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We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature

theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-

reduced dynamical Chern-Simons gravity. This is a precursor to producing beyond-general-relativity

waveforms for inspiraling binary black hole systems that are useful for gravitational wave detection. Head-

on collisions are interesting in their own right, however, as they cleanly probe the quasinormal

mode spectrum of the final black hole. We thus compute the leading-order dynamical Chern-Simons

modifications to the complex frequencies of the postmerger gravitational radiation. We consider equal-

mass systems, with equal spins oriented along the axis of collision, resulting in remnant black holes with

spin. We find modifications to the complex frequencies of the quasinormal mode spectrum that behave as a

power law with the spin of the remnant, and that are not degenerate with the frequencies associated with a

Kerr black hole of any mass and spin. We discuss these results in the context of testing general relativity

with gravitational wave observations.

DOI: 10.1103/PhysRevD.100.104026

I. INTRODUCTION

At some length scale, Einstein’s theory of general

relativity (GR) must break down and be reconciled with

quantum mechanics in a beyond-GR theory of gravity.

Binary black hole (BBH) mergers probe the strong-field,

nonlinear regime of gravity, and gravitational waves from

these systems could thus contain signatures of such a

theory. Current and future gravitational wave detectors

have the power to test GR [1], and BBH observations from

LIGO and Virgo have given a roughly 96% agreement with

GR [2,3].

These tests of GR, however, are presently null-hypothesis

and parametrized tests [2,4], which use gravitational wave-

forms produced in GR with numerical relativity. An open

problem is the simulation of BBH systems through full

inspiral, merger, and ringdown in beyond-GR theories.

Waveform predictions from such simulations would allow

us to perform model-dependent tests, and to parametrize the

behavior at merger in beyond-GR theories.

In this study, we consider dynamical Chern-Simons

(dCS) gravity, a beyond-GR effective field theory that

adds a scalar field coupled to spacetime curvature to the

Einstein-Hilbert action, and has origins in string theory,

loop quantum gravity, and inflation [5–9]. Computing

the evolution of a binary system requires first specifying

suitable initial conditions. Because the well posedness of

the initial value problem in full dCS gravity is unknown

[10], we work instead in a well-posed order-reduction

scheme, in which we perturb the metric and scalar field

around a GR background [11]. The leading-order modifi-

cation to the spacetime metric, and hence gravitational

radiation, occurs at second order, which is precisely the

order we consider in this study, building on our previous

work [11–13].

While our ultimate goal is to produce full inspiral-

merger-ringdown waveforms relevant for astrophysical

BBH systems, in this study we consider the leading-order

dCS corrections to binary black hole head-on collisions.

Such configurations, while less astrophysically relevant

than orbiting binaries, serve as a proof of principle for our

method of producing BBH waveforms in a beyond-GR

theory [13], and are fast and efficient to run. Head-on

collisions also contain interesting science in their own

right, as they cleanly probe the quasinormal mode (QNM)

spectrum of the postmerger gravitational radiation

[14–17]. In this study, we thus produce the first BBH

waveforms in a higher-curvature beyond-GR theory, and

probe the leading-order dCS modification to the QNM

spectrum of a head-on BBH collision.

A. Roadmap and conventions

This paper is organized as follows. We give an overview

of our methods in Sec. II, and refer the reader to previous*
mokounko@tapir.caltech.edu
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papers, [13,12], as well as Appendixes B and C, for

technical details. We discuss fitting perturbed quasinormal

modes in Sec. III. We present and discuss our results,

including quasinormal mode fits, in Sec. IV. We discuss the

implications of this study on testing GR in Sec. V. We

conclude in Sec. VI.

We set G ¼ c ¼ 1 throughout. Quantities are given in

terms of units ofM, the sum of the Christodoulou masses of

the background black holes at a given relaxation time [18].

Latin letters in the beginning of the alphabet fa; b; c; d…g
denote 4-dimensional spacetime indices, while Latin

letters in the middle of the alphabet fi; j; k; l;…g denote

3-dimensional spatial indices (present in the Appendixes).

gab refers to the spacetime metric with connection Γ
a
bc,

while γij (used in the Appendixes) refers to the spatial

metric from a 3þ 1 decomposition with corresponding

timelike unit normal one-form na (cf. [19] for a review of

the 3þ 1 ADM formalism).

II. METHODS

A. Order-reduced dynamical Chern-Simons gravity

Full details about order-reduced dynamical Chern-

Simons gravity and our methods to simulate black hole

spacetimes in this theory are given in [11–13]. Here we

only briefly summarize.

The full dCS action takes the form

S≡

Z

d4x
ffiffiffiffiffiffi

−g
p �

m2

pl

2
R −

1

2
ð∂ϑÞ2 −mpl

8
l2ϑ�RR

�

: ð1Þ

The first term is the Einstein-Hilbert action of GR, with the

Planck mass denoted by mpl. The second term in the action

is a kinetic term for the (axionic) scalar field. The third

term, meanwhile, couples ϑ to spacetime curvature via the

parity-odd Pontryagin density,

�RR≡ �RabcdRabcd; ð2Þ

where �Rabcd ¼ 1

2
ϵabefRef

cd is the dual of the Riemann

tensor, and ϵabcd ≡
ffiffiffiffiffiffi

−g
p ½abcd� is the fully antisymmetric

Levi-Civita tensor [20]. This interaction is governed by a

coupling constant l, which has dimensions of length, and

physically represents the length scale below which dCS

corrections become relevant.

The equations of motion for ϑ and gab have the form

□ϑ≡∇a∇
aϑ ¼ mpl

8
l
2�RR; ð3Þ

and

m2

plGab þmpll
2Cab ¼ Tϑ

ab; ð4Þ

where

Cab ≡ ϵcdeða∇
dRbÞ

c∇eϑþ �Rc
ðabÞ

d∇c∇dϑ; ð5Þ

and Tϑ
ab is the stress energy tensor for a canonical, massless

Klein-Gordon field

Tϑ
ab ¼ ∇aϑ∇bϑ −

1

2
gab∇cϑ∇

cϑ: ð6Þ

Because of Cab in Eq. (4), the equation of motion is

different from that of a metric in GR sourced by a

scalar field.

Cab, as given in Eq. (5), contains third derivatives of the

metric, and it is thus unknown whether dCS has a well-

posed initial value formulation [10]. But as is typical in the

modern treatment of beyond-GR theories of gravity, we

assume that dCS is a low-energy effective field theory

(EFT) of some UV-complete theory that is well posed.

Therefore we work instead in well-posed order-reduced

dCS, in which we perturb the metric and scalar field about

an arbitrary GR spacetime, and obtain perturbed equations

of motion. In particular, we introduce a dimensionless

formal order-counting parameter ε which keeps track of

powers of l2 (this formal order-counting parameter can

later be set to one). We then write

gab ¼ g
ð0Þ
ab þ

X

∞

k¼1

εkh
ðkÞ
ab ; ð7Þ

ϑ ¼
X

∞

k¼0

εkϑðkÞ: ð8Þ

Each order in ε leads to an equation of motion with the

same principal part as GR, and therefore is known to be

well posed at each order. Order ε0 gives the Einstein field

equations of general relativity for g
ð0Þ
ab , the background GR

metric, minimally coupled to a massless scalar ϑð0Þ, which
we can consistently treat as “frozen out” and thus set to

zero. The scalar field is unfrozen at order ε1 (cf. [11]), and it

takes the form of a sourced wave equation

□
ð0Þϑð1Þ ¼ mpl

8
l
2�RRð0Þ; ð9Þ

where □
ð0Þ is the d’Alembertian operator of the back-

ground and �RRð0Þ is the Pontryagin density of the

background.

Because ϑð0Þ vanishes, there is no correction to the metric

at order ε1. The leading-order dCS correction to the

spacetime metric, which will produce the leading-order

dCS correction to the gravitational radiation, occurs at

order ε2 (cf. [11]), and takes the linear form

m2

plG
ð0Þ
ab ½h

ð2Þ
ab � ¼ −mpll

2C
ð1Þ
ab þ T

ðϑð1ÞÞ
ab ; ð10Þ
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whereG
ð0Þ
ab is the linearized Einstein field equation operator

of the background, and

T
ðϑð1ÞÞ
ab ≡∇a

ð0Þϑð1Þ∇b
ð0Þϑð1Þ −

1

2
g
ð0Þ
ab∇c

ð0Þϑð1Þ∇cð0Þϑð1Þ;

ð11Þ

where ∇a
ð0Þ denotes the covariant derivative associated

with g
ð0Þ
ab . Meanwhile,

C
ð1Þ
ab ≡ ϵcdeða∇

dð0ÞRbÞ
cð0Þ∇eð0Þϑð1Þ

þ �Rc
ðabÞ

dð0Þ∇c
ð0Þ∇d

ð0Þϑð1Þ: ð12Þ

To produce beyond-GR gravitational waveforms, our

goal is thus to simultaneously evolve fully nonlinear

vacuum Einstein equations for g
ð0Þ
ab , Eq. (9) for ϑ

ð1Þ, and

Eq. (10) for h
ð2Þ
ab , to obtain the leading-order dCS correction

to the spacetime metric and corresponding gravitational

radiation.

1. Scaled variables

Because the evolution equations at some order εk are

homogeneous in l2k, we can scale out the l dependence by

defining new variables

h
ð2Þ
ab ≡

ðl=GMÞ4
8

Δgab; ϑð1Þ ≡
mpl

8
ðl=GMÞ2Δϑ ð13Þ

(recall from Sec. I A thatM is the sum of the Christodoulou

masses of the background black holes at a given relaxation

time [18]). With these substitutions, Eq. (9) becomes

□
ð0Þ
Δϑ ¼ �RRð0Þ: ð14Þ

Equation (10) similarly becomes

G
ð0Þ
ab ½Δgab� ¼ −C

ð1Þ
ab ½Δϑ� þ

1

8
T
ð1Þ
ab ½Δϑ�; ð15Þ

where T
ð1Þ
ab ½Δϑ� refers to the Klein-Gordon stress-energy

tensor in Eq. (11) computed from Δϑ instead of ϑð1Þ, and

C
ð1Þ
ab ½Δϑ� similarly refers to the C-tensor in Eq. (12)

computed with Δϑ instead of ϑð1Þ.
We thus need to solve Eqs. (14) and (15) only once for

each BBH background configuration, and then multiply our

results for Δgab and Δϑ by appropriate powers of l=GM
and factors of 8 afterward.

B. Evolution

To evolve the first-order dCS metric perturbation, we

evolve three systems of equations simultaneously: one for

the GR background BBH spacetime, one for the scalar field

Δϑ [cf. Eq. (14)] sourced by the background curvature, and

one for the metric perturbation Δgab [cf. Eq. (15)], sourced
by the background curvature and Δϑ. We evolve all

variables concurrently, on the same computational domain.

All variables are evolved using the Spectral Einstein

Code [21], a pseudospectral code. The GR BBH back-

ground is evolved using a well-posed generalized harmonic

formalism, with details given in [22–25]. The first-order

scalar field is evolved using the formalism detailed in [11].

Finally, the metric perturbation is evolved using the

formalism given in [13], a well-posed perturbed analog

of the generalized harmonic formalism. When evolving the

metric perturbation, we have the freedom to choose a

perturbed gauge, which we choose to be a harmonic gauge.

We give details on perturbed gauge choices in Appendix B.

We use the boundary conditions detailed in [11,13,26,27].

We use the standard computational domain used for

BBH simulations with the Spectral Einstein Code [21]

(such as used in [28]). The computational domain initially

has two excision regions (one for each black hole), and the

postmerger grid has one excision region (for the final black

hole) (cf. [25] for mode details). The outer boundary is

chosen to be ∼700 M. We use adaptive mesh refinement

(as detailed in [24]), with the background GR variables

governing the behavior of the mesh refinement. This is

justified, as high gradients in the background will source

higher gradients in both the scalar field and the metric

perturbation. For all of the evolved variables, in spherical

subdomains we filter the top four tensor spherical harmon-

ics, while we use an exponential Chebyshev filter in the

radial direction [24]. We similarly filter the variables in

subdomains with other topologies according the prescrip-

tions in [24]. For the constraint damping parameters

(cf. [13,22]), we choose the standard values for BBH

simulations.

Because the code is pseudospectral, we expect roughly

exponential convergence with numerical resolution in all of

the evolved variables. We specify numerical resolution by

choosing adaptive mesh refinement tolerances [24,25];

because mesh refinement is based on thresholds, this means

that in practice errors decay roughly but not rigorously

exponentially—see [28] for further discussion. In [13], we

performed detailed tests of the metric perturbation system,

showing exponential convergence of evolved variables. We

will quote all physical extracted quantities (cf. Tables I

and II) with error bars given by comparing the highest two

numerical resolutions.

C. Initial data

To perform an evolution, we must generate initial data

for the background (metric) fields, the scalar field, and the

metric perturbation. The background initial data for a BBH

system are given by a constraint-satisfying superposition

of black hole metrics in Kerr-Schild coordinates [29,30].

The scalar field initial data are given by a superposition
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of slow-rotation solutions [11,31,32]. The constraint-

satisfying initial data for Δgab are generated using the

methods outlined in [12]. For head-on collisions, we start

with a separation of 25M, assuming that the contributions

to the gravitational radiation and energy flux from times

t≲ 25M are negligible.

In this study, we will consider axisymmetric confi-

gurations where the background spins of the black holes

are oriented along x̂, the axis along which they are

colliding. Moreover, we will choose configurations where

the two spins have the same orientation along the axis of

collision so that the system has a reflection symmetry for

x → −x (recall that spin is a pseudovector). We illustrate

this configuration in Fig. 1. We consider equal mass,

equal spin configurations, with dimensionless spins χ

between 0.1 and 0.8, in steps of 0.1. Kerr with χ ≠ 0 is

not a solution of dCS, and hence the initial configurations

will have a nonzero dCSmetric perturbation [31]. However,

Schwarzschild is a solution of the theory, and hence we do

not consider χ ¼ 0.0, as there will be no metric perturbation

in that case.

TABLE I. Fitted QNM parameters for each head-on collision configuration considered in this study. All configurations have mass ratio

q ¼ 1 and final background Christodolou massMf ¼ 0.9896. The first column corresponds to the (equal) initial spins of the background

black holes, which are oriented in the same direction along the axis of collision (cf. Fig. 1). The second column corresponds to the

dimensionless spin χf of the final background black hole. The third, fourth, and fifth columns correspond to the leading-order dCS

correction to the QNM frequencies of the ð2; 0; nÞ modes, ω
ð2Þ
ð2;0Þ (multiplied by the final background mass, and with the dCS coupling

scaled out), for the n ¼ 0, 1, 2 overtones. The sixth, seventh, and eighth column similarly correspond to τ
ð2Þ
ð2;0;nÞ, the leading-order dCS

correction to the QNM damping times (divided by the final background mass and with the dCS coupling scaled out) for the n ¼ 0, 1, 2

overtones. We detail our sign convention for τð2Þ in Sec. III D. We provide a maximum allowed value of ðl=GMÞ4 for each configuration
(cf. Sec. IV B) in the last column. In order to be physically meaningful, the dCS QNM parameters must be multiplied by this factor. We

have checked that adding maxððl=GMÞ4Þτð2Þð2;0;nÞ to the GR background solution τ
ð0Þ
ð2;0;nÞ does not change the sign (meaning that all modes

are decaying).

ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4

χ1;2 χf
ω
ð2Þ
ð2;0;0ÞMf ω

ð2Þ
ð2;0;1ÞMf ω

ð2Þ
ð2;0;2ÞMf τ

ð2Þ
ð2;0;0Þ=Mf τ

ð2Þ
ð2;0;1Þ=Mf τ

ð2Þ
ð2;0;2Þ=Mf max ðl=GMÞ4

0.1 0.05106 6.ð1Þ × 10−3 −1.0ð1Þ × 10−1 −2.1ð3Þ × 100 −4.4ð2Þ × 100 8.ð1Þ × 100 3.1ð4Þ × 101 1.26 × 10−1

0.2 0.1021 4.1ð2Þ × 10−2 −6.9ð5Þ × 10−1 −1.3ð5Þ × 101 −2.8ð1Þ × 101 5.4ð2Þ × 101 1.9ð1Þ × 102 3.01 × 10−2

0.3 0.1532 1.1ð5Þ × 10−1 −1.9ð5Þ × 100 −3.5ð2Þ × 101 −7.5ð7Þ × 101 1.3ð1Þ × 102 5.1ð1Þ × 102 1.18 × 10−2

0.4 0.2042 2.6ð5Þ × 10−1 −6.1ð2Þ × 100 −7.0ð2Þ × 101 −1.4ð4Þ × 102 3.0ð1Þ × 102 1.0ð5Þ × 103 5.68 × 10−3

0.5 0.2553 4.9ð6Þ × 10−1 −1.1ð6Þ × 101 −1.2ð5Þ × 102 −2.7ð1Þ × 102 5.6ð1Þ × 102 1.9ð1Þ × 103 2.97 × 10−3

0.6 0.3062 8.9ð2Þ × 10−1 −2.1ð1Þ × 101 −2.2ð1Þ × 102 −4.8ð3Þ × 102 9.7ð2Þ × 102 3.4ð2Þ × 103 1.61 × 10−3

0.7 0.3574 1.5ð2Þ × 100 −4.1ð1Þ × 101 −3.8ð1Þ × 102 −8.2ð4Þ × 102 1.6ð2Þ × 103 5.7ð3Þ × 103 8.79 × 10−4

TABLE II. Same as Table I, but for the ð4; 0; nÞ modes.

ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4 ðl=GMÞ−4

χ1;2 χf
ω
ð2Þ
ð4;0;0ÞMf ω

ð2Þ
ð4;0;1ÞMf ω

ð2Þ
ð4;0;2ÞMf τ

ð2Þ
ð4;0;0Þ=Mf τ

ð2Þ
ð4;0;1Þ=Mf τ

ð2Þ
ð4;0;2Þ=Mf max ðl=GMÞ4

0.1 0.05106 −1.2ð5Þ × 10−2 4.ð2Þ × 10−2 8.5ð1Þ × 10−2 1.ð3Þ × 100 −7.ð1Þ × 10−1 −6.ð3Þ × 10−1 1.26 × 10−1

0.2 0.1021 −6.ð2Þ × 10−2 2.ð2Þ × 10−1 4.8ð8Þ × 10−1 1.ð1Þ × 101 −5.ð1Þ × 100 −4.2ð7Þ × 100 3.01 × 10−2

0.3 0.1532 −1.5ð4Þ × 10−1 5.ð5Þ × 10−1 1.2ð2Þ × 100 3.ð4Þ × 101 −1.2ð4Þ × 101 −1.0ð3Þ × 101 1.18 × 10−2

0.4 0.2042 −3.ð1Þ × 10−1 1.ð1Þ × 100 2.5ð6Þ × 100 8.ð9Þ × 101 −2.8ð1Þ × 101 −2.2ð6Þ × 101 5.68 × 10−3

0.5 0.2553 −5.ð2Þ × 10−1 1.ð2Þ × 100 4.ð1Þ × 100 1.ð1Þ × 102 −5.6ð2Þ × 101 −4.ð1Þ × 101 2.97 × 10−3

0.6 0.3062 −9.ð6Þ × 10−1 2.ð3Þ × 100 7.ð2Þ × 100 3.ð3Þ × 102 −1.0ð1Þ × 102 −8.ð1Þ × 101 1.61 × 10−3

0.7 0.3574 −1.4ð7Þ × 100 2.ð8Þ × 100 1.2ð5Þ × 101 8.ð5Þ × 102 −1.8ð1Þ × 102 −1.6ð3Þ × 102 8.79 × 10−4

FIG. 1. The black hole configurations considered in this study.

The two black holes (denoted by spheres) merge along the x axis
(as schematically shown by their velocities, VA and VB). The

black holes have equal spins, both oriented in theþx direction, as
shown schematically by the gradient on each sphere. The system,

as shown by the black arrow on the left, is fully symmetric about

the x axis, and additionally has a reflection symmetry x → −x.
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As a check, we also consider the opposite configuration

to Fig. 1, where the spins have opposite orientations. For

the equal mass, equal spin systems considered in this study,

the final remnant in this case (for all spins) is a

Schwarzschild black hole. As Schwarzschild is a solution

of dCS, there is zero (to within numerical error) final dCS

metric perturbation or scalar field in the spacetime.

D. Wave extraction

In the order reduction scheme, Ψ4, the Newman-Penrose

scalar measuring the outgoing gravitational radiation is

expanded about a GR solution as

Ψ4 ¼ Ψ
ð0Þ
4

þ
X

∞

k¼1

εkΨ
ðkÞ
4
: ð16Þ

If we substitute the expanded metric given in Eq. (7) into

the expression for Ψ4 (cf. Appendix C), we can match the

terms order by order. Ψ
ð1Þ
4
, the first-order correction, will

have pieces linear in h
ð1Þ
ab . Recall, however, that h

ð1Þ
ab ¼ 0, so

Ψ
ð1Þ
4

vanishes. Ψ
ð2Þ
4
, the second-order correction, will have

pieces quadratic in h
ð1Þ
ab , which will similarly vanish, and

pieces linear in h
ð2Þ
ab . Thus, the leading-order correction to

the gravitational radiation will be linear in the leading-order

correction to the spacetime metric.

In practice, we write [cf. Eq. (13)]

Ψ
ð2Þ
4

¼ ðl=GMÞ4
8

ΔΨ4; ð17Þ

and we compute ΔΨ4 using the methods detailed in

Appendix C.

Throughout the evolution, we extract Ψ
ð0Þ
4

and ΔΨ on a

set of topologically spherical shells using the methods

given in [33]. We similarly extract the scalar field Δϑ

radiation on these spherical shells (cf. [11]). Ψ
ð0Þ
4

and ΔΨ4

are then fit to a power series in 1=r (where r is the radius of
the spherical shell) and extrapolated to infinity using the

methods given in [18,33]. We report all of the quantities as

rΨ
ð0Þ
4

and rΨ
ð2Þ
4
.

III. PERTURBATIONS TO

QUASINORMAL MODES

Once we have obtained rΨ
ð0Þ
4
, the background gravita-

tional radiation, and rΨ
ð2Þ
4
, the leading order dynamical

Chern-Simons deformation to the gravitational radiation,

we can analyze the quasinormal mode spectrum. As

discussed in Sec. I, head-on BBH collisions cleanly probe

the quasinormal mode spectrum of the postmerger space-

time. We are thus most interested in fitting for the QNM

spectrum of rΨ
ð0Þ
4
, and the leading-order deformation to

this spectrum in rΨ
ð2Þ
4
. A more technical/abstract derivation

can be found in Appendix A.

A. Quasinormal modes in general relativity

A GR QNM waveform takes the form of a superposition

of damped sinusoids

rΨ4ðtÞ ¼
X

l;m;n

Ãðl;m;nÞe
−iω̃ðl;m;nÞt

−2Y
aω
ðl;m;nÞ: ð18Þ

Here, l andm label the spin-weight −2 spheroidal harmonic

under consideration, while n refers to the overtone, ordered

by largest damping time. The quantities Ã and ω̃ are the

complex amplitude and frequency of the ðl; m; nÞ mode

under consideration. For simplicity, we will henceforth

omit the ðl; m; nÞ indices on ω̃ and Ã, and consider each

mode separately. We can write ω̃ in terms of a real

frequency, ω, and a damping time, τ, to give

ω̃ ¼ ω − i=τ: ð19Þ

Let us similarly write

Ã ¼ Aeiθ; ð20Þ

where A≡ jÃj is the norm of Ã, and θ is the complex phase

of Ã. Then we obtain, for a single mode,

rΨ4 ¼ A cosð−ωtþ θÞe−t=τ þ iA sinð−ωtþ θÞe−t=τ: ð21Þ

Since the GR background gravitational radiation is

composed of QNMs, we can use the form above to fit

for Ψ
ð0Þ
4

for each mode:

rΨ
ð0Þ
4

¼ Að0Þ cosð−ωð0Þtþ θð0ÞÞe−t=τð0Þ

þ iAð0Þ sinð−ωð0Þtþ θð0ÞÞe−t=τð0Þ : ð22Þ

The quantities ωð0Þ and τð0Þ are known from perturbation

theory for each ðl; m; nÞ [34]. Our fit thus determines two

free parameters for each mode: Að0Þ and θð0Þ.

B. Perturbed quasinormal modes

Let us now consider how to fit rΨ
ð2Þ
4

after the merger.

Note that all fitting is performed in the time domain

(cf. [35,36]). The QNM frequency, damping time, and

amplitude will all be corrected from the background

values as

ω ¼ ωð0Þ þ
X

∞

k¼1

εkωðkÞ; τ ¼ τð0Þ þ
X

∞

k¼1

εkτðkÞ; ð23Þ
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A ¼ Að0Þ þ
X

∞

k¼1

εkAðkÞ; θ ¼ θð0Þþ
X

∞

k¼1

εkθðkÞ: ð24Þ

Recall that the leading-order correction to the gravitational

radiation is rΨ
ð2Þ
4
, which is linear in h

ð2Þ
ab and has a coupling

factor of ðl=GMÞ4. Thus, the leading-order correction to ω
will be ωð2Þ, as computed from a linearization of Eq. (18),

with a coupling factor of ðl=GMÞ4. Each mode of rΨ
ð2Þ
4
,

the leading-order dCS correction to the gravitational

radiation, will thus be parametrized by and linear

in fωð2Þ; τð2Þ; Að2Þ; θð2Þg.
Let us focus on the real part of Eq. (22). Computing the

leading-order perturbation to this expression gives us the

form

ReðrΨð2Þ
4
Þ¼Að2Þ cosð−ωð0Þtþθð0ÞÞe−t=τð0Þ

−θð2ÞAð0Þ sinð−ωð0Þtþθð0ÞÞe−t=τð0Þ

þ tωð2ÞAð0Þ sinð−ωð0Þtþθð0ÞÞe−t=τð0Þ

þ t
τð2Þ

ðτð0ÞÞ2
Að0Þ cosð−ωð0Þtþθð0ÞÞe−t=τð0Þ ; ð25Þ

which can be more compactly written as

s≡ sinð−ωð0Þtþ θð0ÞÞ; ð26Þ

c≡ cosð−ωð0Þtþ θð0ÞÞ; ð27Þ

ReðrΨð2Þ
4
Þ ¼ e−t=τ

ð0Þ
×

�

Að2Þc − θð2ÞAð0Þs

þ tAð0Þ
�

ωð2Þsþ τð2Þ

ðτð0ÞÞ2
c

��

: ð28Þ

The imaginary part is similarly modified as

ImðrΨð2Þ
4
Þ ¼ e−t=τ

ð0Þ
×

�

Að2Þsþ θð2ÞAð0Þc

þ tAð0Þ
�

−ωð2Þcþ τð2Þ

ðτð0ÞÞ2
s

��

: ð29Þ

We thus see both an amplitude modification to the

background QNM spectrum from the Að2Þ and θð2Þ terms,

and a modification linear in time from the ωð2Þ and τð2Þ

terms. We fit precisely the functional form in Eqs. (28)

and (29) to the rΨ
ð2Þ
4

obtained from the simulation. Our fit

determines four free parameters for each mode:

fAð2Þ; θð2Þ;ωð2Þ; τð2Þg; the other free parameters

fAð0Þ; θð0Þg in Eqs. (28) and (29) are determined by the

fit to rΨ
ð0Þ
4

using Eq. (22). Note that this is different from

simply fitting a damped sinusoid to rΨ
ð2Þ
4
. The presence of a

term that behaves as ∼te−iω̃t beside the ordinary damped

sinusoids is a sign of secular breakdown, which is dis-

cussed in more detail in Sec. IV B 2.

C. Predictions for particular

and homogeneous solutions

The metric perturbation h
ð2Þ
ab satisfies a linear inhomo-

geneous differential equation. Its general solution will be a

linear combination of a homogeneous and particular

solution. Shortly after merger, the source driving h
ð2Þ
ab is

constructed from both the dCS scalar field ϑð1Þ and the

nonstationary background spacetime. At very late times,

when ϑð1Þ settles down to a stationary configuration, the

source for h
ð2Þ
ab will also be stationary, sourcing just the

stationary deformation hDefab away from Kerr, plus any

remaining homogeneous solution. That homogeneous sol-

ution coincides with the GR homogeneous solution, and

thus has the same frequency and decay time as QNMs in

GR (see Appendix A for a more rigorous derivation).

Meanwhile, at earlier times just after merger, the

oscillating ϑð1Þ will generate a source term for h
ð2Þ
ab that

oscillates at the scalar field’s frequency, and decays at the

rate of the scalar field’s decay. Thus at early times just after

merger, there can be a substantial particular solution with a

different frequency and decay time than the late-time

behavior. We observe this behavior in Sec. IV D.

D. Scaling

Because the simulations (cf. Sec. II A 1) are independent

of the coupling parameter l=GM, the resulting waveforms

for ϑð1Þ and rΨ
ð2Þ
4

have the coupling scaled out. We will

thus report our results as

rϑð1Þðl=GMÞ−2; rΨ
ð2Þ
4
ðl=GMÞ−4; ð30Þ

ωð2Þðl=GMÞ−4; τð2Þðl=GMÞ−4; ð31Þ

and so on.

Much of the QNM literature reports ω̃ in terms of its real

and imaginary parts, ω̃ ¼ ReðωÞ þ iImðωÞ, without invok-
ing a damping time τ. We can transform our results for τ

into ImðωÞ as

Imðωð0ÞÞ ¼ −
1

τð0Þ
: ð32Þ

Similarly, given τð2Þ, we can perturb the above expression

to give

Imðωð2ÞÞ ¼ τð2Þ

ðτð0ÞÞ2
: ð33Þ
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E. Mass and spin definitions

Since τð0Þ and ωð0Þ are (by the no-hair theorem) depen-

dent only on M and χ, the mass and dimensionless spin of

the final black hole in GR, we should similarly expect ωð2Þ

and τð2Þ to be dependent on some final mass and final spin.

In the full dCS theory, we expect the mass and spin of a

dCS black hole to be modified with respect to those of a GR

black hole (recall that Kerr is not a solution of dCS [31]).

The formulas used to compute mass and spin, because they

are derived using properties of GR (cf. [19]), may them-

selves be modified in the full dCS theory. If we had access

to the full theory, we could parametrize the QNM spectra in

terms of χdCS and MdCS, as well as l=GM. Since we are

working in an order-reduction scheme, we can instead

linearize the formulas used to compute the spin and mass of

the final background black hole, and compute the corrected

mass and spin. In this study, however, we choose to para-

metrize the QNM spectra in terms of the Christodoulou

mass and dimensionless spin of the final background black

hole, which we will call Mf and χf .

F. Fitting window

When fitting rΨ
ð0Þ
4

and rΨ
ð2Þ
4
, we must be careful about

the time window of the postmerger waveform used for the

fit. For rΨ
ð0Þ
4
, if we choose a starting time tstart too close to

merger, then our assumption that each mode can be fit by a

function of the form in Eq. (18) breaks down [37]. The later

we choose tstart, the less data (not contaminated by

numerical noise) are available to perform the fit.

However, in [36], the authors found that, when including

overtones, the postmerger spectrum could be fit with

QNMs as early as the peak of the gravitational waveform.

We similarly fit enough overtones so that we can faithfully

choose tstart to be the peak of rΨ
ð0Þ
4
.
1

G. Practical considerations

To perform these linear fits, we use a least-squares

method [38]. We fit a sum of overtones to each mode ðl; mÞ.
We shift rΨ

ð0Þ
4

and rΨ
ð2Þ
4

to align at the peak of rΨ
ð0Þ
4

for

each mode. We compute errors in our estimates of the

parameters by considering the fitted values for a medium

numerical resolution simulation and a high numerical

resolution simulation (for the same initial configuration).

IV. RESULTS

A. Waveforms

During each simulation, we extract rΨ
ð0Þ
4
, the Newman-

Penrose scalar measuring the outgoing gravitational radi-

ation of the background spacetime, decomposed into

spin-weight −2 spherical harmonics labelled by ðl; mÞ.
Similarly, we extract and decompose rΨ

ð2Þ
4
, the leading-

order dCS correction to the gravitational radiation. Since

the computational domain is of finite extent, both quantities

are extrapolated to infinity. We additionally extract ϑð1Þ, the
scalar field, decomposed into spherical harmonics. In all

cases, the spherical harmonics’ azimuthal axes are

oriented along the collision axis of the black holes, which

we will call x̂.
2

We show the dominant modes of rΨ
ð0Þ
4

for a representa-

tional case with χ ¼ 0.1x̂ in Fig. 2. We similarly show the

dominant modes of rΨ
ð2Þ
4

for this configuration in Fig. 3.

Recall that the physical gravitational radiation includes a

coupling factor ðl=GMÞ4, which is scaled out in the

numerical computation, and thus we report the waveforms

as ðl=GMÞ−4rΨð2Þ
4
. This configuration is axisymmetric

about the x̂ axis, and thus we expect only m ¼ 0 modes to

be excited. Since the spins have the same orientation, there

is reflection symmetry about the ŷ − ẑ plane, so we expect

only the l ¼ even modes to be excited.

Finally, we plot the dominant modes of ϑð1Þ, the leading-
order dCS scalar field for this configuration, in Fig. 4.

Because the scalar field around each black hole takes the

form of a dipole oriented around x̂ (cf. [32]), and the spins

are pointing in the same direction (cf. Fig. 1), we expect

power only in the odd lmodes. Because of the axisymmetry

FIG. 2. Dominant modes of the background gravitational

radiation, shown in terms of the Newman-Penrose scalar rΨ
ð0Þ
4

(scaled with radius r) for a head-on collision with χ ¼ 0.1 along

the axis of the collision (cf. Fig. 1). Each color corresponds to a

different mode. For each mode, the solid curves represent the

absolute value of the real part of the mode, while there is no

power in the imaginary part. We resolve up to the l ¼ 6mode. We

choose the reference time tpeak to correspond to the peak time of

the (2,0) mode of rΨ
ð0Þ
4
. The data eventually settles to a numerical

noise floor (as seen here in the l ¼ 6 mode) that exponentially

converges towards zero with increasing numerical resolution.

1
Reference [36] uses the peak of the gravitational waveform

strain as the start of the fit, while we use the peak of rΨ
ð0Þ
4
.

2
Note that we decompose into spin-weighted spherical har-

monics [33], not spheroidal harmonics (which do not form a
basis), and ignore spherical-spheroidal mode mixing.
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of the configuration, we expect only them ¼ 0modes to be

excited. We see the (1,0) mode asymptotes to a value that

corresponds to the remnant dipolar profile of the scalar field

on the final black hole.

B. Regime of validity

1. Instantaneous regime of validity

As discussed in Sec. II A 1, the leading-order scalar field

Δϑ and metric perturbation Δgab as computed from the

code are independent of the coupling constant l=GM. In

order to make our results physically meaningful, we must

multiply the leading-order scalar field by ðl=GMÞ2 and the
leading-order metric correction by ðl=GMÞ4. Similarly, we

must multiply the computed leading-order correction to the

gravitational radiation, ΔΨ, by a factor of ðl=GMÞ4.
Recall, however, that the order-reduction scheme is

perturbative. The modifications to the spacetime must

actually form a convergent perturbation series around

GR. We thus require that gab, the background metric, have

a larger magnitude than h
ð2Þ
ab at each point in the spacetime:

khð2Þab k≲ Ckgð0Þab k; ð34Þ

for some tolerance C. This gives an instantaneous regime

of validity. Following Eq. (15), we can compute

1

8
ðl=GMÞ4kΔgabk≲ Ckgð0Þab k ð35Þ

and hence

�

�

�

�

l

GM

�

�

�

�

max

≲ C1=4

�

8kgabk
kΔgabk

�

1=4

min

: ð36Þ

In practice, the ratio is taken point-wise on the computa-

tional domain. We choose C ¼ 0.1 as a rough tolerance.

We show the regime of validity for a χ⃗ ¼ 0.7x̂ head-on

collision in Fig. 5. l=GM takes its smallest allowed value

in the strong-field region, outside the apparent horizon of

each black hole. We see that closer to merger, where there is

power in the metric perturbation, the maximal allowed

value of l=GM decreases. After merger, the maximal

allowed value of l=GM increases as the dCS metric

perturbation partially radiates away, and the final constant

value is governed by the strength of the dCS metric

perturbation around the final black hole.

We show the behavior of the minimum allowed value of

l=GM, over the entire simulation, as a function of final

FIG. 3. Same as Fig. 2, but for the leading-order dCS

gravitational radiation, rΨ
ð2Þ
4
, with the dCS coupling factor

ðl=GMÞ4 scaled out. Here, there is power in the imaginary part

of each mode, which we show with dashed curves. tpeak is again

chosen to correspond to the peak time of the (2,0) mode of rΨ
ð0Þ
4
.

FIG. 4. Same as Fig. 2, but for the leading-order dCS scalar

field ϑð1Þ, with the coupling ðl=GMÞ2 scaled out. We show the

dominantly excited modes of the scalar field, as a function of time

relative to merger, corrected by the finite extraction radius R (here

shown for R ¼ 50M). The (1,0) mode asymptotes to a value

corresponding to the dipolar profile of the scalar field around the

remnant black hole (we show the results at finite radius to

emphasize this point).

FIG. 5. The instantaneous regime of validity for a head-on

χ⃗ ¼ 0.7x̂ collision, as a function of coordinate time from merger.

On each slice of the simulation, we compute l=GM, the

maximum allowed value of the dCS coupling constant according

to Eq. (36). The blue region above the dashed curve corresponds

to the values of the coupling constant that are not allowed by

perturbation theory. Note that this coupling constant appears as

l
2 in the dCS action [cf. Eq. (1)], and as l4 in front of the leading-

order dCS modification to the gravitational radiation. This figure

is in agreement with the estimate in Fig. 5 of [11].
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dimensionless spin χf in Fig. 6. The regime of validity

decreases with spin, as the magnitude ofΔgab increases with
spin. This scaling serves as a proxy for the allowed values of

l=GM when considering gravitational waveforms.

2. Secular regime of validity

In addition to an instantaneous regime of validity, our

computations will also have a secular regime of validity.

This arises from our perturbative scheme and is discussed

in detail in [11]. In order for the perturbation scheme to

remain valid, we want the perturbation that is going as

∼te−iω̃
ð0Þt in Eqs. (28) and (29) to remain small relative to

the background part ∼e−iω̃
ð0Þt in Eq. (22). This gives us the

condition

�

l

GM

�

4

jÃ0iω̃ð2Þte−iω̃
ð0Þtj ≲ jÃ0e−iω̃

ð0Þtj; ð37Þ

where jω̃ð2Þj denotes the norm of the leading-order cor-

rection to the complex frequency [cf. Eqs. (19) and (33)].

This condition bounds how long the perturbation is valid by

the secular time tsec, roughly

tsec ¼ min
lmn

1

ðl=GMÞ4jωð2Þ
lmnj

: ð38Þ

The (physical) value of l=GM thus determines the time

window over which the perturbative scheme is appropriate.

Since this value is the same for all modes, we must take the

most conservative estimate, minimizing the right-hand side

of Eq. (38) over all modes.

C. Quasinormal mode fits

We perform the quasinormal mode fits detailed in Sec. III

to rΨ
ð0Þ
4

and rΨ
ð2Þ
4
. We fit three overtones to each ðl; mÞ

mode. For each mode of rΨ
ð0Þ
4
, we use the perturbation

theory results for the corresponding ωð0Þ, the GR QNM

frequency, and τð0Þ, the GR damping time [34], and fit for

the QNM amplitude [cf. Eq. (22)]. From rΨ
ð2Þ
4
, we extract

ωð2Þ, the leading-order dCS correction to the QNM fre-

quency, and τð2Þ, the leading-order correction to the QNM

damping time, as well as the leading-order corrections to

the QNM amplitudes [cf. Eqs. (28) and (29)].

We tabulate all of our fit results in Tables I and II. We

quote errors on each of the quantities by comparing the

results from the two highest numerical resolutions of the

NR simulation.

We show representative fits in Fig. 7. We find that for

head-on collisions, we can most successfully fit each mode

from the peak of the waveform using three overtones. We

set tend ¼ 25M after the peak. We take a closer look at this

fit in Fig. 8, where we give an illustration of the linear-in-

time behavior of rΨ
ð2Þ
4

predicted by Eqs. (28) and (29). We

divide the terms of the form t cosðÞ and t sinðÞ by cosðÞ and

FIG. 6. Behavior of the regime of validity with the dimension-

less spin χf of the final background black hole. Each black point

represents a simulation with a different value of χf . We compute

the minimum of l=GM [cf. Eq. (36)] over time for each

simulation. The coupling constant achieves its minimum allowed

value during the merger phase, and thus this regime of validity is

a conservative estimate. Compare with the earlier results in Fig. 1

of [39] and Fig. 3 of [12].

FIG. 7. Fits for rΨ
ð2Þ
4
, the leading-order dCS gravitational

radiation, using the formulas in Eqs. (28) and (29), for a

configuration with χ ¼ 0.1 on each hole. Each panel corresponds

to one of the dominant modes of the radiation, fit to the three

least-damped overtones. The solid colored curves correspond to

the real part of rΨ
ð2Þ
4
. We perform a fit for rΨ

ð2Þ
4
, shown as thick

dashed colored curves. For reference, we have plotted the real

part of rΨ
ð0Þ
4

(multiplied by a factor to make it easier to see in this

figure) in dashed gray. The QNM fit to rΨ
ð0Þ
4

is shown by the

solid, thick gray curve.
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sinðÞ respectively, finding that the result is indeed linear

with time.

For each of the configurations, the final Christodolou

mass of the background spacetime is Mf ¼ 0.9896.

However, χf , the final background spin, varies with con-

figuration, and we include these values in Tables I and II.

We plot the values of τ
ð2Þ
ð2;0;0Þðl=GMÞ−4, the leading-order

dCS correction to the damping time of the least-damped (2,0)

mode of the gravitational radiation, and ω
ð2Þ
ð2;0;0Þðl=GMÞ−4,

the leading-order dCS correction to the frequency, as

functions of χf in Figs. 9 and 10. We see that

τð2Þðl=GMÞ−4 and ωð2Þðl=GMÞ−4 behave as a power law

with spin. This behavior can be expected by considering

analytical results in dCS theory. In the slow-rotation approxi-

mation, the horizon (and hence the light ring) is modified at

quadratic order in spin [32], while containing no modifica-

tions at first order in spin [31]. We additionally plot

τð2Þðl=GMÞ−4 and ωð2Þðl=GMÞ−4 for the (4,0,0) mode in

Figs. 11 and 12. Again, we see that these quantities behave as

a power law with spin.

Let us think about the signs of τ
ð2Þ
ðl;m;nÞðl=GMÞ−4. In the

GR case, given the definition of τð0Þ in Eq. (19), we always

expect τ
ð0Þ
ðl;m;nÞ > 0 in order for the modes to be exponen-

tially damped (as opposed to exponentially growing).

The dCS modifications to the damping time can either

be positive or negative. In Fig. 9, for example, we see that

for the dominant mode, ðl=GMÞ−4τð2Þð2;0;0Þ < 0, meaning

that the damping time is decreased. We can physically think

FIG. 9. Leading-order dCS correction τ
ð2Þ
ð2;0;0Þ to the QNM

damping time τ
ð0Þ
ð2;0;0Þ, plotted as a function of dimensionless

spin χf of the final background black hole. Error bars (barely

larger than the plotted points) are computed by considering τð2Þ

for numerical simulations with different resolutions (cf. IV C).

We see that τð2Þ decreases as a power law with spin. Note that

these large values of τð2Þðl=GMÞ−4 must be multiplied by a

small, appropriate value of ðl=GMÞ4 to have physical meaning.

FIG. 10. Leading-order dCS correction ω
ð2Þ
ð2;0;0Þ to the QNM

frequency ω
ð0Þ
ð2;0;0Þ, plotted as a function of dimensionless spin χf

of the final background black hole. Error bars (smaller than the

plotted points) are computed by considering ωð2Þ for numerical

simulations with different resolutions (cf. IV C). We see that ωð2Þ

increases as a power law with spin. Note that these large values of

ωð2Þðl=GMÞ−4 must be multiplied by a small, appropriate value

of ðl=GMÞ4 to have physical meaning.

FIG. 8. The linear-in-time pieces of the (2,0) mode of rΨ
ð2Þ
4

[cf. Eqs. (28) and (29)]. First, we show rΨ
ð2Þ
4

as given by the

numerical relativity simulation (solid black). Because rΨ
ð2Þ
4

has

an overall factor of e−t=τ
ð0Þ
, we multiply this factor out, showing

rΨ
ð2Þ
4

× et=τ
ð0Þ

(thick blue). The resulting waveform then only

depends on factors of the form ðaþ btÞ cosðωð0Þtþ θð0ÞÞ, and
ðcþ dtÞ sinðωð0Þtþ θð0ÞÞ. We individually show these sine

and cosine pieces (solid pink and maroon). We then divide

ðaþ btÞ cosðωð0Þtþ θð0ÞÞ by cosðωð0Þtþ θð0ÞÞ, leaving only the

linear-in-time coefficient ðaþ btÞ, and similarly for the sine term

(dashed pink and maroon).
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about this as the dCS scalar field removing additional

energy from the system, leading to faster damping. We see

in Fig. 11, however, that ðl=GMÞ−4τð2Þð4;0;0Þ > 0.

However, the dCS-modified QNMs should always be

exponentially decaying, meaning that we require

τ
ð0Þ
ðl;m;nÞ þ τ

ð2Þ
ðl;m;nÞ > 0: ð39Þ

Note that the dCS coupling ðl=GMÞ4 enters into the above
expression. Thus, if we multiply our numerical results for

ðl=GMÞ−4τð2Þðl;m;nÞ (no matter what signs they carry) by the

maximum allowed value of ðl=GMÞ4 to obtain τ
ð2Þ
ðl;m;nÞ,

Eq. (39) must hold. We have checked that this is indeed the

case (cf. Tables I and II).

Let us consider the sources of error in these computa-

tions. The resolution of the simulation is the dominant

source of error (for example, varying the fitting window as

detailed in Sec. III F does not significantly change the

results). In each of Figs. 9 and 11, as well as the tabulated

values in Tables. I and II, the error bars on a fitted

quantity Q are computed by comparing the value of Q
for two simulations with different numerical resolutions

(cf. Sec. IV C). The error bars on the fits for τð2Þ, and ωð2Þ

increase with l, being lowest for the (2,0) mode, and highest

for the (6,0) mode. Higher modes are more difficult to

resolve numerically [21,23], and thus it takes higher

resolution for the error bars on the (6,0) mode to decrease

to those on the (2,0) mode at lower resolution. The errors

also increase with the spin of the system. This is because it

is more difficult to resolve higher spin systems numeri-

cally [40,41].

D. Particular and homogeneous solutions

There is interesting behavior later on in the rΨ
ð2Þ
4

waveforms. As we can see from e.g., Fig. 3, there is a

change in the overall slope that occurs in rΨ
ð2Þ
4

around 40M

after the peak time. This change in slope is convergent with

resolution, and is present with and without adaptive mesh

refinement. Later in the waveform, after this change in

slope, both rΨ
ð2Þ
4

and rΨ
ð0Þ
4

are well described by damped

sinusoids, and have the same decay time and frequency. In

other words, at late times rΨ
ð2Þ
4

has the same QNM

spectrum as rΨ
ð0Þ
4

a GR QNM on a Kerr spacetime (we

know from previous work that the resulting GR spacetime

of the numerical simulations with this code is Kerr [37,42]).

This suggests that rΨ
ð2Þ
4

switches from being dominantly

driven by the dCS scalar field entering the source term, to

being source-free, as suggested in Sec. III C and discussed

further in Appendix A 4. In other words, the early post-

merger dCS waveform correction is dominated by a

particular solution of Eq. (10), whereas later it is domi-

nated by a homogeneous solution.

We illustrate this behavior schematically in Fig. 13. We

consider the slopes of the logarithms of rΨ
ð0Þ
4

and rΨ
ð2Þ
4
,

which is equivalent to finding a decay time for each. Note

that this is not the same as the perturbed fits for rΨ
ð2Þ
4

given

in Eqs. (28) and (29), which we use to extract τð2Þ and ωð2Þ.

At late times, the decay times of rΨ
ð0Þ
4

and rΨ
ð2Þ
4

are the

same. In other words, the late-time leading order dCS

modification to the gravitational radiation is the same as a

GR QNM on Kerr. This behavior is consistent across all

spins considered in this study.

FIG. 11. Similar to Fig. 9, but for τ
ð2Þ
ð4;0;0Þ.

FIG. 12. Similar to Fig. 10, but for ω
ð2Þ
ð4;0;0Þ.
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We can corroborate this interpretation by looking

at the scalar field in the strong field region, whose

dynamics drive the radiative part of h
ð2Þ
ab . As the scalar

field settles down, it is no longer the dominant source

driving h
ð2Þ
ab , and the metric perturbation is dominantly

driven by the Kerr background. However, making this

interpretation more precise would be tricky: we must

keep in mind that mapping between the strong-field

region and a gravitational waveform at infinity requires

utmost care (cf. [37]).

V. IMPLICATIONS FOR TESTING

GENERAL RELATIVITY

Let us now discuss this work in the context of testing GR

with gravitational wave observations. Suppose that wewere

to observe a postmerger gravitational wave, given by rΨ4.

We can check the consistency of this waveform with GR,

and with dCS.

Let us first suppose that l ¼ 0, meaning that there is no

modification from GR. In GR, assuming the no-hair

theorem is true, the frequency and damping time for each

mode of ringdown should be parametrized purely by the

mass, Mf , and spin, χf , of the final black hole. Given two

observed modes, we have access to four quantities—two

frequencies and two damping times. We can check that the

fitted ωðl;m;nÞ and τðl;m;nÞ are consistent with the predicted

GR values for Mf and χf [1,2,4,43,44].

If the values are not consistent with GR, meaning that

there is a shift away from the predicted GR frequencies

and damping times, we can check whether the fitted ωðl;m;nÞ

and τðl;m;nÞ agree with the leading-order dCS-corrected

frequencies and damping times computed using the meth-

ods in this study.

A. Checking nondegeneracy: Projected

Let us consider whether it is possible in principle to

measure dCS corrections ω
ð2Þ
ðl;m;nÞ and τ

ð2Þ
ðl;m;nÞ from a given

waveform signal, or instead whether these quantities are

degenerate with the GR values ω
ð0Þ
ðl;m;nÞ and τ

ð0Þ
ðl;m;nÞ corre-

sponding to a different remnant mass and spin. Con-

sider the 4-dimensional parameter space P of fMωð0Þ;
τð0Þ=M;Mωð2Þ; τð2Þ=Mg for a given mode. GR solutions

exist purely in the 2-dimensional submanifold SGR speci-

fied by fωð2Þ ¼ 0; τð2Þ ¼ 0g, with coordinates fMf ; χfg on

the manifold. Suppose at some point ðM1; χ1Þ on SGR, we

introduce a dCS deviation with some coupling ðl=GMÞ4.
In other words, we will have

ωðχ1;M1Þ ¼ ωð0Þðχ1;M1Þ þ ðl=GMÞ4Δωðχ1;M1Þ; ð40Þ

τðχ1;M1Þ ¼ τð0Þðχ1;M1Þ þ ðl=GMÞ4Δτðχ1;M1Þ; ð41Þ

where we have explicitly written out the dependence on the

coupling constant with Δω≡ ðl=GMÞ−4ωð2Þ and Δτ≡

ðl=GMÞ−4τð2Þ, which can be read off of Figs. 9–12. If dCS
modifications and GR are degenerate, then this modifica-

tion will move purely within SGR. However, if dCS

modifications and GR are nondegenerate, then the new

point will be off SGR in P and the dCS modifications

will form a 3-dimensional submanifold of P, SdCS, with

coordinates fMf ; χf ;l=GMg.
Let us now consider this statement in the context of our

numerical results. For simplicity, let us first consider

holding Mf constant in the comparisons. In Fig. 14, we

plot values of Mfωð2;0;0Þ and τð2;0;0Þ=Mf for various spins.

We similarly plot Mfωð4;0;0Þ and τð4;0;0Þ=Mf in Fig. 15. For

l ¼ 0, we can use perturbation theory to compute the

values of ω ¼ ωð0Þ and τ ¼ τð0Þ in GR. Holding Mf fixed,

the GR solutions form a curve LGR in the ω − τ plane,

parametrized by χf.

Now let us introduce l ≠ 0. For each simulation that we

have performed, with a given χf (recall all of the Mf are

equal), we compute ωðχfÞ and τðχfÞ via Eqs. (40) and (41)

using our results for Δω ¼ ðl=GMÞ−4ωð2Þ and Δτ ¼
ðl=GMÞ−4τð2Þ. This computation requires specifying a value

of ðl=GMÞ. If we vary ðl=GMÞ over an allowed range

(cf. Sec. IV B), for each χf we obtain a curve LdCSðχfÞ in the
Mfω − τ=Mf plane parametrized by ðl=GMÞ.
If the dCS corrections to the quasinormal mode spectrum

were degenerate with GR, then LdCSðχfÞ would lie purely

along LGR. In other words, the resulting QNM spectrum

for χf would be degenerate with that of GR for some other

spin χ0. However, we see in Figs. 14 and 15 that in all cases

FIG. 13. The real parts of rΨ
ð2Þ
4

and rΨ
ð0Þ
4

for a representative

case of χ ¼ 0.1x̂. We fit a line (on this semilog plot) to the peaks

of the gravitational waveform during various stages of the

postmerger waveform (black for rΨ
ð2Þ
4
, blue for rΨ

ð0Þ
4
). Early

on in the waveform, rΨ
ð2Þ
4

and rΨ
ð0Þ
4

have different damping

times, whereas later in the waveform, they have the same

damping time. This suggests that at late times, rΨ
ð2Þ
4

is well

modeled as a QNM on a pure Kerr background.
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LdCSðχfÞ does not lie purely along LGR, meaning that the

QNM spectra are nondegenerate. This in turn means that

dCS modifications to QNM spectra can in principle be

observed (in the limit of infinite signal-to-noise ratio). Note

that in this analysis, we have held Mf fixed, since all of the

head-on collision simulations in this paper have the same

final black hole mass.

B. Checking nondegeneracy: Full case

We can perform a more rigorous analysis, checking for

full degeneracy, rather than the simpler check that holdsMf

fixed. Let us think about the 3-dimensional space F with

coordinates fχ;M; ε2g (where ε is our dCS order-reduction

parameter). Suppose we observe k QNMs, which gives

us 2k quantities (ω and τ for each mode). Let Q be the

2k-dimensional space with these coordinates.

Let us consider the map ϕ∶ F → Q, which maps each set

of parameters fχ;M; ε2g to the QNM values. The image

ϕðFÞ will form a 3-dimensional submanifold of Q, and

the tangent space of the image will be spanned by

the pushforwards of f∂=∂χ; ∂=∂M; ∂=∂ε2g. That is,

fϕ�∂=∂χ;ϕ�∂=∂M;ϕ�∂=∂ε
2g.

Nondegeneracy in this context means that the dimension

of the span of fϕ�∂=∂χ;ϕ�∂=∂M;ϕ�∂=∂ε
2g is 3. This can

be checked by looking at the rank of the 2k × 3 dimen-

sional (Jacobian) matrix

J ≡ ½ ðϕ�
∂
∂χ Þ ðϕ�

∂
∂M

Þ ðϕ�
∂
∂ε2

Þ �: ð42Þ

Let us consider how to evaluate this matrix, working near

ε2 ¼ 0 for each χf and Mf for which we have performed a

head-on collision. Suppose we are considering some mode

with QNM frequency ωlmn and damping time τlmn. This

will give us two rows in the matrix J.
Let us first compute

∂

∂χ
ωlmn ¼

1

Mf

∂

∂χ
ðωlmnMfÞ; ð43Þ

∂

∂χ
τlmn ¼ Mf

∂

∂χ
ðτlmn=MfÞ: ð44Þ

This can be done by computing the values of ωlmnMf and

τlmn=Mf from perturbation theory [34], varying only χ

around χf , and then taking a numerical derivative. We work

with a step size of 10−10, which is the default precision

of [34].

Now let us compute the ∂=∂M column. For fixed χf and

l
4 ¼ 0, the dependence on M is

FIG. 15. Same as Fig. 14, but for the (4,0,0) mode of the

gravitational radiation.

FIG. 14. Probing degeneracy of GR and dCS-corrected QNM

spectra. We show the values of Mfω and τ=Mf for the (2,0,0)

mode of the postmerger gravitational radiation. If there is no dCS

modification, i.e., l ¼ 0, then for fixed final mass Mf , the GR

QNM solutions form a curve (dashed pink) parametrized by χf in

the plane. For each χf we introduce a dCS modification using the

ωð2Þ and τð2Þ that we have computed in this study. This

modification depends on the coupling parameter ðl=GMÞ, and
thus forms a line (recall that the dependence on ðl=GMÞ is purely
linear) parametrized by (l=GM) in the Mfω − τ=Mf plane (solid

maroon). Each such line on the plot is labeled by the value of the

final dimensionless spin. Here we choose a conservative maxi-

mum value of ðl=GMÞ4 ¼ 10−4 for each spin. We see that this

modification does not purely lie along the GR solution, and hence

GR and dCS-corrected QNM spectra are nondegenerate.
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∂

∂M
ωlmn ¼

1

M

∂

∂M
ðωlmnMÞ ¼ ωlmn

M
; ð45Þ

∂

∂M
τlmn ¼ M

∂

∂M

�

τlmn

M

�

¼ −
τlmn

M
: ð46Þ

We evaluate these expressions at M ¼ Mf .

Finally, for the last column, for fixed χf , Mf , we have

∂

∂ε2
ωlmn ¼

1

Mf

ðl=GMÞ−4Mfω
ð2Þ
lmn; ð47Þ

∂

∂ε2
τlmn ¼ Mfðl=GMÞ−4 τ

ð2Þ
lmn

Mf

; ð48Þ

where ðl=GMÞ−4Mfω
ð2Þ
lmn and ðl=GMÞ−4τð2Þlmn=Mf are the

quantities we compute from our numerical fits.

We put the matrix J together with these values. Note that

the ω rows all have a factor of 1=Mf , while the τ rows have

a factor of Mf . Since each row is homogeneous in a power

of Mf , we can divide through without changing the rank of

the matrix. We evaluate the rank of this matrix using a

singular-value decomposition (SVD) [38]. For all values of

fχf ;Mfg in our head-on collisions dataset, we find that the

rank of J is 3. The lowest singular value is 10−2–10−1,

while the condition numbers (the 2-norm, computed from

the SVD) are of order 103. Therefore, we conclude that dCS

corrections to ringdowns have a distinct observational

signature, as they are not degenerate with changing GR

parameters of final mass and spin.

VI. CONCLUSION

In this study, we have produced the first beyond-GR

BBH gravitational waveforms in full numerical relativity

for a higher-curvature theory. We have considered head-on

collisions of BBHs in dynamical Chern-Simons gravity.

While these are not likely to be astrophysically relevant

configurations, they serve as a proof of principle of our

ability to produce beyond-GR waveforms [13]. Future

work in this program thus involves adding initial orbital

angular momentum to the system and producing beyond-

GR gravitational waveforms for inspiraling systems. We

have previously evolved the leading order dCS scalar field

for an inspiraling BBH background [11], and can use our

(fully general) methods given in [12,13] to produce initial

data for and evolve an inspiraling BBH system.

We have also studied modifications to the postmerger

BBH head-on collision QNM spectra. We found that at

leading order, the damping time of each QNM receives a

modification that increases with the spin of the final black

hole as a power law. The frequency of each QNM receives a

similar modification. These modifications are not degen-

erate with GR.

When performing inspiraling BBH simulations, we can

repeat the analysis outlined in this paper to learn about

the dCS modification to the QNM spectrum of an

astrophysically relevant system. These results can then

be applied to beyond-GR tests of BBH ringdowns [2,4].

In particular, the investigation of modification to over-

tones is useful for an analysis of the form detailed in

[45]. Note that the GR-dCS nondegeneracy results found

in this paper assume infinite signal to noise ratio. Thus,

future work also includes checking degeneracy in the

presence of gravitational wave detector noise. Inspiraling

simulations will also allow us to perform even more

powerful tests of GR using full inspiral-merger-ringdown

waveforms, thus taking advantage of the entire gravita-

tional wave signal.
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APPENDIX A: FORMALISM QNMS BEYONDGR

In this Appendix we give an abstract formalism for

QNM modeling in theories beyond GR. For simplicity

we will present perturbative expansions with leading

power ε1, but the generalization to the behavior of

dCS [where the leading metric correction is at Oðε2Þ]
is straightforward.

1. QNMs in GR

Under the final state conjecture [46–48], the result of a

merger of two Kerr black holes will uniquely be a perturbed

Kerr BH, with the perturbation decaying with time.

Therefore, the waveform after merger is typically modeled

using linear black hole perturbation theory. That is, we treat

the postmerger metric as

gab ¼ gKab þ ξh
Q
ab þOðξ2Þ; ðA1Þ

where gKab is the Kerr metric, and ξ is a small formal order-

counting parameter. The full metric satisfies the nonlinear

Einstein equations up to order ξ2, yielding the linear partial

differential equation (PDE) that hab satisfies,

Gab½gKcd þ ξh
Q
cd� ¼ Oðξ2Þ;⇒ G

ð1Þ
ab ½h

Q
cd� ¼ 0; ðA2Þ

where Gð1Þ½·� is the Einstein operator linearized about the

Kerr background. Notice that QNMs are homogeneous

solutions to this linear PDE.
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In practice, the metric perturbation equations (A2) of GR

are intractable, whereas curvature perturbations for the

Weyl scalar Ψ0 and Ψ4 can be decoupled, yielding the

Teukolsky equation [49,50], which we will denote as

T Ψ4 ¼ 0: ðA3Þ

In the Teukolsky formalism, QNMs are still homogeneous

solutions. As Teukolsky showed, this partial differential

equation is amenable to separation of variables. The most

general homogeneous solution, at large r, is a linear

combination

rΨ4 ∼
X

lmn

Ãlmne
−iω̃lmnðt−rÞeimϕ

−2S
aω̃
lm ðθÞ: ðA4Þ

Here Ãlmn is a complex mode amplitude with complex

frequency ω̃lmn. Here l, m label the angular harmonics, and

n ≥ 0 labels the QNMs with the same lm in terms of

increasing damping time, related to the imaginary part of

the complex frequency (henceforth we suppress the lmn
labels for brevity). The damping time τ > 0 is found via

ω̃ ¼ ω − i=τ; τ≡ −1=Im½ω̃�: ðA5Þ

The functions eimϕ
−2S

aω̃
lm ðθÞ are spin −2-weighted sphe-

roidal harmonics. However our numerical simulations

compute Ψ
ð0Þ
4

and Ψ
ð2Þ
4

decomposed into spin-weighted

spherical harmonics, where the spheroidals are a deforma-

tion of the sphericals. The spherical-spheroidal mixing

coefficients can be computed [1,34,51,52], and the amount

of mixing is small at low spins and frequencies, so we do

not model the mixing in this paper.

2. QNMs beyond GR

Now suppose we are interested in some (unknown)

beyond-GR theory that is UV complete. We assume that

there is a parameter ε such that as ε → 0, this theory

recovers GR. Therefore we can expand around ε ¼ 0 to

control the calculation. If we keep some leading number of

terms, this theory will coincide with an order-reduced

EFT, for example with order-reduced dCS as presented

in Sec. II A. There are now two small parameters: the size

of the GW perturbations ξ, and the amount of deformation

away from GR, ε. The metric and any additional new

degrees of freedom (d.o.f.) will now be a bivariate

expansion in ðε; ξÞ. We will demonstrate this abstractly.

Suppose the nonlinear, UV-complete EOMs can be

written as

F ½u� ¼ 0; ðA6Þ

where u is a vector of all the field variables [for example,

any UV completion of dCS must include at least

u ¼ ðgab; ϑ;…Þ]. The new d.o.f. should be frozen out in

the ε → 0 limit.

We assume these equations have a family of nonlinear

solutions for stationary, axisymmetricBHsuBHðε;M; a;…Þ.
As inGR,we conjecture that the final state of amerger of two

BHs will be a unique perturbation to a single BH of this

family. Therefore, we can perform linear perturbation theory

about one solution, positing

gabðεÞ ¼ gBHab ðεÞ þ ξhabðεÞ þOðξ2Þ; ðA7Þ

and similarly for all other fields in uðεÞ ¼ uBHðεÞþ
ξuð1ÞðεÞ þOðξ2Þ. Linearizing Eq. (A6) about uBH would

derive the linear EOMs that parallel GR’smetric perturbation

equations (A2), with some linear PDE

F ð1Þ½uð1Þ� ¼ 0: ðA8Þ

At the level of the “full” equations, QNMs are once again

homogeneous solutions to this linear PDE. Since the back-

ground is axisymmetric, the perturbations will again decom-

pose into azimuthal modes proportional to eimϕ, labeled

by m. Since the background is stationary, the perturbations

will also decompose into modes proportional to e−iω̃t,
labeled by complex frequencies ω̃, with Im½ω̃� < 0 if we

assume the nonlinear BH solutions are stable.

The QNMs in this beyond-GR theory need not be

diagonal in field space ðgab; ϑ;…Þ. For example, mixed

QNM modes are present in dCS, as discussed in [53], and

in Einstein-dilaton-Gauss-Bonnet gravity, as claimed in

[54–57] (though see below for further discussion).

However, since all new d.o.f. beyond the metric should

freeze out in the limit ε → 0, the mode structure should

become diagonal in field space in this limit. Regardless of

the diagonal basis, in the r → ∞ limit, rΨ4 will be a linear

combination of the form

rΨ4ðεÞ ∼
X

modes λ

AλðεÞe−iω̃λðεÞðt−rÞeimϕSλðε; θÞ; ðA9Þ

where λ labels the modes.

3. Perturbative treatment of QNMs beyond GR

We can now ask how these quantities are deformed away

from their GR values. Notice that in Eq. (A9), the

frequencies ω̃ðεÞ and the amplitude of each mode ÃλðεÞ
should depend continuously on ε. Some modes λ will

reduce to GR modes lmn in the limit as ε → 0, and their

frequencies and amplitudes will reduce to the appropriate

GR quantities. Additional modes (e.g., the “scalar-led”

modes of [54,55]) will have amplitudes that vanish at

ε ¼ 0.
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Now turn to the bivariate expansion of Eq. (A7),

gab ¼ ðgKab þ ξh
Qð0Þ
ab Þ

þ εðhDefab þ ξh
Qð1Þ
ab Þ þOðε2; ξ2Þ: ðA10Þ

Here hDef is the deformation of the full BH metric away

from the Kerr metric, gBH ¼ gK þ εhDef þOðε2Þ, and

similarly the QNMs can be expanded into their GR parts

hQð0Þ and deformation hQð1Þ. Doing so requires expanding

all quantities in powers of ε,

ÃlmnðεÞ ¼
X

k

εkÃ
ðkÞ
lmn; ðA11Þ

ω̃lmnðεÞ ¼
X

k

εkω̃
ðkÞ
lmn; ðA12Þ

and similarly for Slmnðε; θÞ. The quantities with superscript
(0) are the GR expression appearing in Eq. (A4). The real

and imaginary parts of ω̃ðkÞ follow the same expansion, but

we also use τ≡ −1=Im½ω̃�. Similarly expanding τ ¼
P

k ε
kτðkÞ and using the chain rule gives

τð1Þ ¼ þ Im½ω̃ð1Þ�
Im½ω̃ð0Þ�2

¼ Im½ω̃ð1Þ�ðτð0ÞÞ2: ðA13Þ

If we plug the leading order corrections from Eqs. (A11)

and (A12) into the ansatz Eq. (A9), we will arrive at the

form

rΨ4 ¼ rΨ
ð0Þ
4

þ εrΨ
ð1Þ
4

þ…; ðA14Þ

rΨ
ð0Þ
4

¼
X

lmn

Ã
ð0Þ
lmne

−iω̃
ð0Þ
lmn

ðt−rÞeimϕ
−2S

aω̃
lm ðθÞ; ðA15Þ

rΨ
ð1Þ
4

¼
X

lmn

ðÃð1Þ
lmn − iω̃

ð1Þ
lmnðt − rÞÃð0Þ

lmnÞe−iω̃
ð0Þ
lmn

ðt−rÞ

× eimϕ
−2S

aω̃
lm ðθÞ þmode mixing term: ðA16Þ

The quantity denoted by “mode mixing” is proportional

to d
dε
Sλðε; θÞ. Since we are already ignoring the difference

between spherical and spheroidal harmonics in GR, we also

ignore this extra mode mixing term in this manuscript.

Let us make a few notes about the functional form of

rΨ
ð1Þ
4

in Eq. (A16). First, although the “full” QNM

frequency ω̃ðεÞ at finite ε is shifted relative to ω̃ð0Þ,

everything in Eq. (A16) is proportional to e−iω̃
ð0Þu, where

u ∼ t − r is retarded time. Second, Eq. (A16) is not just a

sum of damped sinusoids, because of the term going as

∼ω̃ð1ÞÃð0Þue−iω̃
ð0Þu. Since Im½ω̃ð0Þ� < 0, this term remains

bounded, but it grows in importance relative to the term

Ãð1Þe−iω̃
ð0Þu. This is a typical symptom of a secular break-

down of perturbation theory [58,59].

4. Particular, homogeneous modes, and modes

that are mixed in field space

How does the new term ∼ue−iω̃
ð0Þu arise, which differs in

form from both the GR and “exact” beyond-GR behaviors?

To understand we have to look at the perturbative treatment

of the equations of motion. We can model the metric sector

of F as some deformation of Einstein’s equations,

m2

plGab½gcdðεÞ� þ εHab½u� ¼ 0: ðA17Þ

For example in dCS, εHab ¼ mpll
2Cab − Tϑ

ab which is

divergence free on shell. Inserting Eq. (A10) into Eq. (A17)

and expanding will give order-reduced equations for the

deformations. For example, setting ξ ¼ 0 reduces to the BH

background with no QNMs. The deformation hDef satisfies
the inhomogeneous equation

m2

plG
ð1Þ
ab ½hDefcd � ¼ −Hab½gKcd�: ðA18Þ

Now including the terms at OðξÞ, we see

m2

plðG
ð1Þ
ab ½hDefcd � þ ξG

ð1Þ
ab ½h

Qð1Þ
cd �Þ ¼ −Hab½gKcd þ ξh

Qð0Þ
cd �:

ðA19Þ

At linear order in ξ, H
ð1Þ
ab ½h

Qð0Þ
cd � (expanded about gK) will

generate a source term for hQð1Þ. In our numerical imple-

mentation we have the full GR metric solution, not an

expansion in powers of ξ, so there can also be nonlinear

ðQNMÞ2 and higher terms appearing in the source.

This equation is different from the linearized EOM in

GR (A2) or in the “exact” theory (A8): those are both

homogeneous, whereas Eq. (A19) is inhomogeneous (it has

a source term on the right-hand side). The solution will

therefore have two parts: a homogeneous solution,

and a particular solution. The linear differential operator

G
ð1Þ
ab ½h

Qð1Þ
cd � appearing on the LHS of Eq. (A19) is the same

operator, expanded about the same Kerr background, as in

the GR Eq. (A2). Therefore the homogeneous solutions are

the same. This accounts for the e−iω̃
ð0Þu terms in Eq. (A16).

The ue−iω̃
ð0Þu terms are particular solutions. Their secular

behavior is due to the source term having support at the

poles of the Green’s function.

In [57], the authors simulated the leading-order scalar

field behavior on a binary black hole background in

Einstein-dilaton-Gauss-Bonnet gravity, and found that

the solution for the scalar field during ringdown contained

two parts, similar to how we observed two pieces in
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Sec. IV D. The authors referred to these as “scalar-led” and

“gravitational-led” modes which they suggest are due to

mixing in field space.

This nomenclature was introduced in [54] but was seen

earlier in dCS in Molina et al. [53]. In [53], the authors

investigated QNMs of Schwarzschild black holes in full

dCS gravity. For zero spin, the system is well posed, and

thus can be solved in the full theory, without working in an

order reduction or other perturbative scheme.
3
The radial

parts of the scalar and gravitational QNMs for each mode

are governed by a set of fully coupled ordinary differential

equations (ODEs) of the form (cf. Eqs. (2.8) and (2.9)

in [53])

d2

dr2�

�

ϑ

Ψ

�

¼
�

V11 V12

V21 V22

��

ϑ

Ψ

�

; ðA20Þ

where r� is the usual Schwarzschild “tortoise” radial

coordinate, ϑ is a spherical harmonic mode of the full

dCS scalar field, Ψ is a spherical harmonic mode of the

metric, and the Vij potentials are functions dependent on r

and the dCS coupling parameter. Since ϑ andΨ are coupled

in this 2-dimensional linear ODE problem, we find two

types of QNMs (scalar led and gravitational led, which

become diagonal in field space in the limit l → 0).

However, we and the authors of [57] are both working in

a perturbative scheme. In the perturbation scheme, the

leading-order dCS metric perturbation h
ð2Þ
ab does not back-

react onto the leading scalar field ϑð1Þ. If one applies the

perturbation scheme to Eq. (A20) on the Schwarzschild

background, the ODEs take the form

d2

dr2�

�

ϑð1Þ

Ψ
ð2Þ

�

¼
�

W11 0

W21 W22

��

ϑð1Þ

Ψ
ð2Þ

�

: ðA21Þ

This matrix is triangular, so the solution for ϑð1Þ can be

found independently ofΨð2Þ. Meanwhile, the QNMs of ϑð1Þ

enter into the source term for Ψð2Þ.
Thus, the presence of the “scalar-led” mode (now on a

nonlinear, perturbed Kerr background) seen by [57] is not

surprising, because the homogeneous solution of the

beyond-GR scalar perturbation equation will contain the

same scalar QNMs (homogeneous solutions) as in GR.

Meanwhile, the “gravitational-led” mode in ϑð1Þ is surpris-
ing. However, looking back at Eq. (A19) suggests its origin

[keeping in mind that everything in order-reduced dCS and

EDGB is pushed up by a power of ε, so we should think of

Eq. (A19) of suggesting the form of the scalar equation for

ϑð1Þ]. The nonlinear, perturbed Kerr background enters the

source term on the RHS of (A19), generating a source that

oscillates at the frequency of the background (GR) gravi-

tational waves. This sources a particular solution at this

frequency.

Therefore we conjecture that the “gravitational-led”mode

appearing the scalar field in [57] was actually a particular

solution, though it is fair to still consider it as part of theQNM

spectrum. We can more generally conjecture that when the

perturbative approach is applied to field-space mixed QNM

modes, they will appear as combinations of homogeneous

and particular solutions of the linear equations. Investigating

this conjecture is beyond the scope of this work.

APPENDIX B: CHOOSING

A PERTURBED GAUGE

Throughout this Appendix, as well as Appendix C, we

use the notation developed in [13], and standard 3þ 1

ADM decomposition notation [19]. Recall that gab refers to
the 4-dimensional spacetime metric, while γij refers to the

3-dimensional spatial metric. ΔQ is the leading-order

perturbation to quantity Q.
The generalized harmonic evolution for the background

follows from the equation

Γa ¼ −Ha; ðB1Þ

where Γa ≡ gbcΓbca, and Ha is known as the gauge source

function (cf. [22] for more details). Throughout the evo-

lution, the gauge constraint,

Ca ≡Ha þ Γa ¼ 0; ðB2Þ

must be satisfied.

When generating initial data for gab and ∂tgab, we are

free to choose ∂tα and ∂tβ
i, the initial time derivatives of

the lapse and shift. These quantities appear in Γa, so

choosing them is equivalent to choosing initial values of

Ha, via Eq. (B2). For example, for initial data in equilib-

rium, we can set ∂tα ¼ 0 and ∂tβ
i ¼ 0, and set Ha to

initially satisfy Eq. (B2). Alternatively, we can choose to

work in a certain gauge, such as harmonic gauge with

Ha ¼ 0, and set ∂tα and ∂tβ
i to satisfy Eq. (B2).

As the evolution progresses, we can either leave Ha

fixed, or continuously “roll” it into a different gauge, with

the restriction that it contains only up to first derivatives of

gab to ensure well posedness. In practice, for BBH in GR,

we work in a damped harmonic gauge, with Ha specified

using the methods given in [24].

The perturbed generalized harmonic evolution takes a

similar form as Eq. (B1), with

ΔΓa ¼ −ΔHa; ðB3Þ

where ΔΓa is the first-order perturbation to Γa, and ΔHa is

a perturbed gauge source function. Similar to Eq. (B2), we

have a perturbed gauge constraint,

3
Working on a Schwarzschild background within the order-

reduction scheme also faithfully reproduces ϑð1Þ ¼ 0 and

g
ð2Þ
ab ¼ 0.
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ΔCa ≡ ΔΓa þ ΔHa ¼ 0: ðB4Þ

At the start of the evolution, we similarly have the freedom

to chooseΔHa, provided that it contains no higher than first

derivatives of Δgab, and satisfies the perturbed gauge

constraint Eq. (B4). When solving for perturbed initial

data (cf. [12]), we similarly have the freedom to choose

∂tΔα and ∂tΔβ
i, the time derivatives of the perturbed lapse

and shift. An easy choice, for example, is to work in a

perturbed harmonic gauge,

ΔHa ¼ 0: ðB5Þ

Let us now work out how to set ∂tΔα and ∂tΔβ
i in order

to satisfy Eq. (B4) for some desired perturbed gauge source

function ΔHa. Let us first consider the unperturbed case,

setting ∂tα and ∂tβ
i for some gauge source functionHa. We

will work with the κabc variable, which is the fundamental

variable encoding the spatial and time derivatives of the

metric (cf. [13]) as

κiab ≡ ∂igab; ðB6Þ

κ0ab ≡ −nc∂cgab; ðB7Þ

where nc denotes the timelike unit normal vector. We can

use our freedom to set ∂tβ
i and ∂tα to modify κabc to satisfy

Γa ¼ −Ha as

κ00i ¼ −αHi þ βkκ0ki − αγjkΓijk −
1

2
αnanbκiab; ðB8Þ

where Γijk is the spatial Christoffel symbol of the first kind,

and

κ000 ¼ −2αH0 þ 2βjðκ00j þ αHjÞ
− βjβkκ0jk − α2γjkκ0jk − 2α2γjknaκjka; ðB9Þ

where κ00j in the above expression is given by Eq. (B8). We

can then use this modified κabc to compute Γa and ensure

that Eq. (B2) is satisfied for Ha ¼ Ha.

Perturbing Eqs. (B8) and (B9), we can get an expression

for a modified Δκabc to satisfy Eq. (B4) for some desired

perturbed gauge source function ΔHa. We thus obtain

Δκ00i ¼ −ΔαHi − αΔHi

þ Δβkκ0ki þ βkΔκ0ki

− ΔαγjkΓijk − αΔγjkΓijk − αγjkΔΓijk

−
1

2
Δαnanbκiab −

1

2
αΔnanbκiab

−
1

2
αnaΔnbκiab −

1

2
αnanbΔκiab; ðB10Þ

and

Δκ000 ¼ −2ΔαH0 − 2αΔH0 þ 2Δβjðκ00j þ αHjÞ
þ 2βjðΔκ00j þ ΔαHj þ αΔHjÞ
− Δβjβkκ0jk − βjΔβkκ0jk − βjβkΔκ0jk

− 2αΔαγjkκ0jk − α2Δγjkκ0jk − α2γjkΔκ0jk

− 4αΔαγjknaκjka − 2α2Δγjknaκjka

− 2α2γjkΔnaκjka − 2α2γjknaΔκjka: ðB11Þ

Note that this computation also uses the gauge source

function of the background, Ha. Assuming that the back-

ground is in a satisfactory gauge, we set Ha to the initial

background gauge source function. All of the perturbed

quantities in Eqs. (B10) and (B11) are given in [13].

In this study, we choose to work in a perturbed harmonic

gauge, with ΔHa ¼ 0.

APPENDIX C: COMPUTING PERTURBED

GRAVITATIONAL RADIATION

The outgoing gravitational radiation of a spacetime is

encoded in the Newman-Penrose scalar Ψ4. In order to

compute the leading-order correction to the binary black

hole background radiation due to the metric perturbation

Δgab, we need to compute ΔΨ4, the leading-order correc-

tion to Ψ4.

Ψ4, a scalar, is computed on a topologically spherical

surface from a rank-two tensor Uij, contracted with a tetrad

(in our case, a coordinate tetrad that converges to a quasi-

Kinnersley tetrad at large radii). Uij on a surface with

normal vector n̂i takes the form

Uij ¼
�

Pm
i P

n
j −

1

2
PijP

mn

�

ðEmn − ϵm
kln̂lBknÞ; ðC1Þ

where Eij is the electric Weyl tensor, Bij is the magnetic

Weyl tensor, ϵijk is the (spatial) Levi-Civita tensor, and the

projection operators are given by

Pij ¼ γij − n̂in̂j; ðC2Þ

Pij ¼ γij − n̂in̂j; ðC3Þ

Pi
j ¼ γij − n̂in̂j: ðC4Þ

Here, the vector n̂i and the one form n̂i are normalized

using N ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γijninj

q

with ni ¼ γijnj.

In order to perturb Ψ4, let us write the electric and

magnetic Weyl tensors in Eq. (C1) in terms of the extrinsic

curvature Kij,
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Uij ¼
�

Pm
i P

n
j −

1

2
PijP

mn

�

ðRmn þ γklðKmnKkl − KmkKlnÞ − n̂kðDkKmn −DðmKnÞkÞÞ; ðC5Þ

where Rij is the spatial Ricci tensor and Di is the spatial covariant derivative associated with γij.

Perturbing Eq. (C5), we obtain

ΔUij ¼
�

Pm
i P

n
j −

1

2
PijP

mn

�

ðΔRmn þ ΔγklðKmnKkl − KmkKlnÞ þ γklðΔKmnKkl þ KmnΔKkl

− ΔKmkKln − KmkΔKlnÞ − n̂kðΔðDkKmnÞ − ΔðDðmKnÞkÞ − Δn̂kðDkKmn −DðmKnÞkÞÞ

þ
�

ΔPm
i P

n
j þ Pm

i ΔP
n
j −

1

2
ΔPijP

mn −
1

2
PijΔP

mn

�

×Umn: ðC6Þ

All of the perturbed quantities Δgij;ΔKij;ΔðDkKijÞ, and
ΔRij are given in terms of the perturbation to the spatial

metric,Δγij ¼ Δgij, its spatial derivative ∂kΔγij ¼ ∂kΔgab,

and its time derivative, ∂tΔγij ¼ ∂tΔgij in [12]. Note that

since we use a first-order scheme, we have access to Δgab,
∂cΔgab throughout the evolution (cf. [13]).

Let us now work through the perturbations to the

normal vectors and projection operators. Because we

want the perturbation to the gravitational radiation to

be extracted on the same surface as the background

gravitational radiation, we will hold the unnormalized

one-form to the surface, ni, fixed. That is, Δni ¼ 0. From

this, we can then compute

ΔN ¼ ΔðγijninjÞ1=2 ¼
1

2
ΔγijninjðγijninjÞ−1=2

¼ 1

2N
Δγijninj; ðC7Þ

and

Δn̂i ¼ −
ni

N2
ΔN ¼ −

n̂i

N
ΔN; ðC8Þ

Δni ¼ Δγijnj ¼ Δγijn̂jN; ðC9Þ

Δn̂i ¼ Δni

N
−

ni

N2
ΔN

¼ Δγijnj

N
−

ni

N2
ΔN

¼ Δγijn̂j −
n̂i

N
ΔN: ðC10Þ

We can then perturb the projection operators,

ΔPij ¼ Δγij − Δn̂in̂j − n̂iΔn̂j; ðC11Þ

ΔPij ¼ Δγij − Δn̂in̂j − n̂iΔn̂j; ðC12Þ

ΔPi
j ¼ Δγij − Δn̂in̂j − n̂iΔn̂j; ðC13Þ

where Δγij ¼ Δγikγkj þ γikΔγkj.

Once we obtain ΔUmn, we use the same tetrad to

generate ΔΨ4 from ΔUij as we do for Ψ4.
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