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Abstract—We use a crowdsourcing approach for RF spectrum
patrolling, where heterogeneous, low-cost spectrum sensors
are deployed widely and are tasked with detecting unautho-
rized transmissions while consuming only a limited amount of
resources. We pose this as a signal detection problem where
the individual sensor’s detection performance may vary widely
based on their respective hardware or software configurations,
but are hard to model using traditional approaches. Still an
optimal subset of sensors and their configurations must be cho-
sen to maximize the overall detection performance subject to
given resource (cost) limitations. We present the challenges of this
problem in crowdsourced settings and propose a set of methods
to address them. These methods use data-driven approaches to
model individual sensors and exploit mechanisms for sensor selec-
tion and fusion while accounting for their correlated nature. We
present performance results using examples of commodity-based
spectrum sensors and show significant improvements relative to
baseline approaches.

Index Terms—Cognitive radio, wireless sensor networks, event
detection, statistical learning, sensor fusion.

I. INTRODUCTION

ITH growing realization of mobile communication’s
Wimpact on the nation’s economic prosperity, RF spec-
trum has emerged as an important natural resource that is in
limited supply [1]. While various spectrum sharing models
are being developed to improve spectrum usage, ‘spectrum
patrolling’ to detect unauthorized spectrum use is emerging
as a critical technology [2]. Such unauthorized uses can take
many forms, such as lower-tier devices accessing spectrum
reserved for higher tier devices in a tiered spectrum shar-
ing model [3], unauthorized devices accessing licensed spectra
using software radios, or denials of service attacks. Techniques
must be developed to detect such unauthorized accesses and
large-scale spectrum monitoring is one effective way to do this.
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However, large-scale spectrum monitoring using lab-grade
spectrum analyzers is not scalable, given that such devices cost
anywhere from several thousands to tens of thousands of U.S.$
depending on the exact capability and require availability of
AC power. Several recent papers have proposed to address
this scalability issue by deploying low-cost, small form-factor,
low-power spectrum sensors in large numbers perhaps using
a crowdsourcing paradigm [4], [5], [6].] The overall monitor-
ing performance achieved by a large number of such low-cost
sensors can exceed that of a handful of lab-grade spectrum
analyzers while costing several orders of magnitude less [4].
Due to this reason, there is a growing body of literature in
studying the performance characteristics of commodity-based
inexpensive sensors [6], [8], [9].

Although using inexpensive, commodity-grade sensors
in large numbers may provide a very encouraging cost-
performance tradeoff, use of a crowdsourcing paradigm brings
in certain management problems. Spectrum patrolling must
involve signal detection. It is unlikely that all deployed sensors
will be used in specific detection tasks [4]. Only a subset will
be typically employed ensuring that a required level of detec-
tion performance is achieved. This conserves the backhaul
bandwidth and also energy when the sensors are battery oper-
ated (e.g., when mobile phones serve as spectrum sensors [8]).
In case of multiple sensing needs in the same geographical
space (e.g., detecting specific signals in multiple spectrum
bands), sensors may need to be configured to engage in one
specific task as their processing powers may not be sufficient
for multiple concurrent signal detection tasks. The broad goal
of this work is to develop mechanisms to select the right set of
sensors that optimizes the performance of detection task for a
given cost. There are two sub-problems that arise: 1) modeling
individual sensor performance and cost for given configu-
rations, 2) fusing data from multiple sensors and selecting
the optimal subset to maximize detection performance sub-
ject to cost limitations (or, minimizing cost subject to a given
detection performance). While these problems are not entirely
new in a general sense, the specific nature of crowdsourced
spectrum patrolling problem makes them challenging.

Challenge 1 — Modeling Individual Sensors: Fundamentally
spectrum sensors must perform a signal detection task in
form of a binary hypothesis testing (intruding transmitter

IThere is at least one commercially successful crowdsourced application of
spectrum sensing. FlightAware [7] deploys low-cost sensors via crowdsourcing
to detect signals from aircrafts flying overhead.
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Fig. 1.

Overview of the proposed technique. Performance models of individual spectrum sensors are created first using a data-driven approach. Then sensor

selection using a feature selection based approach. Finally individual sensor decisions are fused together to get a global decision. The figure indicates the

different steps along with the section numbers where they are described.

present/absent). Detection performance is usually character-
ized by standard metrics like probability of detection (Pp)
and false alarm rate (Ppy). Assigning a specific sensor to
a specific sensing task and choosing specific configurations,
requires accurate estimation of its Pp and Ppy metrics and
cost for such configurations. Modeling of the cost depends
on the scenario and can include, e.g., energy cost, backhaul
data cost or any form incentives to be paid to the owner of
the sensor. However, given the heterogeneity and diversity of
spectrum sensors, in a crowdsensing paradigm estimating such
metrics accurately is challenging. Existing literature exten-
sively uses so-called first principles modeling approach that
could miss various forms of imperfections (e.g., clock skew,
I/Q imbalance, RF front end non-linearity) and noises com-
mon in commodity platforms. Even when they are able to
account for those, they require knowledge of internal details
of the sensor or separate calibration efforts. These are either
not practical or do not scale well. More specifics of these
issues are discussed in Section II.

Instead of relying on first principles models, we use a data-
driven (blackbox) approach where models are created based
on data from prolonged observation of the sensor. This type
of approach is getting traction in other communities such as
industrial process control where first-principles approaches are
not practical for largely similar reasons (see, e.g., [10]). We
abstract out the observable and easily quantifiable parameters
of a sensor, its operating environment or runtime configuration.
We use machine learning methods that treat the internal sen-
sor hardware information (otherwise inaccessible) as hidden
variables. This gives our methodology a direct and practical
advantage over involved analytical models. Second, such mod-
els get richer with time and can easily accommodate new
sensors without the need of explicitly calibrating them, an
otherwise impossible task.

Challenge 2 — Sensor Selection and Fusion: Once indi-
vidual sensors are modeled, we must select the subset of
sensors (and their configurations if they are configurable) to
achieve the best cost-performance tradeoff, i.e., the best detec-
tion performance for a given total cost (or minimum cost for
a given desired performance). Here, the local sensor decisions

(target present/absent) are to be combined into a global ‘fused’
decision. Thus, a fusion rule is needed. While there is a very
rich literature on sensor fusion and developing optimal fusion
rules, most techniques in the literature assume that sensor
decisions are conditionally independent. This is not true for
spectrum sensors, where their decisions could be correlated
depending on the sensor locations. The reason is that sensors
located in the same neighborhood are likely to face the same
fading environment, resulting in correlations in their observa-
tions/decisions. The case for correlated observations have been
indeed studied (see, e.g., [11], [12], [13]). But these methods
are either too complex computationally to implement in prac-
tical systems and/or require prior knowledge of the correlation
structure (e.g., in terms of higher-order moments of the sensor
observations under each hypothesis [11] or spatial correlation
coefficient [14]). Also, these techniques do not help addressing
the sensor selection problem.

To handle this problem, we use a variant of sensor selection
from machine learning literature called Maximum Relevance
Minimum Redundancy (mRMR) [15]. This technique first
assigns a value to each sensor by considering both its proba-
bility of detection, and its correlation with the other sensors.
It uses an adaptive greedy selection where the value of each
sensor is computed at each step, and then the sensor with
the highest value is taken. While this does not guarantee an
optimal subset, experiments on a large variety of datasets have
shown that it works well in practice. Our evaluation shows that
it works significantly better than a baseline technique that does
not take correlation into account.

Contributions: Figure 1 pictorially describes the overall
approach with pointers to various sections of the paper.
Overall, we make two sets of contributions. First, we develop
a systematic approach for data-driven models of spectrum sen-
sors engaged in signal detection (Section III). The model takes
the sensor’s configuration and SNR as input and estimates
detection performance and cost (we use energy to model cost
in this work). We precede this modeling approach by highlight-
ing limitations of traditional first-principles based analytical
modeling approaches (Section II) and demonstrate improved
model performance using the proposed data-driven approach
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Fig. 2. Working principle of a detector. S denotes the threshold of the
sensing metric. Increasing S reduces Pp but also reduces Py as per the
ROC curve.

using actual spectrum sensor hardware. Second, we develop
a technique for the sensor selection and fusion problem tak-
ing into account the fact that the spectrum sensors are not
conditionally independent (Section IV). The proposed feature
selection based technique is suitable for crowdsourcing as it
does not require information that is hard to obtain or estimate.
We show that the overall detection performance improves
significantly relative to baseline techniques.

An earlier version of this work was published in IEEE
INFOCOM 2018 [16]. In contrast to this work, here we pro-
pose a more robust version of sensor selection, based on
feature selection borrowed from the machine learning liter-
ature. The sensor selection algorithm in the previous version
assumed that sensors were placed in a way that they could
be partitioned into independent sets by clustering. Unlike the
previous version, our sensor selection technique does not make
any assumption about the distribution of the sensor locations.
We have also included a more extensive evaluation of the
performance of our selection and fusion algorithms in this
version.

II. MODELING DETECTION PERFORMANCE

The spectrum sensor detects the absence or presence of an
intruding transmitter’s signal. The corresponding hypotheses
are denoted as Hp (absence) and Hp (presence) respectively.
Raw sensed samples from the sensor are fed to the correspond-
ing detection algorithm on board of the sensor that computes
a sensing metric. The sensing metric is compared against a
threshold (S7) to output a binary decision. This is the local
decision of the sensor.

Performance Metrics: Given Hy, the rate at which the sensor
detects the transmitter is known as the probability of detec-
tion (Pp). Second, given Hy, the rate at which the sensor
incorrectly flags the presence of a transmitter is known as the
probability of false alarm (Ppy). Figure 2 demonstrates the
basic working principle. The sensing metric has two differ-
ent distributions under hypotheses Hy and H7. Under Hy, the
distribution reflects noise. Pp and Pp4 depends on the selec-
tion of Sp. Varying S7 varies both Pp and Ppy between
0 and 1. This produces the receiver operating characteristics
(ROC) curve. Specitying Pry (common case) also determines
Pp as per the ROC curve. However, the ROC curve itself
would look different if the distributions of the sensing metric

shown in Figure 2(a) change. This is possible when the signal
power from the transmitter changes (due to a different loca-
tion, e.g.,). We further discuss details of the distribution later
in this section.

Challenges: Estimating an optimal value of S is straight-
forward when the distributions of the sensing metric for Hy
or Hy (Figure 2(a)) are known or can be accurately estimated.
Unfortunately, this is not the case in practice. The distribu-
tions depend on a variety of factors including the detection
algorithm, specifics of the sensor hardware, SNR or SINR at
the sensor location, number of sensed samples, FFT resolution
and so on. Common detection algorithms are energy-based,
waveform or feature-based, autocorrelation or cyclostationary-
based. Existing analytical techniques [17], [18], [19] can
help model such algorithms to estimate an optimal Srp.
However, such models typically result in significant estima-
tion errors [17], [18]. The reasons are as follows. First, many
of these models make idealistic assumptions about the distri-
bution of the signal or noise or the noise associated with sensor
hardware. For example, [20] shows that the performance of a
sensor actually depends on both the signal parameters and the
amount of RF front-end non-linearities of the sensors. Second,
complex models do exist that take into account such fac-
tors [20], [21], but it is seldom possible to parameterize them
correctly. This is due to the uncertainty in the hardware itself
or inaccessible components that make reliable measurements
impossible. Third, even when such measurements are possible
manual calibration of individual sensors does not scale well,
especially in the context of crowdsourcing.

We provide two sets of benchmarking experiments to
highlight the challenges.

Clock-skew: As an example, we study the clock skew associ-
ated with the local oscillator (LO) in the sensor. The frequency
set in LO tunes the sensor to the desired frequency. However,
the LO-frequency drifts giving rise to clock skew. To under-
stand the nature of such drifts in commodity sensor hardware,
we use two different spectrum sensors based on RTL-SDR and
USRPB210. These sensors are chosen due to their low-power,
small form factor nature [8]. They are both USB-powered
and could be driven by an embedded CPU board or even
a smartphone. Three test signals are used for detection. The
first two are constant frequency tones in the 915 MHz band
and the pilot tone of an ATSC signal (DTV band). In both
cases we observe a non-trivial frequency drift that varies
widely across individual sensor instances. For the third, we use
an LTE downlink signal from a real network (AT&T) using
these sensors and recorded the frequency correction needed
in order to decode the synchronization signals. The results
are summarized in Figure 3(a). In most cases RTL-SDR suf-
fers from an appreciable clock skew which is less prevalent
in more expensive hardware like USRP. In Figure 3(b) we
show the impact of such clock-skew in detecting an ATSC
signal. The ATSC signal has a pilot tone located at an offset
of 310 KHz that is expected by our waveform based detec-
tor algorithm. We create two variations of the algorithm that
expects the pilot tone (i) exactly at the 310 KHz offset and
(i1) ~100 KHz surrounding the expected location that it scans.
In a low SNR scenario, scanning provides almost a 50%
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improvement in Pp compared to the detector that expects the
pilot at a fixed offset demonstrating the impact of the clock
skew problem.

I/Q imbalance: Apart from clock skew, I/Q imbalance and
RF front-end non linearities are other prominent issues. 1/Q
imbalance is introduced as a result of mismatch between the
in-phase (I) and quadrature (Q) signal paths of the RF receive
chain. For example, phase difference between the I and Q
components is not always exactly 90° which results in an
amplitude and phase offset in an I/Q sample. Since we do not
have direct control over the radio circuitry, we simulate 1/Q
imbalance by adding amplitude and phase offsets to real 1I/Q
traces obtained for an ATSC signal using a RTL-SDR device.
For both cases, we use an offset drawn from a zero-mean
Gaussian with a standard deviation as shown in Figure 4. We
report the detection rate of the ATSC signal using a waveform-
based detector that identifies the ATSC pilot signal. As the I/Q
imbalance becomes more prominent, it becomes impossible to
detect the signal. Although I/Q imbalance can be addressed
directly in the hardware [21] we expect that crowdsourced
spectrum sensors may use inexpensive hardware unable to do
such corrections.

As mentioned earlier, while such problems can be accounted
for by applying models that ‘corrects’ for such errors, these
models are based on the ’first principles’ approach. These
models can only be applied after knowing specific sensor-
specific parameters (e.g., characteristics of frequency drift,
whether the algorithm scans, or nature of I/Q imbalance, etc).
However, this information may not be available in a crowd-
sourcing scenario given significant possible heterogeneity.
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Fig. 5. Spectrum sensor data collection.

III. DATA-DRIVEN PERFORMANCE MODELING

To address the problem of scalable modeling of heteroge-
neous sensors, we borrow from the concept of data-driven soft
sensors utilized in industrial processes [10], [22]. Industrial
processes find it impossible to use first principles models for
their physical and chemical processes. These models are often
idealized (e.g., they assume steady state behavior) or require
parameters that are hard to obtain. Instead, data-driven soft
sensors models are gaining ground that take an alternative
blackbox approach where massive amount of collected data
is used to model and predict the industrial process behav-
ior in realistic conditions using statistical or machine learning
techniques (see, e.g., [10], [22]).

In the following we present our approach for the data-
driven analysis using an example dataset. We first describe
our dataset, quantify the errors associated with first-principles-
based analytical models and then present our data-driven
performance model of spectrum sensors.

A. Dataset

We collect spectrum sensor measurements in an outdoor set-
ting within the university campus. As shown in Figure 5(a), we
setup a USRP B210 based transmitter that transmits a constant
tone in the 915 MHz band and collect sensing data (I/Q sam-
ples) using three RTL-SDR and two USRP B210 devices. We
collect 1M samples at every location and our sensing area cov-
ers approximately 1000 locations within a 190 x 340 ft> region
(Figure 5(a)). The distribution (under Hp) of the received
power is also shown in Figure 5(b). We bias our data collection
towards relatively lower SNR zones so as to have more vari-
ations in detection performance. We also note that detection
is much easier if the received power is higher. Thus we only
consider cases where the intruder uses relatively low power to
avoid detection. Using the same set of sensors we also col-
lect a noise dataset by turning off the transmitter. This data
corresponds to the distribution for Hy.

For every location we employ three different detection algo-
rithms (energy, feature and autocorrelation based) [8] both on
the signal and the noise dataset. We vary two key parameters
of the algorithm that directly influence Pp — Ppy as well as
energy cost in the sensor [8]: (i) N, number of sensed samples
and (ii) NFFT, resolution of the FFT. N and NFFT are var-
ied from 32 (25) to 4096 (212) by repeated doubling with the
constraint of N > NFFT (36 configurations). We introduce
heterogeneity in the resolution of sensed samples by changing
the number of bits per sample. We produce additional data
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Estimation errors associated with the analytical models and their dependency on the sensor’s operating environment or configurations. The median

estimation error in Pp can be as high as 25%. Higher errors are highly associated to low SNR operating environments.

sets of 14, 12, 10 and 6 bit samples by ignoring the least
significant bits from the collected 16 bit samples. Note that
this depends on the resolution of the ADC in the sensor and
heavily influences the dollar cost.

Across all locations, detection algorithms running with dif-
ferent configurations (=650K in all) we obtain the sensing
metrics for Hy and Hj respectively. For each location and
for every possible configuration at that location, we repeat the
detection experiment 1000 times by selecting a contiguous
chunk of N samples from the respective 1M samples start-
ing at a random offset. This gives us 1000 instances of the
sensing metrics under the same configuration and we com-
pute Pp and Ppy for a given value of the sensing threshold,
St. By varying S, we obtain the ground truth ROC curves
for all such configurations across all locations.

B. Limitations of Analytical Models

Before directly delving into the internals of the data driven
model, we first demonstrate the limitations of first-principles-
based analytical models using our dataset. Due to space
restriction we are not able to explain individual variations
of the analytical models we use but will explain the general
conclusions and trends. Figure 6(a) shows two histograms of
the sensing metric corresponding to Hy and H; obtained by
using the energy-based detector algorithm (N = 2048, NFFT
= 1024). We use the analytical model for energy-based detec-
tor to estimate the distributions for Hy and Hp for the same
location. Figure 6(a) visually shows the difference between
ground truth and the estimated distributions. In Figure 6(b),
we present the estimation errors for different values of Ppy.
Note that the median error can be as high as 25% in many
cases. We observe that the distribution of signal and noise are
close to each other in case of low SNR scenarios, leading to
higher probabilities of error. We also show (Figure 6(c)) the
correlation of such errors to the sensing configurations. Unlike
other factors, the number of ADC-bits does not show a very
high degree of correlation. This may be because we attempt
to detect a simple tone at a constant power in this study.

C. Data-Driven Performance Model

Given the relatively poor performance of parametric mod-
els, we make use of ‘training data’ collected from spectrum
sensors to take a non-parametric data-driven approach. Note

MOD, ; —e— MOD; —e— MOD,, —e—
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Fig. 7. Performance of the data-driven models MOD Pra compared to the
analytical models ANAp,, for different values of Pry.

that this data is already labeled as it has been obtained using
our own sensors and transmitters at specific defined config-
urations. Essentially, the task of the model is to determine
an optimal sensing threshold, S;p " that maximizes Pp for

a given Ppy. For training the model we use feature vectors
target

of the form V: <Algorithm, N, NFFT, B, SNR, Pra >,
where P;%get is the allowable false alarm rate. Algorithm

refers to the signal detection algorithm the sensor runs that
uses N, B-bit samples and involves an NFFT-bin FFT. We use
energy, waveform and autocorrelation based detection algo-
rithms. SNR refers to the signal-to-noise ratio of the signal at
the sensor’s location. Every vector V; is mapped to a corre-
sponding S;p % in the training examples. Note that we do not
explicitly take into account internal hardware details unlike the
involved analytical models [20], [23]. We explore off-the-shelf
machine learning techniques using the scipy package [24] to
learn the estimator for 77 ¥ Out of several popular techniques
we tried out, the Support Vector Regressors (SVR) using
RBF kernel works best in our case. We have also explored
deep-learning methodologies [10] using convolutional neu-
ral networks (CNN); however, the amount of training data
required to get reasonable estimation performance is signif-
icant. This makes CNN impractical in our case, and we adopt
SVR for creating the performance model.

Validation: We validate the performance of our data-driven
model in Figure 7. Given the configuration of the sensor and
the SNR it operates in, our model predicts the optimal thresh-
old S77 " that maximizes Pp for a given Ppg. We use the

opt

sensor traces and the model predicted S to compute Pp
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for a given Ppy. The relative error of ﬁ; with respect to Pp
is reported. We restrict our evaluation to sensor traces that
has moderate to low SNR values as under such scenarios the
models are error prone. We show estimation error in Pp for
Pry equal to 0.1%, 1% and 10% respectively. The data-driven
models are indicated by MODp,, in Figure 7. We also present
the estimation errors of the analytical models (ANAp,,) for
the same set of data points (low/moderate SNRs). In all cases
after our model is moderately trained, we reduce our estima-
tion error by a significant margin with respect to the analytical
models. For instance, M ODyq outperforms ANAqg by ~ 12%
for a training set of size 20%. With more training samples the
estimation error of our model becomes negligible and we see
a clear improvement over the analytical performance models.

IV. SENSOR SELECTION AND FUSION

The approach described in the previous section gives us the
power to estimate the detection performance of an individual
sensor deployed in the wild without explicitly calibrating it. In
this section we use such models to optimize the (network-wide
or global) detection rate. This is done by selecting an optimal
set of sensors (and their configurations such as number of ADC
bits, number of samples or FFT bins etc.) and fusing their local
decisions into a network-wide (global) decision. This needs a
simultaneous solution of sensor selection and sensor fusion
problems. As discussed in Section I, a wide body of litera-
ture exists that propose mathematical techniques to fuse sensor
decisions to optimize certain detection performance metrics
(typically Bayes risk). In a widely used method proposed by
Chair and Varshney [25] that we will also use, an optimal
fusion rule is developed to minimize the sum of false alarm
and missed detection rates, but specifically for the case when
the sensors are conditionally independent.

As explained in Section I, the conditional independence
assumption does not hold for spectrum sensors. It is hard to
account for correlated sensor observations with existing tech-
niques due to complexity or unavailable parameters of the
crowdsourced spectrum sensors. We develop an alternative fea-
ture selection-based approach below that we will demonstrate
to perform well in practice.

A. Sensor Selection

To optimize performance under the constraint of a cost
budget, we need to select a set of sensors S that collec-
tively offers the best network-wide detection performance. Let
Pp(S) denote the probability that the set of sensors S detects
an intruder. We denote the selection of a sensor by setting
the decision variable z; = 1, otherwise we set z; = 0. Let
C; denote the cost of utilizing sensor 5;. Our objective is to
maximize the probability of detection while keeping the cost
within a fixed budget B:

Maximize Pp(S) subject to: Z 2 C; < B. (1)
S; €8

Sensor Ranking: Solving this optimization is a known
NP-hard problem, since the sensors are correlated. This is
mainly because quantifying the effect of the correlations on

performance of the set of sensors is difficult. To solve this
optimization problem, we utilize a variant of a commonly used
feature selection technique from the machine learning litera-
ture, known as Maximum Relevance Minimum Redundancy
(mRMR) [15]. In this technique, the sensors are ranked based
on their contribution to Pp(S). However, a measurement of
the contribution of a single sensor needs to take into account
two distinct factors.

e Relevance: A sensor is more relevant if its data is more
frequently used to detect an intruder. Based on the feature
selection literature, we measure the relevance of a sensor
by looking at the mutual information between the sensor
reading and the presence of intruder. Let X; be a random
variable denoting the local decision given by sensor S;.
Also, let U be a random variable denoting if an intruder
is actually present at location j. Both X; and U are binary
random variables. Then, the relevance of §; is measured
by the mutual information between X; and U, I(X;, U):

(X, U)= > > PXi=uz,U=u) (2)
2;€{0,1} ue{0,1}
P(X; =z, U = u) 3)

8 B X = ) P(U = u)

The value of I(X;, U) is 1 if X; and U are perfectly
correlated, and O if they are completely independent. The
probability terms can be estimated if we have sufficient
data representative of the cases of intruders being present
as well as absent. Thus, I(X;, U) is a measure of how
relevant the sensor S; is in detecting the presence of the
intruder (denoted by U).

e Redundancy: Assuming we already have selected a set
of sensors, we need a way to measure if adding a new
sensor adds any new information. A common approach of
measuring the redundancy of a sensor S;, with respect to
a subset T C S is to measure the amount of information
given by the new sensor about the output of the subset:

|T| 2,1

S; €T

R(Sj,T) (Xi, Xg) “4)

If two sensors S; and S are spatially close to each other,
then the mutual information of these two sensors will be high.
Once again, it is possible to estimate the mutual information
by looking at the outputs of each individual sensors for both
Hy as well as Hj. In this case, selecting both the sensors leads
to a high degree of redundancy. Thus, there is little value in
adding one such sensor to a subset containing the other.

To account for both relevance and redundancy, the actual
value (denoted by V(Si,T)) of adding a sensor S, is the
difference between the mutual information and redundancy.
Mathematically, we write this as:

V(S T) = I(Xy, U) — R(Sk, T). (5)

Sensor selection schemes: For each sensor S; € S and a
subset of the sensor set T C S, we now have a fixed value
V (S;, T). We also have a fixed cost C; for each sensor S; € S.
This is a feature selection problem with linear cost constraints,
which is NP-hard in general. We first solve it in the simple case
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of FFT bins).

Algorithm 1 HETS: Heterogeneous Sensor Selection

1: Input: Value of sensors V, cost of sensors C, cost budget
B
2: Output: Optimal selection A

3: R = 0 /* R stores the cost of sensors selected so far. */
4 T— ¢

5: while R < B do

6: j < arg maxﬁvzl Vi) C;

7 T—TuU {Sj}

8 R— R+ Oj

9: Vi <20

10: end while

11: return T

where the sensors are homogeneous in terms of configurations,
and follow this up with heterogeneous configurations.

Homogeneous Sensors (HOMS): We assume all sensors are
identical and have the same configuration. Hence their costs
are equal and we assume unit cost for every sensor, i.e.,
C; = 1. In this case we first iterate across all the sensors and
select the sensor with the highest V;. We add this sensor to
the subset T. In the next iteration, we recompute the values
of V; for all the remaining sensors, and again select the max-
imum. In this way, we keep selecting sensors until we reach
the budget for the number of sensors allowed.

Heterogeneous Sensors (HETS): In this case the sensors
have heterogeneous configurations that are preconfigured for
every sensor and cannot be changed. Accordingly, the sensor’s
cost C; is a function of its configuration as demonstrated in
Figure 8(b). Depending on the sensor’s configuration, C; can
vary anywhere from the minimum cost value to 1. In this
case, we pick the sensor having the highest value-to-cost ratio
Vi/C;, and add it to the subset T. We recompute the values
of V;/C; again, and keep picking the sensor with the highest
value and adding it to T until again we exceed the budget. We
summarize this algorithm in Algorithm 1.

Reconfigurable Sensors (RES): Here, the sensor can adopt a
specific configuration from a pool of available configurations.

Normalized Cost

Sensor Configuration (N, NFFT)

(b) Configuration vs. Normalized Cost

(a) Pp for different configurations of the sensor under low and high SNR. (b) Sensor cost model (N is number of samples, NFFT is number

Here the task is not only to select the sensors but also deter-
mine the configuration of the sensor that it should adopt. We
again compute the value-to-cost ratios V;/C; for each config-
uration, and select the one that provides the highest. However,
in the next iteration, we repeat the procedure after excluding
the sensor that has already been selected in the previous step.
We repeat this procedure until no sensor can be selected within
the budgeted cost.

Analysis of Our Technique: We note that our technique is
a heuristic, i.e., it does not provide any guarantee of optimal
or approximate performance. To understand this, we consider
a case where there are three sensors S7, So and S3 available
for selection, with values V7, Vo, V3 and costs C7, Co and
(3, respectively. We also have a budget of 2. Let the sensors
S1 and S as well as So and S3 be strongly correlated with
each other. Assume that V5 is slightly greater than Vq and V3.
In this case, it is obvious that selecting S; and S3 is better.
However, our algorithm first chooses S and then any of 57
or S3. Since both S7 and S3 are strongly correlated with Sa,
this can give a solution that is arbitrarily bad. Note that this
can be extended to any number of sensors, in the special case
where there are groups of 3 sensors with each of them having
the same configuration. Thus, in the worst case, our algorithm
can give a solution that is arbitrarily bad. However, we show
in our evaluation that our heuristic performs well in a large
number of different cases.

Time Complexity: To understand the time complexity of our
technique, we note that selecting a single sensor requires iter-
ating over all the sensors to compute each sensor’s relevance.
This requires O(|S|) time. It also requires iterating over all
the selected sensors. Since the number of selected sensors is
always less than the budget B, this requires B time. Thus, a
single selection requires O(|S| x B) time. This needs to run
B times to fill the budget, and so the total time complexity of
our technique is O(|S| x B?).

B. Sensor Fusion

We now have a selection of sensors and their configurations.
We use the Chair-Varshney optimal sensor fusion rule [25] that
fuses the local decisions of the individual sensors into a global
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(fused) decision to minimize the error rate. However, Chair-
Varshney sensor fusion rule assumes that the sensor decisions
are conditionally independent. This is not true in practice in
our case, since the intruder can arrive at any location within
the area, which affects the sensor local decisions.

To resolve this limitation, we apply this fusion rule repeat-
edly for each possible location of the intruder. We note that
for a particular location of the intruder, the sensor local deci-
sions are conditionally independent. Formally, assume that U;
is the local decision (1 or 0) of the sensor S;, if the intruder
signal is detected or not detected (respectively) by this sensor
given the intruder is at location j. Using [25], we compute the
fused decision Dy_; of the sensors given this location of the
intruder as:

>

Ppi,=j>Pra;

Ppi 1=;

U; log
(U Pry;

Di—j =

— Ppi. 1=

1
+ (1= U;)log (6)

L= Ppa;

The summation above is for all selected sensors. Pp; 1—;
is the probability of detection of sensor S; for an intruder
at location j. Up—; > 0 indicates presence of the intruder
(at location j), otherwise it is considered absent. Note that
we only consider sensors with probability of detection higher
than the probability of false alarm from a particular location
[, since only those sensors are close enough to give mean-
ingful information. To estimate the presence of an intruder
anywhere, we first compute the values of Dy_; for all possi-
ble locations j. We conclude that there is an intruder anywhere
only if at least one of these Dy_;’s is positive. Otherwise, we
conclude that no intruder is present.

V. EVALUATION

We simulate a 1000mx1000m grid where we randomly
deploy 100 spectrum sensors. The sensors can choose among
36 different configurations. Each configuration corresponds to
the tuple (N, NFFT), N being the number of I/Q samples and
NFFT, the resolution of the FFT in the sensor’s detection algo-
rithm. N, NFFT € {2°,26 ... 2!2} where N > NFFT. For
each sensor, we set Ppq = 1% (or 0.01) and obtain the Pp
from our data-driven performance model (MODqq). The sen-
sors have a cost model as mentioned in Figure 8. Next, we
simulate an intruder in the grid. The intruder is represented by
a wireless transmitter with a transmit power of 10 dB. We use
the log-normal model to compute RSS at all the sensor loca-
tions. We make the intruder’s prior map realistic to account
for different factors such as terrain information or proxim-
ity to residential or navigable areas. We create the prior map
directly from a snapshot of Google map’s satellite imagery
data. To remove intricate details (e.g., buildings, texture) in
the image, we apply Gaussian blur, a well known image fil-
tering technique. Next we resize the image to a dimension of
100x100 to emulate our grid. We make the prior probabil-
ity of the transmitter to be present in a certain cell <i, j>
proportional to the pixel intensity at <i, j>. Figure 9 shows
our prior map. For all simulations we sample the intruder’s
location 10K times from the prior map that we use to obtain
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Fig. 9. Transmitter prior map of the area obtained from a satellite image.

weights for our sensor selection algorithms. Every time the
intruder appears, the selected sensors attempt to determine its
presence with their respective values of Pp. The fused deci-
sion is compared to the ground truth. We compute the detection
rate for the given instance of selected sensor by simulating the
intruder 1000 times. We also compute the false alarm rate by
simulating another 1000 cases where no intruder is present.

A. Performance of Sensor Selection Algorithm

We compare the performance of our sensor selection algo-
rithms with that of two baseline algorithms. As baseline, we
first run a random selection algorithm where we pick the
sensors randomly with uniform probability. We then run a
greedy algorithm where we pick the best sensors (the ones with
highest relevance) without accounting for their correlation.
We refer this algorithm as mutual information based Greedy
(MIG). When the sensors are homogeneous, MIG selects the
sensors for which the prior probabilities are the highest. For
other cases, MIG selects sensors in decreasing order of their
V;/ C; ratios. Finally, we also run the sensor selection algo-
rithm proposed in our earlier work [16], which first segments
the entire grid into clusters, and then uses ranking of sensors
across each cluster. We refer this technique as Clustering and
Ranking (CAR).

Observation: Figure 10 shows the performance in terms of
Pp and Ppy obtained by the sensors selected by our algo-
rithms compared to baseline heuristics across different cost
budgets. We show both the mean performance and the standard
deviation at each of the data points. For HOMS, we consider
the number of sensors as the cost, i.e., C; = 1. However
for HETS and RES, the cost C; € [mincoyst, 1]. We note that
our algorithms perform significantly better compared to MIG,
CAR as well as Random schemes, especially at medium values
of the budget. For all cases, till a budget of 1, our algo-
rithms perform similar to the MIG scheme. This is because
both of them select sensors only from the cluster with high
prior probability. When we increase the budget above 2, the
MIG method keeps selecting from the same cluster, since it
does not consider the effect of correlation. For instance, at
a budget of 5, 3 and 4, HOMS, HETS and RES outperform
the MIG scheme by 91%, 10% and 15%, respectively. Note
that our algorithm also performs much better than the random
selection in each of the cases. The lower gain in the case of
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Fig. 10. Performance comparison of the three proposed schemes with MIG, CAR and Random baseline heuristics. For each data point, we show the mean
value and the standard deviation. We do not show the standard deviation of the Random scheme for clarity since it has a higher value.

HETS can be explained by observing that a larger number
of lower cost sensors provides higher probability of detection
than a fewer number of expensive sensors. For less expensive
sensor configurations, the amount of correlation is also lower,
since their individual Pp’s fall more sharply with a reduc-
tion in power. Thus, our algorithms, because of removal of
redundancy, improves performance the most when the budget
constraint requires intelligent selection of sensors.

We also note that the increase in the values of Pp also
leads to increase in Pry. However, this increase in the value
of Ppy is relatively small, as it is always less than 0.1 in case
of HOMS and RES, and less than 0.2 in case of HETS. Our
algorithm also provides either lower or equal values of Ppy
compared to each of the baseline techniques.

B. Performance of Our Fusion Rule

We compare the performance of the Chair Varshney fusion
rule with a baseline technique. To compare, we run the same
simulation and selection process as HETS, but run both Chair
Varshney fusion rule and a baseline technique. Our baseline
technique concludes that there is an intruder if a total of k
out of |S| sensors give output 1, where the best value of k is
chosen by simulation.

Observation: Figure 11 shows the probability of detection
using Chair Varshney and the baseline technique. We find
that Chair Varshney performs better in all the cases, with the
performance rising with increase in number of sensors. Thus,
the Chair Varshney rule is 91.2% accurate when just 8 sensors
are present, whereas using k out of N sensors just gives 65.8%
accuracy. This is because Chair Varshney is able to consider
the individual performance of each of the sensors, whereas the
baseline technique always considers all sensors as equivalent.
The contributions of the individual sensors need to be con-
sidered for good detection performance. This further confirms
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Fig. 11. Performance of Chair-Varshney Fusion rule (our method) compared
to a baseline k out of N rule.

our claim that the Chair-Varshney rule is optimal. This also
shows that having information about probability of detection
of individual sensors is important for accurate sensor fusion.
Thus, our data-driven technique of evaluating sensors behavior
is necessary to improve the accuracy of detection.

VI. RELATED WORK

Shared spectrum architectures need to enforce suitable poli-
cies to control spectrum access among secondaries [26], [27].
On the other hand, with the advent of cheaper radio hard-
ware the licensed spectrum is prone to unauthorized use [28].
This makes the problem of spectrum patrolling important.
Dutta and Chiang [2] introduce the concept of crowdsourced
enforcement of spectrum policies. Vaze and Murthy [29] also
localize transmitters using binary sensors similar to our study.
However, unlike our work, they do not consider the effect of
correlation among sensors and do not consider the cost of uti-
lizing sensors. Bhattacharya et al. [30] propose reducing the
cost of spectrum sensing by using FPGA-based sensors.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 09,2020 at 19:10:49 UTC from IEEE Xplore. Restrictions apply.



280 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2020

Performance of Low Cost Spectrum Sensors: The authors
in [2] assume complete knowledge about the performance of
crowdsourced sensors which is not practical. Reference [2]
also assumes the sensors to be homogeneous which
is generally not true in a crowdsourced environment.
Spectrum monitoring using cheap crowdsourced sensors is
not new [4], [6], [9] but they do not provide any insights
regarding performance or reliability of sensing. We also
show that analytical techniques [31] that model the sen-
sor’s detection performance are often simplistic and error
prone. References [20], [21] build upon the analytical tech-
niques providing corrections for hardware related aspects
like I/Q imbalance, RF front-end non-linearities etc. Inspired
by [10], [22], we use a data-driven approach to create
performance models of heterogeneous spectrum sensors.

Sensor Selection and Fusion: A good amount of literature
exists that study the problem of selecting sensors and com-
bining the decisions of multiple sensors. Joshi and Boyd [32]
show a method of selecting sensors using convex optimization,
and empirically show that their results are usually close to
optimal. Shamaiah er al. [33] propose a greedy selection of
sensors that is close to optimal. Unlike our work, these studies
consider data that follow normal distribution. To select sensors
in the presence of intruders, we utilize a feature selection tech-
nique commonly used in the machine learning literature. This
technique, known as maximum relevance minimum redun-
dancy (MRMR) [15], is widely used to select relevant features
when the features are correlated.

Combining the data of multiple sensors is a well-known
problem in sensor networks. We utilize the rule provided
by Chair and Varshney [25] which optimizes the overall
performance when the individual sensor outputs are condition-
ally independent of one another. Different techniques of fusing
multiple sensor decisions are presented in [34]. Some studies
have also looked at the problem of distributed spectrum mon-
itoring. Ghasemi and Sousa [3] propose using collaborative
sensing across multiple sensors to better monitor spectrum.
Dasari et al. [35] show that detection of intermittent transmit-
ters can be significantly improved by fusing the decisions of
multiple sensors. Our work builds upon these studies to focus
on detecting the presence of spectrum intruders.

VII. CONCLUSION

In this work we address the problem of spectrum patrolling
using crowsourced heterogeneous sensors. To the best of our
knowledge this is the first work that models the performance
of a spectrum sensor in a data-driven way. Our model provides
significant improvement over state-of-the-art ‘whitebox’ mod-
els. Next we address the problem of sensor selection and fusion
of heterogeneous sensors deployed over a region of interest
to improve intrusion detection performance within a cost
budget. We investigate different scenarios of homogeneous,
heterogeneous and reconfigurable sensors. Our sensor selec-
tion algorithms perform significantly better than reasonable
baseline heuristics. We highlight challenges of the patrolling
problem in a cost-effective fashion using crowdsourced sensors
and develop mechanisms to address them.
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