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Abstract

Chebyshev polynomials of the first and second kind for a set K are monic polynomials
with minimal L,- and Li-norm on K, respectively. This article presents numerical
procedures based on semidefinite programming to compute these polynomials in case
K is a finite union of compact intervals. For Chebyshev polynomials of the first kind,
the procedure makes use of a characterization of polynomial non-negativity. It can
incorporate additional constraints, e.g. that all the roots of the polynomial lie in K.
For Chebyshev polynomials of the second kind, the procedure exploits the method of
moments.

Keywords Chebyshev polynomials of the first kind - Chebyshev polynomials of the
second kind - Non-negative polynomials - Method of moments - Semidefinite

programming

Mathematics Subject Classification 31A15 - 41A50 - 90C22

1 Introduction

The Nth Chebyshev polynomial for a compact infinite subset K of C is defined as
the monic polynomial of degree N with minimal max-norm on K. Its uniqueness is a
straightforward consequence of the uniqueness of best polynomial approximants to a
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continuous function (here z +— 7zV) with respect to the max-norm, see e.g. [4, p. 72,
Thm. 4.2]. We shall denote it as ij, ie.

Ty = argmin |[P|g,  where||P|x = max|P()|. 1
P(@)=gN+-- ek

We reserve the notation TAI,( for the Chebyshev polynomial normalized to have
max-norm equal to one on K, i.e.

TK
i — )
MK Ik

With this notation, the usual Nth Chebyshev polynomial (of the first kind) satisfies
Ty =Ty =217 N> 3)

Chebyshev polynomials for a compact subset K of C play an important role in
logarithmic potential theory. For instance, it is known that the capacity cap(K) of K
is related to the Chebyshev numbers t]{f = ||Tz§ |k via

see [12, p.163, Thm. 3.1] for a weighted version of this statement. Some recent works
[1,2] have studied in greater detail the asymptotics of the convergence (4) in case K
is a subset of R. This being said, the capacity is in general hard to determine—it can
be found explicitly in a few specific situations, e.g. when K is the inverse image of
an interval by certain polynomials (see [8, Thm. 11]) and otherwise some numerical
methods for computing the capacity have been proposedin [11], see also [ 10, Sect. 5.2].
As for the Chebyshev polynomials, one is tempted to anticipate a worse state of affairs.
However, this is not the case for the situation considered in present work, i.e. when
K C [—1, 1]is a finite union of L compact intervals,' say

L
K:U[ag,bg], —l=a1<bi<a<by<---<ap <bp=1. (5
=1

There are explicit constructions of Chebyshev polynomials (as orthogonal polyno-
mials with a predetermined weight, see [9, Thm. 2.3]), albeit only under the condition
that T]\f is a strict Chebyshev polynomial (meaning that it possesses N + L points
of equioscillation on K—a condition which is verifiable a priori, see [9, Thm. 2.5]).
Chebyshev polynomials can otherwise be computed using Remez-type algorithms for
finite unions of intervals, see [5].

I The assumption K C [—1, 1] is not restrictive, as any compact subset of R can be moved into the interval
[—1, 1] by an affine transformation.
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A first contribution of this article is to put forward an alternative numerical proce-
dure that enables the accurate computation of the Chebyshev polynomials whenever
K 1is a finite union of compact intervals. The procedure, based on semidefinite pro-
gramming as described in Sect. 2, can also incorporate a weight w (i.e. a continuous
and positive function on K), restricted here to be a rational function, and give as output
the polynomials

(6)

. P
Tl\f’w = argmin ”—
P(x)=xN+... w

K
An appealing feature of this approach is that extra constraints can easily be incor-
porated into the minimization of (6). For instance, we will show how to compute the
Nth restricted Chebyshev polynomial on K, i.e. the monic polynomial of degree N
having all its roots in K with minimal max-norm on K.
A second contribution of this study is to propose another semidefinite-programming-

based procedure to compute weighted Chebyshev polynomials of the second kind, so
to speak. By this, we mean polynomials®

(N

L{fé’w € argmin H r .
P@exV 4. 1WIL (k)

The restriction that the weight w is a rational function is not needed here, but
this time the computation is only approximate. Nonetheless, it produces lower and
upper bounds for the genuine minimium ||Z/{1{,( /w1, (k). Both bounds are shown to
converge to the genuine minimum as a parameter d > N grows to infinity. Along
the way, we shall prove that the Chebyshev polynomial of the second kind for K, if
unique, has simple roots all lying inside K.

The procedures for computing Chebyshev polynomials of the first and second kind
have been implemented in MATLAB. They rely on the external packages CVX (for
specifying and solving convex programs [3]) and Chebfun (for numerically computing
with functions [13]). They can be downloaded from the first author’s webpage as part
of the reproducible file accompanying this article.

2 Chebyshev Polynomials of the First Kind

With K as in (5), we consider a rational® weight function w taking the form

w_§, ()

2 The uniqueness of Z/ll{f’"} is not necessarily guaranteed: in the unweighted case, one can, e.g. check that

the monic linear polynomials with minimal L{-norm on K = [—1, —c] U [c, 1] are all the x — d, d in the

W

interval [—c, c¢]. We will not delve into conditions ensuring uniqueness of I/ 11\,( in this paper.

3 We could also work with piecewise rational weight functions, but we choose not to do so in order to avoid
overloading already heavy notation.
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where the polynomials ¥ and Q2 are positive on each [ag, by]. We shall represent
polynomials P of degree at most N by their Chebyshev expansions written as

N
P =Y puTy. &)
n=0

In this way, finding the Nth Chebyshev polynomial of the first kind for K with
weight w amounts to solving the optimization problem

QP

%

minimize max
po,P1,--, pNERL=1:L

1
s.to py = SN (10)

[ag.be]

After introducing a slack variable ¢ € R, this is equivalent to the optimization
problem

1

W <c foralld=1:L.

[ag,be]

minimize c sto py =

QP
and ||—
¢,p0s P15+ PNER by

(1)

The latter constraints can be rewritten as —c < QP/X < con[ag, bel, £ =1: L,
i.e. as the two polynomial non-negativity constraints

cS(x) £ QE)P(x) >0  forallx €[ap, be] andall €=1:L. (12)

The key to the argument is now to exploit an exact semidefinite characterization
of these constraints. This is based on the following result, which was established and
utilized in [7], see Theorem 3 there.

Proposition 1 Given [a, b] C [—1, 1] and a polynomial C(x) = ZnA;I:o cmTn(x) of
degree at most M, the non-negativity condition

Cx)>0 forallx € [a,b] (13)

is equivalent to the existence of semidefinite matrices Q € CIM+DxM+D) R ¢ cMxM
such that

Z Qi j+ua Z R j—B Z Rij+a Z R; ;

i—j=m i—j=m—1 i—j=m i—j=m+1

Lo et
_ { 2;0"1””’;;01”}, (14)

where o = % exp (4 arccos(a) + % arccos(b)) and B= cos (% arccos(a)—% arccos(b)).
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In the present situation, we apply this result to the polynomials C = cX £+ QP
required to be non-negative on each [ay, by]. With

M = max {deg(X), deg(2) + N}, (15)
we write the Chebyshev expansions of ¥ and of QP as
M M
2= ouln. QP = (Wp)uTn. (16)
m=0 m=0

where W € RM+Dx(N+1D) jg the matrix of the linear map transforming the Chebyshev
coefficients of P into the Chebyshev coefficients of 2 P. Our considerations can now
be summarized as follows.

Theorem 2 The Nth Chebyshev polynomial T, ]5 Y for the set K given in (5) and

with weight w given in (8) has Chebyshev coefficients po, p1, ..., pn that solve the
semidefinite program
1
minimize c s.to pN = —— Qi"Z >0, R4 >0,

CyDOsPLyeees pneER 2N—1 ’
QileR(MH)x(MH)

Ri‘i e]RMXM

and ) Qi e Y RS -pe Y RS +m ), R

i=j=m i—j=m-I i—j=m i—j=m+1
_ %amc:i: %(Wp)m, m=1:M an
ooc £ (Wp)o, m=20 ’

where oy = %exp (% arccos(ay) + ’Earccos(bg)) and By = cos (% arccos(ag)—
5 arccos(by)).

Figure 1 provides examples of Chebyshev polynomials of degree N = 5 for the
union of L = 3 intervals which were computed by solving (17). In all cases, the
Chebyshev polynomials equioscillate N + 1 = 6 times between —w and +w on K,
as they should. However, they are not strict Chebyshev polynomials, since the number
of equioscillation points on K is smaller than N 4+ L = 8. We notice in (c) and (d)
that some roots of the Chebyshev polynomials do not lie in the set K. We display in
(e) and (f) the restricted Chebyshev polynomial for K, i.e. the monic polynomial of
degree N with minimal max-norm on K which satisfies the additional constraint that
all its roots lie in K. This constraint reads

P does not vanish on (bg, apy1), €=1:L—1. (18)
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630 S.Foucart, J. B. Lasserre

We consider the semidefinite program (17) supplemented with the relaxed con-
straint

P does not change sign on [bg, ag+1], £=1:L—1. (19)

This is solved by selecting the smallest value (along with the corresponding
minimizer) among the minima of 2~ semidefinite programs (17) indexed by
(e1,...,e11) € {:I:I}L_l, where the added constraint is the semidefinite charac-
terization of the polynomial non-negativity condition

gP(x) >0 forallx € [by,ap+1] andall £=1:L—1. (20)

One checks whether the selected minimizer satisfies the original constraint (18). If
it does, then the restricted Chebyshev polynomial has indeed been found, as in (e) and
(f) of Fig. 1.

Remark Concerning the computation of the capacity of a union of intervals, we do not
recommend using our semidefinite procedure or a Remez-type procedure to produce
Chebyshev polynomials before invoking (4) to approximate the capacity. If one really
wants to take such a route, it seems wiser to work with the numerically friendlier
orthogonal polynomials

PN = argmin [Pl k). 21)
P(x)=xN+-
Indeed, we also have
/N
IP8 k) > cap(K). (22)

as a consequence of the inequalities

1/2
[ min (b — az)} ITE Ik < 1Py

I 1/2
S[Ze_l(bz—az)] 175 Ik (23)

1
N +1

3 Chebyshev Polynomials of the Second Kind

Still with K as in (5), but with an arbitrary (positive and continuous) weight function
w, we are now targeting Nth Chebyshev polynomials of the second kind for K with
weight w, i.e.

L b
P | P(t
L{Il\f’we argmin H— ., where H— E / l ()|
P@=cN 4 Wl Ly k) Wiy o Ja wi !

(24)
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(a) K=K, (b) K = K, weighted

(¢) K=K (d) K = K, weighted

() K = K>, restricted (f) K = K>, restricted and weighted

Fig. 1 5th Chebyshev polynomials of the first kind for K1 = [ -1, 7%] u [ - % %] U [% 1] and for
Ky=[-1,- %] U [%, %] U [%, 1]: the first two rows correspond to the unrestricted case, while restricted
Chebyshev polynomials are shown in the last row; the first column corresponds to the unweighted case,
while weighted Chebyshev polynomials with weight w(x) = (1 + xz) /(2 — x2) are shown in the second
column

Let us drop the superscript w and simply write {/ 1{5 for U Il\f " Minimizing the L-
norm on K exactly seems out of reach, so instead we shall perform the minimization
of a more tractable ersatz norm, which will be formally defined in Proposition 4. This
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632 S.Foucart, J. B. Lasserre

ersatz norm stems from a reformulation of the L{-norm on K, as described in the steps
below. Given a polynomial P of degree at most N, we start by making two changes
of variables to write

Hf _ XL:bz —a fl Pl
WL (K) B =1 2 —1 we(x)
L .
B by —ay [T sin(6)d6
=)~ fo |Pecos®) 1o (29)

~
I

1

where P; and w; denote the functions Py, 5,1 and wyg, p, transplanted to [—1, 1],
for instance

(be —ag)x +ay + by
2

Pe(x)zP( ) x €[-1,1]. (26)

We continue by decomposing the signed measures Py (cos(6)) sin(0) /w¢(cos(0))do
as differences of two non-negative measures, so that

|5

L
. by —ag [T _ _
= ,inf E 5 / dug +uy) stod(uf —u,)O)
Li(K)  Riseslp g 0

sin(6)dé
we(cos(6))’

= Pe(cos(0)) 27)

where the infimum is taken over all non-negative measures on [0, 77 ]. As is well known,
a minimization over non-negative measures can be reformulated as a minimization
over their sequences of moments. There are several options to do so: here, emulating
an approach already exploited in [6], see Section 3 there, we rely on the discrete
trigonometric moment problem encapsulated in the following statement.

Proposition 3 Given a sequence 'y € RN, there exists a non-negative measure | on
[0, 7] such that

/n cos(k@)du(®) = yr, k=0, (28)
0

if and only if the infinite Toeplitz matix build from y is positive semidefinite, i.e.

[yo y1 y2 y3 -+
Y Yo Y1 y2

Toep, (y) := Y2 Y1 Yo Y1 > 0. (29)
iy e
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The latter means that all the finite sections of Toep,,(y) are positive semidefinite,
ie.

Yo Y1 e Yd
yr Yo )1
Toep,(y) = | @ y, ~-. . : | =0 foralld=0. (30)
S|
yd ...... yl yo_
With yl’i, R yL’i e RN representing the sequences of moments of,uf, e, uf,

the objective function in (27) just reads

L by —ay [T L by —ay
ZT/O d(HZ-I—MZ):ZT()’é’Jr—i—)’g’_)-

=1 =1

As for the constraints in (27), with W¢ € RWHDXWV+D denoting the matrix of
the linear map transforming the Chebyshev coefficients of P into the Chebyshev
coefficients of the second kind of Py, so that

N
Py =Y (W'p),U,, 31)

n=0

they become, forall ¢ = 1: L and all k > 0,

0)do
- Z(W‘mn / cos(kew,l(cos(e))ﬁ JWp), (32)
where the infinite matrices J¢ € RN*(V+D have entries
Je /‘” cos(k0) sin((n + 1)9)d9 (33)
o we (cos(6)) '

The finite matrices J©¢ € R@+D>(N+D obtained by keeping the first d + 1 rows
of J¢, are to be precomputed numerically and can sometimes even be determined
explicitly, e.g.

0 if k and n have different parities,

l,d
= o= 2 l
whenw =1, J*, 2+ D if k and n have similar parities. (34
(n+ 1> —k?

Taking into account the constraints that the y©* € RN must be sequences of
moments, we arrive at a semidefinite reformulation of the weighted Li-norm on K
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634 S.Foucart, J. B. Lasserre

given by
F - by —ay
- = lnf ( 0+ + [’7)
H WlLyk)y ¥ yLteRN Z} 2 Yo Yo
sto yoT —y“ =JW'p and Toep., (y**) > 0. (35)

This expression is not tractable due to the infinite dimensionality of the optimiza-
tion variables and constraints, but truncating them to a level d leads to a tractable
expression—the above-mentioned ersatz norm.

Proposition 4 For each d > N, the expression

L
by — ay

JPJa = , min Z 7 (yg’+ + yé’_)

LE, | yLteRd+1

(36)

sto yot —yb= =Wl and Toep,(y“F) = 0

defines a norm on the space of polynomials of degree at most N. Moreover, one has

Y [ 37

S

Li(K) Li(K)

Proof To justify that the expression in (36) defines a norm, we concentrate on the
property [/ P4 = 0] = [P = 0], as the other two norm properties are fairly clear.

So, assuming that /P /4 = 0, there exist ybE, L ybE e R such that
L b a
¢ — Qg _
>0 ) =0, (38)
=1

aswell as, forall{ =1: L,
yor —yb= =JW'p and  Toep,(y“*) = 0. (39)
The semidefiniteness of the Toeplitz matrices implies that
|y£’i| < yé’i forallk =0:d, (40)

which, in view of (38), yields y©* = 0. By the invertibility of the matrices W* and
the injectivity of the matrices J¢ (easy to check from (33)), we derive that p = 0,
and in turn that P = 0, as desired.

Let us turn to the justification of (37). The chain of inequalities translates to
the fact that the successive minimizations impose more and more constraints and,
hence, produce larger and larger minima. It remains to prove that the limit of the
sequence (/P //4)a=n equals || P/wll 1, (k) (the limit exists, because the sequence is
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Computation of Chebyshev Polynomials on Union of Intervals 635

non-decreasing and bounded above). For each d > N, as was done in (38) and (39),
we consider minimizers of the problem (35)—they belong to R4*! but we pad them

with zeros to create infinite sequences y" ¢, ... yl-*4 satisfying
L by —a
¢t~ 4l t+.d ,—.d
Y500 D =P, (41)
=1

aswellas, forall{ =1: L,
yZ’J“d — ye’*’d = JEWZp and Toepoo(ye’i’d) > 0. 42)

The semidefiniteness of the Toeplitz matrices, together with (41), implies that, for
allk > 0,

P

WilLyk)

2 2
L, £,d 0, +,d

k) k) < P
|yk |_Y() = b —ay

(43)

In other words, each sequence (ye'i'd)dz ~, with entries in the sequence space
{0, 1s bounded. The sequential compactness Banach—Alaoglu theorem guarantees the
existence of convergent subsequences in the weak-star topology. With (y©+:dn),,-
denoting these subsequences and y“* € €., denoting their limits, the weak-star
convergence implies that

yoEdn s yEE forallk > 0. (44)

Writing (42) for d = d,, and passing to the limit reveals that the sequences

yb*E, ..., yb* are feasible for the problem (35). Hence

L

ag . 0 . be—ar 444, | t.-.d,
< 3 (o Ty Yo )= mh_r)noo Z > Yo + Y )

Wiy 5 =1 (45)

where the last equality relied on the fact that the non-decreasing and bounded sequence
(J P Jla)a=n is convergent. This concludes the justification of (37). m]

Givend > N, letus now consider ersatz N'th Chebyshev polynomials of the second
kind for K (a priori not guaranteed to be unique) defined by

VN € argmin [P [q. (46)
P(x)=xN+--
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It is possible to compute such a polynomial by solving the following semidefinite
program:

L

by —a _
minimize Z S (y£’+ + yg’ )

P0.P1s- PNER — 2
yhE, | ybtepd+l =

sto py =y, ¥ oy = JYW'p, and Toep,(y“*) = 0.  (47)

The qualitative result below ensures that, as d increases, the ersatz Chebyshev poly-
nomials V]{,(’ 4 approach genuine Chebyshev polynomials ¢/ K which are themselves
obtained by solving the following (unpractical) semidefinite program:

L

L by — ay _
minimize Z —(y§’+ + yg’ )
po.p1s-- PNER 2

ylE, | yLEerN =1

S0 PN = Sy yor —yb~ =J*W'p, and Toep, (y"®) = 0.  (48)

Theorem 5 Any sequence (le\?d)dZN of minimizers of (46) admits a subsequence
converging (with respect to any of the equivalent norms on the space of polynomials
of degree at most N) to a minimizer UJ{J( of (24). Moreover, if (24) has a unique
minimizer UK, then the whole sequence (VII\% 4)d=N converges to U K e

VN.a 2 UN- (49)

Proof We first prove that the minima of (46) converge monotonically to the minimum
of (24), i.e.

Z/[K
.S//Vﬁvd//df//v]l\/(,d+l//d+lf"‘f N and

Li(K)
Uy

Tim JVE fa =L (50)

Li(K)

The argument is quite similar to the proof of (37) in Proposition 4. The chain of
inequalities holds because more and more constraints are imposed. Next, considering
coefficients pg, pf, ceey pﬁi\, and infinite sequences y' =9, ..., yl-®4 satisfying

Lb[—

a —
500 3T = PV ala. 1)

=1

@ Springer



Computation of Chebyshev Polynomials on Union of Intervals 637

aswellas p§, = 1/2V =1 and, forall ¢ = 1: L,
y£,+,d _ yz,—,d — J@szd and Toepd(y[,:t,d) z 0’ (52)

the semidefiniteness of the Toeplitz matrices, together with (51), still implies that the
sequences (y“9),=y admit convergent subsequences in the weak-star topology, so
we can write

yoEdn s yEE forallk > 0. (53)

‘We note that

— 0,+.dpy 0, —.dpy
pdm = (JZ’NWZ) I(Y{()T._,N} —Yo,.., N})

N (54)
m::O(Jﬁ,NWK) 1(yf(’)f_ﬂN} - yf() ,,,,, Ny =P

Itis easy to see that the coefficients pg, p1, ..., py € R thus defined, together with
the sequences y1-*, ..., y-F e RN, are feasible for the problem (48), which implies

that

Uy

w

L
be—ap, ¢4  4_ . by —ar, ¢14 t—.d

=< E o "+ Yy )= lim E — " Yy )

L (=1 2 m—o0i— 2 (55)

Jim VN g, L = Jim [V -

This concludes the justification of (50).

Let us now prove that the sequence (Vll\f .¢)d=N admits a subsequence converging to
aminimizer 1{]( of (24). This sequence is bounded (with respect to any of the equivalent
norms, e.g. /- /n): indeed, as a consequence of (37) and (50), we have //VII\,(’d//N <
//V,{,(,d//d < ||Z/{1§ /wll L, (k)- Therefore, there is a subsequence (Vll\f’dm )m>0 converging
to some monic polynomial V,{? . Let us assume that V,I\f is not one of the minimizers
?/11{,( of (24), i.e. that ||L{]I§/w||L1(K) < ||V§/w||Ll(K). In view of (37), we can choose
d large enough so that

HV,{?/wHLl(K) <//V11\§ Ja +e, where
o=V, - U], =0 6

L(K) Li(K)

Let us observe that with d being fixed and by virtue of (37) and (50),

JVEla= Jim )V g0 < lim PV g, e = U 0], 6T
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638 S.Foucart, J. B. Lasserre

Combining (56) and (57) yields

i

< i

o= HV}V(/wH (58)

Li(K) Li(K) LK)’

which is of course a contradiction. This implies that Vll\f is a minimizer of (24), as
expected.

Finally, in case (24) has a unique minimizer /X, we can establish (49) by con-
tradiction. Namely, if the sequence (Vﬁ’ 4)d=n did not converge to UK, then we
could construct a subsequence (Vll\,(’ 4, )m=0 converging to some monic polynomial
Vll\f #=U ,I\f . Repeating the above arguments would imply that Vﬁ is a minimizer of
(24),ie. VK = Z/II{,( , providing the required contradiction. O

Theorem 5 does not indicate how to choose d a priori in order to reach a pre-
scribed accuracy for the distance between V]’G g and U ]{,< . However, for a given d, we

can assess a posteriori the distance between the ersatz minimum // Vﬁ’ 4//a and the
genuine minimum ||U/ 1{§ /wllr, (k). Indeed, on the one hand, the semidefinite program
(47) produces // VZ{{ 4//a while outputting Vz{/{, 4> on the other hand, the weighted L1-
norm ||V1{5’ /WL k) can be computed once Vﬁ’ 4 has been output. These two facts

provide lower and upper bounds for the unknown value ||U/ 1{? /wllL,(k), as stated by
the quantitative result below.

Proposition 6 For any d > N, one has

RO T

Li(K) ~ Li(K)

hence the weighted L1-norm of U ]I\f on K is approximated with a computable relative
error of

VK
Pnald (60)

BN =1 =
’ IV a/wle k)

Proof By the definition (24) of the genuine Chebyshev polynomial of the second kind,
we have

IS /wllLy k) < IVE a/wlle ks (61)

and by the definition (46) of the ersatz Chebyshev polynomial of the second kind,
together with (37), we have

I VE alla < JUE Ja < WUE JwlL, k) (62)
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This establishes the bounds announced in (59). We also notice that the relative error
satisfies

xR /vl = V8 alla
N,d —

— 0, (63)
WVE ol Ao

since, according to (49) and (50), both ||V§ 4/ Wl k) and //Vl{id//d converge to
||UII§ /wll L, (k) in case of uniqueness of I/ 1’6 . In case of non-uniqueness, (63) remains
true at least for a subsequence. O

Figure 2 shows ersatz Chebyshev polynomials of the second kind computed on the
same examples as in Fig. 1. Notice that no ‘restricted” ersatz Chebyshev polynomials
of the second kind are displayed. This is because our experiments suggested that the
polynomials V]I\f’ 4 had simple roots all lying inside K. The corresponding statement

for the polynomials /X | in case of uniqueness, can in fact be justified theoretically by
the following observation.

Proposition 7 Let U 1{; be a weighted Chebyshev polynomial of the second kind for a
finite union of closed intervals K C [—1, 1]. This polynomial is the unique minimizer
of (24) if and only if it has N simple roots all lying inside K.

Proof As a minimizer of (24), a Chebyshev polynomial of the second kind for K is
characterized (see, e.g. [4, p. 84, Thm. 10.4]) by the condition

senUK (x))P
[ UEP@
K w(x)
for all polynomials P of degree less than N. (64)

This implies that I/ /I\f has N roots in (—1, 1), as (64) would not hold for P(x) =
x—=&)---(x—§&) ifZ/{j{,< hadn < Nroots &1, ..., &, in (—1, 1). Moreover, if one of
the roots was repeated, we would have Il\f xX)=x-—-£ )2 P (x) for some polynomial
P of degree N — 2, but then (64) would not hold for this P either. Thus, the polynomial
Z/IJ{J( can be written, with distinct &, ..., &y € (—1, 1), as

UKy =(x— &) (x —&) - (x —&n). (65)

Assume that Ul{f is the unique Chebyshev polynomial of the second kind for K. If
one of the &;’s does not lie inside K, i.e. if & belongs to one of the gaps [b¢, ar+1],
then we can perturb &; to E, while keeping it in [bg, a¢+1]. Hence, the perturbed monic
polynomial

UE(x)=(x—&) - (x — &) -+ (x —En). (66)

still satisfies sgn(?j]{f x)) = sgn(b{,{f (x)) for all x € K. The condition (64) is then
fulfilled by U ]{5 , t00, so this monic polynomial is another minimizer of (24), which is
impossible. We have, therefore, proved that the N simple roots of U 1’5 all lie inside K.
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(a) K =K1: 6K 4~ 7-107* (b) K = K1, weighted: 65 4~ 6-10*

(c) K = Ky: 65 ,~8-107* (d) K = K, weighted: 6% ,~ 81074

Fig. 2 Ersatz Sth Chebyshev polynomials of the second kind for Ky = [ — 1, =3 ]JU[ — é, é] Ul
and for K» = [ -1, 7%] U [% %] U [% l]: the first column corresponds to the unweighted case, while
weighted ersatz Chebyshev polynomials with weight w(x) = (1 + x2) /(2 — x2) are shown in the second
column

Conversely, assume that I/ Il\f has N simple roots all lying inside K and let us prove
that U 1{,( is the unique minimizer of (24). Consider a monic polynomial &/ 15 with
IUE JwllL, k) = IUE JwliL, k). In view of (64), we notice that

/ senUf YU ) —UF ) 0 67)
K

w(x)

From here, it follows that

HU_{V‘ B / UE () b / sen UK UK (x) "y
w K K

w(x) w(x)

Li(K)

:/ sgn(uj\’f(x))ﬁ/\f(x)dx</ |271’\,<(x)|dx: ”Zﬁ
K K v

w(x) w(x) (68)

Li(K)
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The first and the last terms being equal, we must have equality all the way through,
which means that sgn (U 1{,( (x)) = sgnU ]{,( (x)) forallx € K.Given thatthe polynomial

U 1’6 vanishes at distinct points &1, ..., &y inside K, the polynomial U Il\f must also
vanish at&y, ..., &y, and since both polynomials are monic, we must have U/ K — Yk,
proving the uniqueness. O
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