitudes and are increasingly sensitive to the fit time

and the number of included overtones. This sensitivity is a

consequence of the strong exponential time dependence in

the overtones and is recognized as the time-shift problem

[53]. But perhaps the most important thing to notice is that

the overtones can have significantly higher amplitudes than

the fundamental mode. As discussed above, the initial

amplitudes of the overtones depend on the details of the

nonlinear binary coalescence, which ultimately depend on

the binary parameters. Consequently, the amplitudes of the

overtones relative to the fundamental mode will vary across

parameter space. The complex amplitudes Clmn, also

known as the QNM excitation coefficients, can be written

as Clmn ¼ BlmnIlmn, where Blmn is a purely geometric

piece determined by the remnant BH, referred to as the

QNM excitation factor, and Ilmn is the source term that

depends on the binary dynamics [54–56]. Excitation factors

have been computed for the first three overtones for Kerr

BHs in Refs. [56,57]; these QNM excitation factors can

provide some insight into how the relative amplitudes

might behave for different remnant spins.

The NR waveform SXS:BBH:0305 has a dimensionless

remnant spin χf ∼ 0.7, for which the relative excitation

factors jB22nj=jB220j of the fundamental and the first three

l ¼ m ¼ 2 QNM overtones are roughly 1.0,3.53,5.23,5.32.

However, for a remnant of χf ¼ 0, the excitation factors

jB22n=B220j of these same QNMs are 1.0,1.28,1.06,0.62,

which indicates that the overtones may be relatively less

important for lower remnant spins. Using Ref. [57], we have

computed the excitation factors for the next two highest

overtones of the remnant ofSXS:BBH:0305, andwe find that

jB224j=jB220j ∼ 15.21 and jB225j=jB220j ∼ 29.31. Additional

excitation factors are difficult to compute, but the trend is not

expected to continue as it is conjectured that, for Kerr BHs,

Blmn ∼ 1=n for large n [56].

The overtone amplitudes in Table I increase with over-

tone number, peak around n ¼ 4, and then decrease.

Therefore, we expect that the rapidly decaying overtones

beyond about n ¼ 7 are subdominant; this expectation

justifies truncating the expansion in the vicinity of n ¼ 7.

Preliminary studies indicate that n ¼ 8 does not improve

the fit at t0 ¼ tpeak. An additional caveat is that the

amplitudes in Table I are those recovered from the l ¼
m ¼ 2 spherical harmonic as opposed to the l ¼ m ¼ 2

spheroidal harmonic. However, the spherical-spheroidal

mixing is small (cf. Sec. III) and should not significantly

change the qualitative behavior of the relative amplitudes in

Table I.

Using our results from the last row of Table I, and using

the analytic decay rates corresponding to the true Mf and

χf, we can reconstruct the expected individual contribu-

tions of each overtone to the total l ¼ m ¼ 2 ringdown

signal at any given t; in other words, we can compute the

time-dependent amplitudes A22nðtÞ of each overtone. These

are related to the An in Table I by A22nðtÞ ¼ Ane
−ðt−t0Þ=τ22n.

These amplitudes are shown in Fig. 8. This result estab-

lishes why one has to wait until 10M–20M after the

peak before the fundamental becomes the dominant

contribution.
Note that Fig. 8 uses a single fit over the range t ≥ tpeak

and assumes the expected analytic time dependence of each

overtone amplitude for t ≥ tpeak. Alternatively, we can

attempt to reconstruct each A22nðtÞ numerically by per-

forming a different fit for the amplitudes at each time t. For
each time t, we choose t0 ¼ tfit ¼ t, and we fit data only for
times greater than or equal to t0. The numerically extracted

time dependence of the overtone amplitudes, A22nðtÞ, is
shown in Fig. 9. Obtaining an accurate fit in this way is

difficult because of various numerical complications, such

as the small differences in frequencies and amplitudes

between neighboring overtones, the poor resolution of

overtones with small amplitudes, and the risk of overfitting

at late times after some overtones have decayed away. At

later times, there is significantly less power in the highest

overtones—making them more difficult to resolve. To

mitigate some of these difficulties, when performing the

fit at each time t, we exclude overtones whose fitted

amplitude has increased relative to that at the previous

time. This method is motivated by the fact that the model is
one of exponentially damped sinusoids. Therefore, if at any

FIG. 8. A decomposition of the ringdown in terms of the

overtones for N ¼ 7. The evolution of the overtones is com-

puted from the analytic decay rates with initial amplitudes at

t ¼ t0 ¼ tpeak specified by the bottom row of Table I. Notice

that the fundamental mode does not dominate the ringdown of

SXS:BBH:0305 until roughly 10M after tpeak.
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time an overtone has a larger amplitude than the amplitude
recovered at a previous time, we consider that overtone to
no longer be of physical relevance, and we permanently
remove it from the allowed set of modes for future fit times.
It is always the highest overtone available in the remaining
set of modes that gets dropped, as this mode decays more
quickly than the other ones. Although we only show up to
N ¼ 4 in Fig. 9 because numerically extracting amplitudes
is difficult at late times, the benefit of using overtones up to
N ¼ 7 in estimating the remnant mass and spin is apparent
in Fig. 7. Consequently, more advanced fitting methods
should allow for an improvement in numerically recovering
higher-order overtones as a function of time, which will be
explored further in future work.

Finally, it is worth pointing out that there is good

agreement between the model and NR even at times before

tpeak, as indicated by the mismatches in Fig. 1, as well as by

the early agreement between the numerically extracted

amplitude of the fundamental mode and the expected

analytic behavior visible in Fig. 9. Since the QNMs are

solutions to perturbed single BH spacetimes, the agreement

could be interpreted as an indication that the region of the

prepeak waveform already begins to behave as a perturbed

single BH to observers at infinity. This observed behavior

will be explored further in future work.

C. Observing overtones with GW detectors

Overtones can enhance the power of gravitational wave

detectors to probe the ringdown regime. We illustrate this

by studying the simulated output of a LIGO-like detector in

response to the same GW considered above, the NR

simulation SXS:BBH:0305. For simplicity, we assume

the orbital plane of the source faces the instrument head-

on (no inclination). We choose a sky location for which the

detector has optimal response to the plus polarization but

none to cross, with polarizations defined in the same frame

implicitly assumed in Eq. (1). To mimic GW150914, we

rescale the NR template to correspond to a total initial

binary mass of 72 M⊙, in the detector frame, and a source

distance of 400 Mpc. We inject the l ¼ m ¼ 2mode of the

signal into simulated Gaussian noise corresponding to the

sensitivity of Advanced LIGO in its design configuration

[58]. This method yields a postpeak optimal SNR of about

42 [59].
To extract information from the noisy data, we carry out a

Bayesian analysis similar to that inRefs. [16,60] but based on

the overtone ringdownmodel ofEq. (1),withl ¼ m ¼ 2 and

varying N. For any given start time t0, we obtain a posterior
probability density over the space of remnant mass and spin,

as well as the amplitudes and phases of the set of QNMs

included in the template. We parametrize start times via

Δt0 ¼ t0 − th-peak, where th-peak refers to the signal peak at

the detector (th-peak ≈ tpeak − 0.48 ms ≈ tpeak − 1.3M).

Unlike Ref. [16], we sample over the amplitudes and phases

directly, instead of marginalizing over them analytically, and

we place uniform priors on all parameters. In particular, we

consider masses and orbit-aligned spins within ½10; 100�M⊙

and [0, 1], respectively. We allow the QNM phases to cover

their full range, ½0; 2π�, but restrict the amplitudes (measured

at t ¼ th-peak) to ½0.01; 250�hpeak, where hpeak ¼ 2 × 10−21 is

the total signal peak. This arbitrary amplitude interval fully

supports the posterior in all cases we consider.We assume all

extrinsic parameters, like sky location and inclination, are

perfectly known. We sample posteriors using the Markov

chain Monte Carlo (MCMC) implementations in KOMBINE

[61] and, for verification, EMCEE [62].

The highest N we consider in our inference model is

N ¼ 3, as that is the most we can hope to resolve given the

SNR of our simulation. A guiding principle for two

waveforms to be indistinguishable is M < SNR−2=2, in
terms of the mismatch M defined in Eq. (2) but with a

noise-weighted inner product [63–65]. For the system at

hand, this principle implies that postmerger templates with

mismatches M≲ 3 × 10−4 are effectively identical. If

fitting from the peak on, Fig. 1 then implies that differences

between N ≥ 3 templates are unmeasurable. We confirmed

this empirically by checking that N ¼ 4 does not lead to

inference improvements with respect to N ¼ 3 and only

seems to introduce degenerate parameters. By the same

token, we have also verified that, at this SNR, our results

are largely unaffected by the presence or absence of the

next dominant angular mode (3,2) in the injected NR

waveform, as its amplitude is an order of magnitude weaker

than that of the dominant (2,2) mode for the chosen system.

FIG. 9. The numerically recovered amplitudes for the funda-

mental QNM and the first few overtones at each fit time, t (solid
curves). Dashed lines are the same as the lines in Fig. 8. The

numerically extracted amplitudes across t agree very well with

the expected decay for the longest-lived modes, while modes that

decay more quickly are more susceptible to fitting issues.

Interestingly, the fundamental mode is in excellent agreement

with the expected decay rate at times preceding the peak

amplitude of the strain.
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At higher SNRs, additional (2,2) overtones and/or angular

modes (potentially, with their respective overtones) are

necessary to keep the modeling error below the statisti-

cal error.

Our findings are summarized in Figs. 10 and 11. In

Fig. 10, we show the posteriors recovered for the remnant

mass and spin under the assumption that the ringdown

begins at the peak of the signal strain and for models with

different numbers of overtones. For each case, the main

panel displays contours enclosing 90% of the posterior

probability, while the curves on the top and right represent

the corresponding marginalized distributions for the mass

and spin. As expected, the fundamental mode (N ¼ 0) is

insufficient to describe the signal near the peak, yielding an

estimate of the remnant properties that is far from the true

values determined from the NR simulation (dotted lines).

As the number of overtones is increased, the inferred mass

and spin become increasingly more accurate, with N ¼ 3

producing the best results (true value within top 40%-

credible region). This result illustrates how the overtones

can provide an independent measurement of the remnant

properties by studying the signal near the peak.

We find that the estimate of the mass and spin obtained

with overtones at the peak is more accurate than the one

obtained with only the fundamental mode at later times. We

illustrate this in Fig. 11, which shows the 90%-credible

regions on Mf and χf inferred using only the fundamental

mode (N ¼ 0) at different times after the peak strain (blue

contours), as well as the N ¼ 3 result from Fig. 10 for

comparison (red contour). As anticipated in Ref. [16], the

fundamental mode is a faithful representation of the signal

only at later times, which in our case means that the true

values are enclosed in the 90%-credible region only for

Δt0 ≥ 5 ms. The penalty for analyzing the signal at later

times is a reduction in SNR that results in increased

uncertainty, as evidenced by the large area of the blue

contours in Fig. 11. We obtain a more precise estimate by

taking advantage of the overtones at the peak. We suspect

that the observed agreement at 3 ms in Ref. [16] is a

FIG. 10. Remnant parameters inferred with different numbers

of overtones, using data starting at the peak amplitude of the

injected strain. Contours represent 90%-credible regions on the

remnant mass (Mf) and dimensionless spin (χf), obtained from

the Bayesian analysis of a GW150914-like NR signal injected

into simulated noise for a single Advanced LIGO detector at

design sensitivity. The inference model was as in Eq. (1), with

ðl ¼ m ¼ 2Þ and different numbers of overtones N: 0 (solid

blue), 1 (dashed purple), 2 (dashed yellow), and 3 (solid red). In

all cases, the analysis uses data starting at peak strain

(Δt0 ¼ t0 − th-peak ¼ 0). The top and right panels show 1D

posteriors for Mf and χf, respectively. Amplitudes and phases

are marginalized over. The intersection of the dotted lines marks

the true value (Mf ¼ 68.5 M⊙, χf ¼ 0.69).

FIG. 11. Remnant parameters inferred using only the funda-

mental mode, using data starting at different times relative to the

peak amplitude of the injected strain. Contours represent 90%-

credible regions on the remnant mass (Mf) and dimensionless

spin (χf), obtained from the Bayesian analysis of a GW150914-

like NR signal injected into simulated noise for a single

Advanced LIGO detector at design sensitivity. For the blue

contours, the inference model included no overtones (N ¼ 0) and

used data starting at different times after the peak: Δt0 ¼ t0 −

th-peak ∈ ½0; 3; 6; 10� ms (blue contours). For the red contour, the

analysis was conducted with three overtones (N ¼ 3) starting at

the peak (Δt0 ¼ 0), as in Fig. 10. The top and right panels show

1D posteriors forMf and χf, respectively. Amplitudes and phases

are marginalized over. The intersection of the dotted lines marks

the true value (Mf ¼ 68.5 M⊙, χf ¼ 0.69).
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consequence of the lower SNR of GW150914. At lower

SNRs, the statistical errors outweigh the systematic errors

associated with including only the fundamental mode.

V. DISCUSSION AND CONCLUSIONS

For a given mass Mf and spin χf, perturbation theory

precisely predicts the spectrum of QNMs associated with a

ringing single BH, including the characteristic frequencies

for these QNMs. The QNM frequencies are denoted

ωlmnðMf; χfÞ, where l and m describe the angular

dependence of a mode and n, the often-ignored integer

overtone index, sorts QNMs with the same angular

dependence by how quickly they decay. The slowest

decaying fundamental mode, n ¼ 0, is often considered

to be of primary importance, while the more quickly

decaying overtones are often disregarded. However, we

find that the overtones are not necessarily subdominant as is

often assumed, but instead, they can dominate the early part

of the ringdown.

Using a superposition of QNMs, we model the ringdown

portion of the l ¼ m ¼ 2 mode of the numerical relativity

waveform SXS:BBH:0305, which is consistent with

GW150914. We find that with enough included overtones,

the QNMs provide an excellent description for the GW

strain for all times beyond the peak amplitude of the

complex strain h. For the GW150914-like NR waveform

we analyzed, the overtones dominate the early part of the

perturbations but decay away much more quickly than the

fundamental mode, which eventually becomes dominant

roughly 10M after the peak amplitude (Fig. 8). This later

time where the fundamental dominates is sometimes

referred to in the literature as the start of the ringdown,

the time of a transition to the linear regime, or the beginning

of the domain of applicability of perturbation theory.

However, this time is merely the time at which one may

ignore the contribution of overtones, which play a key role

in the early ringdown. Including the QNM overtones

extends the reach of perturbation theory back to the time

of the peak strain amplitude, indicating that the linear

ringdown regime begins much earlier than one would

conclude by ignoring these additional modes. As men-

tioned in Sec. IVA, we have verified, on a sizable set of

aligned-spin waveforms in the SXS catalog, that the

inclusion of overtones provides an accurate model for

the postpeak strain. Not only do the overtones provide

excellent mismatches, but the best-fit mass and spin are

accurately recovered with median absolute errors inMf=M

and χf of about 10−3. We therefore expect the early

dominance of overtones to be a generic feature of the

ringdown.

The QNM overtones can enhance the power of GW

detectors to probe the ringdown regime. They can be used

to extract information about QNMs at the peak of the

signal, where the SNR is high. In contrast, the usual

approach relies solely on the later portion of the signal

that is dominated by the (initially weaker) fundamental

mode, paying the price of larger statistical errors and

uncertainty in the appropriate time where this mode

dominates [16–22,25–29]. This effect is visible in

Fig. 11, where a model with N ¼ 3 overtones remains

faithful to the true remnant mass and spin with less

uncertainty than one with N ¼ 0 at later times. The

resolvability of these overtones provides a set of indepen-

dent modes, each with unique frequencies, that can

potentially be used to constrain deviations from GR.

Studies of the ringdown GW spectrum can provide a

direct way to experimentally determine whether compact

binary coalescences result in the Kerr BHs predicted by GR

[23,24]. This includes tests of the no-hair theorem and the

area law, as well as searches for BH mimickers. The

program, sometimes known as “black hole spectroscopy,”

generally requires independent measurement of at least

two modes, which are conventionally taken to be the

fundamentals of two different angular harmonics (e.g.,

Refs. [25,29]). However, such a choice is only available for

systems that present a sufficiently strong secondary angular

mode, which only tends to occur under some specific

conditions (e.g., for high mass ratios) [66–70]. Further-

more, as we have observed, these fundamental modes

should dominate only at late times, being subject to

significantly more noise than modes that can be extracted

near the peak of the waveform. The extraction of an

overtone, in addition to the fundamental mode, could

potentially serve as an alternative two-mode test of the

no-hair theorem.

The impact of overtones on ringdown tests of GR can

already be seen from Fig. 11: By studying the QNMs at

early and late times, we may obtain two independent

measurements of the remnant parameters, enabling power-

ful consistency checks. Unlike tests that rely on a multi-

plicity of angular modes, studies of overtones should be

feasible at SNRs achievable with existing detectors, as we

demonstrate by our study of a GW150914-like signal seen

at design sensitivity by Advanced LIGO (Sec. IV C). For

signals in which they are measurable, higher angular modes

and their overtones could make these tests even more

powerful. Overtones can therefore enable a whole new set

of precision studies of the ringdown and make black hole

spectroscopy realizable with current detectors.

ACKNOWLEDGMENTS

The authors thank Vijay Varma for many valuable

discussions. We also thank Katerina Chatziioannou and

Leo Stein for useful comments. M. G. and M. S. are

supported by the Sherman Fairchild Foundation and

NSF Grants No. PHY-1708212 and No. PHY-1708213

at Caltech. M. I. is a member of the LIGO Laboratory.

LIGO was constructed by the California Institute of

Technology and Massachusetts Institute of Technology

GIESLER, ISI, SCHEEL, and TEUKOLSKY PHYS. REV. X 9, 041060 (2019)

041060-10



with funding from the National Science Foundation and

operates under Cooperative Agreement No. PHY-0757058.

M. I. is supported by NASA through the NASA Hubble

Fellowship Grant No. HST-HF2-51410.001-A awarded by

the Space Telescope Science Institute, which is operated by

the Association of Universities for Research in Astronomy,

Inc., for NASA, under Contract No. NAS5-26555. S. T. is

supported in part by the Sherman Fairchild Foundation and

by NSF Grants No. PHY-1606654 and No. ACI-1713678 at

Cornell. Computations were performed on the Wheeler

cluster at Caltech, which is supported by the Sherman

Fairchild Foundation and by Caltech. Computations were

also performed on the Nemo computing cluster at the

University of Wisconsin-Milwaukee, supported by NSF

Grant No. PHY-1626190.

[1] W. Israel, Event Horizons in Static Vacuum Space-Times,

Phys. Rev. 164, 1776 (1967).

[2] B. Carter, Axisymmetric Black Hole Has Only Two Degrees

of Freedom, Phys. Rev. Lett. 26, 331 (1971).

[3] S. W. Hawking, Black Holes inGeneral Relativity,

Commun. Math. Phys. 25, 152 (1972).

[4] S. A. Teukolsky, Rotating Black Holes—Separable Wave

Equations for Gravitational and Electromagnetic Pertur-

bations, Phys. Rev. Lett. 29, 1114 (1972).

[5] S. A. Teukolsky, Perturbations of a Rotating Black Hole. I.

Fundamental Equations for Gravitational, Electromag-

netic, and Neutrino-Field Perturbations, Astrophys. J.

185, 635 (1973).

[6] W. H. Press and S. A. Teukolsky, Perturbations of a Rotat-

ing Black Hole. II. Dynamical Stability of the Kerr Metric,

Astrophys. J. 185, 649 (1973).

[7] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Observation of Gravitational Waves from a

Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102

(2016).

[8] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), GW151226: Observation of Gravitational

Waves from a 22-Solar-Mass Binary Black Hole Coales-

cence, Phys. Rev. Lett. 116, 241103 (2016).

[9] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Binary Black Hole Mergers in the First

Advanced LIGO Observing Run, Phys. Rev. X 6, 041015

(2016).

[10] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), GW170104: Observation of a 50-Solar-

Mass Binary Black Hole Coalescence at Redshift 0.2, Phys.

Rev. Lett. 118, 221101 (2017).

[11] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), GW170608: Observation of a 19 Solar-

Mass Binary Black Hole Coalescence, Astrophys. J. 851,

L35 (2017).

[12] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), GW170814: A Three-Detector Observation

of Gravitational Waves from a Binary Black Hole Coa-

lescence, Phys. Rev. Lett. 119, 141101 (2017).

[13] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tion), GWTC-1: A Gravitational-Wave Transient Catalog of

Compact Binary Mergers Observed by LIGO and Virgo

During the First and Second Observing Runs, Phys. Rev. X

9, 031040 (2019).

[14] J. Aasi et al. (LIGO Scientific), Advanced LIGO, Classical

Quantum Gravity 32, 115012 (2015).

[15] F. Acernese et al., Advanced Virgo: A Second-Generation

Interferometric Gravitational Wave Detector, Classical

Quantum Gravity 32, 024001 (2015).

[16] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Tests of General Relativity with GW150914,

Phys. Rev. Lett. 116, 221101 (2016).

[17] W. Del Pozzo and A. Nagar, Analytic Family of Post-Merger

Template Waveforms, Phys. Rev. D 95, 124034 (2017).

[18] M. Cabero, C. D. Capano, O. Fischer-Birnholtz, B.

Krishnan, A. B. Nielsen, A. H. Nitz, and C. M. Biwer,

Observational Tests of the Black Hole Area Increase

Law, Phys. Rev. D 97, 124069 (2018).

[19] E. Thrane, P. D. Lasky, and Y. Levin, Challenges Testing the

No-Hair Theorem with Gravitational Waves, Phys. Rev. D

96, 102004 (2017).

[20] R. Brito, A. Buonanno, and V. Raymond, Black-Hole

Spectroscopy by Making Full Use of Gravitational-Wave

Modeling, Phys. Rev. D 98, 084038 (2018).

[21] G. Carullo et al., Empirical Tests of the Black Hole No-Hair

Conjecture Using Gravitational-Wave Observations, Phys.

Rev. D 98, 104020 (2018).

[22] G. Carullo, W. Del Pozzo, and J. Veitch, Observational

Black Hole Spectroscopy: A Time-Domain Multimode

Analysis of GW150914, Phys. Rev. D 99, 123029 (2019).

[23] O. Dreyer, B. J. Kelly, B. Krishnan, L. S. Finn, D. Garrison,

and R. Lopez-Aleman, Black Hole Spectroscopy: Testing

General Relativity through Gravitational Wave Observa-

tions, Classical Quantum Gravity 21, 787 (2004).

[24] E. Berti, V. Cardoso, and C. M. Will, On Gravitational-

Wave Spectroscopy of Massive Black Holes with the Space

Interferometer LISA, Phys. Rev. D 73, 064030 (2006).

[25] S. Gossan, J. Veitch, and B. S. Sathyaprakash, Bayesian

Model Selection for Testing the No-Hair Theorem with

Black Hole Ringdowns, Phys. Rev. D 85, 124056 (2012).

[26] J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch, and

B. S. Sathyaprakash, Testing the No-Hair Theorem with

Black Hole Ringdowns Using TIGER, Phys. Rev. D 90,

064009 (2014).

[27] E. Berti et al., Testing General Relativity with Present and

Future Astrophysical Observations, Classical Quantum

Gravity 32, 243001 (2015).

[28] E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K.

Belczynski, Spectroscopy of Kerr black holes with Earth-

and Space-Based Interferometers, Phys. Rev. Lett. 117,

101102 (2016).

[29] V. Baibhav and E. Berti, Multimode Black Hole Spectros-

copy, Phys. Rev. D 99, 024005 (2019).

[30] A. Buonanno, G. B. Cook, and F. Pretorius, Inspiral,

Merger and Ring-Down of Equal-Mass Black-Hole Bina-

ries, Phys. Rev. D 75, 124018 (2007).

[31] V. Baibhav, E. Berti, V. Cardoso, and G. Khanna, Black

Hole Spectroscopy: Systematic Errors and Ringdown

Energy Estimates, Phys. Rev. D 97, 044048 (2018).

BLACK HOLE RINGDOWN: THE IMPORTANCE OF OVERTONES PHYS. REV. X 9, 041060 (2019)

041060-11



[32] I. Kamaretsos, M. Hannam, S. Husa, and B. S. Sathyapra-

kash, Black-Hole Hair Loss: Learning about Binary

Progenitors from Ringdown Signals, Phys. Rev. D 85,

024018 (2012).

[33] L. London, D. Shoemaker, and J. Healy, Modeling Ring-

down: Beyond the Fundamental Quasinormal Modes, Phys.

Rev. D 90, 124032 (2014); Erratum, Phys. Rev. D 94,

069902(E) (2016).

[34] S. Bhagwat, M. Okounkova, S. W. Ballmer, D. A. Brown,

M. Giesler, M. A. Scheel, and S. A. Teukolsky, On Choos-

ing the Start Time of Binary Black Hole Ringdowns, Phys.

Rev. D 97, 104065 (2018).

[35] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.

Mroue, H. P. Pfeiffer, M. A. Scheel, and B. Szilagyi,

Inspiral-Merger-Ringdown Waveforms of Spinning, Pre-

cessing Black-Hole Binaries in the Effective-One-Body

Formalism, Phys. Rev. D 89, 084006 (2014).

[36] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle,

D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroue,

H. P. Pfeiffer, M. A. Scheel, B. Szilagyi, N. W. Taylor, and

A. Zenginoglu, Effective-One-Body Model for Black-Hole

Binaries with Generic Mass Ratios and Spins, Phys. Rev. D

89, 061502(R) (2014).

[37] S. Babak, A. Taracchini, and A. Buonanno, Validating the

Effective-One-Body Model of Spinning, Precessing Binary

Black Holes Against Numerical Relativity, Phys. Rev. D 95,

024010 (2017).

[38] A recent extension of EOB, referred to as parameterized

EOBNR [20], was designed for future tests of the no-hair

theorem by measuring the frequencies of the l ¼ m ¼ 2

and l ¼ m ¼ 3 fundamental modes. Restricted to non-

spinning binaries, pEOBNR models the full inspiral and

merger with an attached ringdown model (including over-

tones), in order to avoid deciding at what time the QNMs

alone provide an accurate description of the waveform.

[39] See http://www.black-holes.org/waveforms.

[40] A. H. Mroue, M. A. Scheel, B. Szilagyi, H. P. Pfeiffer,

M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace,

S. Ossokine, N. W. Taylor, A. Zenginoglu, L. T. Buchman,

T. Chu, E. Foley, M. Giesler, R. Owen, and S. A. Teukolsky,

A Catalog of 174 Binary Black Hole Simulations for

Gravitational Wave Astronomy, Phys. Rev. Lett. 111,

241104 (2013).

[41] C. V. Vishveshwara, Stability of the Schwarzschild Metric,

Phys. Rev. D 1, 2870 (1970).

[42] W. Press, Long Wave Trains of Gravitational Waves from a

Vibrating Black Hole, Astrophys. J. Lett. 170, L105 (1971).

[43] S. A. Teukolsky, Perturbations of a Rotating Black Hole. 1.

Fundamental Equations for Gravitational Electromagnetic

and Neutrino Field Perturbations, Astrophys. J. 185, 635

(1973).

[44] S. Chandrasekhar and S. Detweiler, The Quasi-normal

Modes of the Schwarzschild Black Hole, Proc. R. Soc. A

344, 441 (1975).

[45] E. Berti, V. Cardoso, and A. O. Starinets, Topical Review:

Quasinormal Modes of Black Holes and Black Branes,

Classical Quantum Gravity 26, 163001 (2009).

[46] See http://pages.jh.edu/∼eberti2/ringdown.

[47] We have verified the presence and early dominance of

overtones in other resolvable ðl; mÞ’s in the NR waveform.

[48] E. T. Newman and R. Penrose, Note on the Bondi–Metzner–

Sachs Group, J. Math. Phys. (N.Y.) 7, 863 (1966).

[49] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F.

Rohrlich, and E. C. G. Sudarshan, Spin-s Spherical Har-

monics and ð, J. Math. Phys. (N.Y.) 8, 2155 (1967).

[50] K. S. Thorne, Multipole Expansions of Gravitational Radi-

ation, Rev. Mod. Phys. 52, 299 (1980).

[51] E. Berti and A. Klein, Mixing of Spherical and Spheroidal

Modes in Perturbed Kerr Black Holes, Phys. Rev. D 90,

064012 (2014).

[52] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E.

Kidder, and H. P. Pfeiffer, Surrogate Model of Hybridized

Numerical Relativity Binary Black Hole Waveforms, Phys.

Rev. D 99, 064045 (2019).

[53] E. N. Dorband, E. Berti, P. Diener, E. Schnetter, and M.

Tiglio, A Numerical Study of the Quasinormal Mode

Excitation of Kerr Black Holes, Phys. Rev. D 74, 084028

(2006).

[54] E.W. Leaver, An Analytic Representation for the Quasi

Normal Modes of Kerr Black Holes, Proc. R. Soc. A 402,

285 (1985).

[55] E.W. Leaver, Spectral Decomposition of the Perturbation

Response of the Schwarzschild Geometry, Phys. Rev. D 34,

384 (1986).

[56] E. Berti and V. Cardoso, Quasinormal Ringing of Kerr

Black Holes. I. The Excitation Factors, Phys. Rev. D 74,

104020 (2006).

[57] Z. Zhang, E. Berti, and V. Cardoso, Quasinormal Ringing of

Kerr Black Holes. II. Excitation by Particles Falling

Radially with Arbitrary Energy, Phys. Rev. D 88, 044018

(2013).

[58] D. H. Shoemaker et al., Advanced LIGO Anticipated

Sensitivity Curves, Tech. Rep. LIGO-T0900288, LIGO

Laboratory, 2009.

[59] Defined as the SNR in frequencies above 154.68 Hz, the

instantaneous frequency at the peak of the time-domain

signal.

[60] R. Prix, Bayesian QNM Search on GW150914, Tech.

Rep. LIGO-T1500618, LIGO Scientific Collaboration,

2016.

[61] B. Farr and W.M. Farr, Kombine: A Kernel-Density-

Based, Embarrassingly Parallel Ensemble Sampler (to be

published).

[62] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.

Goodman, emcee: The MCMC Hammer, Publ. Astron.

Soc. Pac. 125, 306 (2013).

[63] E. E. Flanagan and S. A. Hughes, Measuring Gravitational

Waves from Binary Black Hole Coalescences: 2. The

Waves’ Information and Its Extraction, with and without

Templates, Phys. Rev. D 57, 4566 (1998).

[64] L. Lindblom, B. J. Owen, and D. A. Brown, Model Wave-

form Accuracy Standards for Gravitational Wave Data

Analysis, Phys. Rev. D 78, 124020 (2008).

[65] S. T. McWilliams, B. J. Kelly, and J. G. Baker, Observing

Mergers of Non-spinning Black-Hole Binaries, Phys. Rev.

D 82, 024014 (2010).

[66] V. Varma and P. Ajith, Effects of Nonquadrupole Modes in

the Detection and Parameter Estimation of Black Hole

Binaries with Nonprecessing Spins, Phys. Rev. D 96,

124024 (2017).

GIESLER, ISI, SCHEEL, and TEUKOLSKY PHYS. REV. X 9, 041060 (2019)

041060-12



[67] C. Capano, Y. Pan, and A. Buonanno, Impact of Higher

Harmonics in Searching for Gravitational Waves from

Nonspinning Binary Black Holes, Phys. Rev. D 89,

102003 (2014).

[68] T. B. Littenberg, J. G. Baker, A. Buonanno, and B. J.

Kelly, Systematic Biases in Parameter Estimation of

Binary Black-Hole Mergers, Phys. Rev. D 87, 104003

(2013).

[69] J. C. Bustillo, P. Laguna, and D. Shoemaker,Detectability of

Gravitational Waves from Binary Black Holes: Impact of

Precession and Higher Modes, Phys. Rev. D 95, 104038

(2017).

[70] V. Varma, P. Ajith, S. Husa, J. C. Bustillo, M. Hannam, and

M. Pürrer, Gravitational-Wave Observations of Binary

Black Holes: Effect of Nonquadrupole Modes, Phys.

Rev. D 90, 124004 (2014).

BLACK HOLE RINGDOWN: THE IMPORTANCE OF OVERTONES PHYS. REV. X 9, 041060 (2019)

041060-13


