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It is possible to infer the mass and spin of the remnant black hole from binary black hole mergers by
comparing the ringdown gravitational wave signal to results from studies of perturbed Kerr spacetimes.
Typically, these studies are based on the fundamental quasinormal mode of the dominant £ = m =2
harmonic. By modeling the ringdown of accurate numerical relativity simulations, we find, in agreement
with previous findings, that the fundamental mode alone is insufficient to recover the true underlying mass
and spin, unless the analysis is started very late in the ringdown. Including higher overtones associated with
this £ = m = 2 harmonic resolves this issue and provides an unbiased estimate of the true remnant
parameters. Further, including overtones allows for the modeling of the ringdown signal for all times
beyond the peak strain amplitude, indicating that the linear quasinormal regime starts much sooner than
previously expected. This result implies that the spacetime is well described as a linearly perturbed black
hole with a fixed mass and spin as early as the peak. A model for the ringdown beginning at the peak strain
amplitude can exploit the higher signal-to-noise ratio in detectors, reducing uncertainties in the extracted
remnant quantities. These results should be taken into consideration when testing the no-hair theorem.
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I. INTRODUCTION

The end state of astrophysical binary black hole (BBH)
mergers is a perturbed single BH characterized by two
parameters: the final remnant mass M, and spin angular
momentum Sy [1-3]. The perturbed BH radiates gravita-
tional waves at a specific set of frequencies over character-
istic timescales completely determined by the mass and
spin. The segment of the gravitational wave signal asso-
ciated with the single BH’s oscillations is known as the
“ringdown” phase, as the perturbed BH rings down
analogous to a struck bell. The set of frequencies and
damping times associated with a given BH are known as
quasinormal modes (QNMs), the damped oscillations
connected to the underlying BH geometry. The modes
can be decomposed into spin-weighted spheroidal harmon-
ics with angular indices (£, m) [4-6]. For each (£, m), there
exists a discrete set of complex frequencies denoted w,,,,,
where 7 is the “overtone” index. The oscillatory behavior is
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described by Re(wy,,, ), while Im(w,,,) is related to the
damping timescale by 7,,,, = —Im(wg,,,)~". For a given
(¢,m), the overtone index sorts the QNMs in order of
decreasing damping timescales, so n = 0 corresponds to
the least-damped mode (i.e., the longest-lived mode),
which is often referred to as the fundamental mode.

The recent detections of merging BBHs [7-13] by
Advanced LIGO [14] and Virgo [15], including the ringdown
phase, have stimulated significant interest in measuring the
QNMs from the observations [16—22]. Accurately determin-
ing the QNMs allows for precise tests of general relativity
(GR) [23-29]. In Ref. [16], the frequency and damping time
of the fundamental mode were inferred from the ringdown
data of the first event (GW150914). The analysis was
performed at several time offsets with respect to the time
of peak strain amplitude. For sufficiently late values of this
start time, the frequency and damping time were found to be
in agreement with the prediction from GR for a remnant
consistent with the full waveform. The multiple start times
used in the analysis reflect an uncertainty about when the
fundamental mode becomes a valid description for the
ringdown, as there is noticeable disagreement between
the measured mode and the GR prediction at early times.
This result raises the following question: At what point in the
ringdown does perturbation theory become relevant?

In this paper, we consider the contribution of QNM
overtones to the ringdown. Including overtones allows for
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an excellent description of the waveform well before the
fundamental mode becomes dominant and extends the
regime over which perturbation theory is applicable to
times even before the peak strain amplitude of the wave-
form. Moreover, an improved model for the ringdown
through the inclusion of overtones can provide more
accurate estimates of the remnant mass and spin [30,31].
Furthermore, the inclusion of higher overtones provides a
means to test GR at a more stringent level because the
QNM frequencies of all included overtones are independ-
ently constrained by GR for any given M; and S;.

We begin by demonstrating the benefits of including
overtones, in agreement with Refs. [30,31], by analyzing a
numerical relativity (NR) waveform. We then show how
overtones can improve the extraction of information from
noisy LIGO or Virgo data. We show that the overtones are
not subdominant, as is often assumed, but are instead
critically necessary to properly model the linear ringdown
regime. The inclusion of QNM overtones provides a high-
accuracy description of the ringdown as early as the time of
the peak strain amplitude, where the high signal-to-noise
ratio (SNR) can be exploited to significantly reduce the
uncertainty in the extracted remnant properties.

II. PREVIOUS STUDIES

There have been numerous attempts to identify the start
time of ringdown, that is, the point in time where a
transition has occurred from the nonlinear regime into
one where the signal can be described by a linear super-
position of damped sinusoids [19,21,31-34]. To highlight
the existing disagreement in the literature, the following
studies, each using NR waveforms as a test bed, come to
different conclusions regarding this transition time. In
Ref. [32], the start of the ringdown phase is inferred to
be 10M (where M is the total binary mass, and G = ¢ = 1)
after the peak luminosity of the £ = m = 2 component of
the strain /; this is the time at which the frequency of the
¢ = m =2 mode roughly agrees with that of the funda-
mental QNM. In Ref. [33], the ringdown portion of the
waveform is considered to be 10M after the peak lumi-
nosity of the Newman-Penrose scalar ¥, (related to two
time derivatives of #). A ringdown model with the
fundamental and the first two overtones was built under
this assumed start time and employed in Ref. [21], which
concluded that a start time of 16M after the peak strain
amplitude is optimal. The peak of ¥, is implicitly used as
the start time for the ringdown in Ref. [31], where a
superposition of the fundamental mode plus the first two
overtones provides an accurate representation of the rem-
nant properties and the fundamental frequency expected
from perturbation theory. Interestingly, in one of the earliest
analyses of BBH waveforms using NR simulations, despite
the limited numerical accuracy available for simulations at
that time, Buoananno, Cook, and Pretorius [30] were able
to fit three overtones to the NR ringdown waveform by

extending their analysis to times before the peak amplitude
of W,. A superposition of QNMs, including overtones and
pseudo-QNMs, became an integral part of modeling the
merger-ringdown regime in earlier effective one body
models [35-38].

A likely cause of confusion is that start times are defined
with respect to the peak of some waveform quantity, and
different authors choose different waveform quantities for
this purpose. To illuminate the implicit time offsets incurred
by differences in this choice, consider as a specific example
the GW150914-like NR waveform SXS:BBH:0305 in the
Simulating eXtreme Spacetimes (SXS) catalog [39,40].
For this waveform, the peak of % occurs first, followed by
the peak luminosity of 4, then the peak of W, and finally
the peak luminosity of W,. These last 3 times are about 7M,
10M, and 11M after the peak of h. As we will show,
overtones beyond n ~ 2 are expected to have significantly
decayed by the peak of Wy, so relying on the peak of ¥, to
begin a ringdown analysis may be problematic.

The miscellany of start times above can be reconciled, to
some extent, by considering the contribution of overtones to
the ringdown. Relying solely on the fundamental mode as a
description for the ringdown should result in only late-time
agreement. Additional consideration of overtones at late
times should result in finding significantly reduced ampli-
tudes in any overtones that remain. As we demonstrate
below, the reduced amplitudes at late times is because the
overtones decay more quickly for larger n; each additional
overtone included leads to a superposition of QNMs that
provides a description of the ringdown at earlier times.
Ignoring the contribution of overtones, by considering them
to be negligible as in Ref. [19], indirectly leads to the
conclusion that remnant properties remain unconstrainable
even in the infinite SNR limit—which we find to be untrue.

III. MODEL

We use the fundamental QNM and a varying number of
overtones to determine when the linear QNM solution best
describes the (¢, m) mode extracted from NR simulations.
Throughout, we focus on the aforementioned astrophysi-
cally relevant NR waveform SXS:BBH:0305 in the SXS
catalog, which is modeled after the GW150914 event. The
waveform represents a simulated system with a mass ratio
of 1.22, where the larger BH has dimensionless spin
% = 0.33% and the smaller companion BH has dimension-
less spin y = —0.44z. The resulting remnant in this
simulation has a final mass M, = 0.9520M and dimen-
sionless spin y; = S/ MJ% = 0.6921. We explore at what
time the linear QNM description provides not only an
optimal fit for the resulting ringdown waveform but also an
optimal estimate of the remnant mass and spin.

We model the ringdown radiation as a sum of damped
sinusoids [41-44] by writing each angular mode of the
complex strain, h = h, — ih,, as
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with complex frequencies @, = @z, (M. x ;) as deter-
mined by perturbation theory [45,46]. Here, ¢, corresponds
to a specifiable “start time” for the model, and times before 7,
are not included in the model. The complex coefficients
Cypmn» Which are not known a priori as they depend on the
binary configuration and dynamics near merger, are deter-
mined using unweighted linear least squares in the time
domain. The complex-valued amplitudes can be factored into
areal-valued amplitude and phase, C,,, = |Azyn|e”¢m, of
which we make direct use in Sec. IV C.

Throughout this work, we focus on describing the
dominant spherical harmonic mode in the NR simulation,
the £ = m = 2 mode [47]. The natural angular basis in
perturbation theory is spin-weighted spheroidal harmonics
[4-6], which can be written as an expansion in spin-
weighted spherical harmonics [6,48-50]. Decomposing the
ringdown into spherical harmonics results in mixing of the
spheroidal and spherical bases between the angular func-
tions with the same m but different s, and this mixing
increases with y, [6,51]. For the SXS:BBH:0305 wave-
form, the £ = m = 2 spherical harmonic remains a good
approximation for the ¢ = m =2 spheroidal harmonic.
The amplitudes of the spheroidal and spherical £ = m = 2
modes differ by a maximum of only 0.4%, which occurs
roughly 15M after the peak of h. This difference is
significantly smaller at the peak. The mixing is small
because higher (£, m) harmonics are subdominant for this
waveform, but in a more general case, these higher
harmonics may play a more important role.

IV. RESULTS

A. QNM overtone fits

The linear superposition of the fundamental QNM and N
overtones is an excellent description of the waveform
around and before the peak strain. To demonstrate this
case, we begin by fixing the remnant properties to the final
values provided by the NR simulation. With the mass M,
and dimensionless spin y, fixed, the set of frequencies
@, (M, x ) is fully specified by perturbation theory. The
only remaining free parameters in Eq. (1) are the complex
coefficients C,,, and the model start time #,. For N
included overtones, and a given choice of 7,, we determine
the (N + 1) complex Cy,,’s using unweighted linear least
squares, thus obtaining a model waveform given by Eq. (1).
We construct such a model waveform for ¢ > 7, at many
start times beginning at 7y = f,ex — 25M and extending to
times 7y = fpea + 60M, Where . is the peak amplitude
of the complex strain. For each start time 7, we compute
the mismatch M between our model waveform 42, and the
NR waveform 75} through

VRS 155 (. )

In the above, the inner product between two complex
waveforms, say, x(7) and y(z), is defined by

M=1-

(x().3(1)) = / " ey (e, 3)

where the bar denotes the complex conjugate, the lower limit
of the integral is the start time parameter 7, in Eq. (1), and the
upper limit of the integral T is chosen to be a time before
the NR waveform has decayed to numerical noise. For
the aforementioned NR simulation, we set T = #, + 90M.

This procedure results in mismatches as a function of ¢,
for each set of overtones; these mismatches are presented in
Fig. 1. The figure shows that N = 7 overtones provide the
minimum mismatch at the earliest of times, as compared to
the other overtone models. The waveform corresponding to
the N =7 overtone model and 7, = 7, 1s visualized in
Fig. 2, where the model waveform is compared to the NR
waveform along with the fit residual.

At face value, Fig. 1 provides us with a guide for
determining the times where a linear ringdown model with
N QNM overtones is applicable. However, relying on the
mismatch alone can be deceiving. The n =7 overtone
decays away very quickly, yet Fig. 1 shows that retaining
this overtone still produces small mismatches at times
beyond when this mode should no longer be numerically
resolvable. This result is due to overfitting to numerical
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FIG. 1. Mismatches as a function of time for the eight models,

each including up to N QNM overtones. The mismatch associated
with each model at a given #;, corresponds to the mismatch
computed using Eq. (2), between the model and the NR wave-
form for ¢ > ty, where t, specifies the lower limit used in
Eq. (3). Each additional overtone decreases the minimum
achievable mismatch, with the minimum consistently shifting to
earlier times.
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FIG. 2. Comparison between the plus polarization of the £ =
m = 2 mode of the NR waveform and the N = 7 linear QNM
model. The QNM model begins at 7, = t,c. The upper panel
shows both waveforms, and the lower panel shows the residual
for >ty For reference, the lower panel also shows an estimate

of the error in the NR waveform, hIZ‘IZR - hg

to the highest resolution waveform of SXS:BBH:0305 and 25R
refers to the next highest resolution waveform for this same
system. The two NR waveforms are aligned at 7y = #,c4, in both
time and phase.

, where hIZ‘IzR refers

noise after the higher overtones in each model have suffi-
ciently decayed. We find that the turnover subsequent to the
first mismatch minimum in Fig. 1 is a good approximation for
when each overtone has a negligible amplitude.

It is important that the model not only minimizes the
residual in the waveform quantity but also provides faithful
estimates of the underlying system parameters. In particu-
lar, we may demand that the inferred mass and spin agree
with the true values known from the NR simulation. To
check that the model does indeed faithfully represent the
NR waveform with the correct final mass and spin, we
repeat the fits but we allow M, and y; to vary, and we set
the frequencies of each overtone to their GR-consistent
values through the perturbation-theory formula for
W (Mf, ;(f). As a measure of error, we use

e = /(M /M) + (61,)". (4)

where 6M ; and &y are the differences between the best-fit
estimates for M and y; as compared to the remnant values
from the NR simulation. Using a model with N =7
overtones and 7y = fpeu, the best-fit estimates for M,
and y, yield a value of € ~2 x 10~*. For reference, by
comparing the two highest resolutions of this simulation,
we estimate the error in the NR measured remnant mass and
spin to be SM;~13x10°M and &y, ~2.1x 107,

which corresponds to a value of e~2x107.
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FIG. 3. The distribution of ¢, Eq. (4), for a range of simulations
in the SXS catalog. The distribution includes systems with mass
ratios up to 8 and orbit-aligned component spins with || < 0.8.
The distributions shown are for N = {0, 3,7} overtones at the
peak of the strain amplitude. For the best performing model,
N = 7, the median value is 2 x 1073, and the maximum error in
estimating the mass and spin is about 5 x 1073,

Furthermore, the difference in the recovered M ¥ and Xf
as compared to the NR values increases as we drop
overtones from the model. This behavior appears to be
robust. Repeating the above analysis on roughly 80 addi-
tional waveforms in the SXS catalog with aligned spins and
mass ratios up to 8 [39,52] yields similar results, with a
median value of € ~ 1073. The full distribution of ¢ for this
part of parameter space, with N = 7 overtones at fy = f,cq,
is shown in Fig. 3.

Returning to our analysis of SXS:BBH:0305, to high-
light the worst-fit and best-fit cases and to visualize the
mismatch as a function of mass and spin, we compute
the mismatch between NR and the model in Eq. (1) with
1) = Ipeak and the Cy,’s determined by a least-squares fit
for a grid of M, and y; values. In Fig. 4, we see that with
N =7 overtones, the mismatch has a deep minimum
associated with the true remnant quantities. However, using
solely the fundamental mode, N =0, with 7y = fyeau,
provides largely biased estimates for the remnant M
and yy, as is visible in Fig. 5. This result is not surprising
in light of Fig. 1, where at this time the N = 0 model
provides the poorest mismatch; this result is a consequence
of the higher overtones dominating the waveform at this
time. The bias can be overcome by waiting a sufficiently
long time, which allows the overtones to decay away and
the fundamental mode to become dominant. This case can
be seen in Fig. 6, where we repeat the same procedure with
N =0 and 7y = f,eq + 47M. Here, the resulting distribu-
tion of mismatches in the M, — y; plane is on par with the
distribution associated with including N = 7 overtones and
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FIG. 4. Mismatches for the £ = m = 2 mode between NR and
Eq. (1) for a grid of My and y; with N =7 and 1y = f,cq. The
white horizontal and vertical lines correspond to the NR values
and are in good agreement with the M, and y; mismatch
distribution using the maximum number of overtones considered.

1) = tpeak» With the N =7 case producing a smaller
absolute mismatch than the N =0 case. The key point
is that we can recover similar information about the
underlying remnant at the peak, through the inclusion of
overtones, as we can by analyzing the waveform at late
times. As discussed in more detail in Sec. IV C, extending
the ringdown model to earlier times allows us to access
higher signal-to-noise ratios and can significantly reduce
uncertainties in parameter estimation.

0.6 0.7

FIG. 5. The mismatches for the £ = m = 2 mode between NR
and Eq. (1) over a grid of y and My with N = 0, the fundamental
mode only, and 7y = 7;cq. The white horizontal and vertical lines
correspond to the remnant values from NR. As the fundamental
mode is subdominant at this time, this single-mode model is a
poor probe of the underlying remnant mass and spin. Note that
the mass and mismatch scales used in this figure are significantly
different from Fig. 4 because of the discrepant single-mode fit at
early times.
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= —42 &
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0.875 N=0 —od
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FIG. 6. Mismatches for the # = m = 2 mode between NR and
Eq. (1) for a grid of M, and y; with N = 0, the fundamental
mode, at a late time 7y = f,eq + 47M. Here, the fundamental
mode is dominant since the overtones have decayed away by this
time. Again, the white horizontal and vertical lines correspond to
the remnant values from NR and now; at this late time, we find
good agreement between the true values and those recovered by
using only the fundamental mode as a probe for M, and y,.

One might be concerned that the additional free param-
eters in the fit, introduced by including the overtones,
simply allow for fitting away any nonlinearities that may be
present, making the fundamental mode more easily resolv-
able and therefore better determining the underlying
remnant mass and spin. A simple test of this idea is to
repeat the fit while still setting the fundamental frequencies
@y0(M ., yy) according to perturbation theory but to inten-
tionally set the frequencies of the overtones to incorrect
values. The fit will then have the same number of degrees of
freedom (d.o.f.) as previously but without the correct
physics. Let @y, (M, ;) be the set of frequencies deter-
mined by perturbation theory, and take @,,,(M .y ) to be
the set of frequencies with the fundamental unmodified, but
with 6)2211(Mf?)(f) = wzzn(Mf,)(f)(l + 5), forn > 0. Asa
measure of error, we rely on e, Eq. (4), the root-mean-
squared error in the estimated mass and spin as compared to
the known NR values.

For demonstration purposes, we let 6 take on values
from the set +{0.01,0.05,0.2} and fit to the spherical
£ = m =2 mode with 7y = 7,y for different numbers of
included overtones N. A comparison between the unmodi-
fied and modified models with the same number of d.o.f. is
presented in Fig. 7. From Fig. 7, it is evident that the
unmodified set of QNMS, ws,, (M, y ), remains true to the
underlying mass and spin and converges to smaller errors as
the number of included overtones is increased. In the case
where the overtones are given slightly incorrect frequencies
by the 0 parameter introduced above, including higher
overtones yields fits that remain biased away from the true
values, leading to larger values of e.
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FIG. 7. The root-mean-squared error ¢ defined in Eq. (4), for
different sets of frequencies, as a function of the number of
included overtones N. The fits are performed on the spherical
£=m=2 mode at t =1ty = tyy. The label w,,,(Ms,x)
represents the set of frequencies consistent with perturbation
theory, while @,,, (M I3 )(f) represents the set of frequencies with
the fundamental mode, n = 0, unmodified but with a slight
modification to the overtone frequencies by a factor of (1 + §).
For each 6, there is an associated dashed line of the same color
that corresponds to 6 — —4. The faint grey lines correspond to
frequencies with a random 6 for each n, as explained in the last
paragraph of Sec. IVA. The results suggest that there is
information present in the overtones that contributes to extracting
the remnant properties at the peak, as these outperform a similar
set of functions, with the same d.o.f. for each N but with
frequencies inconsistent with the asymptotic remnant.

Furthermore, in an additional test, we have allowed for
different values of & for each n, each independently
sampled from a normal distribution with mean p =0
and standard deviation ¢ = 0.2. In this test, each overtone
frequency is randomly modified to a different extent about
@, (M, x¢). In all 100 cases randomly generated from the
above distribution, the ¢’s associated with the modified
frequencies always remain bounded from below by the ¢
associated with the GR frequencies of the asymptotic
remnant. A random, representative, subset of these 100
cases is shown as faint grey traces in Fig. 7. The results
suggest that the overtones associated with the asymptotic
remnant provide a sufficiently good linear description of
the perturbations for all times beyond the peak of this
mode, while a similar set of overtones that are inconsistent
with the asymptotic remnant do not.

B. Characterizing the overtones

The behavior in the previous section can be explained by
carefully understanding how the overtones contribute to the
ringdown. As briefly touched on in Sec. I, the overtones are
those modes with n > 0, where n orders the modes based
on decreasing damping time. While these modes are the

least important in a time-weighted sense, describing them
as “overtones” is somewhat of a misnomer. In a classical
description of harmonics, overtones are at higher frequen-
cies than the fundamental, typically multiples of the first
harmonic, and are usually subdominant. However, for
QNMs, the overtones decrease in frequency and are not
necessarily subdominant. As briefly mentioned in Sec. III,
the amplitude of each QNM overtone in the ringdown
depends on the binary configuration and the dynamics
leading up to merger. The dynamics specify the “initial
data” for the ringdown, determining which QNMs are
excited and to what extent. As such, the overtone ampli-
tudes for waveform SXS:BBH:0305 will differ from those
with different initial data, i.e., binary configurations with
different mass ratios or different spin vectors.

To provide a qualitative understanding of the relative
amplitudes of different overtones, we decompose the
ringdown waveform of SXS:BBH:0305 into its constituent
overtones. Using fy = fx and N =7 overtones, we
determine the Cy,’s as in Sec. IVA, with M, and y,
fixed to the NR simulation values. The corresponding
values A, = |Cy,(t = ty = tpey)| form the entries in the
bottom row of Table 1. For N = 6, we keep 1) = fyeq, SO
the amplitudes are measured with respect to the peak;
however, we include in our fit only data for ¢ > #;;,, where
ts;; corresponds to the earliest minimum in Fig. 1 for this N.
These amplitudes correspond to the penultimate row of
Table L, and the fit time 7y is stated, with respect to 7, in
the last column. The result of this procedure for the
remaining N is given in Table I, where we provide our
best estimate of the amplitudes at 7 = 1) = f,¢y associated
with each overtone. The values in Table I are computed
for the highest numerical resolution of the NR waveform

TABLE 1. Best-fit estimates of the amplitudes A, of the
fundamental mode and overtones in the ringdown of NR
simulation SXS:BBH:0305, with 7y = fyce. Amplitudes are
computed for various values of N, the total number of overtones
included in the fit. Also shown is the time f;, where the fit is
performed for each N, stated with respect to 7. Note that A, are
always the amplitudes at =1y = f,cq, even if the fit is
performed at a later time. The amplitude values are truncated
such that the last significant figure agrees with the two highest
resolutions for the NR simulation.

N Ay A Ay Ay Ay As Ag Ar I Tpea

0 0971 --- 47.00
I 0974 389 --- 18.48
2 0973 4.14 81 - R 11.85
3 0972 419 99 114 -+ o oo e 8.05
4 0972 420 106 166 116 --- - - 5.04
5 0972 421 11.0 198 214 101 --- --- 3.01
6 0971 422 112 218 28 21 66 --- 1.50
7 0971 422 113 230 33 29 14 29 0.00
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SXS:BBH:0305, but they are truncated at a level such that
the estimates agree with the next highest resolution.

The initial amplitude of the fundamental mode A, is
consistently recovered for all models, each model having a
different N and a different fit time that is optimal for that N.
The first few overtones show a similar behavior, while the
higher overtones display larger uncertainties in the recov-
ered amplitudes and are increasingly sensitive to the fit time
and the number of included overtones. This sensitivity is a
consequence of the strong exponential time dependence in
the overtones and is recognized as the time-shift problem
[53]. But perhaps the most important thing to notice is that
the overtones can have significantly higher amplitudes than
the fundamental mode. As discussed above, the initial
amplitudes of the overtones depend on the details of the
nonlinear binary coalescence, which ultimately depend on
the binary parameters. Consequently, the amplitudes of the
overtones relative to the fundamental mode will vary across
parameter space. The complex amplitudes C,,,,, also
known as the QNM excitation coefficients, can be written
as Cyn = Bepnd sins Where By, is a purely geometric
piece determined by the remnant BH, referred to as the
QNM excitation factor, and /,,,, is the source term that
depends on the binary dynamics [54—56]. Excitation factors
have been computed for the first three overtones for Kerr
BHs in Refs. [56,57]; these QNM excitation factors can
provide some insight into how the relative amplitudes
might behave for different remnant spins.

The NR waveform SXS:BBH:0305 has a dimensionless
remnant spin y, ~ 0.7, for which the relative excitation
factors | By, |/|Bayo| of the fundamental and the first three
¢ = m = 2 QNM overtones are roughly 1.0,3.53,5.23,5.32.
However, for a remnant of y, = 0, the excitation factors
|B22n/Bag| of these same QNMs are 1.0,1.28,1.06,0.62,
which indicates that the overtones may be relatively less
important for lower remnant spins. Using Ref. [57], we have
computed the excitation factors for the next two highest
overtones of the remnant of SXS:BBH:0305, and we find that
|Bzz4|/’3220| ~15.21 and |Bzzs|/|3220| ~29.31. Additional
excitation factors are difficult to compute, but the trend is not
expected to continue as it is conjectured that, for Kerr BHs,
By ~ 1/n for large n [56].

The overtone amplitudes in Table I increase with over-
tone number, peak around n =4, and then decrease.
Therefore, we expect that the rapidly decaying overtones
beyond about n =7 are subdominant; this expectation
justifies truncating the expansion in the vicinity of n = 7.
Preliminary studies indicate that n = 8 does not improve
the fit at 7y = f,c- An additional caveat is that the
amplitudes in Table I are those recovered from the 7 =
m = 2 spherical harmonic as opposed to the £ =m =2
spheroidal harmonic. However, the spherical-spheroidal
mixing is small (cf. Sec. III) and should not significantly
change the qualitative behavior of the relative amplitudes in
Table I.

Using our results from the last row of Table I, and using
the analytic decay rates corresponding to the true M, and
Xf» We can reconstruct the expected individual contribu-
tions of each overtone to the total £ = m = 2 ringdown
signal at any given ¢; in other words, we can compute the
time-dependent amplitudes A,,, () of each overtone. These
are related to the A, in Table I by A,,, (1) = A,e=(="0)/72,
These amplitudes are shown in Fig. 8. This result estab-
lishes why one has to wait until 10M-20M after the
peak before the fundamental becomes the dominant
contribution.

Note that Fig. 8 uses a single fit over the range 7 > 7cq¢
and assumes the expected analytic time dependence of each
overtone amplitude for 7> 7,.,. Alternatively, we can
attempt to reconstruct each Ay,,(7) numerically by per-
forming a different fit for the amplitudes at each time ¢. For
each time ¢, we choose #, = t;, = t, and we fit data only for
times greater than or equal to #y. The numerically extracted
time dependence of the overtone amplitudes, A, (7), is
shown in Fig. 9. Obtaining an accurate fit in this way is
difficult because of various numerical complications, such
as the small differences in frequencies and amplitudes
between neighboring overtones, the poor resolution of
overtones with small amplitudes, and the risk of overfitting
at late times after some overtones have decayed away. At
later times, there is significantly less power in the highest
overtones—making them more difficult to resolve. To
mitigate some of these difficulties, when performing the
fit at each time ¢, we exclude overtones whose fitted
amplitude has increased relative to that at the previous
time. This method is motivated by the fact that the model is
one of exponentially damped sinusoids. Therefore, if at any

102
— n=0
101}
=)
&
107!
1072 : : :
0 5 10 15 20 25
t — tpeak [M]
FIG. 8. A decomposition of the ringdown in terms of the

overtones for N = 7. The evolution of the overtones is com-
puted from the analytic decay rates with initial amplitudes at
t =ty = tpeax specified by the bottom row of Table I. Notice
that the fundamental mode does not dominate the ringdown of
SXS:BBH:0305 until roughly 10M after fpcq-
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FIG. 9. The numerically recovered amplitudes for the funda-
mental QNM and the first few overtones at each fit time, 7 (solid
curves). Dashed lines are the same as the lines in Fig. 8. The
numerically extracted amplitudes across ¢ agree very well with
the expected decay for the longest-lived modes, while modes that
decay more quickly are more susceptible to fitting issues.
Interestingly, the fundamental mode is in excellent agreement
with the expected decay rate at times preceding the peak
amplitude of the strain.

time an overtone has a larger amplitude than the amplitude
recovered at a previous time, we consider that overtone to
no longer be of physical relevance, and we permanently
remove it from the allowed set of modes for future fit times.
It is always the highest overtone available in the remaining
set of modes that gets dropped, as this mode decays more
quickly than the other ones. Although we only show up to
N = 4 in Fig. 9 because numerically extracting amplitudes
is difficult at late times, the benefit of using overtones up to
N = 7 in estimating the remnant mass and spin is apparent
in Fig. 7. Consequently, more advanced fitting methods
should allow for an improvement in numerically recovering
higher-order overtones as a function of time, which will be
explored further in future work.

Finally, it is worth pointing out that there is good
agreement between the model and NR even at times before
fpeak»> @8 indicated by the mismatches in Fig. 1, as well as by
the early agreement between the numerically extracted
amplitude of the fundamental mode and the expected
analytic behavior visible in Fig. 9. Since the QNMs are
solutions to perturbed single BH spacetimes, the agreement
could be interpreted as an indication that the region of the
prepeak waveform already begins to behave as a perturbed
single BH to observers at infinity. This observed behavior
will be explored further in future work.

C. Observing overtones with GW detectors

Overtones can enhance the power of gravitational wave
detectors to probe the ringdown regime. We illustrate this

by studying the simulated output of a LIGO-like detector in
response to the same GW considered above, the NR
simulation SXS:BBH:0305. For simplicity, we assume
the orbital plane of the source faces the instrument head-
on (no inclination). We choose a sky location for which the
detector has optimal response to the plus polarization but
none to cross, with polarizations defined in the same frame
implicitly assumed in Eq. (1). To mimic GW150914, we
rescale the NR template to correspond to a total initial
binary mass of 72 M, in the detector frame, and a source
distance of 400 Mpc. We inject the £ = m = 2 mode of the
signal into simulated Gaussian noise corresponding to the
sensitivity of Advanced LIGO in its design configuration
[58]. This method yields a postpeak optimal SNR of about
42 [59].

To extract information from the noisy data, we carry out a
Bayesian analysis similar to that in Refs. [ 16,60] but based on
the overtone ringdown model of Eq. (1), withZ = m = 2 and
varying N. For any given start time #,, we obtain a posterior
probability density over the space of remnant mass and spin,
as well as the amplitudes and phases of the set of QNMs
included in the template. We parametrize start times via
Aty = 1y = Tppeaks Where 1, eq refers to the signal peak at
the detector  (j-peak ® fpeak — 0-48 MS X ey — 1.3M).
Unlike Ref. [16], we sample over the amplitudes and phases
directly, instead of marginalizing over them analytically, and
we place uniform priors on all parameters. In particular, we
consider masses and orbit-aligned spins within [10, 100]M o
and [0, 1], respectively. We allow the QNM phases to cover
their full range, [0, 27], but restrict the amplitudes (measured
at 1 =t peak) 10 [0.01, 250] e, Where frpeqe = 2 x 1072 is
the total signal peak. This arbitrary amplitude interval fully
supports the posterior in all cases we consider. We assume all
extrinsic parameters, like sky location and inclination, are
perfectly known. We sample posteriors using the Markov
chain Monte Carlo (MCMC) implementations in KOMBINE
[61] and, for verification, EMCEE [62].

The highest N we consider in our inference model is
N = 3, as that is the most we can hope to resolve given the
SNR of our simulation. A guiding principle for two
waveforms to be indistinguishable is M < SNR™2/2, in
terms of the mismatch M defined in Eq. (2) but with a
noise-weighted inner product [63—65]. For the system at
hand, this principle implies that postmerger templates with
mismatches M <3 x 10™ are effectively identical. If
fitting from the peak on, Fig. 1 then implies that differences
between N > 3 templates are unmeasurable. We confirmed
this empirically by checking that N = 4 does not lead to
inference improvements with respect to N = 3 and only
seems to introduce degenerate parameters. By the same
token, we have also verified that, at this SNR, our results
are largely unaffected by the presence or absence of the
next dominant angular mode (3,2) in the injected NR
waveform, as its amplitude is an order of magnitude weaker
than that of the dominant (2,2) mode for the chosen system.
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FIG. 10. Remnant parameters inferred with different numbers
of overtones, using data starting at the peak amplitude of the
injected strain. Contours represent 90%-credible regions on the
remnant mass (M) and dimensionless spin (y ), obtained from
the Bayesian analysis of a GW150914-like NR signal injected
into simulated noise for a single Advanced LIGO detector at
design sensitivity. The inference model was as in Eq. (1), with
(¢ =m =2) and different numbers of overtones N: 0 (solid
blue), 1 (dashed purple), 2 (dashed yellow), and 3 (solid red). In
all cases, the analysis uses data starting at peak strain
(Atg =ty — Ippeak = 0). The top and right panels show 1D
posteriors for M, and y, respectively. Amplitudes and phases
are marginalized over. The intersection of the dotted lines marks
the true value (M, = 68.5 My, y; = 0.69).

At higher SNRs, additional (2,2) overtones and/or angular
modes (potentially, with their respective overtones) are
necessary to keep the modeling error below the statisti-
cal error.

Our findings are summarized in Figs. 10 and 11. In
Fig. 10, we show the posteriors recovered for the remnant
mass and spin under the assumption that the ringdown
begins at the peak of the signal strain and for models with
different numbers of overtones. For each case, the main
panel displays contours enclosing 90% of the posterior
probability, while the curves on the top and right represent
the corresponding marginalized distributions for the mass
and spin. As expected, the fundamental mode (N = 0) is
insufficient to describe the signal near the peak, yielding an
estimate of the remnant properties that is far from the true
values determined from the NR simulation (dotted lines).
As the number of overtones is increased, the inferred mass
and spin become increasingly more accurate, with N = 3
producing the best results (true value within top 40%-
credible region). This result illustrates how the overtones

1.0
0.61 / N =3
e Aty = 0ms
>
0.41 N=0
At() = 0ms
------ Aty = 3ms
0.21 —— Aty=06ms
Aty = 10ms
005 60 70 80 90 100
My (M)
FIG. 11. Remnant parameters inferred using only the funda-

mental mode, using data starting at different times relative to the
peak amplitude of the injected strain. Contours represent 90%-
credible regions on the remnant mass (M) and dimensionless
spin (y), obtained from the Bayesian analysis of a GW150914-
like NR signal injected into simulated noise for a single
Advanced LIGO detector at design sensitivity. For the blue
contours, the inference model included no overtones (N = 0) and
used data starting at different times after the peak: Aty =ty —
th-peak € [0,3,6,10] ms (blue contours). For the red contour, the
analysis was conducted with three overtones (N = 3) starting at
the peak (Aty = 0), as in Fig. 10. The top and right panels show
1D posteriors for M ; and yf, respectively. Amplitudes and phases
are marginalized over. The intersection of the dotted lines marks
the true value (My = 68.5 My, y; = 0.69).

can provide an independent measurement of the remnant
properties by studying the signal near the peak.

We find that the estimate of the mass and spin obtained
with overtones at the peak is more accurate than the one
obtained with only the fundamental mode at later times. We
illustrate this in Fig. 11, which shows the 90%-credible
regions on M and y inferred using only the fundamental
mode (N = 0) at different times after the peak strain (blue
contours), as well as the N = 3 result from Fig. 10 for
comparison (red contour). As anticipated in Ref. [16], the
fundamental mode is a faithful representation of the signal
only at later times, which in our case means that the true
values are enclosed in the 90%-credible region only for
Aty > 5 ms. The penalty for analyzing the signal at later
times is a reduction in SNR that results in increased
uncertainty, as evidenced by the large area of the blue
contours in Fig. 11. We obtain a more precise estimate by
taking advantage of the overtones at the peak. We suspect
that the observed agreement at 3 ms in Ref. [16] is a
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consequence of the lower SNR of GW150914. At lower
SNRs, the statistical errors outweigh the systematic errors
associated with including only the fundamental mode.

V. DISCUSSION AND CONCLUSIONS

For a given mass M, and spin y, perturbation theory
precisely predicts the spectrum of QNMs associated with a
ringing single BH, including the characteristic frequencies
for these QNMs. The QNM frequencies are denoted
@pyn(My,yr), where £ and m describe the angular
dependence of a mode and n, the often-ignored integer
overtone index, sorts QNMs with the same angular
dependence by how quickly they decay. The slowest
decaying fundamental mode, n = 0, is often considered
to be of primary importance, while the more quickly
decaying overtones are often disregarded. However, we
find that the overtones are not necessarily subdominant as is
often assumed, but instead, they can dominate the early part
of the ringdown.

Using a superposition of QNMs, we model the ringdown
portion of the # = m = 2 mode of the numerical relativity
waveform SXS:BBH:0305, which is consistent with
GW150914. We find that with enough included overtones,
the QNMs provide an excellent description for the GW
strain for all times beyond the peak amplitude of the
complex strain A. For the GW150914-like NR waveform
we analyzed, the overtones dominate the early part of the
perturbations but decay away much more quickly than the
fundamental mode, which eventually becomes dominant
roughly 10M after the peak amplitude (Fig. 8). This later
time where the fundamental dominates is sometimes
referred to in the literature as the start of the ringdown,
the time of a transition to the linear regime, or the beginning
of the domain of applicability of perturbation theory.
However, this time is merely the time at which one may
ignore the contribution of overtones, which play a key role
in the early ringdown. Including the QNM overtones
extends the reach of perturbation theory back to the time
of the peak strain amplitude, indicating that the linear
ringdown regime begins much earlier than one would
conclude by ignoring these additional modes. As men-
tioned in Sec. IVA, we have verified, on a sizable set of
aligned-spin waveforms in the SXS catalog, that the
inclusion of overtones provides an accurate model for
the postpeak strain. Not only do the overtones provide
excellent mismatches, but the best-fit mass and spin are
accurately recovered with median absolute errors in M /M
and y, of about 1073. We therefore expect the early
dominance of overtones to be a generic feature of the
ringdown.

The QNM overtones can enhance the power of GW
detectors to probe the ringdown regime. They can be used
to extract information about QNMs at the peak of the
signal, where the SNR is high. In contrast, the usual

approach relies solely on the later portion of the signal
that is dominated by the (initially weaker) fundamental
mode, paying the price of larger statistical errors and
uncertainty in the appropriate time where this mode
dominates [16-22,25-29]. This effect is visible in
Fig. 11, where a model with N = 3 overtones remains
faithful to the true remnant mass and spin with less
uncertainty than one with N =0 at later times. The
resolvability of these overtones provides a set of indepen-
dent modes, each with unique frequencies, that can
potentially be used to constrain deviations from GR.

Studies of the ringdown GW spectrum can provide a
direct way to experimentally determine whether compact
binary coalescences result in the Kerr BHs predicted by GR
[23,24]. This includes tests of the no-hair theorem and the
area law, as well as searches for BH mimickers. The
program, sometimes known as “black hole spectroscopy,”
generally requires independent measurement of at least
two modes, which are conventionally taken to be the
fundamentals of two different angular harmonics (e.g.,
Refs. [25,29]). However, such a choice is only available for
systems that present a sufficiently strong secondary angular
mode, which only tends to occur under some specific
conditions (e.g., for high mass ratios) [66-70]. Further-
more, as we have observed, these fundamental modes
should dominate only at late times, being subject to
significantly more noise than modes that can be extracted
near the peak of the waveform. The extraction of an
overtone, in addition to the fundamental mode, could
potentially serve as an alternative two-mode test of the
no-hair theorem.

The impact of overtones on ringdown tests of GR can
already be seen from Fig. 11: By studying the QNMs at
early and late times, we may obtain two independent
measurements of the remnant parameters, enabling power-
ful consistency checks. Unlike tests that rely on a multi-
plicity of angular modes, studies of overtones should be
feasible at SNRs achievable with existing detectors, as we
demonstrate by our study of a GW150914-like signal seen
at design sensitivity by Advanced LIGO (Sec. IV C). For
signals in which they are measurable, higher angular modes
and their overtones could make these tests even more
powerful. Overtones can therefore enable a whole new set
of precision studies of the ringdown and make black hole
spectroscopy realizable with current detectors.
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