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We investigate the problem of recovering jointly r-rank and s-bisparse matrices from
as few linear measurements as possible, considering arbitrary measurements as well as
rank-one measurements. In both cases, we show that m < rsln(en/s) measurements
make the recovery possible in theory, meaning via a nonpractical algorithm. In case of
arbitrary measurements, we investigate the possibility of achieving practical recovery
via an iterative-hard-thresholding algorithm when m < rs7 In(en/s) for some exponent
v > 0. We show that this is feasible for v = 2, and that the proposed analysis cannot
cover the case v < 1. The precise value of the optimal exponent v € [1, 2] is the object of a
question, raised but unresolved in this paper, about head projections for the jointly low-
rank and bisparse structure. Some related questions are partially answered in passing.
For rank-one measurements, we suggest on arcane grounds an iterative-hard-thresholding
algorithm modified to exploit the nonstandard restricted isometry property obeyed by
this type of measurements.
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1. Introduction

This whole paper is concerned with the inquiry below.

Main Question. What is the minimal number of linear measurements needed to
recover jointly r-rank and s-bisparse symmetric n X n matrices via an efficient
algorithm?

This minimal number of measurements will be called sample complexity. We will
show that it is of the order rs1n(en/s). Nevertheless, we do not consider the question
fully resolved because of the lack of efficient algorithms for arbitrary measurements
and of the limitation of an efficient algorithm to factorized measurements, and thus
to the only applications that could support such a structured sensing. Settling the
question by providing an efficient algorithm applicable to any type of measurements
is therefore still open. Before diving into our investigations, let us start by clarifying
a few points.

e What are ‘jointly r-rank and s-bisparse symmetric n X n matrices’?
In this paper, we consider exclusively matrices X € R™*"™ that are symmetric,
i.e. XT = X. The set of r-rank (symmetric) matrices will be denoted as

2= (X e R™*" : XT = X, rank(X) < r} (1)
and the set of s-bisparse (symmetric) matrices will be denoted as

Yy = {X eR”": X" =X, Xgz5 =0 for some S C [1: n] with [S] = s},
(2)

where Mg = 0 for M € R"*"™ and Q C [1 : n] x [1 : n] means that all entries of
M indexed by € are zeros, and Q stands for the complement of Q.

Hence, the jointly r-rank and s-bisparse (symmetric) matrices we are inter-
ested in are elements of

s =2 nx,. (3)

We will often use the fact that ZETS]) + EE’;]) - Egrs]).

Note that, as described below, Egls]) is for instance the set associated with the
lifting of sparse signals to rank-one matrices when one is interested in their recov-
ery from phaseless (complex) measurements [16], while for » > 1, any matrix of
EETS]) describes a quadratic function of both few variables and few quadratic terms
whose sampling and recovery — an important problem in, e.g., approximation
theory and high-dimensional statistics — are related to the Main Question [8, 6].

e What are the ‘linear measurements’ considered?
They can be of the arbitrary type

yi = (X, A p = tr(AiTX), i€ [1:m], (4)



Anal. Appl. 2020.18:25-48. Downloaded from www.worldscientific.com

by PENNSYLVANIA STATE UNIVERSITY on 05/09/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Jointly low-rank and bisparse recovery: Questions and partial answers 27

or of the specific (rank-one) type
Y = (Xai,ai> = tr(aiaIX), RS [[1 . mﬂ (5)

Generically, we write y = A(X), where A : R"*™ — R™ is a linear map.
e What is meant by ‘recover’?
More than just finding a map A : R™ — R™*" such that A(A(X)) = X for
all X € EETS]). Indeed, we require the recovery procedure to be stable and robust,
in the sense that we want

[X — A(A(X) +e)| < szig] X —Z|| + Dlle]l (6)
€25

to hold for all X € R™*™ and all e € R™. We give ourselves some freedom on the
choice of the three norms appearing in (6). We also require the recovery procedure
to be implementable by a practical algorithm, that is, an efficient algorithm whose
run-time is at most polynomial in n and m (ideally, a polynomial of low degree, of
course).

In our study of the Main Question, we faced the following puzzle.

Question 1. Given a positive constant ¢ < 1, for which value of s, depending on
s, can one find a practical algorithm that constructs, for each symmetric matrix
M € R™ "™ an index set S’ of size s’ such that

[Msrxs |7 > ¢ max [Msxs||7? (7)
=s

In reality, the relevant question for our goal is broader. It involves the projection
Pl onto xI7.

Question 2. Given a positive constant ¢ < 1, for which value of s, depending on
s, can one find a practical algorithm that constructs, for each symmetric matrix
M € R™*™ an index set S’ of size s’ such that, with " proportional to r,

IPFI (M)l 2 € oo | P (M cs) 37 (8)

If s’ could be chosen proportional to s in Question 2, then the Main Question
could be answered with m =< rsln(en/s) measurements satisfying the so-called
restricted isometry property (see below). This is shown in Sec. 4.

We come up with partial answers to the above questions: in Proposition 8 we
show that for ¢ = 1 the answer to Question 1 is positive with s’ = s2, but that it
is negative for any ¢ > 0 when s’ = O(s). Combined with the results of Sec. 4 this
establishes that the answer to the Main Question is positive with m = rs7 In(en/s)
and v = 2, using a practical variant of iterative hard thresholding, and that the
proposed analysis cannot cover the case v < 1.

In principle, we are more interested in the measurements of type (5). Indeed,
in the particular case r = 1, the measurements taken on a matrix of the type
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X =xx' € EEls]) with an s-sparse x € R” would read

yi = |(a;, x)[%, ie[l:m]. (9)

This is exactly the framework of sparse phaseless recovery (except that everything
should be written in the complex setting). In this case, the sample complexity is
known [16] to be of the order m = sln(en/s), although it is unclear if this can be
achieved with independent Gaussian vectors ay,...,a,, € R".

Remark 1. Similar problems as studied here appear in the context of low-rank
tensor recovery where one would like to project onto the intersection of two or more
low-rank structures defined by different matricizations. It is NP-hard to compute
exact projections and efficiently computable approximate projections are not yet
good enough to show low-rank tensor recovery results for corresponding iterative
hard thresholding guarantees [23]. They are also considered in the context of sparse
PCA from inaccurate and incomplete measurements where the problem of recover-
ing a low-rank matrix with sparse (or compressible) right-singular vectors is ana-
lyzed [7]. In this work, a multi-penalty approach called A-T-LAS; 5 provably reaches
local convergence from a reliable, computable initialization. Other locally conver-
gent methods applied to the recovery of row-sparse (or column-sparse) and low-rank
matrices are the sparse power factorization (SPF) and its subspace-concatenated
variant (SCSPF), see [19]. While the latter work assumes a high peak-to-average
power ratio on the singular vectors of the observed matrix, [13] recently enlarged
the class of recoverable matrices by relaxing this constraint.

2. Theoretical Sample Complexity

Restricted isometry properties have been central in all sorts of structured recovery
problems. It is no surprise that another instance of a restricted isometry property
plays a key role here, too. The proof sketch is deferred to the appendix.

Theorem 2. Suppose A1,...,A,, are independent random matrices with indepen-
dent N'(0,1/m) entries. Given § > 0, there exist two values C,c > 0 (only depending
on 9), such that, with failure probability at most 2 exp(—cm),

(1= )IZlI% < |AZ)3 < (1+8)Zl3 for all Z € 5] (10)
provided m > CrslIn(en/s).

For the rest of this section, we place ourselves in the situation where the mea-
surement map A satisfies the restricted isometry property (10), which can occur as
soon as m is of the order rsIn(en/s). We can then propose several robust algorithms
that recover X € EE’;]) from y = A(X) + e. The first obvious candidate is

A(y) = argmin [y — A(Z)|2. (11)

[r]
zex!)
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We immediately see that [y — A(A(y))[2 < [ly = A(X)2 = [[e[|2, from where it
follows that

IAX) — AAE))ll2 < [ly = AAT)) 2 + llell2 < 2[le][2, (12)

and we finally derive that

1

X = A(AX) +e)[[r < N

2
A ~ ABCARX) +e))2 < —=lel-

(13)

However, this scheme is not really an appropriate candidate, since producing A(y)
is NP-hard in general (see below).

After a decade or so of f;-norm and nuclear norm minimizations, the next
obvious candidate stands out as

A(y) = argmin F(Z) subject to ||y — A(Z)|2 < |le||2, (14)
ZcRnxn

where F' is a convex function promoting the joint low-rank and bisparsity structure.

The negative results from [22] indicate that reducing the sample complexity below

min{rn, s?In(en/s)} is unattainable when F is a positive combination of the ¢;-

norm and nuclear norm.

What about a variant of iterative hard thresholding? Consider the sequence
(Xk)k>0 defined by

Xpp1 = P} (Xp + A" (y = A(Xy)), (15)

where the adjoint of A is given by

A* :uERmHZuiAi e R™*"

i=1

and where P([S R — EEZ]) denotes the projection onto ZETS]), that is, the operator

of best approximation from ZETS]). One can show (see Appendix A or [2]) that if A(y)
is defined as a cluster point of (Xj)g>0, then

X = A(AX) +e)[[r < Cllefl (16)

holds for all X € EE’;]) and all e € R™. Here also the issue is that computing P([S
is NP-hard (see Sec. 5), which incidentally justifies the NP-hardness of (11) (think
of A =1I). What about replacing P([g by an operator of near-best approximation

from EE’;]), as in, e.g., [14]? After all, if there is any chance for (6) to hold, then
such an operator must exist (think again of A = T). We will in fact construct such
an operator in Sec. 5.3. But substituting P[g by such an operator in the proof of

Theorem A.2 (see Appendix A) is not enough to do the trick.
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3. Optimal Sample Complexity with Factorized Measurements

In this section, we show that the optimal sample complexity can be achieved with
a practical algorithm in a rather special measurement framework. This framework
being restricted to the specific structure of this sensing procedure, the Main Ques-
tion remains of interest.

We suppose here that matrices X € ZETS]) are acquired via measurements in
factorized form, namely

yi = (X,BTA;B), ic[l:m], (17)

where Aq,...,A,, € RP*P allow for low-rank recovery and B € RP*™ allows for
sparse recovery. The recovery algorithm proceeds in two steps, which are both
practical, i.e. efficiently implementable.

(1) Compute Y# € RP*P from y € R™ as a solution of the nuclear norm minimiza-
tion
minimize|| Y. subject to (Y, A;)r =vy;, 1 € [1:m],
Y ERPXP
or as the output of another low-rank recovery algorithm such as iterative hard
thresholding.

(2) Compute X* € R"*" from Y* as the output of the HIHTP algorithm with
measurement map B : Z € R"*" — BZBT ¢ RP*?,

Although we refer to [24, 25] for the exact formulation of the hierarchically struc-
tured sparsity hard thresholding pursuit (HiHTP) algorithm, a few words about the
concept of hierarchical sparsity are in order before we state our result about the
two-step recovery procedure above. A matrix is said to be (s, t)-hierachical sparse
(or simply (s, t)-sparse) if at most s of its columns are nonzero and each of these
columns possesses at most ¢ nonzero entries. Thus, s-bisparse matrices are in par-
ticular (s, s)-sparse. The HIHTP algorithm essentially relies on the possibility to
compute the projection (operator of best approximation) onto (s,t)-sparse matri-
ces. In contrast to the projection onto s-bisparse matrices, this is indeed an easy
task: first, select the t largest absolute entries in each column and calculate the
resulting f2-norm, then select the s columns with the largest of these f2-norms.

Theorem 3. Let Aq,..., A, € RP*P be independent standard Gaussian matrices
and let B € RP*™ be a standard Gaussian matriz independent of Ay, ..., Ap,. If

p=sln(en/s) and m =rp, (18)

so that m =< rsln(en/s), then the probability that every X € ZE’;]) 1s ezactly recovered

from y; = (X,BTA;B), i € [1 : m], via the above two-step procedure is at least
1 —2exp(—cp).
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Proof. First, notice that the matrix BXBT € RPXP has rank at most r, since X
has rank at most r, and that it satisfies

(BXB",A))r = tr(A/ BXBT) = tr(BTA] BX)
= (X,B"AB)p=y;, ic[l:m]. (19)

Since Aq,...,A,, € RP*P are independent standard Gaussian matrices and m =
rp, it is by now well-known (see, e.g., [4, 17]) that, with failure probability at
most exp(—cm), the matrix BXBT is recovered via nuclear norm minimization (or
another suitable algorithm), so that Y = BXB'.

Second, since the matrix X € R™ ™ is (s,s)-sparse and satisfies B(X) =
BXB' = Y* [24, Theorem 1] implies that the matrix X will be exactly recov-
ered via HIHTP as long as the so-called HiRIP of order (3s,2s) holds. According
to [25, Theorem 1], the latter is satisfied when B obeys a standard RIP, and the
latter is indeed fulfilled with failure at most exp(—cp) by the matrix B (or rather
by a renormalization of it), because B € RP*™ is a standard Gaussian matrix with
p = sln(en/s).

All in all, exact recovery of X is guaranteed after the two steps with failure
probability bounded by exp(—cm) + exp(—cp) < 2exp(—cp). O

Remark 4. It is possible to extend Theorem 3 beyond the strictly Gaussian set-
ting. In particular, if Ay,..., A, take the form A; = a;a] for some independent
standard Gaussian vectors a; € RP, then the first-step recovery of BXBT can still
be achieved via nuclear norm minimization (see [3, 17, 18]) or by some modified
iterative hard thresholding algorithm (see [12]). Note that the measurements made
on X € R™™ are in this case rank-one measurements given by y; = (Xa/,al),
where a} := BTa;.

Remark 5. Let us mention that sensing strategies similar to (17) have been pro-
posed before for other objects with related structures or for connected problems.
For instance, when estimating k-row-sparse and r-rank matrices X € R™*" from m
“nested” measurements y; = (WX, A;), [1] showed that RIP conditions imposed
on W € RP*™ and on the linear operator associated with Aq,...,A,, yield a
computationally efficient two-stage method that can (nearly) achieve a minimax
lower bound from m =< rmax{p, n} measurements where p < klog(n/k), i.e. from
m =< max{rklog(n/k),rn}. A two-stage sensing strategy has been also proposed
in [16] for the sparse phase retrieval problem. In this case, the sensing model is
factored into a linear operator with robust null space property and a stable phase
retrieval matrix — the latter allows to recover a compressed form of the sparse
vector, using e.g., PhaseLift [5], and then the former allows to recover this vector
via any compressive sensing algorithm.
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4. Toward Practical Sample Complexity

In most scenarios, the measurement map is not of the factorized type considered in
the previous section, so the two-step procedure cannot even be executed. It is there-
fore still relevant to search for practical recovery algorithms that can be applied
with arbitrary measurement schemes and study the sample complexity using, e.g.,
Gaussian measurements. As mentioned at the end of Sec. 2, a difficulty occurs when
one tries to use a near-best approximation operator instead of the best approxima-
tion operator P([g in the iterative hard thresholding algorithm (15). Such a dif-
ficulty was also encountered in model-based compressive sensing. A workaround
was found in [15]. As we will see below, our attempt to imitate it prompted
Question 2.

Let us start with the observation that any of the structures ¥, > or EE’;])
is a union of subspaces, which we generically write as

E:UV.
Vevs

Then the projection onto ¥, i.e. the operator of best approximation from ¥ with
respect to the Frobenius norm, acts on any M € R™*" via

Ps(M) = Py vy (M), (20)
where
V(M) = argmin |[M — Py (M)|/% (21)
Vevs
= argmaxHPv(M)H%, (22)
Vevs

and Py evidently denotes the orthogonal projection onto the subspace V. By anal-
ogy with the vector case, we can think of (21) as a ‘tail’ property for the pro-
jection Py and of (22) as a ‘head’ property. We keep this terminology introduced
in [15] when relaxing the notion of projection. Precisely, we shall call an opera-
tor T : R™™"™ — ¥ a tail projection for ¥ with constant Cr > 1 (or near best
approximation from ¥ with constant Cr) if

HM—T(M)HF < CTHM_PZ<M)HF for all M € R™*™, (23)

We may have to relax this notion further by allowing the operator 7" to map into
a bigger set ¥’ D X. Thus, by tail projection for ¥ into ¥’ with constant Cr, we
mean an operator T : R™*™ — ¥’ which satisfies the tail condition (23). Similarly,
an operator H : R™"*™ — ¥ is called a head projection for ¥ with constant ¢y < 1 if

|HM)||F > cy||Ps(M)||p for all M € R™*". (24)

A head projection for ¥ into ¥’ D X with constant cy is an operator H : R"*"™ — ¥/
which satisfies the head condition (24).
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At this point, it is worth mentioning (see Appendix A) that the (genuine) pro-
jection onto ZETS]) acts on any M € R™ " via

P([g (M) = plrl (Mg, xs,), where S, = argmax HP[T] (Msxs)| r- (25)
|S|=s

In Sec. 5, we will see that we can produce a tail projection for EETS]).

The size of s’ for which one can produce a head projection for ZE’;]) into EE’;I/])
with 7’ proportional to 7 is exactly the focus of Question 2. We state and prove
below (in the idealized setting where there is no measurement error) that a variant
of iterative hard thresholding — using such a head projection — allows to perform
joint low-rank and bisparse recovery via from m =< rs’ In(en/s) measurements. This
will be interesting if it can be established that s’ < s7 with v < 2 is feasible. Then,
for small r (and in particular in the case of sparse phaseless recovery where r = 1),
m =< rsY In(en/s) will be of a smaller order than both rn — the sample complexity
of rank-r matrices — and s?In(en/s). This last bound is associated with enforcing
only the matrix bisparse structure, as ensured by combining Theorem 6 in the case
r = n with Proposition 8 and Theorem 2 (see below). Quite obviously this last
context determines that v = 2 is feasible (as stated in the abstract) since s? < rs2.

Theorem 6. Let T be a tail projection for ZETS] with constant Cp > 1 and let H be

)
27] [’I’"l]

a head projection for EEQS) mnto 2(5 ) with constant cgy < 1 which additionally takes

the form

H(M) = plr'] (Mgixg) for some index set S" (depending on M) of size s'.
(26)
If (14 Cr)?(1 —¢%) < 1 and if the restricted isometry property (10) holds on

E[2r+r’]

(25+5") with constant 6 > 0 small enough to have

p=01+Cr)?1—-c%(1-0)%+26(1+6)) <1, (27)

then any X € ZETS]) acquired from 'y = A(X) is recovered as the limit of the sequence
(Xk)kzo deﬁned by

X1 = T[Xy + H(A(y — AXk)))]- (28)
Proof. We shall prove that, for any £ > 0,
X = Xp1l[7 < p | X = X[ (29)
The tail property guarantees that

X5 + H(A (y — AXk)))] = Xis1llr < O7[|[Xi + H(A™(y — A(Xi)))] — X[ r
(30)
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and the triangle inequality then yields®
X = Xi1llr < 1+ Cp)||[ Xy + H(A (y — AXp)))] — X[ - (31)

We now concentrate on bounding [|[X; + H(A*(y — A(Xk)))] — Xl|lr = ||Z —
H(A*A(Z))|| r, where we have set Z := X — X}, € Egrs]). By expanding the square,
we obtain

1Z — H(A*A(Z))|% = |ZII% + || H(A"A(Z))|% — 2(Z, H(A* A(Z)))
= ||Z||% + | H(A"A(Z))||3 — 2(A"A(Z), H(A* A(Z)))
—2(Z — A" A(Z), H(A*A(Z))) . (32)

In view of the form (26) of the head projection, followed by the facts that P (]
acts locally as an orthogonal projection and that it preserves the bisupport of a
matrix, we observe that

|H(A*A(Z))|[7 = (PT1(A"A(Z)sxs0), PT (A" A(Z) 51 c50))

A" A(Z)s: x5, PUN A A(Z)5151))

A"A(Z), PUN (A A(Z) 5 c50)) r

A" A(Z), H(A A(Z)))) r- (33)

(
(
(
(

Substituting the latter into (32) gives
1Z — H(A"A(Z))|F = | Z]% — | H(A"A(2))| %
—20Z—-A"A(Z),HA*A(Z)))F. (34)

The inner product term is small in absolute value. Indeed, in view of Lemma A.1
(see Appendix A), we have

(Z — A" A(Z), H(A"A(Z)))r| < 8|12 r| H(A"A(Z))|r <61 +0)||Z]F,  (35)

where the bound on |H(A*A(Z))| r followed from the observation (33) and the
restricted isometry property (10), according to

|H (A" A(Z))|[7 = (A" A(Z), H(AA(Z)))r = (A(Z), A(H (A" A(Z)))) r
< [ A(Z)| r[A(H (A" A(Z))||r < (1+0)||Z|| | H(A"A(Z))| F.
(36)

It now remains to prove that || H (A*.A(Z))||% is large, and this is where the head
condition comes into play. Precisely, assuming that Z is supported on S” x S” with

2Tt is probably possible to replace 1 + Cr by a constant arbitrarily close to 1 if T' mapped into
"
EE’;,,]) with 7"/ and s’ proportional to r and s (with proportionality constant increasing when Cp

decreases), as in [26] for the sparse vector case and in [12] for the low-rank matrix case. This would
allow us to eliminate the condition (1 + Cr)?(1 — %) < 1.
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< 2s, we know on the one hand that
S 2 k h hand th
|H(A*AZ))||F > cul| PP(A"A(Z)sr 50| - (37)

On the other hand, using in particular the restricted isometry property (10) and
Von Neumann’s trace inequality combined with the fact that Z has rank at most
27, we obtain

1= DIZl% < |A@D)]; = (Z, A" AZ))r = (Z, A" A(Z)srxs7)r

2r
< ZUZ'(Z)O'i(A*A(Z)Sllxsll)
i=1
o 1/2 ¢y, 1/2
S [Z O-i<z)2‘| [Z Ui<A*A(Z)S”XS”)2
i=1 i=1
= ||Z] ¢ | PP (A" A(Z) s x5) | - (38)
Combining (37) and (38) yields
I1H(A"A(Z))||r > e (1= 0)|Z]|F. (39)
Substituting (39) and (35) into (34), we deduce that
I1Z — H(A*AZ))[I5 < (1 - (1 - 6)* +26(1+6))[|Z] - (40)

Finally, using (31), we arrive that
X = Xpert[[7: € (14 Or)*(1 = ¢ (1 = 8)* +20(1 +9)) | X — Xyl B, (41)

which is the objective announced in (29). |

5. Tail and Head Projections

In this section, we gather some information about the construction of computable
tail and head projections for each of the structures %", Y(s), and ZETS]). We work
under the implicit assumption that the domain of all these projections is the space
of symmetric matrices, i.e. the projections are only applied to matrices M € R™*"

satisfying MT = M.

5.1. Low-rank structure

There is no difficulty whatsoever here — even the exact projection P} : R"*" —
¥l is accessible. Indeed, it is well known that if X € R™*" has singular value
decomposition

X = i O’i(X)uiVZT, (42)

i=1
where the singular values o1 (X) > -+ > 0,(X) > 0 are arranged in nondecreasing
order, then the projection of X onto the set of rank-r matrices is obtained by
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truncating this decomposition to include only the first 7 summands, i.e.

T

PX) =3 " oi(X)uv, . (43)

i=1

Note that P[] (M) is symmetric whenever M itself is symmetric.

5.2. Bisparsity structure

Quickly stated, exact projections for ¥ are NP-hard, but there are computable
tail projections for ¥(,). Head projections for ¥, are still NP-hard if they are
forced to map exactly into X(y).

If they are allowed to map into a larger set ¥ (), the situation depends on the
order of s’ compared to s — Question 1 in fact asks which value of s’ > s allows
for a computable head projection.

We provide a few incomplete results related to this situation.

Exact projection. Finding the exact projection for ¥,y amounts to solving the
problem
mal)éilmize [Msxsl|%. (44)
=s
This is NP-hard even with the restriction that M is an adjacency matrix of a graph

because it then reduces to the densest k-subgraph problem, which is known to be
NP-hard [21].

Tail projections. There is a simple procedure to obtain a practical tail projection
for ¥(,), as described in the following.

Proposition 7. Given a symmetric matriz M € R"*™ let S, denote an index set
corresponding to s columns of M with largest {3-norms, i.e.

S, = argmin |[M — M. s r. (45)
S|=s

Then
IM ~ Ms.xs. 1 < VZ gin [M ~ Mxs|ls- (46)

Proof. For any index set 7', the symmetry of M imposes that [|[Mz, |3 =
||MT><TH%“’ hence

IM — Mryrlf = My zllE + Mzl + Mz, 7%
= 2| My, 7% + Mz, 7l (47)
In view of |[My, 7/% + Mz, 77 = M. 7/|% = M — M.x7||%, we deduce that

M — M.y7||% < |[M — Mryr|% < 2|M — M.7|/%. (48)
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Algorithm 1. A head projection H for ¥ to ¥(,2) with cy =1

Input: A symmetric matrix M € R™*™ a sparsity level s € [1 : n].
for i € [1:n] do
Ci:= argmax |[[Mix({iyuo)ll

|Cl=s—1,CFi
ci = [[Mixqiyuey)ll2
end
R := argmax ||cg/||, with ¢ = (¢1,...,¢,) "

|R|=s
S":=RU (UieRCi)

return H(M) := Mg «s € (42

Applying the latter with 7" equal to S, and with T" equal to an arbitrary index set
S of size s shows that

M — Mg, xs, |7 < 2[[M — M.ys, |7 < 2|M - M.s||% < 2[|M - Mgy,
(49)

which yields the required result after taking the square root. O

Head projections. The literature on the densest k-subgraph problem informs us
that finding a head projection for ¥, is also an NP-hard problem [21]. In our
setting, though, there is room to relax the head projection to map into ¥, with
s’ > s. In this regard, Question 1 asks if one can actually compute a head projection
for X4y into Xy We do not have a definite answer for it, but we prove below that
the exponent 7 in a speculative behavior s’ =< 7 must lie in (1,2] — note that a
behavior s’ =< spolylog(s) is not excluded. We then highlight a few observations
which feature a nonabsolute constant ¢y when s’ =< s.

Proposition 8. The practical algorithm Algorithm 1 yields a head projection for
Y(s) tnto Xs2y with constant cy = 1. However, there is no practical algorithm that

yields a head projection for (g into Yy with absolute constant cyg > 0 when
s =0(s).

Proof. From the definition of the index sets {C; : 1 < i < n}, R and S’ in
Algorithm 1, for any index set S with |S| = s, we have

Msxsllz =D [Mixsl3 < > IMixuenll3 < D IMixgiyuen 13
ics ics icR
= [IMax(roU, . e I < IMsrxs ||, (50)

where the index set S” = RU J;cp Ci has size at most s 4 s(s — 1) = s?. This
proves the first part of the statement.
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For the second part of the statement, we shall show that if we could compute,
for each M € R"*™, an index set S’ with |S’| < C's such that
Msrxsi |7 = ety e [MsxslF (51)
=s
then a practical algorithm that yields a head approximation for ) into X, itself
would follow, contradiction the NP-hardness of the latter task. So let us assume
that we have a computable procedure to construct an index set S’ as above. Looking
without loss of generality at the case where s is even and |S’| = C's, we consider an
index set R C S’ of size s/2 corresponding to s/2 largest values of ||M;ys/||2. By
comparing averages, we see that
M s > o Moncs 3 e M} > g IMscsi . (52)
_— / _— / / 1 e. / ’ /
5/2 RxS F_CS S'xS"||Fs RxS F_2C S'xS"||F-
Next, we consider an index set C' C S of size s/2 corresponding to s/2 largest
values of |[Mpgx 2. By comparing averages again, we see that

1 1
S/—QIIMRchI% > Z=IMxs i, e [Mrxcllf > QOHMRXS’”F (53)

Combining (53), (52), and (51), we arrive at

2
C
IMixclp > 2 mas [Mscs - (54)

With T := R U C, which has size at most s, this immediately implies that

=
[Mrxr||7 > 402 max HMSxSHF» (55)

meaning that a head approximation for ¥, into ¥,y can be produced in a practical
way. Since this is not possible, the second part of the statement is proved. O

Now that we have established the impracticability of head approximations for
Y (s) into Xy with an absolute constant ¢y, we examine what can be done when
cy can depend on specific parameters.

Proposition 9. Given a symmetric matric M € R™™" we consider the practical
algorithm that returns the matric Mypxp for a set T := RUC defined by the union
of the index setls of size s

R = argmax ||M5X:H%, (56)
S|=s

€ = g [Myes| - (57)
S|=s

This algorithm yields a head projection for ¥, into (a5 with constant cy =
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Algorithm 2. A head projection H for ¥,y with cg = 1//s
Input: A symmetric matrix M € R"*" a sparsity level s € [1 : n].

for j €[1:n] do
S; = argmax ||[Mgy;l3
|S|=s,53j
end
o 1= argmax [Ms, |13
je1l:n]
return H(M) := Mg, xs;, € ()

Proof. From the definition of R and C, it is painless to see that, for an arbitrary
index set S of size s,

s s s
IMrsrl7 = [Mexclf = ~[Maxillz > ~[Msxl7 > ~[[MsxslF - (58)
which concludes the proof. O

When n > s? (which is the most realistic situation from our perspective), the
previous observation is superseded by the following one.

Proposition 10. The practical algorithm Algorithm 2 yields a head projection for
Y(s) with constant cyp = 1//s.

Proof. It is painless to see that, given the definition of Algorithm 2, for an arbitrary
index set S of size s,

IMsxsllz =D [Msxjlls <D [IMs; 5115 < s Mg, x5, 113 < 5[ Ms;, s, I3
jeS jes
(59)

which concludes the proof. O

As a final remark, we show that head projections can be computed for specific
symmetric matrices, e.g., matrices of rank one.

Proposition 11. Given a symmetric matric M =Y, _, Vkv,;'— € R"™ ™ of rank-r,
we consider the practical algorithm that returns the matric Mg, xs,, with Sy =
S1U---US,, and Sk the index set of s largest absolute entries of vy, 1 < k < r.
This algorithm yields a head projection for ¥y into ¥,s) with constant cir = 1//r
when applied to r-rank positive semidefinite matrices.
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Proof. Given the definition of S, we are going to show that, for any index set .S
of size s,

1
Mg, xs,||F > W”MSXS”F- (60)

To do so, we start by writing

<

, 2

M7, = (Z(Vk)i(vk)j> = (Vi)i(Vi)j(ve)i(ve);- (61)
k=1 k

Then, for any index set T, in view of

T

IMrsrlE = >0 > (vi)ivi)j(ve)ive); = Y Y (vi)i(ve)i(vi);(ve);

i,jET k,t=1 k=14,j€T

Z (Z(Vk)i(vé)z) ; (62)

k=1 \icT

we derive on the one hand that

, 2

Mot >3 (zm)?) 63
k=1 \é€T

and on the other hand, by the Cauchy—Schwarz inequality applied twice, that

M| < Z (Z(V’“)?> (ZM)ZZ)

k=1 \ieT ieT

AN

(i Z(Vk)?>2 < T;T: (Z(Vk)?>2- (64)

k=1ieT =1 \i€T

Applying (64) with T' = S and using the defining property of each Sy and of S,
we obtain

r 2 T 2
MsxslE < (Z(Vk)?) <ry. (Z(W)?)

k=1 \ieS k=1 \i€S}

M-

<r

(Z (Vk)f> <r|[Ms, xs, I, (65)

k=1 \ieS,

the last inequality being (63) applied with T'= S,. The prospective inequality (60)
is proved. O
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5.3. Joint low-rank and bisparsity structure

Quickly stated, exact projections for EE’;]) are NP-hard, but there are computable

tail projections for 2@)' Head projections for EE’;]) are still NP-hard if they are

forced to map exactly into EEZ]).

If they are allowed to map into a larger set ZETS,]), the situation is not settled —
this directly relates to Question 2.
We provide a few incomplete results related to this situation.

Exact projections. We already know from Sec. 5.2 that it is NP-hard to find the
exact projection onto EETS]) in general, since we are talking about exact projection
onto ¥(5) when 7 = n. But we are more interested in the case where r is a small
constant, say r = 1 as a prototype. Then finding the exact projection onto ZEls)
amounts to solving the problem

mal)éilmize | P (Mgys)||F = maéi‘mize Omax(Msxs). (66)

Thus, when M is a positive semidefinite matrix, we consider the problem

maximize (Mx,X). (67)
[Ix[[o<s,[|x[l2=1
This is the so-called sparse principal component analysis problem, which is NP-hard
[20].

Tail projections. There is a fairly simple procedure to create a practical tail
projection for ZETS]). It is based on the availability of tail projections for both X[l
and X(,). The argument is in fact valid for any two ‘structures’ ¥’ and X" such that
Y/ is compatible with a tail projection 7" for ¥”, in the sense that

ZeyY =>T'"Z)ey. (68)

The compatibility applies to the low-rank and bisparsity structures in two different
ways: first, £ is compatible with the tail projection for 2i(s) given in Proposition 7,
by virtue of the fact that a matrix Z of rank at most r has all its submatrices Zgx s
of rank at most r, too; second, X is compatible with the exact projection for il
by virtue of the fact that a matrix Z supported on S x S has all its singular vectors
supported on S, so that PI"/(Z) is supported on S x S, too. Here is the abstract
statement valid for arbitrary structures ¥’ and X”.

Proposition 12. Let T" and T" be tail projections for ¥’ and X" with constants
Cpr and Cpn. If X' is compatible with T", then T" o T is a tail projection for
Y'Y with constant Cpr + Copir + Cpi Copor

Proof. We first remark that the compatibility condition ensures that 7" o T" maps
into 3’ NY". Let M € R"*" and let P(M) denote its exact projection for ¥’ N %",



Anal. Appl. 2020.18:25-48. Downloaded from www.worldscientific.com

by PENNSYLVANIA STATE UNIVERSITY on 05/09/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

42 S. Foucart et al.

The tail condition for 7" implies that
IM —=T'(M)||lr < Cr||[M — P(M)||F. (69)
As a result, we obtain
I7(M) = P(M)||r < |T"(M) = M||p + [M — P(M)||F
< (Cr +1)[M = P(M)]| - (70)
The tail condition for 7" combined with (70) yields
17 (M) = T"(T"(M))[|[r < Crr||T'(M) = P(M)|
< Cpo(Crr 4+ 1)[IM = P(M)|[ - (71)
Using (69) and (71), we derive that
IM = T"(T'(M))|[r < [M=T'(M)|[r + |T"(M) — T"(T"(M)) || r
< (Cr + Crv(Cp 4 1))[|[M = P(M)|r, (72)

which proves that 7" o T" is a tail projection for ¥’ NY" with the desired constant.
O

Head projections. The literature on the sparse principal component analysis
problem informs us that finding a head projection for EETS]) is still an NP-hard
problem [20, Theorem 2|. In our setting, though, there is room to relax the head

projection to map into ZETS,,]) with 7/ > r and s’ > s. In this regard, Question 2 asks

if one can actually compute a head projection for EETS]) into Z[Zl,]) with ' = Cr. We
do not have a definite answer for it, but we highlight an observation featuring a

nonabsolute constant ¢y, based on what was done for the bisparsity structure.

Proposition 13. Given a symmetric matric M € R™*™ and r < s, the practical
algorithm that yields PI"\(H(M)) for the operator H defined in Algorithm 2 is a
head projection for EETS]) with constant cg = \/T/s.

Proof. Given a symmetric matrix M € R™ " we consider the row (or column)
index set S, of size s supporting the nonzero rows (or columns) of H(M) € ¥,
for the operator H defined in Algorithm 2. By Proposition 10 for any index set .S
of size s, we have

M, x5, [I7 > ~ [ Msxs]l- (73)

Then, by noticing that the average of the r largest squared singular values of
Mg, «s, is larger than the average of all the squared singular values of Mg, x s, , we
derive

r T T T r
| P (Mg, xs5.) 7 > ;HMS*xSJFF > 3—2||MSXS||2F > S—QHP[ IMsus)lF. (T4)

w | =

The desired result is now proved. O
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A similar argument, based on Proposition 9 instead of Proposition 10, would

yield a head projection for EE ]) into EE; ) with constant ¢y = +/r/n.

6. Sample Complexity with Rank-One Measurements

The specific (rank-one) measurements (5) do not result in a measurement map
A R™"™ — R™ obeying the standard restricted isometry property (10). However,
it will satisfy the following version featuring the £;-norm as an inner norm. This was
established in [3] when considering the low-rank structure alone. The proof sketch
is deferred to the appendix. Note that the rank-one measurements (5) also satisfy a
version of the null space property ensuring recovery via nuclear norm minimization,
see [17, 18].

Theorem 14. Suppose ai,...,a,, € R™ are independent vectors with independent
N(0,1/m) entries. Then, with failure probability at most 2 exp(—cm),

ol Zllr < (] Za)Pll < BIZ]r for all Z € 2L,

provided m > Crsln(en/s). The constants 3 > a > 0 are absolute.

(75)

The restricted isometry property (75) already guarantees that the specific-
sample complexity — the theoretical one — is m = rsln(en/s), as expected. Indeed,
given y = A(X) + e for some X € ZZ;])v consider the unpractical recovery scheme

A(y) = argmin ||y — A(Z)]:. (76)
zex[)

In a similar spirit to (12)—(13), we can derive that
2
IX = ACARX) +e)llr < —llellr- (77)

For a practical algorithm scheme, we have in mind an algorithm belonging to the
iterative hard thresholdmg family. Namely, we can think of constructing a sequence

(X) of matrices in EE ]) by the recursion®

~AX
X1 = T[Xp + v H(A sgn(y — AXy))], v = ”}’672k”1

Here, the operators T : R™*" — EETS/,]) and H : R™" — EETS/,/,]), depending on
parameters 7/, s, v/, and s”, may be tail and head projections. It could also be

useful to require the operator T to satisfy the property® that, for all X € EETS]) and

(78)

bIt is ‘natural’ to include the sgn operator in order to exploit the restricted isometry property
with ¢1 inner norm.
°The inequality of (79) implies that T is a tail projection with Cp = 1 + n(C”), since

IM = T(M) || < M =PI e + | PLIM) = T p < M =~ P M)l r

+n(CHIIPEI M) = Mg = Crl[M = P (M)||r.
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all Z € R,
X =T(Z)llr <n(C)|X - Z|p with n(C") — 1. (79)

C'—o0
With T' = P([g,/%, this inequality seems rather intuitive, but it needs to be formal-

ized — keep in mind, however, that P([z,l% is not accessible. When considering the
low-rank structure alone, such an inequality has been established and exploited in
[12] to prove that an iterative hard thresholding algorithm of the type (78) presents
the same recovery guarantees as nuclear norm minimization for recovery from mea-
surements of type (5). The type of inequality (79) was first put forward for the
sparse vector case in [26] and it has been exploited in [10] to propose and analyze
an iterative hard thresholding algorithm designed for the case when the standard
restricted isometry property fails.

There is an additional property that we could require about the operator T
Namely, given a matrix M € R™*"_if T'(M) is supported on S x S, then

T(M)=T(Mgxs/) whenever S’ D S. (80)

This property is true (see Appendix A) for T' = P([z,/%, which again is inaccessible.

Appendix A. Proofs of Auxiliary Results

This section collects the detailed arguments for some facts that have been stated
but not proved in the narrative.

A.1. Restricted isometry properties

First, let us concentrate on Theorem 2 and briefly justify that Gaussian measure-
ments of type (4) satisfy the standard restricted isometry property (10). Without
going into details, we simply mention that the classical proof consisting of a con-
centration inequality followed by a covering argument works — the key being to
estimate the covering number of the ‘ball’ of ZETS]) essentially as in [4, Lemma 3.1]
with the addition of a union bound.

Next, let us concentrate on Theorem 14 and briefly justify that Gaussian rank-
one measurements of type (5) satisfy the modified restricted isometry property (75).
Again, without going into details, we point out that the proof is in the spirit of [9]:
for a fixed Z € R™*", establish a concentration inequality for ||(a, Za;)™, ||; around
its expectation J/Z/, prove that this slanted norm is equivalent to the Frobenius
norm, and conclude with a covering argument.

A.2. Convergence of the idealized iterative hard thresholding

We now establish that the naive (and impractical) iterative hard thresholding algo-
rithm (15) allows for stable and robust recovery of jointly low-rank and bisparse
matrices under the standard restricted isometry property. The precise statement
appears after the important observation below.
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Lemma A.1. Suppose that A : R"*™ — R™ satisfies the restricted isometry prop-

erty (10) on Zgrs}) with constant 6 € (0,1). Then, for all Z,Z’ € EETS]), one has
(Z, (A" A-T)(Z)| < 0| Z||FI|Z'| p- (A.1)
Proof. Assuming without loss of generality that |Z||r = ||Z'||r = 1, we use in

particular the parallelogram identity to write

(Z, (A" A-T)(Z')| = |(A(Z), A(Z")) - (Z,Z)]

1
TUAZ+ 2|5 - | A(Z - Z)]3)
1 /112 /12
—7UZ+ 2 — 2 - Z'[¥)
1
< ZIAEZ+2)5 - 112+ 2| 7|

1
+4IAZ = 2Z)5 - |12 - Z'||7|

IN

1 1
012+ 23+ 3812 - 2|

1
= 19CIZIIE +21Z|[F) = o, (A.2)

which is the required result. O

Theorem A.2. If the restricted isometry property (10) holds on EEZ]) with constant

0 €(0,1/2), then any X € ZETS]) is approzimated fromy = AX+e € R™ as a cluster

point Xoo of the sequence (Xyi)r>o0 defined by
Xpi1 = P (Xk + A" (y — AXy)) (A.3)
with error

X = Xeol[r < Clle]l2. (A.4)

Proof. It is enough to prove that, for all & > 0,

IX —Xpt1llr < pl|X = Xg|lr + 7llell2, withp:=20<1 and 7>0. (A.5)
To start, notice that X1 better approximates X + A*(y — AXy) = Xj +
A*A(X — X}) + A”e as an element from EETS]) than X does, so that
Xp + A*AX — Xp) + A%e — Xp 1|2 < | X + AAX — X;) + A'e — X||2..

(A.6)
Introducing X in the left-hand side, expanding the squares, and simplifying leads to

1X = Xy [} € ~2(X = X, (AA-D(X = X;) + ). (A7)
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Thanks to Lemma A.1, we have
(X = X1, (A A = (X — X)) < 20X = X [ X = Xil e (AS)
while the restricted isometry property (10) also guarantees that
(X = X1, A%e)| = [(AX = Xpi1), )| < [AX = Xpp1)l2]le]2
< VIH|IX = Xppallrlello- (A.9)
Therefore, using (A.8) and (A.9) in (A.7), we obtain

1X = X7 < 201X = Xpa[[7[|X = X[l o + VI + 01X = X1 || [le]|2,
(A.10)

which clearly implies the required estimates (A.5) with 7 = /1 + ¢ and (A.4) with
C=1/(1-p). |
The exact projection for E[TS]). Here, we prove the statement (25) about the
form of P([S before justifying that property (80) holds for T = P([S.

Proposition A.3. For M € R"*" the projection P([S (M) of M onto EETS]) has the

form Pl (Mg, «s,), where S, mazimizes | P (Mgxs)||r over all index sets S of
size s.

Proof. Let us remark that, for any index set T,
IM =PI (Mpsr) |3 = [Mgsg + Mrsr — PV (M) |7
= [Mzsrlli + [IMrxr — PU(Mapsr)|1 7
= Mgzl 7 + Mozl 7 — PP (M) |7
= M = [ PYT(Mzwr) |3 (A.11)

Now, let Z € E[TS] and consider an index set S of size s such that Z is supported
on S x S. The defining property of Sy, together with (A.11), implies that

IM — Pl (Mg, ws.)IIF < IM|[3 — |[PM (Msys)|13
= |[Mg=5ll% + [Msxs — Pl (Mgxs)|%
< Mgzl + IMsxs — 2|7 = M= Z||7,  (A.12)

where we have taken into account the facts that PIl(Mgyg) is the best r-rank
approximation to Mgy s and that Mgz and Mgy s — Z are disjointly supported.

Thus, we have proved that [|[M — PI"l(Mg, x5, )||r < |M — Z||r for all Z € EETS]),

which is the desired result. O
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Proposition A.4. For M € R"*™ considering an index set Sy of size s with

P([ST;(M) = P (Mg, xs,), one has

(s) (s) (Msrxs1) whenever 8" 2 S,. (A.13)

Proof. According to Proposition A.3, it is enough to verify that, for any index set
S of size s,

[P (Mg xsr)s.xs.)llr > IPT(Msrxs)sxs) p- (A.14)

But this is true because (Mgixs/)s,xs, = Mg, xs, and (Mg xs/)sxs =
(MSXS)S’XSH SO that

[P (Mgrws)sxs)llr < [IP(Msxs)|r < [PV (Mg, xs,)llr,  (A.15)

where the last inequality follows from the defining property of S,. O
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