
Superconductor Science and Technology

PREFACE

Artificial pinning centers in (Y, RE)-Ba-Cu-O superconductors: recent
progress and future perspective
To cite this article: Timothy J Haugan et al 2020 Supercond. Sci. Technol. 33 040301

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.237.90.147 on 20/02/2020 at 14:27

https://doi.org/10.1088/1361-6668/ab4ccd
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuxK6CM6s_gRSfIf_5oGwLMubSyYnNLbUDDlTiKjE7wlU-Z_IOqj1fYfRgxIHRU_lrEBYaGvmUeu_XAuKV5EdhSNQugSF_RjJxYvEUU3bBGIpzWHIUPBkkocJszCpM3zwjFmiCGus2JMzZi877lWWR-h_unOmHttjjIftrqdjOQHPsPJZvsj8sEqZGljLA-6QNG5T9mAoH1w_ErYsYXARwnrT9MzizZPWdSUoVXoAFACpeCL1JZ&sig=Cg0ArKJSzEpLhHQxN4Zn&adurl=http://iopscience.org/books


Superconductor Science and Technology

Supercond. Sci. Technol. 33 (2020) 040301 (5pp) https://doi.org/10.1088/1361-6668/ab4ccd

Preface

Artificial pinning centers in (Y, RE)-Ba-Cu-O
superconductors: recent progress and
future perspective

Timothy J Haugan
1
,

Teresa Puig
2
,

Kaname Matsumoto3 and
Judy Wu

4

1 Aerospace Systems Directorate,
US Air Force Research
Laboratory, Wright-Patterson
AFB, OH 45433, United States of
America
2 Institut de Ciència de Materials
de Barcelona, ICMAB-CSIC,
08193 Bellaterra, Spain
3Department of Materials
Science and Engineering,
Kyushu Institute of Technology,
804-8550 Japan
4Department of Physics and
Astronomy, The University of
Kansas, Lawrence, KS 66045,
United States of America

Introduction

A microscopic understanding of vortex pinning in type II superconductors began
with the theoretical discovery of magnetic vortices by Abrikosov, which received
the 2003 Nobel Prize in Physics [1, 2]. When type II superconductors are exposed
to magnetic fields (H), the magnetic field enters as quantized vortices, each with a
fundamental flux j0=2.07×10−11 Tcm−2, or 2.07×10−15 Wb. The vortex
core size on the order of the superconducting coherence length can be very small,
e.g. ∼1–2 nm for the cuprate family of high-temperature superconductors (HTSs).
The vortices electrically interact with each other by repelling, and act collectively
together as a flux lattice that is affected by the intrinsic crystal lattice properties
and microstructure defects. For superconducting power applications where applied
magnetic fields are in the range of 0.1 T to >30 T, the areal number density of the
vortices can reach incredibly high values. For example, for an applied magnetic
field of 5 T, the vortex areal density is around 2.5×1011 cm−2, which translates
to inter-vortex spacing of about 20 nm (assuming a square lattice for vortices).

Somewhat surprisingly, if the crystal lattice for type II superconductors, such
as HTS cuprates [3] is nearly perfect without any defects to pin vortices, the
vortices can move collectively and almost freely in an applied magnetic field due
to Lorentz forces, which results in electrical resistance at a fairly low critical
current density Jc(H, T) at an applied magnetic field (H) and temperature (T). In
order to realize useful critical current densities in type II superconductors,
imperfections and defects must be added to the crystal lattice to effectively pin
vortices. The simplest example of this was achieved in the (Y, RE)Ba2Cu3O7

(where RE is rare earth elements) family by depositing thin films, in which
high densities of dislocations and other growth defects are added into the film
microstructure and dramatically increase the critical current density Jc(77 K,
H//c-axis)>106 A cm−2 compared to Jc (77 K)<103 A cm−2 for single crystals
[4–6].

Artificial pinning centers

The research into artificial pinning centers (APCs) in HTS cuprates began shortly
after discovery of the materials in 1986 [3]. For (Y, RE)Ba2Cu3O7 materials, the
addition of YBa2CuO5 (Y211) was considered for vortex pinning especially in the
1990s, but it was somewhat controversial whether increases of current density
were from vortex pinning of Y211 additions or improved lattice structures [5].
Irradiation was shown to improve critical current densities of YBa2Cu3O7

(YBCO); e.g. in a 1991 paper [4]. However the Jc(H, T) increases were moderate.
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The addition of nanophase defects, such as Y211 nanoparticles, into YBCO thin
films was achieved from 2003 by several groups, with large increases of Jc(H, T)
[7–10]. Since then, intensive efforts were devoted to artificially generate sec-
ondary nanophases in the superconducting matrix for the different growth pro-
cesses; pulsed laser deposition (PLD) [11–13], metal–organic chemical vapor
deposition [14], and chemical solution deposition [15, 16].

It is generally understood that vortex pinning can be optimized in type II
superconductors by adding ultra-high densities of defects into the crystal structure
to match the number of vortices, and with sizes as close to the superconducting
coherence length as possible. Precisely how this can be achieved is a fascinating
and very complex experimental challenge, given the large number of super-
conductor processing methods used, and the hundreds of types of ultra-small
defects demonstrated to be achievable. Theoretical modeling of the complex
collective flux pinning phenomena has only recently achieved an initial under-
standing [17], and modeling studies are expected to remain limited for many years
because of the difficulty of the work and large levels of computation power
required.

Current status

Because of limited model understanding, the field of flux pinning in HTS cuprates
has primarily progressed for over 30 years through thousands of Edisonian-type
experimental studies. The general scientific field of flux pinning of HTSs is large,
with 17 100 article citations since 1995 using the search term ‘flux pinning high
temperature superconductors’ (Google Scholar, 19 August 2019).

The 14 papers in this Focus Issue present varying topics, including industrial
processing, flux mechanisms for different pinning regimes at magnetic fields from
0–33 T and operation temperatures from 5K to 90 K, and the optimization of
different types of defects, such as BaMOx phases (M=Sn, Zr, Hf, etc) [18–31].
The collection of papers provides a current snapshot of experimental studies, and
several reviews are provided. A topical review by Feighan et al focuses on one of
the remaining problems—how to design pinning in second-generation HTS coated
conductors, specifically those made using physical vapor deposition methods (and
in particular PLD), through an understanding of the materials science [20]. The
review presented the potential for rapid ex situ, liquid assisted growth, which is
likely to be a necessary universal approach for applications where low cost is
critical [20]. Finally, a semi-empirical analysis of the types of defects studied thus
far is presented, especially on how they strongly increase Jc(H, T) for three dif-
ferent regimes: (i) T>65 K, H<1 T; (ii) T=30 K–65 K, H∼1–5 T; (iii)
T<30K, H>5 T. A review article by Huang and Wang provides a summary of
magnetic pinning additions, which have differences and potentially advantages
compared with defect pinning, as it pins the magnetic flux rather than the normal
core vortices [21]. Four major pinning schemes including metal/YBCO, oxide/
YBCO, nanocomposite/YBCO and nanoparticle-embedded/YBCO were
reviewed, with some positive benefits [21].

C-axis aligned one-dimensional (1D) APCs remain the focus of many
groups, as shown in the development of different 1D APCs (or nanorods) in
different REBCO films through both experiments and modeling [18]. A study
by Awaji et al finds that the low-temperature flux pinning behavior in 1D APCs
introduced in Sm123+5.6 vol%BaHfO3 (BHO) films can be described as
strong 1D APC pinning in the low field, and the coexistence of collective
pinning from both nanorod pinning and random pinning in the high field [18].
In the ‘many-nanorod’ state in the high temperature region above the deloca-
lization temperature, double peaks in the pinning force density Fp curves
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appeared due to the coexistence of nanorod pinning and random pinning [18].
In the paper by Chepnikov et al, 2G HTS wires were fabricated in an industrial
process by the PLD of GdBa2Cu3O7 films doped with 6%, 12% and 18%
(molar) of BaSnO3 (BSO) and 6% (molar) of BaZrO3 (BZO), and the Jc(H, T)
properties were systematically measured from 4.2 K to 77 K. For relatively high
industrial processing rates, the 6% BSO-doped samples deposited at 560 and
375 nmmin−1 and the 6% BZO-doped sample deposited at 750 nmmin−1

showed up to an 80% improved critical current compared to the reference
sample [19]. Yoshida et al reported a very high Fp of 1D APC/SmBCO up to
1.6 T Nm−3 on single crystal substrates and 1.5 T Nm−3 on metal substrates at
4.2 K. While c-axis aligned 1D APCs play a critical role in providing correlated
pinning at H/c-axis, a pinning landscape with mixed APCs of different
morphologies for strong and H-orientation independent pinning will require a
microscopic design of APC microstructures. Towards this goal, Wu and Shi
present an integrated study of modeling of elastic strain energy with con-
siderations of APC/HTS interfacial strains and experimental demonstration of a
mixed APC pinning landscape using microscale strain manipulation [30].

A review of flux pinning progress in (Y, RE)-Ba-Cu-O since 1995, and the
impact for power applications, was studied by data mining in a topical review [32].
Development of strong APC HTS nanocomposites grown in solution-based pro-
cesses is covered in both HTS films [25, 27] and larger scale coated conductors
[22, 25] using solution processes that are potentially low cost. It is particularly
worth mentioning that the suspension of pre-formed BZO and BHO nanoparticles
(3D APCs) in high concentrations have been achieved to allow high-field appli-
cations of solution-processed coated conductors [25]. The 3D APCs have the
advantage of providing a strong and isotropic pinning landscape as illustrated in
the angular dependence of pinning by Palau et al [27]. A theoretical study of the
pinning properties of the 3D APCs of different diameters in the range of two to
four coherence lengths is presented by Willa et al to determine the limit of the
applicability of the strong-pinning theory [29]. Different Jc–H behaviors are
revealed on the 3D APCs at low and high concentrations. Considering the critical
importance of experimentally controlling the 3D APC diameter in in situ pro-
cesses, Sparing et al developed a PLD–inert gas condensation approach for the
simultaneous control of the 3D BHO APC diameter and areal density in YBCO
multilayers [28].

Impact and future directions

The field of (Y,RE)-Ba-Cu-O coated conductors for power applications was
started in 1995, and manufacturing advances reached 1 km of length in ∼2010.
The addition of APCs in fully manufactured films began in ∼2011, and has
continually progressed since then, with many of the ∼12 world-wide manu-
facturers studying different methods of APC additions. The implantation of flux
pinning into (Y, RE)-Ba-Cu-O by manufacturers tries to duplicate the strong
increases of Jc(H, T, θ) achieved in research laboratories. However, processing
parameters in manufacturing can be different from that used in research; e.g. the
deposition rates are typically much higher, which can strongly affect the micro-
structures achieved. Because of this, the Jc(H, T, θ) increases achieved by man-
ufacturers are in general expected to be different from those in research
laboratories.

The impact of (Y, RE)Ba2Cu3O7 vortex pinning on improving applications
can be substantial, and increases of Jc(H, T, θ) by 10–100 times have been
achieved for varying temperatures and applied fields. The increases of the critical
current density (or power density) can provide many benefits for power devices,

3

Supercond. Sci. Technol. 33 (2020) 040301 Preface



including significantly higher performance, enabling operation at temperatures
>50K where cryocoolers have ∼100 times less weight and can be ∼10 times
more energy efficient, and can enable new capabilities not achievable with
(Y,RE)Ba2Cu3O7 not optimized for vortex pinning. The increases of the critical
current density (or power density) is especially critical for industries such as
aerospace, defense or energy with new compact fusion schemes, where the cost–
size-–weight–power–loss can determine or limit application viability and use.

While tremendous advances and improvements have been achieved so far
with APCs, the advances do not follow the S-curve law of decreasing performance
as time progresses. Some of the strongest advances of Jc(H, T, θ) from APC
addition were achieved recently by several groups, by using novel and ultra-
precise processing control of >10 vol% addition of defects [27, 33]. And the
increases of Jc(H,T) so far have generally only reached about 20%–30% of the
upper limit of depairing current densities [34, 35]. Because of that, and the
complexities of the microstructures and collective phenomena, it can be expected
that with even more precise understanding and microscopic control, even further
advances of Jc(H, T, θ) might be achievable. Such advances might come from
nanoscale design engineering with DNA [36], or other techniques that might
evolve over time.
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