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Rank-restricted isometry properties

1. Introduction

This article is concerned with the recovery of matrices X € RN XNz of rank r < N :=

min{Ny, No} from compressive linear measurements
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y=AX) eR™ (1)

with a number m of measurements scaling like r max{Ny, No} instead of NjNy. It is
known that such a low-rank recovery task can be successfully accomplished when the
linear map A : RM*N2 5 R™ gatisfies a rank-restricted isometry property [2], e.g. by
performing nuclear norm minimization [11], i.e., by outputting a solution of

N
minimize [|Z[|. := Y ok(Z)  subject to A(Z) =y, (2)
k=1

ZERNl X No

or by executing an iterative hard thresholding scheme [8,10], i.e., by outputting the limit
of the sequence (X,,),>0 defined by Xy = 0 and

Xnt1 = Ho (X + p A (y — AX,)). (3)
Above, and in the rest of the article,

e 01(Z) > --- > on(Z) denote the singular values of a matrix Z € RN1xNz;

o the linear map A* : R™ — RN >Nz gtands for the adjoint of A, defined by the
property that (A*(u),Z)r = (u, A(Z)) for all u € R™ and all Z € RN1*Nz;

e H, represents the operator of best approximation by matrices of rank at most r,
so that H.(Z) = Y ,_,00(Z)uevj if Z = Zévzl o¢(Z)uyvy is the singular value
decomposition of Z.

Our focus, however, is put on measurement maps that do not necessarily satisfy the
standard rank-restricted isometry property, but rather a modified rank-restricted isome-
try property featuring the ¢;-norm as an inner norm. Precisely, we consider measurement
maps A : RN1*N2 4 R™ with universally bounded rank-restricted isometry ratio

= s, (4)

o
where «,., 3, denote the optimal constants «, 3 > 0 such that

al|Zl|F < A < BIZ|F for all Z € RM>*N2 with rank(Z) <r.  (5)

For instance, it was shown in [1]? that ~, < 3 holds with high probability in the case of
measurements obtained by rank-one projections of the form?®

A(Z)z:a:(sz, z:l,,m, (6)

2 Similar statements also appear in [3] and [4] in the cases r = 1 and r = 2, respectively.
3 These are called rank-one projections because a}Zb; is the Frobenius inner product (Z,a;b})p =
tr(b;ajZ) of the matrix Z with the rank-one matrix a;b; .
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for some independent standard Gaussian vectors ai,...,a,, € RM and by,...,b,, €
RNz provided m 2> rmax{Ny, No}. Moreover, we will briefly justify in Section 5 that,
in the case of measurements given by

A(Z); = ZAi,(k,e)Zk,e, i=1,...,m, (7)

kL

for some independent identically distributed mean-zero subexponential random vari-
ables A; (1,0 with variance 1 /m, say, there are constants ¢,C' > 0 depending on the
subexponential distribution such that +, < ¢ holds with high probability as soon as
m > Crmax{Ni, No}.

The article [1] also showed that, under the modified rank-restricted isometry property
(5), recovery of rank-r matrices X € RVM*N2 from y = A(X) € R™ can be achieved by
the nuclear norm minimization (2). Here, we highlight the question:

Under the modified rank-restricted isometry property, is it possible to achieve low-rank
recovery by an iterative hard thresholding algorithm akin to (3)?

We shall answer this question in the affirmative. The argument resembles the one devel-
oped in [6] in the context of sparse recovery, but some subtle matrix-analytic refinements
are necessary.

The iterative hard thresholding scheme we propose consists in outputting the limit of
the sequence (X,,)n>0 defined by Xy = 0 and

Xn+1 = Hs(Xn + MnHt(A*Sgn(y - AX”)))? (8)

with parameters s, t, and u, to be given explicitly later. If H; did not appear, the
scheme (8) would intuitively be interpreted as a (sub)gradient descent steps for the
function Z — ||y — AZ||1, followed by some singular value thresholding. The appearance
of H; is the main adjustment distinguishing the scheme (8) from the iterative hard
thresholding scheme proposed in [6] (it also leads to an altered stepsize u,,). For the more
classical iterative hard thresholding scheme, a similar adjustment was already exploited
in [9], where the roles of Hs and H; were to provide ‘tail’ and ‘head’ approximations,
respectively. This is not what justifies the appearance of H; here.*

Let us now state our most representative result. To reiterate, it provides our newly
proposed algorithm with theoretical guarantees for the success of recovery of low-rank

4 In fact, the experiments performed in Section 4 suggest that H; is not necessary, but we were unable to
prove the recovery of X using the algorithm ‘without H;’. In the vector case, one avoids H; by relying on the
observation that H,(z) = Hs(z7) if the index set T' contains the support of Hs(z). In the matrix case, one
would seemingly require the counterpart statement that H,(Z) = Hs;(P7(Z)), Pr denoting the orthogonal
projection onto a space 7 containing the space span{uivyj,...,u,v.} obtained from the singular value
decomposition Zé\,:l o¢(Z)ugvy of Z. Such a statement is unfortunately invalid — take e.g. Z = {g 30(:}
with [¢|] < 1, so that H{(Z) = [8 8}, and take 7T = span{[é 8} s [1 H}, so that Pr(Z) = [i g] and

H,(Pr(Z)) # [g 8] (otherwise rank ([2 2]) =1).
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matrices acquired via rank-one projections. Other iterative thresholding algorithms do
not possess such guarantees, since their analysis exploits the standard rank-restricted
isometry property and hence does not apply to rank-one projections. We also emphasize
that the result is valid beyond rank-one projections, since it only relies on the modified
rank-restricted isometry property (5).

Theorem 1. Let A : RN XNz R™ be q measurement map satisfying the modified
rank-restricted isometry property (5) of order cor with ratio Ye,r < 7. Then any ma-
triz X € RN1XN2 of rank at most v acquired by y = A(X) can be ezactly recovered as
the limit of the sequence (X,,)n>0 produced by (8) with parameters s = c1r, t = cor, and
pn = |ly — AX, |11/ || Hi (A*sgn(y — AX,,)||%. The constants co, c1,ca > 0 depend only on
v.

Theorem 1 is a simplified version of our main result (Theorem 5), which covers the
more realistic situation where the matrices X € RN¥1*N2 to be recovered are not exactly
low-rank and where the measurements are not perfectly accurate, i.e., y = AX + e with
a nonzero vector e € R”. The full result will be stated and proved in Section 3. In
preparation, we collect in Section 2 the matrix-analytic tools that are essential to our
argument. In Section 4, we present some modest numerical experiments demonstrating
some strong points of our iterative hard thresholding algorithm. In Section 5, we close
the article with a sketched justification of the modified rank-restricted isometry property
for subexponential measurement maps.

2. Matrix-analytic ingredients

The proof of Theorem 1 and of its generalization (Theorem 5) is based on the two
technical side results given as Propositions 2 and 3 below. The first side result provides
a (loose”) quantitative confirmation to the intuitive fact that || X — H(Z)|| » approaches
|X —Z|| ¢ as s grows. The (tight) vector version of this assertion, due to [12], was already
harnessed by [6] in the context of sparse recovery when the standard restricted isometry
property is absent.

Proposition 2. Given matrices X,Z € RN1xXN2 gpnd integers r < s with s + 2r <
min{ Ny, No}, if rank(X) < r, then

s 8
— < — — = .
IX~H@lr <n(5)IX=Zle,  where () =1+ /=5 — 1. ()

The second side result says that, under the modified rank-restricted isometry property
(5), a low-rank matrix X is well approximated by forming .4* applied to the sign vector

5 The expression of n(k) in (9) is certainly not optimal, but it suffices for our purpose.
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of A(X) and then truncating its singular value decomposition. A closely connected result
can found in [7, Lemma 3].°

Proposition 3. Given a matriz X € RN XN integers r < s with s + 1 < min{Ny, No},
and a vector e € R™, ifrank(X) < r and if the modified rank-restricted isometry property
(5) holds with ratio Ysir = Pstr/Ustr, then

. 1 672
IX — pHs(A*sgn(AX +e))||r < <1 — 7., + 74/ Py ) X+ + 5S+T|\e||1, (10)

provided the stepsize i satisfies, for some T > 1,

[ AX te|y
14

with S+T <y< 59+T and v > ||HS(A*sgn(AX+e))H%. (11)

Propositions 2 and 3 both rely on a purely matrix-analytic observation stated below.

Lemma 4. Given matrices A,B € RN1*N2 and integers i, 5,k with i < k and k + j <
min{Ny, No}, if rank(A) < j, then

(A, B — Hi(B))r| < AlF ([ Het(B) — Hi(B)]| . (12)

k+]

Proof. We apply Von Neumman’s trace inequality, take into account the facts that
o¢(A) = 0 for £ > j and that 0y(B — Hi(B)) = 0,+¢(B), and finally use Cauchy—
Schwarz inequality to write

(A, B~ Hp(B))r| <> ou(A)oy(B — Hy(B)) (13)
£>1

=" o A)or(B)
=1

1/2

IN

j 12
[Z U@(A)2‘| [Z O'k+g(B
=1

For Ay > A > -+ > An, N := min{Ny, N2}, it is easy to verify that

k+j—1

Z)\k+z < k+ . — Z Aite- (14)

By applying this inequality with A\, = 04 (B)? and substituting into (13), we obtain

6 [7, Lemma 3] is not directly exploitable due to the obstruction described in footnote 4.
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ktj—i 1/2

J 2
ﬁ Z Uz‘+£(B)

I3
J
— [ — H..:(B)— H;,(B s
”k j—iH | 7| Hy5(B) B)llF

which is the announced result. O

(A, B — Hy(B))r| < [|AllF (15)

We are now in a position to fully justify Propositions 2 and 3.
Proof of Proposition 2. We start by noticing that

X — Hy(Z)|I

—~

X_Hs(z)aX_Z>F+<X_Hs(z)vZ_Hs(Z)>F (16)

1
< SIX = Ho(2)l[F + SI1X = ZI[E + (X — H(Z),Z = Hy(Z)) p.

DN | =

Thus, after rearranging the terms, we have

= HX - Z”%‘ + 2<X - H’r(z)v Z— HS(Z)>F7
where the last equality followed from the fact that (H¢(Z),Z — Hs(Z))r = 0 whenever

¢ < s. We apply Lemma 4 with A =X — H,.(Z), B=2Z,i=r, j=2r, and k = s. This
allows us to write

(X —H.(Z),Z - Hy(Z))r </ ::TIIX — Ho(Z)|| || Hsy2r(Z) — He(Z)]|r (18)

2r
S+r

< IX = H(Z)||p|Z — He(Z)]| -

In view of || Z — H.(Z)||r < ||Z — X||r (recall that H,.(Z) is a best approximant of rank
at most r to Z) and of | X — H,(Z)||r < |Z — H.(Z)||r + |Z — X||Fr < 2||Z — X||F, we
now arrive at

(X = H.(2), %~ HL(Z))p < 24| |12~ X3 (19)

Substituting (19) into (17) leads to

2
2r 2r
. 2 / . 2 / 712
[IX HS(Z)||F_<1+4 s+r> 1z X||F_<1+2 s+r> IX-Z|%, (20)

which yields the desired result after taking the square root on both sides. O
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Proof of Proposition 3. For convenience, we denote w := sgn(AX + e) throughout
the proof. Before addressing the bound (10) on || X — puHs(A*W)||#, we remark that
|Hs(A*w)||% < B2, so that (11) does not feature a vacuous requirement. In fact, a
stronger inequality holds, namely

||HS+T(A*W)HF < ﬁerr- (21)

This follows from the observation that

[Hosr (A W) |5 = (Hopr (A" W), Hyyr (A*W)) p = (AW, Hopr (A'W)p - (22)
(W, A(Hsyr (A'W))) < [A(Hoqr (A"W)) |1
= ﬁs+rHHs+r(A*W)”F'

Turning now to || X — pHs(A*W)||r, we expand its square to obtain

X — pH(A*W) |15 = X% — 20(X, Ho(A*W)) p + 1% || Hs (A*W) |7 (23)
< |IX|I3 — 20(X, Hy(A*W)) 5 + p2v.

To deal with the inner product appearing on the right-hand side of (23), we write
(X, Hs(A"w)) p = (X, A"w)p — (X, A'w — Hy(A"W)) p, (24)
while noticing that

(X, A*W) = (AX, sg1(AX + ) = [|AX + el|s (e, sgn(AX + e)) > | AX +e]; - [le]s

(25)
and that Lemma 4 applied with A =X, B = A*w, i =0, j =, and k = s yields
* * r *
(X, AW — Ho(AW))r| < [ [ X[ Hosr (AW - (26)

Taking (21) into account and making use of (25) and (26) in (24), we derive
(K HA W) 2 [AX el = (el + B[ Kl 2)

Substituting (27) into (23) and using (11) now gives

% r
I = (AW < X3~ 2 AX + el + 120422 el + By 1]
(28)
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|AX + e||? T
= X% - fl +2pllells + Bssr ﬁHX”F

|AX +el? 27'||AX+eH1
< X7 - g+ lells + Basry /oo I1Xllr |-
s+r s+7"

In view of the inequalities || AX +e|? > |||AX]|; — He||1|2 = [|AX||? —2||AX]|1|[e]||1 +]e]|?
and ||AX + e||; < || AX]|1 + ||e|l1, we arrive at

IX — pH (AW < a+ buenl +lel?.

.AX2
X2 - ”2” b «/ A X

a =
(1+T)||,4X|\1 o7 (29)
b = +5 X F,
S_Hn s+r
21 —1
Cc = e -
s+r

The bounds || AX || > avysr || X[ and [|AX][; < Basr||X|r imply that

1 1 r 2
. g<1_ for )nxnp_(l— L 4y ) X3
) V2., s + ’ 2954 r s+ (30)
b < 14+7+7 X 1+74+7 Xl F.
—5s+r( \/s+ >” I < Bm( \/S+7’> Xl

Since we also have
- 2
9 72 (1—1—7’—1—7’1/ )
T S+r
< 2+ < 1 - 59
ST 2 1
S+T‘( 23+7+T 5—|—T>

we deduce that | X — pHs(A*w)||% is bounded above by

(31)

2
1 T<1—|—T+T :_)
'S S T
(1— L onyf )|X||F+ ” lel| - (2
2950, s+r 3 1— 1 g r
shr 273%»7“ 8+’I"

It remains to take the square root on both sides to obtain the desired result, after noticing

that 14+7+7/r/(s+r) <3rand 1-1/(2v2, ) +7/r/(s + 1) > 1-1/(272,,) > 1/2. O

3. Stability and robustness of the reconstruction

This section is devoted to the proof of Theorem 1 — in fact, of the more general
theorem stated below, which incorporates low-rank defect and measurement error.
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Theorem 5. Let A : RN *N2 5 R™ be a measurement map satisfying the modified rank-
restricted isometry property (5) of order Viysir <y, where

s = 100y%r and t = 80071 %s. (33)

For all X € RN1*N2 gnd all e € R™, the iterative hard thresholding algorithm (8) applied
toy = AX + e with stepsize

ly = AX B

) 1 |JA(H (A*sgn(y — AX,0))) ||
max{|Ht(.A Sgn(y ))” 4,72 ||Ht(./4*sgn( ))H 1}

produces a sequence (X, )n>0 whose cluster points X* approzimate H,(X) with error
[1H,(X) = XF||p < d|AX — H (X)) + €], (35)
where the constant d depends only on v and Piisir-
A number of comments are on order before giving the full justification of Theorem 5.

The parameters s and t. The constants involved in (33) are admittedly huge. They have
been chosen to look nice and to make the theory work, but they do not reflect reality.
In practice, the numerical experiments carried out in Section 4 suggest that they can be
taken much smaller.

The idealized situation. Theorem 1 is truly a special case of Theorem 5 where one assumes
that rank(X) < r and e = 0. Not only does (35) guarantees exact recovery in this case,
but the stepsize (34) indeed reduces to p, = ||y — AX,|1/[[H:(A*sgn(y — AX,))||%
when rank(X) < r and e = 0. This is valid because, on the one hand,

1 JA(H (A*sgn(y — AX.,)))|I}
|

! ﬁ ! ﬂ < ag“'s'” (36)
197 [H(Asgnly - m% < gt Fraer £ 2

=12

and, on the other hand, ||H¢(A*sgn(y — AX,))||% > ||Hsir(A*sgn(y — AX,))[|% >
2 .
74 qr» SiNCE

Appstr | X = Xpllp < [JAX = X)) [[1 = (AX = Xp),sgn(AX = X,)))  (37)
= (X - X,, A*sgn(y — AX,,))

s+r
< Z UZ(X - Xn)o'é(-A*Sgn(y - -AXn))

(=1
<X = X[ o | Hopr (A"sgn(y — AXq))|[ -
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The stepsize. The selection made in (34) is certainly not the only possible one. For
instance, choosing p, = |ly—AX,||1/82, s, would also work. We favored the option (34)
because it does not necessitate an estimation of ;1 4., because it seems to perform
better in practice, and because it is close to optimal in the sense that the choice u,, =
lly —AX,, |1 /|| Hi (A*sgn(y —AX,,))||%, made in the idealized situation, almost minimizes
the expression (23) when taking (27) into account. Let us also remark that there is some
leeway around an admissible y,, namely replacing it by p!, = (1 + d,) iy, for a suitably
small relative variation d,, does not compromise the end result, as it only creates a minor
change in the proof (specifically, in (57)). The reader is invited to fill in the details.

Number of iterations. The proof of Theorem 5 actually provides error estimates through-
out the iterations. For instance, in the idealized situation where rank(X) < r and e = 0,
it reveals that there is a constant p < 1 such that

IX —X,llr < o™X 7 for all n > 0. (38)

Thus, for a prescribed accuracy e, we have | X — X, ||r < ¢ in only n = [In(||X||r/e)/
In(1/p)] iterations.

A stopping criterion. Although Theorem 5 states a recovery guarantee for cluster points
of the sequence (X, ),>0, one can stop the iterative process as soon as the maximum in
(34) is achieved by the second term defining it (provided this occurs). Precisely, if

| A(H (A*sgn(y — AX,,))) |11 > 27[|Hy(A*sgn(y — AX,))l|7, (39)
then the conclusion that

[H(X) = Xallp < dlle’lls, € :=AX-H,(X))+e (40)

is already acquired. Indeed, the condition (39) imposes that

27| Hy (A*sgn(y — AX))|1F < Besstr| He(A*sgn(y — AX,)) | 7, (41)
i.e., that
| HL(A*sgn(y — AX,)| < ﬁg—; (42)

We then derive (as in (37)) that

(Hr(X) = X, A'sgn(y — AXy)) < [[Hr(X) = X || p[|Hspr (ATsgn(y — AX,))|F o (43)

< Dt g (X)) — Xl

= Ty
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Moreover, keeping on mind that y = A(H, (X)) + €/, we notice that

(Hr(X) = X, A"sgn(y — AXy)) = (A(H(X) = Xn),sgn(y — AX,)) (44)
= (y — AX,, — €/, sgn(y — AX,)) = |ly = AXq [l = [le']ly
> [AH(X) = Xn)[lr = 2[[e’]x
> Qg [ Hr(X) = Xnl|p = 2’1

2 @IIH}(X) = Xallr = 2[l€’]]1-

Combining (43) and (44) yields

4
1H,(X) = Xl < T e|ls. (45)

t+s+r

Form of the error estimate. In the realistic situation where X is not exactly low-rank
and measurement error occurs, one customarily sees recovery guarantees of the type

C .
X = XF||p < T it X = Z[l. + Dlle]l. (46)

Our iterative hard thresholding algorithm (with parameter r replaced by 2r) also allows
for such an estimate, which is derived using the sort-and-split technique. We omit the
details, as the argument is quite classical and can be found in full in [6] for the vector
case.

The norm on the measurement error. The appearance of ||e||; in (46) might seem surpris-
ing, as one usually encounters |/e||2 when the measurement maps satisfies the standard
rank-restricted isometry property. But there is no discrepancy here, as this is just a mat-
ter of normalization. Indeed, for a measurement map G : RN1*N2 5 R™ generated as
in (7) with independent standard normal random variables G; (1 ), let us suppose that
inaccurate measurements are given by y = GX + u. On the one hand, the normalized
version of G that satisfies the standard rank-restricted isometry property is A = G/y/m,
in which case the measurements take the form y/y/m = AX + e with e = u/y/m, so
that |le|l2 = |Jul|2/+/m appears in the error estimate. On the other hand, the normalized
version of G that satisfies the modified rank-restricted isometry property is A = G/m,
in which case the measurements take the form y/m = AX + e with e = u/m, so that
llell1 = |ju|l1/m appears in the error estimate. The latter is in fact better than the
former, by virtue of ||u|l; < /m|ul|2 for u € R™.

Proof of Theorem 5. Without loss of generality, we can assume that X has rank at most
r and aim at proving that
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X —XF|| < dlelhr- (47)
Indeed, we can in general interpret the measurements y = AX + e made on X as

measurements y = A(H,. (X)) +¢€', ¢ := A(X — H,(X)) + e, made on the matrix H,(X)
which has rank is at most r. The exact low-rank result would then yield

1H,(X) = XF||r < dle']1 = d| AX — H (X)) +e]1, (48)

as desired. So we assume from now on that rank(X) < r. We are going to establish the
existence of p < 1 such that, for all n > 0,

IX = Xppallr < pllX = X[ + d'lle]]1, (49)

which immediately implies that, for all n > 0,

d/
1—p

X = Xallr < o™ X]|p + dlle]1, d:= (50)

In particular, (47) is obtained from (50) by letting n — oo. It remains to prove (49) for
a given integer n > 0. Since X, 11 = Hs(X,, + pn Hi(A*sgn(y — AX,,))), Proposition 2
implies

[X = Xpp1llF < leX — (X + pn Hy (A"sgn(y — AX,)))| s pli=1+

Next, we notice that the stepsize ., takes the form

AKX =X,) +ell

Un

(52)

n

where the denominator

Vp i= max { | Hy(A*sgn(AX — X,,) +e))||%, LA (A"sn(AX — X,) + e))3||1 }

4% [He(Arsgn(AX ~ X,) +e)) 17
(53)
clearly satisfies

Vo > || Hy(A*sgn(AX — X;) + €))7, (54)

as well as

ﬁt2+s+7‘ 2
4—74 < Vn < Bitstr (55)
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The latter inequalities follow from |H;(A*sgn(A(X — X,,) + €))% < 67 < BE . 4r
(obtained in the same way as (21)) and from

S ﬁﬁta—s-i-r S ﬁ?—i—s-{-r?
JAGH (A sen(AX ~X,) + )3 |~ 9 -

_2 - — 2
4’}/ ||Ht(./4 Sgl’l(A(X Xn) + e))HF > LQQ > 5t+s+r
= 4’_}/2 t+s+r = 4/-}/

Therefore, according to Proposition 3, we obtain
X — (X + pnHi(A"sgn(y — AXn))) |l p (57)
= [[(X = X4) = pn Hi(A'sgn(AX = X;,) +e))) || p
96 I

8
Y 1 | s+
<p'IX = XallF + ﬁt+s+r||6Hl’ pli=1- 2_’y2+474 PR <1,

with 4y*\/(s +1)/(t + s + ) < 1/(27?) being justified by our choice of s and ¢. In fact,
our choice of s and t guarantees that

1 2
pim g < (14 ) (1o L payt )2 1——+4 \/ ,/ (58)
s 22 t

1 1 2 — 22
Sl__+_ i:l_u<1
292 5y2 542 10~2

Combining (51) and (57), we finally derive that

96pl,y8

IX = Xosillp < pllX = Xnllp +d'lelr,  d:= :
ﬁt-i—s-&-r

This establishes (49) and completes the proof. O
4. Numerical validation

The perspective adopted in this article is mostly theoretical, with a declared goal
consisting in uncovering iterative thresholding algorithms that provide alternatives to
nuclear norm minimization when the standard rank-restricted isometry property does not
hold. The modest experiments carried out with our proposed algorithm are encouraging,
although we shall refrain from making too optimistic claims about its performance. In
what follows, we only focus on measurements obtained by Gaussian rank-one projections
of type (6). Note that in this case our algorithm starts with Xy = 0 and iterates the
scheme

X1 = Hy <Xn + pn H (Z sgn(y; — annbi)bia;‘>> : (60)

=1
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Recovery success (averaged over 100 trials)
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Fig. 1. Influence of s and ¢ on the success of algorithm (60).

All the experiments performed below can be reproduced by downloading the MATLAB
file linked to this article from the first author’s webpage.

Influence of s and ¢. In order to derive theoretical guarantees about the success of the
algorithm, the parameters s and ¢ appearing in (60) can be chosen according to (33). This
of course does not mean that other choices are unsuitable. Fig. 1 reports on the effect of
varying these parameters. We observe that successful recoveries occur more frequently
when s = r, which makes intuitive sense since the rank-s matrix X,, is supposed to
approximate the rank-r matrix X. We also observe that successful recoveries occur more
frequently when t increases. The largest value ¢ can take is N = min{Ny, Ny}, in which
case the hard thresholding operator does not do anything. The default value of the
parameters are therefore s = r and ¢ = N, meaning that H; is absent and that one
singular value decomposition is saved per iteration.

Performance. We now compare the low-rank recovery capability of the algorithm (60)
with two other algorithms, namely with nuclear norm minimization (NNM) and with
the normalized iterative hard thresholding (NIHT) algorithm proposed in [13]. In fact,
we test two versions of our modified iterative hard thresholding (MIHT) algorithm: one
with the default parameters as discussed above, and one with parameters s = r and
t = 2r — this is another natural choice, as Hy(A*sgn(y — AX,,)) is supposed to ap-
proximate the rank-2r matrix X — X,,. Judging from Fig. 2, NNM is seemingly (and
surprisingly) outperformed by our default MIHT algorithm. The comparison with NIHT
is less straightforward. With few measurements available, NIHT does best, but when
the number of measurements is large enough for the recoveries by NNM and MIHT
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Fig. 2. Frequency of successful recoveries as a function of the number of Gaussian rank-one measurements for
nuclear norm minimization, normalized iterative hard thresholding, and modified iterative hard thresholding
with default parameters and with parameters s = r and ¢t = 2r.

to be certain, recovery by NIHT does not occur consistently. We interpret this phe-
nomenon as a reflection of the theory. Indeed, Gaussian rank-one projections of type (6)
do not obey the standard rank-restricted isometry property, which would have guaran-
teed the success of NIHT (see [13]), but they obey the modified rank-restricted isometry
property (5), which does guarantee the success of NNM (see [1]) and of MIHT (this
article).

Speed. The next experiment compares the four algorithms previously considered in terms
of execution time and number of iterations (when applicable). Fig. 3 shows, as expected,
that iterative algorithms are much faster than nuclear norm minimization: in this ex-
periment (which only takes successful recoveries into account), the execution time is
O(NY¥) with w ~ 4 for NNM, w =~ 1 for NIHT, and w ~ 2.4 for MIHT. The execu-
tion times for the two versions of MIHT essentially differ by a factor of two, due to the
fact that the default version performs only one singular value decomposition per iter-
ation instead of two. The number of iterations is roughly similar for the two versions.
It is much lower for NIHT, which explains its superiority in terms of overall execution

time.

Robustness. The final experiment is designed to examine the effect on the recovery of
errors € € R™ in the measurements y = A(X) + e made on low-rank matrices X. In
particular, we wish to certify the statement (35) that the recovery error, measured in
Frobenius norm, is at most proportional to the measurement error, measured in £;-norm.
The results displayed in Fig. 4 confirm the validity of this statement for our algorithm
(60) with default parameters and with parameters s = r and ¢t = 2r, as well as for the
normalized iterative hard thresholding algorithm.
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Fig. 4. Frobenius norm of the recovery error as a function of the £;-norm of the measurement error.

5. Explanation of the modified rank-restricted isometry property

In this appendix, we point out that the modified rank-restricted isometry property

(5) is not only valid for rank-one Gaussian measurements, as already established in

[1], but also for subexponential measurements of type (7). The justification essentially

follows the arguments put forward in [5]. First, fixing a matrix Z € RN XNz viewed
as its vectorization z = vec(Z) € RV1¥2 [5 Theorem 3.1] guarantees a concentration

inequality of the form

Pr([|AZ)1 = JZ)) > e | Z)) < 2exp(—re*m).

(61)
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The constant x depends on the subexponential distribution, and so does the slanted
norm, although it is comparable to the Frobenius norm in the sense that (see [5, Propo-
sition 2.3])

d|Z||r < JZ) < C|Z|F for all Z € RN xN2 (62)

for some constants ¢, C' > 0 depending on the subexponential distribution. The next step
(see the proof of [5, Theorem 4.1]) is a covering argument showing that (61) extends to
a uniform concentration inequality of the form

Pr([|AZ)|,— JZ ) | > 6 ) Z ] for some Z with rank(Z) < r) (63)
< 2exp(—kd%m + In(N.(9))),

where N.(0), § := §/3, denotes the size of a d-net for the set of rank-r matrices with
slanted norm at most 1. We now recall the key observation from [2] that the set of rank-r
matrices in RV1*N2 with norm at most 1 has a covering number N,.(§) < (¢ /)" NVmax
Nmax = max{Ny, Na}, which is valid for the Frobenius norm and, in view of (62), for
the slated norm, too. This implies a modified rank-restricted isometry property of the
form

A=0))Z) <|AZ)1<(QA+0)JZ) whenever rank(Z) < r, (64)
which occurs with failure probability at most
2 exp(—r62m + In(cy /8)car Nax) < 2exp(—r62m/2) < 2exp(—k'6%m), (65)

provided In(c;/8)cor Nmax < K/6°m/2, i.e., m > C(8)r Npax. Finally, (64) turns into (5)
by virtue of (62).
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