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A novel algorithm for the recovery of low-rank matrices ac-
quired via compressive linear measurements is proposed and 
analyzed. The algorithm, a variation on the iterative hard 
thresholding algorithm for low-rank recovery, is designed to 
succeed in situations where the standard rank-restricted isom-
etry property fails, e.g. in case of subexponential unstructured 
measurements or of subgaussian rank-one measurements. The 
stability and robustness of the algorithm are established based 
on distinctive matrix-analytic ingredients and its performance 
is substantiated numerically.
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1. Introduction

This article is concerned with the recovery of matrices X ∈ R
N1×N2 of rank r � N :=

min{N1, N2} from compressive linear measurements
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y = A(X) ∈ R
m (1)

with a number m of measurements scaling like r max{N1, N2} instead of N1N2. It is 
known that such a low-rank recovery task can be successfully accomplished when the 
linear map A : RN1×N2 → R

m satisfies a rank-restricted isometry property [2], e.g. by 
performing nuclear norm minimization [11], i.e., by outputting a solution of

minimize
Z∈RN1×N2

‖Z‖∗ :=
N∑

k=1

σk(Z) subject to A(Z) = y, (2)

or by executing an iterative hard thresholding scheme [8,10], i.e., by outputting the limit 
of the sequence (Xn)n≥0 defined by X0 = 0 and

Xn+1 = Hr(Xn + μ A∗(y − AXn)). (3)

Above, and in the rest of the article,

• σ1(Z) ≥ · · · ≥ σN (Z) denote the singular values of a matrix Z ∈ R
N1×N2 ;

• the linear map A∗ : R
m → R

N1×N2 stands for the adjoint of A, defined by the 
property that 〈A∗(u), Z〉F = 〈u, A(Z)〉 for all u ∈ R

m and all Z ∈ R
N1×N2 ;

• Hr represents the operator of best approximation by matrices of rank at most r, 
so that Hr(Z) =

∑r
�=1 σ�(Z)u�v∗

� if Z =
∑N

�=1 σ�(Z)u�v∗
� is the singular value 

decomposition of Z.

Our focus, however, is put on measurement maps that do not necessarily satisfy the 
standard rank-restricted isometry property, but rather a modified rank-restricted isome-
try property featuring the �1-norm as an inner norm. Precisely, we consider measurement 
maps A : RN1×N2 → R

m with universally bounded rank-restricted isometry ratio

γr := βr

αr
≥ 1, (4)

where αr, βr denote the optimal constants α, β > 0 such that

α‖Z‖F ≤ ‖A(Z)‖1 ≤ β‖Z‖F for all Z ∈ R
N1×N2 with rank(Z) ≤ r. (5)

For instance, it was shown in [1]2 that γr ≤ 3 holds with high probability in the case of 
measurements obtained by rank-one projections of the form3

A(Z)i = a∗
i Zbi, i = 1, . . . , m, (6)

2 Similar statements also appear in [3] and [4] in the cases r = 1 and r = 2, respectively.
3 These are called rank-one projections because a∗

i Zbi is the Frobenius inner product 〈Z, aib∗
i 〉F =

tr(bia∗
i Z) of the matrix Z with the rank-one matrix aib∗

i .
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for some independent standard Gaussian vectors a1, . . . , am ∈ R
N1 and b1, . . . , bm ∈

R
N2 , provided m � r max{N1, N2}. Moreover, we will briefly justify in Section 5 that, 

in the case of measurements given by

A(Z)i =
∑
k,�

Ai,(k,�)Zk,�, i = 1, . . . , m, (7)

for some independent identically distributed mean-zero subexponential random vari-
ables Ai,(k,�) with variance 1/m, say, there are constants c, C > 0 depending on the 
subexponential distribution such that γr ≤ c holds with high probability as soon as 
m ≥ Cr max{N1, N2}.

The article [1] also showed that, under the modified rank-restricted isometry property 
(5), recovery of rank-r matrices X ∈ R

N1×N2 from y = A(X) ∈ R
m can be achieved by 

the nuclear norm minimization (2). Here, we highlight the question:

Under the modified rank-restricted isometry property, is it possible to achieve low-rank 
recovery by an iterative hard thresholding algorithm akin to (3)?

We shall answer this question in the affirmative. The argument resembles the one devel-
oped in [6] in the context of sparse recovery, but some subtle matrix-analytic refinements 
are necessary.

The iterative hard thresholding scheme we propose consists in outputting the limit of 
the sequence (Xn)n≥0 defined by X0 = 0 and

Xn+1 = Hs(Xn + μnHt(A∗sgn(y − AXn))), (8)

with parameters s, t, and μn to be given explicitly later. If Ht did not appear, the 
scheme (8) would intuitively be interpreted as a (sub)gradient descent steps for the 
function Z 
→ ‖y − AZ‖1, followed by some singular value thresholding. The appearance 
of Ht is the main adjustment distinguishing the scheme (8) from the iterative hard 
thresholding scheme proposed in [6] (it also leads to an altered stepsize μn). For the more 
classical iterative hard thresholding scheme, a similar adjustment was already exploited 
in [9], where the roles of Hs and Ht were to provide ‘tail’ and ‘head’ approximations, 
respectively. This is not what justifies the appearance of Ht here.4

Let us now state our most representative result. To reiterate, it provides our newly 
proposed algorithm with theoretical guarantees for the success of recovery of low-rank 

4 In fact, the experiments performed in Section 4 suggest that Ht is not necessary, but we were unable to 
prove the recovery of X using the algorithm ‘without Ht’. In the vector case, one avoids Ht by relying on the 
observation that Hs(z) = Hs(zT ) if the index set T contains the support of Hs(z). In the matrix case, one 
would seemingly require the counterpart statement that Hs(Z) = Hs(PT (Z)), PT denoting the orthogonal 
projection onto a space T containing the space span{u1v∗

1 , . . . , usv∗
s} obtained from the singular value 

decomposition ∑N
�=1 σ�(Z)u�v∗

� of Z. Such a statement is unfortunately invalid — take e.g. Z =
[3 0

0 3c

]
with |c| < 1, so that H1(Z) =

[3 0
0 0

]
, and take T = span

{[1 0
0 0

]
,
[1 1

1 1
]}

, so that PT (Z) =
[3 c

c c

]
and 

H1(PT (Z)) �=
[3 0

0 0
]

(otherwise rank
([0 c

c c

])
= 1).
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matrices acquired via rank-one projections. Other iterative thresholding algorithms do 
not possess such guarantees, since their analysis exploits the standard rank-restricted 
isometry property and hence does not apply to rank-one projections. We also emphasize 
that the result is valid beyond rank-one projections, since it only relies on the modified 
rank-restricted isometry property (5).

Theorem 1. Let A : R
N1×N2 → R

m be a measurement map satisfying the modified 
rank-restricted isometry property (5) of order c0r with ratio γc0r ≤ γ. Then any ma-
trix X ∈ R

N1×N2 of rank at most r acquired by y = A(X) can be exactly recovered as 
the limit of the sequence (Xn)n≥0 produced by (8) with parameters s = c1r, t = c2r, and 
μn = ‖y − AXn‖1/‖Ht(A∗sgn(y − AXn)‖2

F . The constants c0, c1, c2 > 0 depend only on 
γ.

Theorem 1 is a simplified version of our main result (Theorem 5), which covers the 
more realistic situation where the matrices X ∈ R

N1×N2 to be recovered are not exactly 
low-rank and where the measurements are not perfectly accurate, i.e., y = AX + e with 
a nonzero vector e ∈ R

m. The full result will be stated and proved in Section 3. In 
preparation, we collect in Section 2 the matrix-analytic tools that are essential to our 
argument. In Section 4, we present some modest numerical experiments demonstrating 
some strong points of our iterative hard thresholding algorithm. In Section 5, we close 
the article with a sketched justification of the modified rank-restricted isometry property 
for subexponential measurement maps.

2. Matrix-analytic ingredients

The proof of Theorem 1 and of its generalization (Theorem 5) is based on the two 
technical side results given as Propositions 2 and 3 below. The first side result provides 
a (loose5) quantitative confirmation to the intuitive fact that ‖X − Hs(Z)‖F approaches 
‖X −Z‖F as s grows. The (tight) vector version of this assertion, due to [12], was already 
harnessed by [6] in the context of sparse recovery when the standard restricted isometry 
property is absent.

Proposition 2. Given matrices X, Z ∈ R
N1×N2 and integers r ≤ s with s + 2r ≤

min{N1, N2}, if rank(X) ≤ r, then

‖X − Hs(Z)‖F ≤ η
(s

r

)
‖X − Z‖F , where η(κ) := 1 +

√
8

κ + 1 −→
κ→∞

1. (9)

The second side result says that, under the modified rank-restricted isometry property 
(5), a low-rank matrix X is well approximated by forming A∗ applied to the sign vector 

5 The expression of η(κ) in (9) is certainly not optimal, but it suffices for our purpose.
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of A(X) and then truncating its singular value decomposition. A closely connected result 
can found in [7, Lemma 3].6

Proposition 3. Given a matrix X ∈ R
N1×N2 , integers r ≤ s with s + r ≤ min{N1, N2}, 

and a vector e ∈ R
m, if rank(X) ≤ r and if the modified rank-restricted isometry property 

(5) holds with ratio γs+r = βs+r/αs+r, then

‖X − μHs(A∗sgn(AX + e))‖F ≤
(

1 − 1
2γ2

s+r

+ τ

√
r

s + r

)
‖X‖F + 6τ2

βs+r
‖e‖1, (10)

provided the stepsize μ satisfies, for some τ ≥ 1,

μ = ‖AX + e‖1

ν
with

β2
s+r

τ
≤ ν ≤ β2

s+r and ν ≥ ‖Hs(A∗sgn(AX + e))‖2
F . (11)

Propositions 2 and 3 both rely on a purely matrix-analytic observation stated below.

Lemma 4. Given matrices A, B ∈ R
N1×N2 and integers i, j, k with i ≤ k and k + j ≤

min{N1, N2}, if rank(A) ≤ j, then

|〈A, B − Hk(B)〉F | ≤
√

j

k + j − i
‖A‖F ‖Hk+j(B) − Hi(B)‖F . (12)

Proof. We apply Von Neumman’s trace inequality, take into account the facts that 
σ�(A) = 0 for � > j and that σ�(B − Hk(B)) = σk+�(B), and finally use Cauchy–
Schwarz inequality to write

|〈A, B − Hk(B)〉F | ≤
∑
�≥1

σ�(A)σ�(B − Hk(B)) (13)

=
j∑

�=1

σ�(A)σk+�(B)

≤
[

j∑
�=1

σ�(A)2

]1/2 [ j∑
�=1

σk+�(B)2

]1/2

.

For λ1 ≥ λ2 ≥ · · · ≥ λN , N := min{N1, N2}, it is easy to verify that

j∑
�=1

λk+� ≤ j

k + j − i

k+j−i∑
�=1

λi+�. (14)

By applying this inequality with λh = σh(B)2 and substituting into (13), we obtain

6 [7, Lemma 3] is not directly exploitable due to the obstruction described in footnote 4.
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|〈A, B − Hk(B)〉F | ≤ ‖A‖F

[
j

k + j − i

k+j−i∑
�=1

σi+�(B)2

]1/2

(15)

=

√
j

k + j − i
‖A‖F ‖Hk+j(B) − Hi(B)‖F ,

which is the announced result. �
We are now in a position to fully justify Propositions 2 and 3.

Proof of Proposition 2. We start by noticing that

‖X − Hs(Z)‖2
F = 〈X − Hs(Z), X − Z〉F + 〈X − Hs(Z), Z − Hs(Z)〉F (16)

≤ 1
2‖X − Hs(Z)‖2

F + 1
2‖X − Z‖2

F + 〈X − Hs(Z), Z − Hs(Z)〉F .

Thus, after rearranging the terms, we have

‖X − Hs(Z)‖2
F ≤ ‖X − Z‖2

F + 2〈X − Hs(Z), Z − Hs(Z)〉F (17)

= ‖X − Z‖2
F + 2〈X − Hr(Z), Z − Hs(Z)〉F ,

where the last equality followed from the fact that 〈H�(Z), Z − Hs(Z)〉F = 0 whenever 
� ≤ s. We apply Lemma 4 with A = X − Hr(Z), B = Z, i = r, j = 2r, and k = s. This 
allows us to write

〈X − Hr(Z), Z − Hs(Z)〉F ≤
√

2r

s + r
‖X − Hr(Z)‖F ‖Hs+2r(Z) − Hr(Z)‖F (18)

≤
√

2r

s + r
‖X − Hr(Z)‖F ‖Z − Hr(Z)‖F .

In view of ‖Z − Hr(Z)‖F ≤ ‖Z − X‖F (recall that Hr(Z) is a best approximant of rank 
at most r to Z) and of ‖X − Hr(Z)‖F ≤ ‖Z − Hr(Z)‖F + ‖Z − X‖F ≤ 2‖Z − X‖F , we 
now arrive at

〈X − Hr(Z), Z − Hs(Z)〉F ≤ 2
√

2r

s + r
‖Z − X‖2

F . (19)

Substituting (19) into (17) leads to

‖X − Hs(Z)‖2
F ≤

(
1 + 4

√
2r

s + r

)
‖Z − X‖2

F ≤
(

1 + 2
√

2r

s + r

)2

‖X − Z‖2
F , (20)

which yields the desired result after taking the square root on both sides. �



S. Foucart, S. Subramanian / Linear Algebra and its Applications 572 (2019) 117–134 123
Proof of Proposition 3. For convenience, we denote w := sgn(AX + e) throughout 
the proof. Before addressing the bound (10) on ‖X − μHs(A∗w)‖F , we remark that 
‖Hs(A∗w)‖2

F ≤ β2
s+r, so that (11) does not feature a vacuous requirement. In fact, a 

stronger inequality holds, namely

‖Hs+r(A∗w)‖F ≤ βs+r. (21)

This follows from the observation that

‖Hs+r(A∗w)‖2
F = 〈Hs+r(A∗w), Hs+r(A∗w)〉F = 〈A∗w, Hs+r(A∗w)〉F (22)

= 〈w, A(Hs+r(A∗w))〉 ≤ ‖A(Hs+r(A∗w))‖1

≤ βs+r‖Hs+r(A∗w)‖F .

Turning now to ‖X − μHs(A∗w)‖F , we expand its square to obtain

‖X − μHs(A∗w)‖2
F = ‖X‖2

F − 2μ〈X, Hs(A∗w)〉F + μ2‖Hs(A∗w)‖2
F (23)

≤ ‖X‖2
F − 2μ〈X, Hs(A∗w)〉F + μ2ν.

To deal with the inner product appearing on the right-hand side of (23), we write

〈X, Hs(A∗w)〉F = 〈X, A∗w〉F − 〈X, A∗w − Hs(A∗w)〉F , (24)

while noticing that

〈X, A∗w〉F =〈AX, sgn(AX + e)〉 = ‖AX + e‖1 −〈e, sgn(AX + e)〉 ≥‖AX + e‖1 − ‖e‖1
(25)

and that Lemma 4 applied with A = X, B = A∗w, i = 0, j = r, and k = s yields

|〈X, A∗w − Hs(A∗w)〉F | ≤
√

r

s + r
‖X‖F ‖Hs+r(A∗w)‖F . (26)

Taking (21) into account and making use of (25) and (26) in (24), we derive

〈X, Hs(A∗w)〉F ≥ ‖AX + e‖1 −
[
‖e‖1 + βs+r

√
r

s + r
‖X‖F

]
. (27)

Substituting (27) into (23) and using (11) now gives

‖X − μHs(A∗w)‖2
F ≤ ‖X‖2

F − 2μ‖AX + e‖1 + μ2ν +2μ

[
‖e‖1 + βs+r

√
r

s + r
‖X‖F

]
(28)
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= ‖X‖2
F − ‖AX + e‖2

1
ν

+2μ

[
‖e‖1 + βs+r

√
r

s + r
‖X‖F

]

≤ ‖X‖2
F − ‖AX + e‖2

1
β2

s+r

+ 2τ‖AX + e‖1

β2
s+r

[
‖e‖1 + βs+r

√
r

s + r
‖X‖F

]
.

In view of the inequalities ‖AX +e‖2
1 ≥ |‖AX‖1 − ‖e‖1|2 = ‖AX‖2

1−2‖AX‖1‖e‖1+‖e‖2
1

and ‖AX + e‖1 ≤ ‖AX‖1 + ‖e‖1, we arrive at

‖X − μHs(A∗w)‖2
F ≤ a + b‖e‖1 + c‖e‖2

1,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a := ‖X‖2
F − ‖AX‖2

1
β2

s+r

+ 2τ

βs+r

√
r

s + r
‖AX‖1‖X‖F ,

b := 2(1 + τ)‖AX‖1

β2
s+r

+ 2τ

βs+r

√
r

s + r
‖X‖F ,

c := 2τ − 1
β2

s+r

.

(29)

The bounds ‖AX‖1 ≥ αs+r‖X‖F and ‖AX‖1 ≤ βs+r‖X‖F imply that

⎧⎪⎪⎨
⎪⎪⎩

a ≤
(

1 − 1
γ2

s+r

+ 2τ

√
r

s + r

)
‖X‖2

F ≤
(

1 − 1
2γ2

s+r

+ τ

√
r

s + r

)2

‖X‖2
F ,

b ≤ 2
βs+r

(
1 + τ + τ

√
r

s + r

)
‖X‖F ≤ 2τ

βs+r

(
1 + τ + τ

√
r

s + r

)
‖X‖F .

(30)

Since we also have

c ≤ τ2

β2
s+r

≤
τ2
(

1 + τ + τ

√
r

s + r

)2

β2
s+r

(
1 − 1

2γ2
s+r

+ τ

√
r

s + r

)2 , (31)

we deduce that ‖X − μHs(A∗w)‖2
F is bounded above by

⎡
⎢⎢⎣
(

1 − 1
2γ2

s+r

+ τ

√
r

s + r

)
‖X‖F +

τ

(
1 + τ + τ

√
r

s + r

)

βs+r

(
1 − 1

2γ2
s+r

+ τ

√
r

s + r

)‖e‖1

⎤
⎥⎥⎦

2

. (32)

It remains to take the square root on both sides to obtain the desired result, after noticing 
that 1 +τ+τ

√
r/(s + r) ≤ 3τ and 1 −1/(2γ2

s+r) +τ
√

r/(s + r) ≥ 1 −1/(2γ2
s+r) ≥ 1/2. �

3. Stability and robustness of the reconstruction

This section is devoted to the proof of Theorem 1 — in fact, of the more general 
theorem stated below, which incorporates low-rank defect and measurement error.
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Theorem 5. Let A : RN1×N2 → R
m be a measurement map satisfying the modified rank-

restricted isometry property (5) of order γt+s+r ≤ γ, where

s = 100γ4r and t = 800γ12s. (33)

For all X ∈ R
N1×N2 and all e ∈ R

m, the iterative hard thresholding algorithm (8) applied 
to y = AX + e with stepsize

μn = ‖y − AXn‖1

max
{

‖Ht(A∗sgn(y − AXn))‖2
F ,

1
4γ2

‖A(Ht(A∗sgn(y − AXn)))‖2
1

‖Ht(A∗sgn(y − AXn))‖2
F

} , (34)

produces a sequence (Xn)n≥0 whose cluster points X� approximate Hr(X) with error

‖Hr(X) − X�‖F ≤ d‖A(X − Hr(X)) + e‖1, (35)

where the constant d depends only on γ and βt+s+r.

A number of comments are on order before giving the full justification of Theorem 5.

The parameters s and t. The constants involved in (33) are admittedly huge. They have 
been chosen to look nice and to make the theory work, but they do not reflect reality. 
In practice, the numerical experiments carried out in Section 4 suggest that they can be 
taken much smaller.

The idealized situation. Theorem 1 is truly a special case of Theorem 5 where one assumes 
that rank(X) ≤ r and e = 0. Not only does (35) guarantees exact recovery in this case, 
but the stepsize (34) indeed reduces to μn = ‖y − AXn‖1/‖Ht(A∗sgn(y − AXn))‖2

F

when rank(X) ≤ r and e = 0. This is valid because, on the one hand,

1
4γ2

‖A(Ht(A∗sgn(y − AXn)))‖2
1

‖Ht(A∗sgn(y − AXn))‖2
F

≤ 1
4γ2 β2

t ≤ 1
4γ2 β2

t+s+r ≤ α2
t+s+r

4 , (36)

and, on the other hand, ‖Ht(A∗sgn(y − AXn))‖2
F ≥ ‖Hs+r(A∗sgn(y − AXn))‖2

F ≥
α2

t+s+r, since

αt+s+r‖X − Xn‖F ≤ ‖A(X − Xn)‖1 = 〈A(X − Xn), sgn(A(X − Xn))〉 (37)

= 〈X − Xn, A∗sgn(y − AXn)〉

≤
s+r∑
�=1

σ�(X − Xn)σ�(A∗sgn(y − AXn))

≤ ‖X − Xn‖F ‖Hs+r(A∗sgn(y − AXn))‖F .
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The stepsize. The selection made in (34) is certainly not the only possible one. For 
instance, choosing μn = ‖y−AXn‖1/β2

t+s+r would also work. We favored the option (34)
because it does not necessitate an estimation of βt+s+r, because it seems to perform 
better in practice, and because it is close to optimal in the sense that the choice μn =
‖y−AXn‖1/‖Ht(A∗sgn(y−AXn))‖2

F , made in the idealized situation, almost minimizes 
the expression (23) when taking (27) into account. Let us also remark that there is some 
leeway around an admissible μn, namely replacing it by μ′

n = (1 + δn)μn for a suitably 
small relative variation δn does not compromise the end result, as it only creates a minor 
change in the proof (specifically, in (57)). The reader is invited to fill in the details.

Number of iterations. The proof of Theorem 5 actually provides error estimates through-
out the iterations. For instance, in the idealized situation where rank(X) ≤ r and e = 0, 
it reveals that there is a constant ρ < 1 such that

‖X − Xn‖F ≤ ρn‖X‖F for all n ≥ 0. (38)

Thus, for a prescribed accuracy ε, we have ‖X − Xn‖F ≤ ε in only n = �ln(‖X‖F /ε)/
ln(1/ρ)� iterations.

A stopping criterion. Although Theorem 5 states a recovery guarantee for cluster points 
of the sequence (Xn)n≥0, one can stop the iterative process as soon as the maximum in 
(34) is achieved by the second term defining it (provided this occurs). Precisely, if

‖A(Ht(A∗sgn(y − AXn)))‖1 ≥ 2γ‖Ht(A∗sgn(y − AXn))‖2
F , (39)

then the conclusion that

‖Hr(X) − Xn‖F ≤ d‖e′‖1, e′ := A(X − Hr(X)) + e (40)

is already acquired. Indeed, the condition (39) imposes that

2γ‖Ht(A∗sgn(y − AXn))‖2
F ≤ βt+s+r‖Ht(A∗sgn(y − AXn))‖F , (41)

i.e., that

‖Ht(A∗sgn(y − AXn))‖F ≤ βt+s+r

2γ
. (42)

We then derive (as in (37)) that

〈Hr(X) − Xn, A∗sgn(y − AXn)〉 ≤ ‖Hr(X) − Xn‖F ‖Hs+r(A∗sgn(y − AXn))‖F (43)

≤ βt+s+r

2γ
‖Hr(X) − Xn‖F .
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Moreover, keeping on mind that y = A(Hr(X)) + e′, we notice that

〈Hr(X) − Xn, A∗sgn(y − AXn)〉 = 〈A(Hr(X) − Xn), sgn(y − AXn)〉 (44)

= 〈y − AXn − e′, sgn(y − AXn)〉 ≥ ‖y − AXn‖1 − ‖e′‖1

≥ ‖A(Hr(X) − Xn)‖1 − 2‖e′‖1

≥ αt+s+r‖Hr(X) − Xn‖F − 2‖e′‖1

≥ βt+s+r

γ
‖Hr(X) − Xn‖F − 2‖e′‖1.

Combining (43) and (44) yields

‖Hr(X) − Xn‖1 ≤ 4γ

βt+s+r
‖e′‖1. (45)

Form of the error estimate. In the realistic situation where X is not exactly low-rank 
and measurement error occurs, one customarily sees recovery guarantees of the type

‖X − X�‖F ≤ C√
r

min
rank(Z)≤r

‖X − Z‖∗ + D‖e‖1. (46)

Our iterative hard thresholding algorithm (with parameter r replaced by 2r) also allows 
for such an estimate, which is derived using the sort-and-split technique. We omit the 
details, as the argument is quite classical and can be found in full in [6] for the vector 
case.

The norm on the measurement error. The appearance of ‖e‖1 in (46) might seem surpris-
ing, as one usually encounters ‖e‖2 when the measurement maps satisfies the standard 
rank-restricted isometry property. But there is no discrepancy here, as this is just a mat-
ter of normalization. Indeed, for a measurement map G : RN1×N2 → R

m generated as 
in (7) with independent standard normal random variables Gi,(k,�), let us suppose that 
inaccurate measurements are given by y = GX + u. On the one hand, the normalized 
version of G that satisfies the standard rank-restricted isometry property is A = G/

√
m, 

in which case the measurements take the form y/
√

m = AX + e with e = u/
√

m, so 
that ‖e‖2 = ‖u‖2/

√
m appears in the error estimate. On the other hand, the normalized 

version of G that satisfies the modified rank-restricted isometry property is A = G/m, 
in which case the measurements take the form y/m = AX + e with e = u/m, so that 
‖e‖1 = ‖u‖1/m appears in the error estimate. The latter is in fact better than the 
former, by virtue of ‖u‖1 ≤ √

m‖u‖2 for u ∈ R
m.

Proof of Theorem 5. Without loss of generality, we can assume that X has rank at most 
r and aim at proving that
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‖X − X�‖F ≤ d‖e‖1. (47)

Indeed, we can in general interpret the measurements y = AX + e made on X as 
measurements y = A(Hr(X)) + e′, e′ := A(X − Hr(X)) + e, made on the matrix Hr(X)
which has rank is at most r. The exact low-rank result would then yield

‖Hr(X) − X�‖F ≤ d‖e′‖1 = d‖A(X − Hr(X)) + e‖1, (48)

as desired. So we assume from now on that rank(X) ≤ r. We are going to establish the 
existence of ρ < 1 such that, for all n ≥ 0,

‖X − Xn+1‖F ≤ ρ‖X − Xn‖F + d′‖e‖1, (49)

which immediately implies that, for all n ≥ 0,

‖X − Xn‖F ≤ ρn‖X‖F + d‖e‖1, d := d′

1 − ρ
. (50)

In particular, (47) is obtained from (50) by letting n → ∞. It remains to prove (49) for 
a given integer n ≥ 0. Since Xn+1 = Hs(Xn + μnHt(A∗sgn(y − AXn))), Proposition 2
implies

‖X − Xn+1‖F ≤ ρ′‖X − (Xn + μnHt(A∗sgn(y − AXn)))‖F , ρ′ := 1 +
√

8r

s + r
> 1.

(51)

Next, we notice that the stepsize μn takes the form

μn = ‖A(X − Xn) + e‖1

νn
, (52)

where the denominator

νn := max
{

‖Ht(A∗sgn(A(X − Xn) + e))‖2
F ,

1
4γ2

‖A(Ht(A∗sgn(A(X − Xn) + e)))‖2
1

‖Ht(A∗sgn(A(X − Xn) + e))‖2
F

}
(53)

clearly satisfies

νn ≥ ‖Ht(A∗sgn(A(X − Xn) + e))‖2
F , (54)

as well as

β2
t+s+r

4 ≤ νn ≤ β2
t+s+r. (55)
4γ
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The latter inequalities follow from ‖Ht(A∗sgn(A(X − Xn) + e))‖2
F ≤ β2

t ≤ β2
t+s+r

(obtained in the same way as (21)) and from

1
4γ2

‖A(Ht(A∗sgn(A(X − Xn) + e)))‖2
1

‖Ht(A∗sgn(A(X − Xn) + e))‖2
F

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≤ 1
4γ2 β2

t+s+r ≤ β2
t+s+r,

≥ 1
4γ2 α2

t+s+r ≥ β2
t+s+r

4γ4 .

(56)

Therefore, according to Proposition 3, we obtain

‖X − (Xn + μnHt(A∗sgn(y − AXn)))‖F (57)

= ‖(X − Xn) − μnHt(A∗sgn(A(X − Xn) + e)))‖F

≤ ρ′′‖X − Xn‖F + 96γ8

βt+s+r
‖e‖1, ρ′′ := 1 − 1

2γ2 + 4γ4
√

s + r

t + s + r
< 1,

with 4γ4
√

(s + r)/(t + s + r) < 1/(2γ2) being justified by our choice of s and t. In fact, 
our choice of s and t guarantees that

ρ := ρ′ρ′′ ≤
(

1 +
√

8r

s

)(
1 − 1

2γ2 + 4γ4
√

2s

t

)
≤ 1 − 1

2γ2 + 4γ4
√

2s

t
+
√

8r

s
(58)

≤ 1 − 1
2γ2 + 1

5γ2 +
√

2
5γ2 = 1 − 3 − 2

√
2

10γ2 < 1.

Combining (51) and (57), we finally derive that

‖X − Xn+1‖F ≤ ρ‖X − Xn‖F + d′‖e‖1, d′ := 96ρ′γ8

βt+s+r
. (59)

This establishes (49) and completes the proof. �
4. Numerical validation

The perspective adopted in this article is mostly theoretical, with a declared goal 
consisting in uncovering iterative thresholding algorithms that provide alternatives to 
nuclear norm minimization when the standard rank-restricted isometry property does not 
hold. The modest experiments carried out with our proposed algorithm are encouraging, 
although we shall refrain from making too optimistic claims about its performance. In 
what follows, we only focus on measurements obtained by Gaussian rank-one projections 
of type (6). Note that in this case our algorithm starts with X0 = 0 and iterates the 
scheme

Xn+1 = Hs

(
Xn + μnHt

(
m∑

sgn(yi − a∗
i Xnbi)bia∗

i

))
. (60)
i=1
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Fig. 1. Influence of s and t on the success of algorithm (60).

All the experiments performed below can be reproduced by downloading the matlab

file linked to this article from the first author’s webpage.

Influence of s and t. In order to derive theoretical guarantees about the success of the 
algorithm, the parameters s and t appearing in (60) can be chosen according to (33). This 
of course does not mean that other choices are unsuitable. Fig. 1 reports on the effect of 
varying these parameters. We observe that successful recoveries occur more frequently 
when s = r, which makes intuitive sense since the rank-s matrix Xn is supposed to 
approximate the rank-r matrix X. We also observe that successful recoveries occur more 
frequently when t increases. The largest value t can take is N = min{N1, N2}, in which 
case the hard thresholding operator does not do anything. The default value of the 
parameters are therefore s = r and t = N , meaning that Ht is absent and that one 
singular value decomposition is saved per iteration.

Performance. We now compare the low-rank recovery capability of the algorithm (60)
with two other algorithms, namely with nuclear norm minimization (NNM) and with 
the normalized iterative hard thresholding (NIHT) algorithm proposed in [13]. In fact, 
we test two versions of our modified iterative hard thresholding (MIHT) algorithm: one 
with the default parameters as discussed above, and one with parameters s = r and 
t = 2r — this is another natural choice, as Ht(A∗sgn(y − AXn)) is supposed to ap-
proximate the rank-2r matrix X − Xn. Judging from Fig. 2, NNM is seemingly (and 
surprisingly) outperformed by our default MIHT algorithm. The comparison with NIHT 
is less straightforward. With few measurements available, NIHT does best, but when 
the number of measurements is large enough for the recoveries by NNM and MIHT 
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Fig. 2. Frequency of successful recoveries as a function of the number of Gaussian rank-one measurements for 
nuclear norm minimization, normalized iterative hard thresholding, and modified iterative hard thresholding 
with default parameters and with parameters s = r and t = 2r.

to be certain, recovery by NIHT does not occur consistently. We interpret this phe-
nomenon as a reflection of the theory. Indeed, Gaussian rank-one projections of type (6)
do not obey the standard rank-restricted isometry property, which would have guaran-
teed the success of NIHT (see [13]), but they obey the modified rank-restricted isometry 
property (5), which does guarantee the success of NNM (see [1]) and of MIHT (this 
article).

Speed. The next experiment compares the four algorithms previously considered in terms 
of execution time and number of iterations (when applicable). Fig. 3 shows, as expected, 
that iterative algorithms are much faster than nuclear norm minimization: in this ex-
periment (which only takes successful recoveries into account), the execution time is 
Θ(Nω) with ω ≈ 4 for NNM, ω ≈ 1 for NIHT, and ω ≈ 2.4 for MIHT. The execu-
tion times for the two versions of MIHT essentially differ by a factor of two, due to the 
fact that the default version performs only one singular value decomposition per iter-
ation instead of two. The number of iterations is roughly similar for the two versions. 
It is much lower for NIHT, which explains its superiority in terms of overall execution 
time.

Robustness. The final experiment is designed to examine the effect on the recovery of 
errors e ∈ R

m in the measurements y = A(X) + e made on low-rank matrices X. In 
particular, we wish to certify the statement (35) that the recovery error, measured in 
Frobenius norm, is at most proportional to the measurement error, measured in �1-norm. 
The results displayed in Fig. 4 confirm the validity of this statement for our algorithm 
(60) with default parameters and with parameters s = r and t = 2r, as well as for the 
normalized iterative hard thresholding algorithm.
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Fig. 3. Execution time and number of iterations as a function of the dimension N = N1 = N2.

Fig. 4. Frobenius norm of the recovery error as a function of the �1-norm of the measurement error.

5. Explanation of the modified rank-restricted isometry property

In this appendix, we point out that the modified rank-restricted isometry property 
(5) is not only valid for rank-one Gaussian measurements, as already established in 
[1], but also for subexponential measurements of type (7). The justification essentially 
follows the arguments put forward in [5]. First, fixing a matrix Z ∈ R

N1×N2 , viewed 
as its vectorization z = vec(Z) ∈ R

N1N2 , [5, Theorem 3.1] guarantees a concentration 
inequality of the form

Pr (|‖A(Z)‖1 − �Z�| > ε � Z�) ≤ 2 exp(−κε2m). (61)
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The constant κ depends on the subexponential distribution, and so does the slanted 
norm, although it is comparable to the Frobenius norm in the sense that (see [5, Propo-
sition 2.3])

c‖Z‖F ≤ �Z� ≤ C‖Z‖F for all Z ∈ R
N1×N2 (62)

for some constants c, C > 0 depending on the subexponential distribution. The next step 
(see the proof of [5, Theorem 4.1]) is a covering argument showing that (61) extends to 
a uniform concentration inequality of the form

Pr
(∣∣‖A(Z)‖1 − �Z �

∣∣ > δ � Z � for some Z with rank(Z) ≤ r
)

(63)

≤ 2 exp(−κδ̄2m + ln(Nr(δ̄))),

where Nr(δ̄), δ̄ := δ/3, denotes the size of a δ̄-net for the set of rank-r matrices with 
slanted norm at most 1. We now recall the key observation from [2] that the set of rank-r
matrices in RN1×N2 with norm at most 1 has a covering number Nr(δ̄) ≤ (c1/δ̄)c2rNmax , 
Nmax := max{N1, N2}, which is valid for the Frobenius norm and, in view of (62), for 
the slated norm, too. This implies a modified rank-restricted isometry property of the 
form

(1 − δ) � Z� ≤ ‖A(Z)‖1 ≤ (1 + δ) � Z � whenever rank(Z) ≤ r, (64)

which occurs with failure probability at most

2 exp(−κδ̄2m + ln(c1/δ̄)c2rNmax) ≤ 2 exp(−κδ̄2m/2) ≤ 2 exp(−κ′δ2m), (65)

provided ln(c1/δ̄)c2rNmax ≤ κ′δ̄2m/2, i.e., m ≥ C(δ)rNmax. Finally, (64) turns into (5)
by virtue of (62).
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