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1. Introduction

In this note, we revisit the problem put forward in [3], namely, we examine functions F defined
on the high-dimensional cube [0, 1]V (or [—1, 1]V) that actually depend on at most s coordinate
variables. These variables, called active variables, are of course unknown. We can write succinctly

F)=f(X;, - %), X=(%1,...,xy) €[0, 11", (1)
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for some function f defined on the lower-dimensional cube [0, 1]°. In the scenario studied here, the
functions F are only available through point evaluations, i.e., users can access samples

yi=Fx"), ie[l:m], ()
while being allowed to freely select the points xV, ..., x™ € [0, 1]V. Given an accuracy &, the goal
is to approximate the function F by a function F constructed from the data (x("), y;), ..., (™), ym)

—and possibly the knowledge of s (an upper estimation for the exact number of active variables)—
in such a way that

IF — Flloo = max |F(x) — F(x)| < elF|, 3)

xe[0,1]N

where |-| is a seminorm on the space X of functions being considered. Since one wishes to
achieve this approximation goal with as few samples as possible, we informally introduce the
sample complexity m(s, N, €, X) to denote the minimal value of m in (2) that makes (3) realizable.
There should in fact be two such quantities, mada(s, N, &, X) and Mponada(s, N, €, X), to distinguish
between two settings, a priori different, where the samples are adaptive, i.e., each point x) may

be chosen depending on the previous data ((x("), y1), ..., (x=", y;_1)), and where the samples are
nonadaptive, i.e., all the points x) are chosen once and for all at the beginning of the acquisition
process.

To summarize the results brought to light in [3] and improved in [13], which both consider in
particular the space X = Lip of Lipschitz functions, we state that?

Mada(s, N, &, Lip) < C(s)e " log(N/s), C(s)=Cs¢e’, (4)
Mnonada(S, N, €, Lip) < C(s)e™* log(N/s), C(s) = Cse’. (5)

The term ¢~° has to be here, because it is necessary even if the locations of the active variables were
known in advance. The term log(N/s), interpreted as the price to pay for not knowing these locations
in advance, also has to be here, because it must appear when F is linear (see Section 2). As for the
term C(s), its exact dependence on s does not really matter, so long as C(s) < «°, k > 1. Indeed, such
a behavior can be absorbed in the term £~%, which then guarantees that (3) holds with & replaced
by k € as soon as m > e *log(N/s). Therefore, the articles [3,13] settled the sample complexity
question for the approximation of functions of few coordinate variables, revealing essentially no
difference between the adaptive and nonadaptive cases. The article [9] went further and settled the
sample complexity question for the determination of the minimum of functions of few coordinate
variables in adaptive deterministic and adaptive randomized settings.

There are, however, two important questions left unanswered by [3,13]. The first question
concerns the sampling scheme: can one produce explicitly a set {xV, ..., x™} of m =< m(s, N, &, X)
evaluation points that makes (3) realizable? The probabilistic argument of [3,13] ‘only’ shows the
existence such a set. The second question concerns the recovery algorithm: can one devise an
implementable construction of the approximant F from the data ((xV,y1), ..., (x™), y.))? The
ingredients coming into play in [3,13] are not quite practical.

The purpose of this note is to answer these questions when the assumption F € Lip gives
way to some other assumptions. In Sections 2 and 3, we assume that the function F is linear and
quadratic, respectively, and establish connections with the theory of compressive sensing, namely,
with sparse recovery and with bisparse and low-rank recovery, respectively. In both cases, we
determine the order of the sample complexity for exact recovery of F, we point out that nonadaptive
random sampling schemes are optimal, and we highlight some efficient recovery algorithms. The
substance of this note resides in subsequent sections, where we assume that the function F is
coordinatewise monotone. In Section 4, we show that the problem then reduces to the problem
of group testing, which features known differences between the adaptive and nonadaptive settings.
The former setting is briefly treated in Section 5, while Section 6 deals with the former setting:

2 The results of [3,13] featured In(N) instead of log(N/s), but they do also hold as written in (4)-(5), with log standing
for the logarithm in base 2 throughout this note.
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we first recall useful properties of the sampling (testing) procedure, before presenting an explicit
sampling scheme (borrowed from compressive sensing and seemingly new in group testing) that
satisfies the so-called disjunctiveness property, and we conclude by proposing a simple recovery
method proved to succeed under the disjunctiveness property.

2. Linearity assumption

In this section, we assume that the function F, defined on [—1, 1]V here, depends on at most s
active variables and is known a priori to be linear, so that

F(x) = (a, x) where a € R is s-sparse. (6)

In this situation, the function F can be recovered exactly. Indeed, the objective is now similar to
recovering the s-sparse vector a € RN from samples of the type y; = F(x®?) = (a, "), i.e., from the
vector

— T -
XD

y=Xa, X= : e R™N, (7

xmT

This is exactly the standard compressive sensing problem, which has been extensively studied in the
last fifteen years or so, see e.g. [7] and the references therein. In a nutshell, the minimal number of
samples to achieve exact recovery of a is of the order of s log(N /s) (or simply 2s if one is not bothered
by the unstability of the recovery). Explicit sampling schemes working in this optimal regime are not
known, but nonadaptive random sampling schemes do the job. For instance, if the x are chosen
independently uniformly at random in [—1, 1] (so they are independent zero-mean subgaussian
random variables) and if m =< slog(N/s), then the matrix X/+/m satisfies with high probability
the so-called restricted isometry property of order proportional to s. This property allows one to
recover a via a number of efficient algorithms, such as £;-minimization, iterative hard thresholding
(IHT), hard thresholding pursuit (HTP), orthogonal matching pursuit (OMP), compressive sampling
matching pursuit (CoSaMP), among others.

3. Quadraticity assumption

In this section, we assume that the function F, again defined on [—1, 1], depends on at most s
active variables and is known a priori to be the sum of few quadratic terms, say

r r
F(x) = Z(ak, x)2=x"Ax,  where A= Z aa, € RV, (8)
=1 k=1

The symmetric matrix A has rank r < s and is s-bisparse, in the sense that it is supported on some
S x S with |S| < s. Thus, the problem reduces to the recovery of jointly low-rank and bisparse
matrices. This problem has recently been studied in various places, for instance in [6]. There, as
an extension of the case r = 1 treated in [10], it was shown that m =< rslog(N/s) nonadaptive
random samples suffice to guarantee, with high probability, the exact recovery of symmetric
s-bisparse matrices A € RV*N satisfying rank(A) < r. These random samples are factorized in
nature, namely one can take x(, ..., x(™ e [—1, 1]V with entries x](f) =p a2+ -+ 2,
where p =< slog(N/s), the n;, are independent Rademacher random variables, and the z,((') are
independent random variables uniformly distributed in [—1, 1]. The recovery algorithm is adapted
to this sampling strategy: it proceeds in two steps, both of which being practical, hence is overall
efficiently implementable.
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4. Moneotonicity assumption — reduction to group testing

In the rest of this note, we assume that F, defined on [0, 1]V, is coordinatewise monotone,
i.e, that the map & € [0, 1] — F(x1,...,X_1,&,Xj41,...,Xy) is increasing or decreasing, when
not constant, for any j € [1: N] and any x4, ..., Xj_1, Xj11, ..., Xy € [0, 1]. Replacing the variable
& by 1 — £ if necessary, we can in fact assume that F is coordinatewise increasing. Under this
monotonicity assumption, with S = {jq, ..., js} denoting the set of active variables and with 1,
R C [1: N], denoting the vector with entries equal to one on R and to zero outside R, we make the
crucial observation that

SAR#Y <= F(1g) > F(0). (9)

Thus, by evaluating F at xX® = 0 and at X" = 1z, ...,x™ = 1z, for some Ry, ..., Ry € [1:N],
we can test if each R; contains an active variable or not. Based on this binary information, we
aim at recovering the set S of active variables — once this is done, the approximation of the
high-dimensional function F reduces to approximation of the low-dimensional function f. On this
account, we shall only be concerned with the recovery of the set of active variables from now on.

The problem at hand is then exactly the one considered in group testing. As a matter of historical
fact, the problem considered in this note shaped the initial development of the theory of group
testing, see [11]. We refer the reader to [4] for a detailed account of this theory and only give a
condensed description here. In group testing terminology, among a set of items, one tries to identify
which ones are defective by testing the items in groups. A test, identified as the subset of items being
tested, is positive if it contains at least one defective item. The traditional notation n for the number
of items and d for the number of defective ones is replaced here by N and s, respectively, since
an item corresponds to a variable and a defective one to an active variable. Group testing comes
in two flavors: a relatively easy one where the tests are adaptive and a more delicate one where
the tests are nonadaptive. These two flavors are differentiated by the number of tests required
to successfully identify the defective objects — in other words, by their sample complexities. This
difference between adaptive and nonadaptive settings will of course be reflected in the recovery of
active variables, as we will see in the next two sections. These sections are not only concerned with
sample complexities, though, but mainly with the two critical points mentioned in the introduction:
explicit sampling schemes and efficient recovery algorithms. In keeping with the philosophy of
making such considerations practical, we have implemented the proposed sampling schemes and
recovery algorithms in a MATLAB reproducible file to accompany this note. The reproducible can be
downloaded from the author’s webpage.

5. Monotonicity assumption — adaptive setting

When adaptive sampling is allowed, it is well-known and rather easy to see that the active
variables can be recovered with roughly 2slog(N) points evaluations, which is the optimal order
according to the often-invoked information-theoretic lower bound. For completeness, we briefly
explain how to achieve this number of point evaluations via a simple splitting strategy.

Let n := [log(N)], so that [1 : N] C [1 : 2"], and let us view F as a function of 2" variables if
necessary. In a first round, we split R® = [1 : 2"] into Ri;f)t =[1:2""and Rgg)ht =[2"141:2"7
and test both F(lelf)t) > F(0) and F(]IR('Um) > F(0). At least one of these tests is positive — let R()

g
denote such a positive test and keep in mind that it has size 2"~'. In a second round, we split R(")
into two sets Rgf)t and R?,  of size 2"2 and we test both F(142) > F(0) and F(12 ) > F(0). At
left right

right

least one of these tests is positive — let R?) denote such a positive test and keep in mind that it has
size 2"~2. We continue in this way until an nth round, which provides a positive test R™ of size
2" =1, i.e., an active variable that we denote by j;. Remark that 14+2n point evaluations were used
so far. We now repeat the whole procedure by removing the variable x;, from consideration and by
performing the n rounds above to find another active variable j, using 2n more point evaluations.
The procedure finishes after at most s iterations, totaling in a number of point evaluations at most
1+ s x 2n =~ 2slog(N). We note in passing that the procedure runs without having to know an
upper estimate for s beforehand.
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6. Monotonicity assumption — nonadaptive setting

When adaptive sampling is disallowed, the order of the sample complexity is known to increase
to s? log(N). In contrast to Sections 2 and 3, however, we can provide an explicit sampling scheme
in this optimal regime of parameters, together with a practical recovery algorithm. We outline our
contribution in the following statement, which could have been phrased solely in the language of
group testing.

Theorem 1. The active variables of any function of few coordinate variables satisfying (1) with a
coordinatewise increasing f can be recovered from m < s% log*(N) nonadaptive samples. The evaluation
points are X% = 0 and XV = 1, i € [1: m], where the R; C [1 : N] are identified with the rows of the
test matrix explicitly given in (14). The recovery is efficiently performed by solving the linear feasibility
problem (18).

We prove the three parts of this statement in the following three subsections. Precisely, we first
recall in Section 6.1 the notion of test matrix and some properties surrounding it, in particular
disjunctiveness, then we prove in Section 6.2 that a matrix found in the compressive sensing
literature is indeed disjunct, and we finally establish in Section 6.3 that disjunctiveness ensures
that a solution of the feasibility problem yields the correct locations of the active variables.

6.1. Test matrices and their properties

A nonadaptive testing procedure is usually summarized by a so-called test matrix T € R™N
with entries in {0, 1}. Each row T;. € {0, 1}V is identified with the subset R; of [1 : N] defining the
ith test, in the sense that

Tij=1 ¢ jER:. (10)

Each column T.; € {0, 1}™ is identified to a subset C; of [1 : m] in a similar fashion—one should
think of G as the set of tests involving the jth variable. The outcome of the ith test is negative if
and only if S N R; = @, which is equivalent to (T1s); = 0. Thus, the output of the whole testing
procedure on S C [1: N] is the binary vector y = x(T1s) defined by

0, if(Tis); =0,
Yi={ ( S)r

1, if(Tis) > 1. (11)

Since the vector x(T1s) can be identified with the set UjcsC; under the above formalism, the primary
requisite of group testing, i.e.,, making sure that every S C [1 : N] of size exactly s, respectively at
most s, can be deduced from yx(T1s) is seen to be equivalent to the property of

s-separability, respectively s-separability: the sets UjcsC; are all distinct when S runs over all
subsets of [1 : N] with |S| = s, respectively |S| < s.

Another central property of the testing procedure is that of
s-disjunctiveness: there are no S C [1: N] with |[S| =s and € ¢ S such that C; € UjesG;.

These two properties are closely related, since s-disjunctiveness implies s-separability and
conversely S-separability implies (s — 1)-disjunctiveness, according to [4, Lemma 7.2.2 and Lemma
7.2.4]. Another closely related property of the testing procedure will come into play, namely that
of
s-strong selectivity: for any S € [1 : N] with |S| < s and any £ € S, there exists i € [1 : m] such
that SN R; = {¢}.

This property appeared in [12], which announced that (s 4+ 1)-strong selectivity implies s-
separability and conversely that s-separability implies s-strong selectivity. To tie all these properties
together, we state the following (maybe well-known) chain of implications, which is justified in the
Appendix. The implication (a) will be used in the proof of Proposition 4.

Proposition 2. Separability, disjunctiveness, and strong selectivity are almost equivalent, since

s — disjunct (:i (s + 1) — strongly selective ﬁ s — separable (:i (s — 1) — disjunct
a [
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6.2. Sampling scheme

In view of the previous considerations, we are now interested in s-disjunct testing procedures.
We first examine the minimal number m(s, N) of tests needed to achieve s-disjunctiveness. This
number is known to be lower bounded as

2

log(s)
see [8] for a very short proof. In fact, there is a matching upper bound [5], while the suboptimal
inequality

m(s,N)>c log(N), (12)

m(s, N) < Cs?log(N). (13)

is more folklore and can be derived by a probabilistic argument presented in the Appendix. Next, we
wish to exhibit explicit testing procedures that achieve s-disjunctiveness with the optimal number
of tests, possibly up to logarithmic factors. Several constructions exist. We highlight one of them
for its simplicity. It arose from another context in [2] and seems uncommon in the group testing
literature.

Proposition 3. Given a prime number p > 3 and an integer d < p, let m := p? and N := p®. The

m x N test matrix T with rows indexed by couples (i, j) € Z, x Zjp, columns indexed by polynomials g
of degree less than d over Z,, and explicitly defined by

0. ifg(i)#j (mod p),

is s-disjunct as soon as m > s log?(N).

Tipg = {1, ifg(i)=j (mod p). "

Proof. It is known (and justified again in the Appendix) that the matrix T has a coherence
satisfying

T, T d—1
i max [T Tl _
s [TglalTall: = P

which also reads [(T. 4, T. n)| < d—1for all g # h, since the squared ¢,-norm of each column, which
counts the number of 1’s in that column, equals p. We now essentially reproduce the argument of [4,
Lemma 7.3.2] showing that T is s-disjunct whenever s < 1/u. Suppose that T is not s-disjunct,
i.e,, that there exists S € [1 : N] with |S| = s and h ¢ S such that C;, C UgcsCg. This implies that
T.p < des T. ¢, the inequality being understood entrywise. Taking the inner product with T. », we
obtain

p=IThl3 =) (T.g Tn) <s(d—1). (16)
ges

; (15)

This is evidently impossible when s < p/d. Thus, s-disjunctiveness of T is achieved as soon as
p > sd, ie, m=p? > s2d* = s*(log(N)/log(p))?, which does occur when m > s?log’(N). O

6.3. Recovery algorithm

We conclude this note by highlighting a practical method for recovering the set of active
variables. The method simply consists in solving a linear feasibility problem. It is worth noting that
knowing an upper estimate for s is not required, unlike e.g. the LiPo algorithm of [1]. Moreover,
our theoretical analysis is carried out beyond random test matrices and our guarantees hold with
certainty rather than with small error probability. The result stated in Proposition 4 implies the
theorem announced at the beginning of this section when combined with Proposition 3.
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Proposition 4. Let T € {0, 1}™<N be the test matrix of an s-disjunct procedure. Given a set S C [1: N]
with |S| < s being acquired through 'y = x(T1s) € {0, 1}, define

Ip:={ie[1:m]:y; =0} and L={ie[l:m]:y; =1}. (17)
The set S is recovered as the support of a solution to

findx e RY  subjecttox >0, (Tx), =0, (Tx), > 1. (18)

Proof. We first note that the problem (18) is feasible since the vector 15 satisfies the constraints.
Let now x’ denote any solution to (18) and let S’ := {j € [1 : N] : xj( > 0} denote its support. We
observe that S’ also has y € {0, 1} as testing outcome, in view of

(Tlg)i=0 & S'NRi =0 < (T¥)j=0 < icly & y;=0. (19)

Therefore, if we know that S’ has size at most s, we can conclude that S’ = S using s-separability,
which follows from s-disjunctiveness. To justify that |S’| < s, we shall prove that S’ C S. Suppose on
the contrary that there exists £ € S’, £ & S. By (a), the testing procedure is (s+ 1)-strongly selective,
so there exists i € [1: m] such that (SU {¢}) N R; = {£}. This means that £ € R; and that SN R; = @.
The condition £ € R; implies that (Tx'); > x, > 0, so i & Iy, while the condition S N R; = ¥ implies
that (T1s); = 0, i.e., i € Ip. This contradiction shows that S’ C S and hence concludes the proof. O

Appendix

The supplementary material added here makes this note (almost) self-contained by proving a
few statements appearing in the main text but not justified there.

Proof of Proposition 2. (a): Consider S € [1 : N, |S| < s+ 1, and £ € S. By s-disjunctiveness,
C & Ujeg\{g}Cj, so there is some i € C, withi ¢ UjeS\(Z}Cj- The first condition is similar to Tip =1,0r
£ € R;; the second condition is similar to T;j = 0, or j € R;, for all j € S\ {€}, i.e., to (S\ {£})NR; = @.
Now ¢ € R; and (S \ {¢}) N R; = @ also read S N R; = {£}, which proves (s + 1)-strong selectivity.
(b): Consider distinct S,S" € [1 : N] with |S[, |S’] < s and suppose that UjesC; = Ujes GG =: C.
Assume without loss of generality that S’ \ S # @ and pick £ € S’ \ S. By (s + 1)-strong selectivity,
there is some i € [1 : m] such that (SU{£})NR; = {£}. On the one hand, we have £ € R;, i.e., T;y = 1,
so i€ C; € UjesGG = C. On the other hand, for any j € S, we have j ¢ R;, i.e, T;; = 0, 0ri & C, so
that i ¢ UjesG = C. This is a contradiction.

(c) [4, Lemma 7.2.4]: Consider S C [1 : N] with |S| <s—1, £ ¢ S, and suppose that C; C UjesG.
Then UjesG = Ujesugey G, which contradicts s-separability. O

Proof of (13). The following probabilistic argument is a variation of [4, Theorem 8.1.3] under
a random model guaranteeing the same number ¢ of 1's per column of the test matrix. So let
Cy, ..., Cy be random subsets of [1 : m] with size t := 3s[log(N)], where m = 2st = 6s*[log(N)].
Fixing S C [1: N] with |S| <, let u < st denote the size of UjcsC;. Fixing also £ ¢ S, we have

u
(t) _uu—1)-(u—t+1) _u\e (st [< 1\"
- <G = () <(3)-

P(C, C UisCi) =
(Ce € UjesG) <m> mm—1)---(m—t+1 m m
t

Then, by a union bound over all S and ¢, we obtain

N 1 NSHT NSt 1
P(3S,3¢: C; € UjesG) < <S>(N —8)=— < < < -

2t — 2t — N3 — NS’

This proves that s-disjunctiveness is achieved with probability at least 1 — N~—°. O
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The coherence of DeVore’s matrix. With T being the test matrix defined in (14), we have already
noticed that ||Tg,:||§ = p for any polynomial g of degree less than d over Z,. If h is another such
polynomial, then

(Lo Tdl= D TapgTuph= Y, Tigi=jmod p Liti)=j(mod p) (20)
(i.j)eZpxZp (i.j)€Zp xZp
=Y Tjg-mi=omodpy <d—1,
i€Zp

where the last inequality simply reflects the fact that the number of roots in Z, of a nonzero
polynomial is at most equal to its degree. This fully justifies (15). O
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