

1 **Plate tectonics and surface environment: Role of the oceanic upper mantle**

2 Jun Korenaga

3 Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT

4 06520-8109, USA

5 jun.korenaga@yale.edu

6 Tel: (203) 432-7381; Fax: (203) 432-3134

7 Submitted to *Earth-Science Reviews*, December 2019.

8 Revised, March 2020.

9 **Abstract.** Earth is so far the only planet that exhibits plate tectonics, and along with the right
10 heliocentric distance and the presence of surface water, plate tectonics is among necessary con-
11 ditions for a habitable planet. Yet, the physics of this particular style of mantle convection is
12 poorly understood, creating a substantial bottleneck in developing the general theory of planetary
13 evolution. As plate tectonics is characterized by the subduction of oceanic lithosphere, a better
14 understanding of the oceanic upper mantle could potentially help to break this stalemate. In this
15 review, I summarize available theoretical, observational, and experimental constraints on the evo-
16 lution of the oceanic upper mantle and its rheology, place the study of the oceanic upper mantle
17 in the big picture of Earth evolution, and provide some suggestions for future research in relevant
18 disciplines, including marine geophysics and computational geodynamics.

19 **Keywords:** marine geophysics, mantle rheology, numerical simulation

20 1 Introduction

21 Plate tectonics is what makes Earth a unique planet in the solar system (e.g., Rampino and Caldeira
22 1994; Schubert et al. 2001; Kasting and Catling 2003), but the physics of this particular style of
23 mantle convection is still largely unresolved (e.g.. Bercovici et al. 2015). We still do not know, for
24 example, under what conditions plate tectonics takes place on a terrestrial planet. The inability to
25 answer this basic question creates a considerable bottleneck in developing the general theory of
26 planetary evolution; such a theory would be invaluable for ongoing exoplanetary research, or more
27 broadly speaking, our quest for the origins of life in the universe. As the defining characteristic of
28 plate tectonics is the subduction of oceanic lithosphere, one promising direction is to improve our
29 understanding of the oceanic upper mantle. To identify key issues that warrant further investiga-
30 tion, this paper provides a review on the role of the oceanic upper mantle in some major unresolved
31 problems surrounding plate tectonics.

32 The oceanic upper mantle is perhaps the best understood part of Earth's mantle. To first order,
33 its evolution is expected to be a simple function of seafloor age (e.g., Parsons and Sclater 1977;
34 Stein and Stein 1992; Ritzwoller et al. 2004; Priestley and McKenzie 2013), and its chemical state
35 is generally considered to be relatively homogeneous (e.g., Klein and Langmuir 1987; Hofmann
36 1997; Herzberg et al. 2007; Gale et al. 2014). The rheology of olivine, which is the dominant
37 phase of the upper mantle, has been studied extensively (e.g., Chopra and Paterson 1984; Karato
38 et al. 1986; Hirth and Kohlstedt 1995; Mei and Kohlstedt 2000a; Jung et al. 2006; Hansen et al.
39 2011). However, if we try to quantify how surface environment is controlled by mantle dynamics,
40 it becomes evident that there exist a few major gaps in our understanding of the oceanic upper
41 mantle. To keep discussion concrete in this paper, I will focus on the following three outstanding
42 questions: (1) Why does plate tectonics take place on Earth? (2) How well can the surface topogra-
43 phy of Earth, in the present and the past, be predicted? and (3) How does plate tectonics influence
44 surface environment? To set the stage, I will first review the evolution of the oceanic upper mantle,
45 covering thermal subsidence, seawater alteration, small-scale sublithospheric convection, pertur-

46 bations by mantle plumes, the state of asthenosphere, and reference evolution models. Having a
47 holistic view of mantle evolution is essential if we wish to correctly interpret any given observation,
48 because real data reflect all of pertinent complications that exist in nature. Then, I will summarize
49 available constraints on the rheology of the upper mantle materials, a good understanding of which
50 is indispensable when discussing the dynamics of the oceanic upper mantle. With these prepara-
51 tions, I will return to the above outstanding problems and discuss how our understanding (or lack
52 thereof) of the oceanic upper mantle contributes to ongoing debates over these issues. I will close
53 with some suggestions for future research in relevant disciplines.

54 **2 Evolution of the oceanic upper mantle**

55 The generation of oceanic plates at mid-ocean ridges and their lateral migration are the directly
56 observable part of global-scale mantle circulation. As a newly formed seafloor moves away from
57 a mid-ocean ridge, it gradually cools down, becomes denser, and thus subsides. The first-order
58 feature of seafloor topography, shallow mid-ocean ridges and deepening ocean basins, can be ex-
59 plained by the simple conductive cooling of the suboceanic mantle. As the characteristics of ocean
60 basins are primarily determined by seafloor age, marine geophysical observations are often dis-
61 cussed in terms of “anomalies,” i.e., deviations from some reference models. The evolution of
62 the oceanic upper mantle, however, has some nontrivial complications, and a good understanding
63 of how a ‘normal’ oceanic lithosphere would behave is necessary if we try to extract as much
64 information as possible from a given observation by analyzing its subtle details.

65 In this paper, the terms “oceanic plate” and “oceanic lithosphere” both refer to the shallow,
66 mechanically strong part of the oceanic mantle. The term “lithosphere” usually corresponds to the
67 top thermal boundary layer, and this implicitly assumes that the mechanical strength of lithosphere
68 originates in temperature-dependent viscosity. Viscosity can, however, depend on other factors
69 such as grain-size and water content, and the precise definition of lithosphere becomes somewhat
70 nebulous. In particular, mantle melting beneath mid-ocean ridges dehydrates the residual mantle,

71 and this dehydration can lead to a substantial increase in viscosity (e.g., Karato 1986; Hirth and
72 Kohlstedt 1996; Faul and Jackson 2007). In some contexts, it would be convenient to distinguish
73 between “thermal lithosphere” and “chemical lithosphere” (which is made of crust and “depleted
74 mantle lithosphere”) (Figure 1); the former grows by conductive cooling from the above, whereas
75 the latter is set by mantle melting beneath mid-ocean ridges. These two different types of litho-
76 sphere may eventually converge because the growth of a thermal boundary layer could be limited
77 by the thickness of chemical lithosphere (Figure 1); i.e., when a thermal boundary layer becomes
78 thicker than chemical lithosphere, eventual convective instability can remove the excess thickness
79 (e.g., Korenaga and Jordan 2002b). The term “asthenosphere” is complementary to lithosphere,
80 i.e., generally referring to a weak layer beneath lithosphere, so the ambiguity in the definition of
81 lithosphere propagates to that of asthenosphere. Such ambiguity is natural to exist because it re-
82 flects how well we understand the mechanical properties of the mantle; our understanding is not
83 so complete even for the oceanic upper mantle. Note that the “depleted mantle lithosphere” above
84 is not the same as the “depleted mantle.” The depleted mantle is a geochemical jargon referring to
85 the mantle that is complementary to the continental crust (e.g., Hofmann 1988); i.e., the depleted
86 mantle is depleted in incompatible elements compared to the primitive mantle because of the ex-
87 traction of continental crust from the latter, and it refers to the present-day convecting mantle. The
88 depleted mantle lithosphere is even more depleted because of the extraction of oceanic crust from
89 the depleted mantle. This distinction is not always correctly made in the literature, and the reader
90 is referred to section 2.4 of Korenaga (2017b) for a more complete explanation.

91 **2.1 Seafloor subsidence**

92 The majority of seafloor topography appears to follow thermal isostasy (Turcotte and Schubert
93 1982, section 4.23). With simple half-space cooling and constant material properties, the subsi-

94 dence with respect to a zero-age seafloor, w , is given by

$$w = \frac{2\alpha\rho_m\Delta T}{\rho_m - \rho_w} \sqrt{\frac{\kappa t}{\pi}}, \quad (1)$$

95 where α is thermal expansivity, κ is thermal diffusivity, ρ_m is mantle density, ρ_w is water density,
 96 and ΔT is the difference between the surface temperature and the initial mantle temperature. Using
 97 $\alpha = 3 \times 10^{-5} \text{ K}^{-1}$, $\kappa = 10^{-6} \text{ m}^2 \text{ s}^{-1}$, $\rho_m = 3300 \text{ kg m}^{-3}$, $\rho_w = 1000 \text{ kg m}^{-3}$, and $\Delta T = 1300 \text{ K}$,
 98 the above equation may be expressed as $w \sim 355\sqrt{t}$, where t is in Ma and w in meters; e.g., 100-
 99 Ma seafloor would be ~ 3.55 km deeper than a mid-ocean ridge. However, explaining seafloor
 100 topography with this simplest kind of conductive cooling has at least two issues.

101 The first issue has long been known; actual seafloor depths start to deviated from the half-space
 102 cooling model for ages greater than ~ 80 Ma (Figure 2a). This deviation is known as “depth anom-
 103 alies” or “seafloor flattening.” Instead of half-space cooling, therefore, the so-called plate model is
 104 usually used to describe the age-depth relation of seafloor (Parsons and Sclater 1977; Stein and
 105 Stein 1992). The plate model can reproduce seafloor flattening because of its artificial boundary
 106 condition at ~ 100 km depth, which prevents the growth of the top thermal boundary layer beyond
 107 this depth. The depth of the boundary and its temperature are adjusted to fit the observed age-depth
 108 relation. The plate model itself is purely a phenomenological model, but there have been attempts
 109 to justify it in a physically sensible manner by calling for the possible occurrence of small-scale
 110 convection (Figure 1) (Parsons and McKenzie 1978; Davaille and Jaupart 1994; Dumoulin et al.
 111 2001; Huang and Zhong 2005).

112 The second issue has become evident relatively recently, and this is about the younger part
 113 of seafloor (though it also concerns the older part indirectly). As noted above, the simple half-
 114 space cooling model yields the subsidence rate of $\sim 355 \text{ m Ma}^{-1/2}$, and the subsidence of young
 115 (< 80 Ma) seafloor had been thought to exhibit a similar rate (e.g., $350 \text{ m Ma}^{-1/2}$ by Davis and Lis-
 116 ter (1974) and $345 \text{ m Ma}^{-1/2}$ by Carlson and Johnson (1994)). This apparent similarity between
 117 theory and observation turns out to be coincidental. The observed subsidence rate of young seafloor

118 is likely to be ~ 320 – 330 m $\text{Ma}^{-1/2}$ if we exclude the regions affected by the emplacement of
119 anomalous crust (Korenaga and Korenaga 2008), whereas a more complete theoretical calculation
120 of half-space cooling with variable material properties yields a subsidence rate of ~ 500 m $\text{Ma}^{-1/2}$
121 (Korenaga and Korenaga 2016). Interestingly, this large gap between the observed and theoretical
122 rates is also found to be consistent with the combined effects of various processes (other than con-
123 ductive cooling) that should be operating within the oceanic mantle, including thermal cracking,
124 radiogenic heat production, and secular cooling (Figure 2b).

125 Thus, how the depth of seafloor varies with its age is affected not only by the growth of a
126 thermal boundary layer, and a better understanding of the age-depth relation must come with a
127 more complete understanding of the evolution of the oceanic mantle as a whole, ranging from
128 lithospheric processes (thermal cracking), through asthenospheric processes (small-scale sublitho-
129 spheric convection), to mantle-wide processes (radiogenic heating and secular cooling). As will be
130 discussed later in this section, recognizing this challenge is important when building a reference
131 evolution model that can fit observations and is physically sensible.

132 2.2 Seawater alteration

133 Surface heat flow measured at young seafloor (< 60 Ma) is noticeably lower than predicted by the
134 cooling models of oceanic lithosphere (e.g., Stein and Stein 1994). As heat flow measurements are
135 based on thermal conduction, this discrepancy in observed and predicted heat-flow values points to
136 an important role of hydrothermal circulation in surface heat loss (Pollack et al. 1993; Jaupart and
137 Mareschal 2015). Hydrothermal circulation can also chemically alter the shallow part of oceanic
138 lithosphere, and the extent of seawater alteration is important for several major issues in earth
139 system science, such as the redox evolution of the atmosphere (Holland 2002; Sleep 2005; Kasting
140 2013), global water cycle (Ito et al. 1983; Rüpk et al. 2004; Magni et al. 2014), and the secular
141 evolution of seawater $\delta^{18}\text{O}$ (Wallmann 2001; Jaffres et al. 2007; Carmody et al. 2013). Despite
142 this significance, it is still difficult to answer the following simple questions with confidence: how

143 deeply seawater penetrates into oceanic lithosphere, and how much of the lithosphere is hydrated.
144 The difficulty originates in the scarcity of decisive observational constraints and the immaturity of
145 theoretical development.

146 Petrological and geochemical studies on ophiolites and contemporary oceanic crust can provide
147 a cross-sectional view on the extent of seawater alteration (e.g., Gregory and Taylor 1981; Alt et al.
148 1986; Bickle and Teagle 1992; Dick et al. 2000), but most of ophiolites formed in supra-subduction
149 settings (e.g., Miyashiro 1973; Searle and Cox 1999), and in situ sampling of oceanic crust by
150 deep-sea drilling is still largely limited to upper-crustal sections (Gillis 1995; Wilson et al. 2006).
151 The most extensive lower-crustal sample obtained by drilling has been a 1.5-km-long section from
152 ODP Hole 735B in the Southwest Indian Ridge (Dick et al. 2000), but the success of drilling owes
153 much to this section being tectonically exposed, so its state of alteration may not be representative
154 of alteration in a typical oceanic lower crust. In both ophiolites and oceanic crust, the degree of
155 alteration decreases with depths, though the penetration of hydrothermal fluids down to the mantle
156 is also indicated by oxygen isotope data from the Oman ophiolite (Gregory and Taylor 1981;
157 Stakes and Taylor 1992). The application of ophiolite-based inference to oceanic crust, however,
158 requires caution because ophiolites are generally more extensively altered than oceanic crust (Alt
159 and Teagle 2000).

160 Seawater alteration modifies the physical properties of rocks, so geophysical observations can
161 potentially constrain the extent of hydration in oceanic lithosphere. By 20 % alteration, for exam-
162 ple, the *P*-wave velocities of gabbro and peridotite decrease by ~4 % (Carlson and Miller 2004)
163 and ~9 % (Christensen 2004), respectively (Figure 3). The *P*-wave velocity of oceanic lower crust
164 is known to be ~7 km s⁻¹ (White et al. 1992), being lower than the velocity of unaltered gabbroic
165 rocks (~7.3 km s⁻¹ (Christensen and Smewing 1981)), which may indicate that ~20 % of the
166 lower crust is altered. However, such an interpretation is not unique (Korenaga et al. 2002; Behn
167 and Kelemen 2003); crack-like porosity can lower seismic velocity quite easily with a minute
168 amount of water involved (Figure 3). The alteration of gabbroic rocks by 20 % is equivalent to

169 the water concentration of 0.35 wt%, and its effect on P -wave as well as S -wave velocities can be
170 mimicked well by only 0.06 % porosity (0.02 wt% of water) if the porosity is crack-like, i.e., its
171 aspect ratio (the ratio of the shorter semi-axis over the longer semi-axis of an oblate spheroid) is
172 very small. Strangely, such effect of crack-like porosity has been largely neglected in the literature.
173 Some authors try to justify the interpretation of seismic velocity anomalies in terms of alteration,
174 by stating that the presence of cracks should facilitate the alteration of surrounding rocks (e.g.,
175 Carlson 2003; Ivandic et al. 2008), but large-scale cracks such as created by thermal cracking (Ko-
176 renaga 2007b) are inefficient to promote hydration because of the effect of confining pressure on
177 water transport (Korenaga 2017a). Canales et al. (2017) estimated the relation between P -wave
178 velocity and water content based on the physical properties of drilled cores, but such an attempt
179 would be valid only if large-scale cracks are absent.

180 A pair of P - and S -wave velocity models could potentially constrain the relative importance of
181 alteration and crack-like porosity (e.g., Grevemeyer et al. 2018), but obtaining a reliable S -wave
182 velocity model is difficult. This is because the identification of relevant S phases, such as Sg , SmS ,
183 and Sn , is often equivocal; they are all later phases, usually with low signal-to-noise ratios (see,
184 for example, figure C2 of Contreras-Reyes et al. (2008)). Measuring electrical resistivity, which is
185 sensitive to the volume of pore fluid, may help validate purely seismological inference, but such a
186 joint analysis of seismic and electromagnetic data is still in its infancy (Naif et al. 2015).

187 It may be possible to predict how deeply oceanic lithosphere can be fractured and thus altered
188 by seawater on the basis of numerical modeling, but numerical studies on the brittle deformation of
189 oceanic lithosphere usually focus on large-scale faulting (e.g., Buck et al. 2005; Olive et al. 2010),
190 and the consideration of thermal cracking is rare (Korenaga 2007b). Thermal cracking is likely
191 to take a cascade structure (Lister 1974), in which narrowly-spaced shallow cracks and widely-
192 spaced deep cracks coexist, and the evolution of such a complex multi-scale crack system is yet to
193 be studied quantitatively.

194 It is important to appreciate the limitation of currently available observations and numerical

models. An instructive example may be drawn from the recent literature on the hydration state of subducting slab. When bent at subduction zones, oceanic plates are fractured by normal faulting, and this bending-related faulting is widely believed to hydrate the lithosphere down to the depth of \sim 20-30 km (e.g., Ranero et al. 2003). Being deeply faulted, however, does not guarantee deep hydration because of confining pressure; the buoyancy of water with respect to rocks acts to prevent the transport of water from faults into wall rocks. Though the modeling studies of Faccenda et al. (2009) and Dymkova and Gerya (2013) indicate that dynamic pressure associated with plate bending may be high enough to cancel confining pressure, such high dynamic pressure has been suggested to be at odds with a physical bound on the magnitude of dynamic pressure (Korenaga 2017a). Also, relevant geophysical observations do not seem to be compelling enough to challenge this theoretical constraint (Korenaga 2017a). When the possibility of crack-like porosity cannot be excluded, the interpretation of geophysical observations suffers from considerable nonuniqueness. Though it may not be widely appreciated (e.g., Hatakeyama et al. 2017; Cai et al. 2018), it is important to take into account the effect of confining pressure, which is significant at lithospheric scale, when discussing the state of mantle hydration.

2.3 Perturbations from within and below

As already discussed in section 2.1, the first order feature of seafloor topography can be explained by simple half-space cooling, i.e., the conductive growth of thermal boundary layer. At the same time, the steady growth of the boundary layer can be disrupted, sometimes quite substantially, both from within and below. The former corresponds to small-scale convection, and the latter to the impingement of mantle plumes.

Oceanic lithosphere is gravitationally unstable because the shallower part is colder and thus denser than the deeper part. Because of temperature-dependent viscosity, however, the coldest and densest part is too stiff to participate in convective instability, and only the lower portion can potentially be destabilized. When the instability develops into small-scale convection depends on

mantle rheology. In general, convection takes place more easily for lower viscosity, and small-scale convection can start beneath very young (~ 5 Ma) lithosphere if the viscosity of asthenosphere is as low as 10^{17} Pa s (e.g., Buck and Parmentier 1986). Such an early onset of convection was once suggested to be responsible for gravity lineaments observed on the young Pacific plate near the East Pacific Rise (Haxby and Weissel 1986), but based on subsequent geophysical and geochemical surveys, those lineaments are now considered to have resulted from the presence of chemical heterogeneities with low melting temperatures in the asthenosphere (Harmon et al. 2011), which facilitates melt-buoyancy-driven upwelling (e.g., Tackley and Stevenson 1993). The onset of small-scale convection, initiated by the destabilization of oceanic lithosphere itself, may be taking place beneath relatively mature (~ 70 Ma) seafloor, as suggested by seismic tomography studies (e.g., Katzman et al. 1998; Ritzwoller et al. 2004). This timing happens to coincide with when seafloor subsidence deviates from the prediction of half-space cooling, lending some credibility to the small-scale convection origin of seafloor flattening (Parsons and McKenzie 1978). Because of the strongly temperature-dependent viscosity of the mantle, however, most of the lithosphere is too strong to be mobilized, and lithospheric thinning by convective delamination is limited (e.g., Solomatov 1995; Korenaga and Jordan 2003, 2004). Thus, even if small-scale convection takes place, additional mechanisms such as radiogenic heating are needed to explain the observed amplitude of seafloor flattening (Huang and Zhong 2005; Korenaga 2015b).

Seafloor flattening by small-scale convection could take place on a global scale when certain conditions for such intrinsic instability are met, e.g., lithosphere has grown sufficiently thick. By contrast, the impingement of a mantle plume can affect lithospheric evolution on a more regional scale and independently of the state of lithosphere. As the upwelling of a mantle plume is generally accompanied with extensive melting, its impingement on oceanic lithosphere is commonly believed to result in the formation of hotspot islands or an oceanic plateau, both of which are characterized by anomalously thick igneous crust (e.g., Morgan 1971; Richards et al. 1989; Coffin and Eldholm 1994). The thickness of such anomalous crust and its chemical composition can help

constrain the physical and chemical state of a putative mantle plume (e.g., Watts et al. 1985; Carré et al. 1995; Hauri 1996; Sobolev et al. 2007; Richards et al. 2013), or more important, allows to assess the very assumption of a mantle plume (e.g., Sallares et al. 2005; Korenaga and Sager 2012). In addition to crustal emplacement, the impact of a mantle plume could also result in the thermal erosion of lithosphere (Sleep 1987; Ribe and Christensen 1994) as well as the spreading of buoyant residual mantle (Phipps Morgan et al. 1995; Ribe and Christensen 1999), contributing to broad seafloor shallowing around hotspot islands known as a hotspot swell. The amplitude of swell topography and its spatial extent are part of important constraints on the so-called plume buoyancy flux (Davies 1988; Sleep 1990; King and Adam 2014), which can be related to core heat flux.

The impact of mantle plumes on the evolution of oceanic lithosphere can vary substantially because the nature of mantle plumes is diverse (e.g., Courtillot et al. 2003; Foulger et al. 2005). The original concept of mantle plume, as proposed by Morgan (1971), is based on the upwelling of purely thermal anomalies, but such a simple notion has been shown to be inadequate to explain observations from quite a few hotspot islands and oceanic plateaus. Perhaps the most prominent example is the Ontong Java Plateau, the largest oceanic plateau found on the present-day seafloor (Coffin and Eldholm 1994). This plateau has >30 -km-thick crust (Miura et al. 2004; Korenaga 2011b) and is believed to have formed on young seafloor, so if it was formed by the impact of a purely thermal plume, it is expected to have formed at least 1 km above sea level (Korenaga 2005b). However, the geological and geochemical analyses of drilled cores from the plateaus indicate that it was actually formed ~ 1 km *below* sea level (Michael 1999; Mahoney et al. 2001; Roberge et al. 2005). The submarine eruption of Ontong Java Plateau thus exemplifies the difficulty of predicting the influence of a mantle plume on seafloor topography. Ontong Java Plateau may be a rare exception (other oceanic plateaus are much less explored), but it is by far the largest oceanic plateau, so this difficulty cannot be marginalized.

²⁷⁰ **2.4 State of asthenosphere and its role in plate tectonics**

²⁷¹ As noted at the beginning of section 2, asthenosphere is complementary to lithosphere, the former
²⁷² being mechanically weaker than the latter. From the perspective of conductive cooling, astheno-
²⁷³ sphere represents merely the uncooled portion of the suboceanic mantle, and this simple picture
²⁷⁴ is mostly sufficient to explain the long-wavelength features of relevant geophysical observations,
²⁷⁵ e.g., the presence of the low velocity zone as seen in surface-wave tomography models (e.g., Ritz-
²⁷⁶ woller et al. 2004; Debayle and Ricard 2012; Priestley and McKenzie 2013). In general, seismic
²⁷⁷ velocities decrease with higher temperature and increase with higher pressure, and the combina-
²⁷⁸ tion of these competing effects creates a velocity minimum in the asthenosphere (e.g., Stixrude and
²⁷⁹ Lithgow-Bertelloni 2005). However, finer structural details brought by body wave studies, such
²⁸⁰ as the existence of the Gutenberg discontinuity and its magnitude (e.g., Kawakatsu et al. 2009;
²⁸¹ Rychert and Shearer 2011; Schmerr 2012), cannot be explained in a similar way because tem-
²⁸² perature and pressure vary only smoothly. There are two major hypotheses for the origin of the
²⁸³ sharp seismic discontinuity, one with partial melting and the other with water. The partial melting
²⁸⁴ hypothesis has a long history (e.g., Anderson and Sammis 1970; Ringwood 1975). The amount of
²⁸⁵ partial melt expected from the thermodynamics of peridotites is quite small (<0.1 % (Hirschmann
²⁸⁶ 2010)), but it may be sufficient to explain the strength of the Gutenberg discontinuity if the melt
²⁸⁷ geometry is horizontally elongated (Kawakatsu et al. 2009; Takei 2017). The effect of water on
²⁸⁸ seismic velocity could also be significant even with a trace amount of water (Karato 2012), though
²⁸⁹ the efficacy of the proposed mechanism, i.e., anelastic relaxation by elastically accommodated
²⁹⁰ grain boundary sliding, is yet to be explored (e.g., Cline et al. 2018).

²⁹¹ Whereas the thermodynamics of a homogeneous peridotitic mantle predicts only a trace amount
²⁹² of partial melt (<0.1 %) in the asthenosphere, a much larger amount of partial melt can exist if
²⁹³ the mantle is chemically heterogeneous (Hirschmann 2010). In fact, a chemically homogeneous
²⁹⁴ mantle is too simple a concept to be realistic, and some degree of chemical heterogeneity is always
²⁹⁵ expected from the operation of plate tectonics. In plate tectonics, the mantle is differentiated into

oceanic crust and depleted mantle lithosphere by mid-ocean ridge magmatism, and these differentiated materials return to the mantle by subduction. Thus, plate tectonics constantly introduces chemical heterogeneities to the convecting mantle, and depending on the details of convective mixing (e.g., Olson et al. 1984; Manga 1996; Ferrachat and Ricard 1998), the fragments of subducted oceanic crust can persist as enriched heterogeneities, which can melt more easily than the surrounding peridotitic matrix (Yasuda et al. 1994). Local melt pockets originating in enriched chemical heterogeneities may be laterally elongated by shearing associated with mantle upwelling beneath mid-ocean ridges (Hirschmann 2010) (Figure 1), and such a melt geometry may explain the radial anisotropy of oceanic mantle (Kawakatsu et al. 2009) as well as the existence of strong Po/So waves (suboceanic Pn/Sn phases) (Shito et al. 2013, 2015; Kennett et al. 2014). The presence of chemical heterogeneities should also manifest in the geochemistry of mid-ocean ridge basalts and ocean island basalts (e.g., Hirschmann and Stolper 1996; Ito and Mahoney 2005a, b; Sobolev et al. 2007; Gale et al. 2014), so by combining seismological and geochemical observations, we may be able to draw some unambiguous inferences on the nature of chemical heterogeneities in the suboceanic mantle. Such a multidisciplinary investigation is important because a chemically heterogeneous mantle is not a particularly well-defined notion and is often seen as an ad hoc explanation.

Even in the absence of enriched chemical heterogeneities, it is still possible to expect a locally high melt fraction beneath a relatively mature oceanic lithosphere if one considers the dynamic nature of the suboceanic mantle (e.g., Raddick et al. 2002; Ballmer et al. 2007). The convective instability of a growing lithosphere would cause the upwelling of asthenospheric mantle and its partial melting, and by vertical migration, melt can pond beneath the lithosphere, possibly reaching the melt fraction of a few percent. Ponded melt would eventually be solidified by a growing lithosphere, but the quasi-continuous presence of ponded melt may be achieved by the cycle of lithospheric delamination. In fact, the presence of such melt-rich lithosphere-asthenosphere boundary appears to be required by the fluid mechanics of petit-spot formation (Yamamoto et al. 2014). Petit-spot volcanoes are tiny seamounts formed off the fore-bulge of the downgoing oceanic

322 plate (Hirano et al. 2006), and even though their observable volumes are very small, their eruption
323 through a thick mature oceanic lithosphere demands a robust supply of melt. Given the possi-
324 bly ubiquitous presence of petit spots (e.g., Hirano et al. 2008, 2013), the effect of small-scale
325 convection on the distribution of partial melt in the asthenosphere warrants careful quantification.

326 Apparently, it is widely believed that the presence of a low-viscosity layer beneath lithosphere
327 is essential for plate tectonics (e.g., Sifre et al. 2014; Stern et al. 2015; Chantel et al. 2016; Takeuchi
328 et al. 2017), and because of this, the presence of partial melt in the asthenosphere is often discussed
329 as if it could control the likelihood of plate tectonics. There is no geodynamical basis for this be-
330 lief. Of course, the viscosity of lithosphere is much higher than that of asthenosphere, because the
331 former is colder than the latter. It is thus technically correct to say that plate tectonics is character-
332 ized by the presence of a low-viscosity layer beneath strong plates, but such characterization is not
333 useful and can be misleading. What is most important for the persistent, long-term operation of
334 plate tectonics is that, despite strongly temperature-dependent viscosity, lithosphere can become
335 sufficiently weak, at least locally, to bend and subduct (e.g., Bercovici et al. 2015). Without such
336 weakening of lithosphere, the style of mantle convection would be fixed to stagnant lid convection
337 (Solomatov 1995), whether or not a low-viscosity layer exists. The overemphasis on the signifi-
338 cance of a low-viscosity layer may originate in the earlier days of the plate tectonics revolution, in
339 which plates were considered to float above the mantle and be driven by mantle convection (e.g.,
340 Isacks et al. 1968; Forsyth and Uyeda 1975). It could also stem from the work of Richards et al.
341 (2001), whose numerical simulation indicates that the style of mantle convection is very sensitive
342 to the presence of a low-viscosity layer (see their figure 4). Their conclusion, however, depends
343 on their particular implementation of mantle rheology. As a number of other numerical studies
344 demonstrate, it is the weakening of otherwise strong lithosphere, rather than the presence of a low-
345 viscosity layer, that dictates the style of mantle convection (e.g., Stein et al. 2004; Landuyt et al.
346 2008; Stadler et al. 2010; Foley and Bercovici 2014). Also, if the viscosity of asthenosphere is
347 too low, it would actually prevent the long-term operation of plate tectonics, because convective

348 stress would be too low to break lithosphere (Solomatov 2004; Korenaga 2010). The lithosphere-
 349 asthenosphere system is an interesting test bed for our theoretical understanding of Earth's mantle,
 350 but it is also important to communicate its scientific merit correctly.

351 **2.5 Reference evolution models and their significance**

352 Observables related to oceanic lithosphere, such as seafloor depth, surface heat flow, and seismic
 353 velocity structure, are primarily a function of seafloor age, so it is natural to seek a reference evolution
 354 model, which can explain the first-order characteristics of the suboceanic mantle with simple
 355 physical principles. Such a reference model not only offers a concise summary of observables but
 356 also constrains the physical state such as thermal structure along with relevant material properties.
 357 The reference model also allows us to isolate deviations or anomalies, which can provide valuable
 358 constraints on dynamic processes that are distinct from large-scale mantle circulation.

359 Historically, there have been two approaches for how to define a reference model. One is to
 360 build a model based on the simplest physical assumption, i.e., the so-called half-space cooling
 361 (HSC) model (Turcotte and Oxburgh 1967; Davis and Lister 1974; Carlson and Johnson 1994).
 362 However sensible this approach may seem, the HSC model does not adequately explain the be-
 363 havior of old (>80 My old) seafloor, as mentioned earlier in section 2.1. The other approach is
 364 to devise a phenomenological model that can fit observations, and the so-called plate model is the
 365 most popular in this category (McKenzie 1967; Parsons and Sclater 1977; Stein and Stein 1992).
 366 The major problem with this approach is that the model is constructed with a physically unrealistic
 367 boundary condition (constant temperature at a shallow (\sim 100 km) depth). One may argue that such
 368 a boundary condition can be regarded as an approximation for physically plausible processes such
 369 as small-scale convection (e.g., Parsons and McKenzie 1978; Davaille and Jaupart 1994; Huang
 370 and Zhong 2005), but such an argument has been mostly qualitative. Whereas small-scale convec-
 371 tion does help deviate from the prediction of the HSC model, thereby mimicking the behavior of
 372 the plate model, the thermal structure resulting from small-scale convection can be considerably

373 different from that of the plate model (Figure 4).

374 The popularity of the plate model is understandable. The HSC model predicts simply too deep
375 seafloor for old seafloor; the difference from the observed depth reaches as much as \sim 1 km at the
376 age of 140 Ma (Figure 2). At the same time, we should recognize that the plate model suffers from
377 its use of a physically unrealistic boundary condition. The plate model was originally proposed
378 to explain the roughly constant surface heat flow at old seafloor (Langseth et al. 1966; McKenzie
379 1967), and it is easy to explain this observation by imposing a constant temperature boundary
380 condition at the depth of \sim 100 km. However, the influence of such a boundary condition is not
381 limited to the structure of old oceanic lithosphere; the influence may seem more subtle at young
382 lithosphere (Figure 4), but it is actually substantial regarding seafloor subsidence (see Figure 4c
383 of Korenaga and Korenaga (2016)). This is problematic. For young seafloor, the HSC model
384 has no shortcomings, and if we extend the model with the possibility of small-scale convection,
385 it can explain old seafloor as well (Huang and Zhong 2005; Korenaga 2015b). In this case, the
386 thermal structure of oceanic lithosphere simply follows the prediction of half-space cooling until
387 it is disturbed by small-scale convection. If we use the plate model, on the other hand, its bottom
388 boundary condition inadvertently affects the thermal evolution of young lithosphere. In other
389 words, the argument to justify this boundary condition as an approximation for the effect of small-
390 scale convection (e.g., Parsons and McKenzie 1978) suffers from a causality problem. Small-scale
391 convection taking place beneath old lithosphere cannot affect the thermal evolution of younger
392 lithosphere.

393 Geoid data are sensitive to depth-integrated mass anomalies, and weak geoid contrasts observed
394 on young seafloor across the Mendocino fracture zone were once suggested to prefer the thermal
395 structure predicted by the plate model over that by the HSC model (Richardson et al. 1995), but this
396 argument has been shown to be based on the incorrect theoretical calculation of geoid anomalies
397 (Cadio and Korenaga 2012). On a more global scale, correlation between age and geoid slope was
398 suggested to prefer the plate model (DeLaughter et al. 1999), but this argument is also tainted by

399 the mishandling of theoretical calculations (Korenaga and Korenaga 2008). In general, the HSC
400 model and the plate model predict similar geoid signals to each other, and the difference between
401 them is much smaller than other perturbations expected in the geoid (Hager 1983). Surface wave
402 tomography provides a more direct probe into the thermal structure of the suboceanic mantle, and
403 a tomographic cross section stacked with respect to seafloor age commonly shows a continuous
404 thickening of high velocity anomalies with age (Maggi et al. 2006; Debayle and Ricard 2012; Isse
405 et al. 2019), which is more consistent with the HSC model than the plate model.

406 Thus, neither the (pure) HSC model nor the plate model is satisfactory; the former fails to
407 account for the topography of old seafloor, whereas the latter is physically awkward. Even in the
408 recent literature, however, it is still common to adopt the plate model despite its physical flaw
409 because the HSC model cannot explain old seafloor (e.g., Goutorbe and Hillier 2013; Hoggard
410 et al. 2017; Richards et al. 2018). It is probably time to quit such a banal dualistic argument and
411 proceed in a more physically sensible direction. What is necessary is the third kind of reference
412 model, which includes all of ubiquitous physical processes, i.e., not only half-space cooling but
413 also other intrinsic processes for the suboceanic mantle such as thermal cracking, internal heating,
414 secular cooling, and possibly even small-scale convection (Figure 1). According to preliminary
415 attempts in this direction, it appears possible to build such a physics-based reference model that
416 can fully account for the evolution of ‘normal’ oceanic lithosphere (Korenaga 2015b; Korenaga
417 and Korenaga 2016).

418 The use of the qualifier ‘normal’ here is important; when constraining a reference model with
419 observations, we should restrict ourselves to the part of suboceanic mantle that is devoid of per-
420 turbations from below (i.e., the impact of mantle plumes). Otherwise, we would not be able to
421 quantify the influence of such perturbations accurately, and our understanding of normal subo-
422 ceanic mantle would also be compromised. Traditionally, however, this issue tends to be handled
423 arbitrarily. For example, Stein and Stein (1992) and Carlson and Johnson (1994) did not use any
424 screening of seafloor when constructing their reference models. Some authors have tried to ex-

425 clude seafloor presumably affected by mantle plumes, such as hotspot islands, seamounts, and
426 oceanic plateaus, by visual inspection or similar semi-quantitative methods (Smith and Sandwell
427 1997; Hillier and Watts 2005). Others used more aggressive screening based on the distance from
428 known hotspot tracks, e.g., >1000 km (Heestand and Crough 1981) and >600 km (Schroeder
429 1984), resulting in virtually no normal seafloor for ages greater than 80 Ma. Crosby et al. (2006)
430 suggested that normal seafloor might be identified by near-zero gravity anomalies, but being in
431 isostatic equilibrium does not necessarily mean being unaffected by perturbations from below; as
432 an extreme case, consider Ontong Java Plateau, the majority of which is characterized by near-zero
433 gravity anomalies (e.g., Coffin and Gahagan 1995). If the variation of oceanic crust thickness were
434 globally known, such information could be used to extract the normal part of seafloor, but the cur-
435 rent knowledge is far from being complete (e.g., Winterbourne et al. 2014). Moreover, as noted
436 section 2.3, the impingement of a mantle plume would affect not only crustal thickness but also
437 mantle lithospheric structure, so even a better understanding of global crustal structure is not suffi-
438 cient. Given these considerations, there seems no better alternative, at the moment, than the spatial
439 correlation approach (Korenaga and Korenaga 2008) to define normal seafloor. This approach re-
440 quires only seafloor topography and is based on the notion that the influence of the emplacement of
441 hotspot islands and oceanic plateaus on the surrounding seafloor should decrease with increasing
442 distance from those anomalous regions. The quantification of this simple notion using spatial cor-
443 relation has suggested that the influence of anomalous crust emplacement is statistically significant
444 only up to the distance of ~300 km (Korenaga and Korenaga 2008).

445 The potential benefit of a new kind of physics-based reference model, calibrated to normal
446 seafloor, is multifold. First, it will allow a more accurate interpretation of geophysical data col-
447 lected over normal seafloor (e.g., Sarafian et al. 2015; Lin et al. 2016; Baba et al. 2017; Takeo et al.
448 2018). This aspect is particularly important in light of the proposed Pacific Array (Kawakatsu and
449 Utada 2017), an international effort to characterize the physical properties of the suboceanic man-
450 tle by global deployments of ocean-bottom seismometers and electromagnetometers. Second, it

451 will help characterize anomalous regions with more confidence. Excess topography, for example,
 452 may indicate thicker-than-normal crust, thinner lithosphere, or the presence of thermally or chemi-
 453 cally buoyant mantle below. As the plate model is tuned to fit the average behavior of old seafloor,
 454 a large fraction of old seafloor can be classified as ‘normal’ by definition, so the use of the plate
 455 model masks the potentially more anomalous nature of old seafloor. With a new reference model,
 456 it will be possible to better delineate how the evolution of oceanic lithosphere has been affected
 457 by perturbations from below. Lastly, unlike the purely phenomenological approach of the plate
 458 model, the physics-based approach can be extended to estimate the likely seafloor topography in
 459 the past. The shape of ocean basins is one of the most important components when quantifying
 460 the history of global water cycle and the emergence of dry landmasses (e.g., Korenaga et al. 2017).
 461 Developing a new reference model for the present-day suboceanic mantle can thus go a long way
 462 to become one of the pillars of the quantitative theory of Earth evolution.

463 **3 Rheology of the oceanic upper mantle**

464 The rheology of silicate rocks, i.e., how easily they deform under various conditions, is the most
 465 important unknown in mantle dynamics. The viscosity of mantle materials can vary over many
 466 orders of magnitude, but our current understanding does not allow us to prescribe how exactly it
 467 varies. In general, rocks become less viscous when heated up and more viscous when compressed.
 468 For olivine, which comprises ~60 % of the upper mantle, we also know that olivine aggregates can
 469 deform by at least two different mechanisms, diffusion creep and dislocation creep; the former is
 470 sensitive to grain size, and the latter depends nonlinearly on stress. Deformation mechanisms are
 471 also known to be affected by chemical composition, and a trace amount of water can potentially
 472 reduce viscosity by a few orders of magnitude. However, when it comes to the details of such
 473 dependencies on temperature, pressure, grain size, stress, and composition, our understanding is
 474 still incomplete even for olivine, which is by far the best-studied mantle mineral. In this section,
 475 therefore, I review both experimental and observational constraints on upper mantle rheology. I

476 will also discuss various numerical implementations of upper mantle rheology in the literature.
 477 Some implementations are more difficult to justify than others, and it is not uncommon to see
 478 questionable implementations even in widely-cited numerical studies. Understanding the rock-
 479 mechanics basis of common implementations helps us better evaluate the robustness of a certain
 480 suggestion based on numerical modeling. To make this section reasonably self-contained, I will
 481 start with some preliminaries of rock mechanics.

482 3.1 Preliminaries

483 When stains are large, rocks deform either in the brittle regime or in the ductile regime; the former
 484 is important under low temperatures and low pressures, and the latter under high temperatures
 485 and high pressures. In case of the oceanic upper mantle, both types of deformation are important.
 486 The brittle deformation regime *sensu lato* (i.e., including the brittle-ductile transition) is limited
 487 to relatively shallow depths, but it plays an important role in the strength of oceanic lithosphere,
 488 which is perhaps the most critical factor when discussing the plausibility of plate tectonics on
 489 terrestrial planets. The dynamics of the oceanic upper mantle influences that of the whole mantle.
 490 This is because the style of mantle convection is determined primarily by the nature of the top
 491 thermal boundary layer, i.e., whether oceanic lithosphere can subduct in case of Earth. Whether
 492 in the mode of plate tectonics or stagnant lid convection, how a terrestrial planet cools down boils
 493 down to the convective stability of the top thermal boundary layer, which determines surface heat
 494 flux. Thus, the rheology of the oceanic upper mantle holds a key to a variety of dynamical issues
 495 with a range of spatial and temporal scales.

496 The strength of rocks in the brittle deformation regime is often described in terms of yield
 497 strength as

$$\tau = \tau_0 + \mu P, \quad (2)$$

498 where τ_0 is the cohesive strength, μ is the friction coefficient, and P is pressure. The brittle
 499 strength of rocks depends on the size of intrinsic flaws, and larger samples would break more

500 easily than smaller samples because the former can contain larger flaws (e.g., Jaeger and Cook
501 1976; Paterson and Wong 2005). The lowest possible brittle strength can be derived by considering
502 pervasively fractured rocks, the strength of which is determined solely by frictional resistance
503 along preexisting faults (e.g., Scholz 2002). Equation (2) represents such a lower bound on brittle
504 strength. Laboratory experiments indicate that the friction coefficient is \sim 0.6-0.85 for a wide
505 variety of lithologies and the cohesive strength is negligible (Byerlee 1978). Note that Byerlee
506 (1978) derived two empirical fits for his experimental data: (1) $\tau_0 = 0$ and $\mu = 0.85$ for data with
507 confining pressures lower than 200 MPa, and (2) $\tau_0 = 50$ MPa and $\mu = 0.6$ for data with greater
508 pressures, but this does not mean that the cohesive strength can be as high as 50 MPa. The use
509 of two empirical fits is to represent the variation of friction coefficient with confining pressure
510 with simple straight line fit (Byerlee 1978). The use of high cohesive strength (i.e., the depth-
511 independent part of brittle strength) in the numerical simulation of mantle convection is common
512 (e.g., Moresi and Solomatov 1998; Richards et al. 2001; O'Neill et al. 2007; Nakagawa and Tackley
513 2012), but it has no experimental support. As indicated by equation (2), brittle strength increases
514 linearly with depth (or equivalently, pressure), and it becomes substantial even at moderate depths;
515 with $\mu=0.8$, for example, it reaches \sim 1 GPa at the depth of 30 km. It may be possible to regard the
516 depth-independent brittle strength as an effective, depth-average brittle strength, but whether or not
517 the brittle strength depends on depth turns out to be important for the style of mantle convection
518 (e.g., Moresi and Solomatov 1998) (see also section 3.5).

519 When multiple deformation mechanisms are available, rocks deform predominantly by the
520 mechanism that provides the lowest yield strength. Therefore, whereas the brittle strength contin-
521 ues to increase with depth, brittle deformation eventually becomes irrelevant when ductile defor-
522 mation becomes more effective. Olivine is the key mineral for upper mantle rheology, because it is
523 the most abundant and usually the weakest phase among upper mantle minerals (e.g., Karato and
524 Wu 1993). For the ductile deformation of olivine aggregates, the following four mechanisms have
525 been suggested to be important: low-temperature plasticity, diffusion creep, dislocation creep, and

526 dislocation-accommodated grain boundary sliding (GBS) (e.g., Goetze 1978; Karato and Wu 1993;
 527 Hirth and Kohlstedt 2003). Ductile deformation is usually described by a flow law, and each of
 528 these mechanisms is described by a different form of flow law. Also, each mechanism is known
 529 to require two different flow laws, one for deformation under dry conditions and the other under
 530 wet conditions (e.g., Karato et al. 1986; Mei and Kohlstedt 2000a, b; Katayama and Karato 2008;
 531 Ohuchi et al. 2015). Thus, fully describing the ductile deformation of olivine aggregates requires
 532 at least the following eight flow laws:

$$\dot{\epsilon}_{\text{ltp,dry}} = A_1 \sigma^2 \exp \left(-\frac{E_1 + PV_1}{RT} \left[1 - \left\{ \frac{\sigma}{\sigma_1} \right\}^{p_1} \right]^{q_1} \right) \quad (3)$$

$$\dot{\epsilon}_{\text{ltp,wet}} = A_2 C_w^{r_2} \sigma^2 \exp \left(-\frac{E_2 + PV_2}{RT} \left[1 - \left\{ \frac{\sigma}{\sigma_2} \right\}^{p_2} \right]^{q_2} \right) \quad (4)$$

$$\dot{\epsilon}_{\text{diff,dry}} = A_3 d^{-m_3} \sigma \exp \left(-\frac{E_3 + PV_3}{RT} \right), \quad (5)$$

$$\dot{\epsilon}_{\text{diff,wet}} = A_4 C_w^{r_4} d^{-m_4} \sigma \exp \left(-\frac{E_4 + PV_4}{RT} \right), \quad (6)$$

$$\dot{\epsilon}_{\text{dis,dry}} = A_5 \sigma^{n_5} \exp \left(-\frac{E_5 + PV_5}{RT} \right), \quad (7)$$

$$\dot{\epsilon}_{\text{dis,wet}} = A_6 C_w^{r_6} \sigma^{n_6} \exp \left(-\frac{E_6 + PV_6}{RT} \right), \quad (8)$$

$$\dot{\epsilon}_{\text{gbs,dry}} = A_7 d^{-m_7} \sigma^{n_7} \exp \left(-\frac{E_7 + PV_7}{RT} \right), \quad (9)$$

$$\dot{\epsilon}_{\text{gbs,wet}} = A_8 C_w^{r_8} d^{-m_8} \sigma^{n_8} \exp \left(-\frac{E_8 + PV_8}{RT} \right), \quad (10)$$

533 where $\dot{\epsilon}$ is strain rate (the subscript “ltp” for low-temperature plasticity, “diff” for diffusion creep,
 534 “dis” for dislocation creep, “gbs” for GBS, and “dry” and “wet” denote the absence and presence
 535 of water, respectively), σ is the second invariant of the deviatoric stress tensor, T is temperature, P
 536 is pressure, R is the universal gas constant, d is grain size, C_w is water content, and A_i , E_i , V_i , σ_i , m_i ,
 537 n_i , and r_i are, respectively, the pre-exponential factor, the activation energy, the activation volume,
 538 the Peierls stress, the grain-size exponent, the stress exponent, and the water-content exponent
 539 for the i th flow law (e.g., Karato 2008). The exponents p_i and q_i are constants with the range

540 of $0 \leq p_i \leq 1$ and $1 \leq q_i \leq 2$ (e.g., Frost and Ashby 1982). Thus, the flow-law parameters that
 541 have to be determined experimentally include: eight A_i 's, eight E_i 's, eight V_i 's, two σ_i 's, two p_i 's,
 542 two q_i 's, four m_i 's, four n_i 's, and four r_i 's, amounting to 42 unknowns in total. As explained
 543 later (section 3.3), many of these parameters are not well constrained, but in general, the ductile
 544 deformation is very sensitive to temperature, and at temperatures higher than ~ 700 °C, the mantle
 545 deforms predominantly in the ductile regime. Through activation volume V_i , ductile deformation
 546 also depends on pressure, but the effect of pressure is moderate under upper mantle pressures.
 547 Thus, brittle and ductile deformation mechanisms are contrasting in their temperature and pressure
 548 dependence; the former depends strongly on pressure but is largely insensitive to temperature, and
 549 the opposite is true for the latter.

550 Experimental studies also suggest the existence of the semi-brittle regime (Kohlstedt et al.
 551 1995), but our understanding of this intermediate regime is limited. It is common to assume,
 552 based on laboratory observations, that this regime is initiated when plastic flow strength is about
 553 five times the frictional strength (called brittle-ductile transition (BDT)) and is terminated when
 554 the lithostatic pressure exceeds the flow strength (brittle-plastic transition (BPT)) (Kohlstedt and
 555 Mackwell 2009; Mei et al. 2010). Without theoretical underpinning, it is difficult to evaluate
 556 the validity of such an empirical approach to lithospheric-scale problems. Future progress on
 557 the physics of brittle-ductile transition is much needed (e.g., Chester 1995; Aharonov and Scholz
 558 2019).

559 3.2 Strength of oceanic lithosphere

560 The strength of oceanic lithosphere can be quantified by assessing the relative significance of these
 561 various deformation mechanisms as discussed above. For this purpose, a yield stress envelope is
 562 often used (Goetze and Evans 1979; Kohlstedt et al. 1995). Yield stress or yield strength refers
 563 to the maximum differential stress that can be supported by the type of rocks under consideration
 564 (olivine aggregates in case of oceanic lithosphere), and the envelope shows how yield stress varies

565 with depth (Figure 5). For brittle deformation, equation (2) or its variant is used. For ductile deformation,
 566 a flow law is solved for stress by specifying other variables, such as pressure, temperature,
 567 and strain rate. Pressure is determined by depth, and by assuming a certain age for oceanic lithosphere,
 568 temperature can also be calculated as a function of depth (e.g., by using the half-space
 569 cooling model). For strain rate, the value of 10^{-15} s^{-1} is typically used. This value, often referred
 570 to as “the geological strain rate,” corresponds to a representative strain rate in geological processes
 571 including mantle convection. For example, shearing the whole mantle by plate motion at the rate
 572 of 10 cm yr^{-1} (as in the case of the Pacific plate) and doubling crustal thickness within 30 Myr (as
 573 in the building of the Himalayas by the collision of the Indian subcontinent) are both characterized
 574 by the strain rate of $\sim 10^{-15} \text{ s}^{-1}$.

575 From the yield stress and the assumed strain rate, we can also calculate effective viscosity as

$$\eta_{\text{eff}} = \frac{\sigma_{\text{yield}}}{\dot{\epsilon}}. \quad (11)$$

576 For the geological strain rate of 10^{-15} s^{-1} , the yield stress of 100 MPa, for example, corresponds
 577 to the effective viscosity of 10^{23} Pa s (Figure 5b).

578 Figure 5a shows a yield strength envelope for 60-Ma oceanic lithosphere (thick gray line). Using
 579 the logarithmic scale for yield strength (Figure 5b) helps better understand the details of how
 580 such an envelope is constructed. First, as noted earlier, the brittle-ductile transition is defined where
 581 plastic flow strength is about five times the frictional strength (indicated by horizontal arrow in Fig-
 582 ure 5b); such a crossover takes place at $\sim 2 \text{ GPa}$, which is out of the scope in a typical yield strength
 583 diagram (e.g., Figure 5a). The brittle-plastic transition takes place where the lithostatic pressure
 584 exceeds the flow strength, and low-temperature plasticity plays a key role in both transitions, as
 585 it provides the lowest yield strength among plastic deformation mechanisms. For 60-Ma oceanic
 586 lithosphere, and with the chosen flow-law parameters for this example, low-temperature plasticity
 587 is taken over at $\sim 60 \text{ km}$ depth by dislocation creep, which in turn is taken over at $\sim 80 \text{ km}$ depth
 588 by diffusion creep. Here the yield strength takes the maximum of 800 MPa at $\sim 25 \text{ km}$ depth, and

589 the substantial strength (>100 MPa) is maintained up to ~ 50 km depth. It is well known, based on
590 a number of numerical simulation studies (e.g., Moresi and Solomatov 1998; Richards et al. 2001;
591 Stein et al. 2004), that such high yield strength does not allow the operation of plate tectonics.

592 As plate tectonics is currently taking place on Earth, however, there must be some weakening
593 mechanism(s) that can reduce the yield strength of oceanic lithosphere, at least locally. The so far
594 proposed weakening mechanisms that are consistent with rock mechanics include grain-size re-
595 duction (e.g., Kameyama et al. 1997; Braun et al. 1999; Landuyt et al. 2008; Bercovici and Ricard
596 2012) and thermal cracking (Korenaga 2007b). The idea of grain-size reduction has been moti-
597 vated by the common occurrence of fine-grained rocks called mylonites in plate boundaries (e.g.,
598 Kirby 1985; Drury et al. 1991). One appealing aspect of grain-size reduction is that it could lead
599 to strain localization by positive feedback; deformation through dynamic recrystallization reduces
600 grain size, which promotes further deformation with grain-size-sensitive creep. This localization
601 feedback is, however, usually considered to be limited because dynamic crystallization takes place
602 when deformation takes place in the dislocation creep regime, whereas deformation is sensitive to
603 grain size in the diffusion creep regime. That is, dynamic recrystallization cannot reduce grain size
604 indefinitely because a system with too small grains would deform by diffusion creep, which does
605 not cause dynamic recrystallization. Recent experimental and theoretical studies have delineated
606 the details of how grain-size reduction proceeds by the interaction between dynamic recrystalliza-
607 tion and phase mixing (e.g., Linckens et al. 2014; Cross and Skemer 2017; Bercovici and Skemer
608 2017), and because a considerable strain is required for such an interaction to become effective,
609 the formation of fine-grained rocks is suggested to be a consequence, as opposed to the cause, of
610 shear localization.

611 Even if grain-size reduction takes place quickly, however, its effect on lithospheric strength
612 is still limited to the relatively warm part of oceanic lithosphere (>600 °C), as can be seen by
613 comparing Figure 5b (reference yield strength envelope) and Figure 5c (that with a grain size of
614 100 μm). Even with a grain size of 100 nm, the strongest part of the lithosphere (<400 °C) is

615 virtually unaffected. When the effect of grain-size reduction is considered in the numerical studies
616 of mantle convection (e.g., Landuyt et al. 2008; Foley et al. 2014), this limited effect of grain-size
617 reduction is usually relieved by introducing additional assumptions on lithospheric strength (see
618 section 3.5).

619 Compared to grain-size reduction, thermal cracking is much less understood, though its possi-
620 ble role in large-scale lithospheric dynamics was already mentioned in the early 1970s (Turcotte
621 and Oxburgh 1973). Thermal cracking can happen when thermal stress, resulting from thermal
622 contraction, exceeds material strength, and it can take place over a range of scales, from the grain
623 scale, owing to the anisotropy of thermal expansion of constituent minerals (e.g., Simmons and
624 Richter 1976; Kranz 1983), to the lithospheric scale, owing to the isotropic component of thermal
625 expansion (e.g., Turcotte 1974; Gans et al. 2003; Sandwell and Fialko 2004). Whereas grain-scale
626 microcracks are likely to be closed by lithostatic pressure at depths greater than a few kilometers
627 (e.g., deMartin et al. 2004), large-scale thermal cracks can remain open even at greater depths
628 with sufficiently high thermal stress (e.g., Lachenbruch 1961). With a linear thermal expansivity
629 of 10^{-5} K^{-1} , a bulk modulus of 100 GPa, and a temperature drop of 1000 K, thermal stress can
630 be on the order of 1 GPa. When applied to the cooling of oceanic lithosphere, theoretical cal-
631 culations suggest that thermal cracking could result in a cascade crack system characterized by
632 narrowly spaced shallow cracks and widely spaced deep cracks (Korenaga 2007b). Thermal crack-
633 ing in the presence of surface water leads to serpentinization of wall rocks, but as mentioned in
634 section 2.2, serpentinization is limited to shallow depths, trapping water in deep crack by sealing
635 surface openings. Though the total volume of solids and water is reduced by serpentinization, the
636 sealing of surface openings is still possible because serpentinization at shallow depths is a chem-
637 ically open system, i.e., seawater can freely move in and out. Because such trapped water could
638 reduce the effective friction coefficient, especially when tectonically compressed, thermal cracking
639 can potentially remove the strongest part of lithosphere altogether (Korenaga 2007b), lowering the
640 maximum yield strength down to $\sim 100 \text{ MPa}$ (Figure 5d).

641 The efficacy of thermal cracking is sometimes questioned because it does not crack lithosphere
 642 all the way (e.g., Bercovici et al. 2015), and indeed, the calculations of Korenaga (2007b) indi-
 643 cate that thermal cracking is effective only for temperatures below ~ 700 °C. Above ~ 700 °C,
 644 however, low-temperature plasticity happens to become the weakest deformation mechanism; i.e.,
 645 thermal cracking is maximally effective in reducing lithospheric strength. This coincidence of
 646 thermal cracking and low-temperature plasticity occurs at all lithospheric ages; see Figure 7 of Ko-
 647 renaga (2018) for the cases of 30 Ma and 100 Ma. Unlike grain-size reduction, thermal cracking
 648 is not associated with any shear-localizing feedback, and because of this, thermal cracking ap-
 649 pears unpopular among those who regard such a feedback as the essential weakening mechanism
 650 (e.g., Bercovici et al. 2015). As thermal cracking directly creates the localized zones of weakness,
 651 however, such a feedback may not be essential.

652 Thus, the colder and warmer parts of oceanic lithosphere may be weakened by different mech-
 653 anisms: thermal cracking for the former and grain-size reduction for the latter. This is still a
 654 tentative summary, because the yield strength envelopes shown in Figure 5 are based on the com-
 655 bination of multiple deformation mechanisms, all of which suffer from substantial uncertainties.
 656 There are two clear tasks in front of us. One is to understand the current limitation of experimental
 657 constraints and explore new ways to improve them. The other is to test our understanding of ex-
 658 perimental rock mechanics, which are necessarily based on deformation at microscopic scales, at
 659 lithospheric scales by some geophysical observations. A related issue is how to cope with the con-
 660 tinuing uncertainties of mantle rheology when conducting geodynamical modeling. These issues
 661 will be discussed next in turn.

662 3.3 Experimental constraints

663 As described in section 3.1, we need up to eight flow laws (equations (3)-(10)) just to describe
 664 the ductile deformation of olivine aggregates, and these equations contain 42 unknown parameters
 665 in total. Most of these parameters are not well constrained owing to fundamental experimental

666 limitations. First of all, typical strain rates achieved in deformation experiments are on the order
667 of 10^{-5} s^{-1} , i.e., ten orders of magnitude faster than the geological strain rate. The strain rate of
668 10^{-5} s^{-1} is needed to conduct experiments on human timescales. Thus, using an experimentally-
669 determined flow law always involves extrapolation over ten orders of magnitude, which under-
670 scores the importance of understanding how accurately the flow law is constrained; a seemingly
671 small uncertainty in flow-law parameter could have a devastating effect when extrapolated to man-
672 tle conditions. To deform rocks at the strain rate of 10^{-5} s^{-1} , experiments are usually conducted
673 at high temperatures and high stresses and with very small grain sizes, and it is difficult to deviate
674 from this usual practice. For example, the range of temperature used for the deformation of olivine
675 aggregates is typically from 1425 K to 1575 K (e.g., Karato et al. 1986; Mei and Kohlstedt 2000a;
676 Hansen et al. 2011); i.e., the activation energy, which measures temperature dependence, is con-
677 strained by the span of only 150 K. Higher temperatures would cause partial melting, and lower
678 temperatures would lead to too small a strain rate to be measured. Also, a number of deformation
679 experiments were conducted at low pressures (<400 MPa, equivalent to ~ 12 km depth), because
680 the accurate measurement of deviatoric stress becomes impossible at higher pressures with a typ-
681 ical gas-medium deformation apparatus. Recent technical development, combined with the use
682 of synchrotron X-ray radiation, has allowed deformation experiments at much higher pressures (a
683 few GPa) (Kawazoe et al. 2009; Durham et al. 2009), but deviatoric stresses in such high-pressure
684 experiments are also very high (~ 1 GPa), being a few orders of magnitude greater than stresses
685 associated with mantle convection.

686 In addition to these experimental limitations, there also exists an entirely different kind of
687 difficulty when estimating flow laws from deformation data. Rock deformation under laboratory
688 conditions is typically associated with multiple deformation mechanisms (Karato 2010). When es-
689 timating flow-law parameters based on deformation data, therefore, we need to deconvolve differ-
690 ent mechanisms at the same time. Estimating the parameters of multiple flow laws simultaneously
691 is a highly nonlinear inverse problem, the proper treatment of which has become possible only in

recent years (Korenaga and Karato 2008). A series of recent reanalysis of well-known deformation experiments on olivine single crystals and aggregates have brought rather unsettling findings. First, the stress exponent of dislocation creep, which was considered to be tightly constrained at 3.5 (Bai et al. 1991), has been shown to be more variable, from ~ 2 to ~ 5 (Mullet et al. 2015). Second, the conventional way of estimating flow-law parameters from individual experimental runs is found to provide only marginally useful estimates (Jain et al. 2018). Most recently, a global inversion of published deformation data, i.e., a simultaneous inversion of multiple experimental runs with inter-run biases taken into account, has provided a set of flow-law parameters (Jain et al. 2019), many of which are noticeably different from previous compilations (Karato and Wu 1993; Hirth and Kohlstedt 2003). As Table 1 shows, the grain-size exponent is ~ 2 for diffusion creep as opposed to the frequently assumed value of 3, and the stress exponent for dislocation creep is ~ 4.5 under wet conditions. The activation energy for dry dislocation creep is lower than previous estimates by ~ 100 kJ mol $^{-1}$. Under dry conditions, The activation volume is not constrained by existing data, and even under wet conditions, it is only loosely constrained. There have been a large number of geodynamical studies that have adopted the flow-law parameters of either Karato and Wu (1993) or Hirth and Kohlstedt (2003) literally at face value, but the comparison of these two widely-cited compilations with the latest estimate by Jain et al. (2019) undermines the rock-mechanical basis of such studies.

Besides diffusion and dislocation creep, GBS has also been frequently discussed as an important rate-limiting deformation mechanism at high temperatures (Hirth and Kohlstedt 2003; Faul and Jackson 2007; Hansen et al. 2011; Ohuchi et al. 2015). However, the aforementioned global inversion by Jain et al. (2019) suggests that GBS plays only a minor role even under laboratory conditions and that it becomes almost irrelevant under mantle conditions.

Low-temperature plasticity, which controls the strength of the coldest part of lithosphere, has received a renewed interest in the last decade or so (e.g., Kawazoe et al. 2009; Mei et al. 2010; Long et al. 2011; Proietti et al. 2016; Kumamoto et al. 2017), and some of those recent studies

718 suggest that low-temperature plasticity may lead to considerably weaker lithosphere than previ-
719 ously thought. Based on the numerical modeling of dislocation dynamics, Idrissi et al. (2016) have
720 suggested the following flow-law parameters for equation (3): $A_1 = 1 \times 10^6$, $E_1 = 566 \text{ kJ mol}^{-1}$,
721 $\sigma_1 = 3.8 \text{ GPa}$, $p_1 = 1/2$, and $q_1 = 2$ (note: the σ^2 and PV_1 terms are not considered in their study), and
722 this flow law predicts lithospheric yield strength considerably lower than indicated in Figure 5.
723 Subsequently, Kumamoto et al. (2017) suggested, given the possibility of the grain-size depen-
724 dency of low-temperature plasticity, the flow law of Idrissi et al. (2016) is the best available for
725 capturing the strength of coarse-grained mantle at low temperatures. However, this suggestion is
726 debatable on several accounts. First, the grain-size dependence of low-temperature plasticity, as
727 summarized by Figure 4 of Kumamoto et al. (2017), does not explain the experimental data of
728 Proietti et al. (2016), which is of the smallest grain size among the data compiled by them. Also,
729 their suggested trend of grain-size dependence relies heavily on the data of Druiventak et al. (2011),
730 which is of the largest grain size in the compilation, but as can be seen from Figure 9 of Druiventak
731 et al. (2011), almost all of their data fall on the trend defined by models of brittle failure (Byerlee's
732 law or Goetze criterion), showing nearly linear increase in strength with confining pressure. More
733 important, the flow law of Idrissi et al. (2016) is in gross conflict with existing experimental data
734 (Figure 6). The deformation of coarse-grained ($\sim 900 \mu\text{m}$) natural dunite samples at the stress of
735 $\sim 0.5 \text{ GPa}$ and the temperatures of $\sim 1500 \text{ K}$ is on the order of 10^{-4} s^{-1} (Chopra and Paterson
736 1984), but the strain rate predicted by the flow law of Idrissi et al. (2016) is two orders of magni-
737 tude greater. In other words, their flow law is effective even at high temperatures. The deformation
738 data of Chopra and Paterson (1984) fall almost completely in the regime of dislocation creep, so
739 contributions from low-temperature plasticity must be negligible (i.e., with strain rate at least a
740 few orders of magnitude lower). Therefore, whereas the low-temperature plasticity of olivine ag-
741gregates might depend on grain size, such dependency is likely to be considerably weaker than
742 suggested by Kumamoto et al. (2017). In fact, a more recent study by Hansen et al. (2019) shows
743 a negligible effect of grain size on *steady-state* deformation in the regime of low-temperature plas-

744 ticity; the effect of grain size appears to be limited to transient creep, which is beyond the scope of
 745 equation (3).

746 To understand the extent of experimental constraints on low-temperature plasticity, Jain et al.
 747 (2017) reanalyzed the high-pressure deformation data of Mei et al. (2010) with a comprehen-
 748 sive inverse approach, and they found that existing experimental data could not uniquely deter-
 749 mine the exponents p_1 and q_1 in equation (3), and that the yield strength prediction based on
 750 low-temperature plasticity depends strongly on the assumed values for those exponents, with the
 751 choice of $p_1 = q_1 = 1$ giving the weakest lithosphere. This particular choice of exponents, how-
 752 ever, corresponds to a case of discrete-obstacle control (Frost and Ashby 1982), which is probably
 753 inappropriate for olivine; a material with strong chemical bonding usually has high Peierls stress,
 754 and in such a material, the intrinsic resistance of a dislocation against glide is likely to be more
 755 important. For this reason, the case of $p_1 = 1$ and $q_1 = 2$, which predicts the second weakest
 756 lithospheric strength (Jain et al. 2017), is adopted for the flow-law parameters of low-temperature
 757 plasticity in this paper (Figure 5).

758 Thus, even though the rheology of olivine has been investigated more extensively than that of
 759 any other mantle minerals, the currently available experimental constraints suffer from substantial
 760 ambiguity. Needless to say, more experimental data will be necessary. At the same time, a rigorous
 761 statistical analysis of rock deformation data must become part of standard analysis in the experi-
 762 mental community. Bayesian inversion based on Markov chain Monte Carlo, which is the basis of
 763 the aforementioned reanalyses, is still time-consuming, but it would not be overwhelmingly so if
 764 we wish to maximize the scientific merit of future experimental work.

765 3.4 Observational constraints

766 On a global scale, the viscosity structure of Earth's mantle has long been estimated based mostly on
 767 postglacial rebound and the long-wavelength geoid (e.g., Hager 1991; King 1995; Kaufmann and
 768 Lambeck 2000; Mitrovica and Forte 2004; Rudolph et al. 2015). Such a global estimate is radially

769 symmetric (i.e., suboceanic and subcontinental regions are averaged) and provides only a crude
770 view of likely viscosity stratification, typically with the following three parts: strong lithosphere,
771 weak asthenosphere, and more viscous lower mantle. Thus, more detailed information about the
772 rheology of oceanic upper mantle, such as how yield strength varies within the lithosphere, must
773 come from more regional approach.

774 Estimating viscosity from geophysical observations is generally difficult. The most straight-
775 forward way would be just to divide stress by strain rate if we can estimate both, but having both
776 estimates is rare. As the mantle can flow only very slowly, a reasonably accurate estimate on strain
777 rate requires a record of long-term deformation. A rare example is postglacial rebound, which is an
778 isostatic adjustment of landmasses formerly depressed by ice sheets; it is about deformation over
779 10^4 years, and the driving stress for this deformation can be estimated from surface topographic
780 variations. One caveat on postglacial-rebound based estimates is that the associated strain is on
781 the order of 10^{-3} , which is too small to achieve steady-state deformation. Laboratory experiments
782 show that strains of ~ 0.01 – 0.1 are necessary to achieve steady-state deformation (e.g., Karato et al.
783 1986; Hansen et al. 2019). Postglacial rebound data are thus useful to constrain transient creep,
784 not steady-state creep (Karato 1998). It is always important to understand what kind of rheology
785 is relevant to a given geophysical observation.

786 These difficulties, i.e., identifying appropriate observations, ideally with long-term deforma-
787 tion, and interpreting them with proper rheological models, persist when estimating the rheology
788 of oceanic upper mantle. For the rheology of oceanic lithosphere, lithospheric flexure due to
789 seamount loading is promising as it reflects deformation over 10^4 – 10^8 years (Watts 2001). Early
790 interpretations of seamount loading history were made in the framework of temperature-dependent
791 Newtonian viscosity (similar to equation (5)); Courtney and Beaumont (1983) suggested the activa-
792 tion energy of 170 – 250 kJ mol^{-1} with the asthenospheric viscosity of 10^{19} – 10^{20} Pa s , and Watts and
793 Zhong (2000) concluded similarly. Lithospheric flexure, however, involves multiple deformation
794 mechanisms (Goetze and Evans 1979; see also Figure 5), the collective behavior of which may

795 not be approximated well by temperature-dependent viscosity. More recently, Zhong and Watts
796 (2013) investigated lithospheric deformation by the loading of the Hawaiian Islands, using finite-
797 element modeling incorporating Byerlee's law, low-temperature plasticity, and high-temperature
798 creep, and they suggested that laboratory-based flow laws for low-temperature plasticity predict
799 too strong lithosphere to be compatible with observations. This may be consistent with the possi-
800 bility of thermal cracking reducing the lithospheric strength (compare Figures 5b and 5d).

801 For the rheology of the warmer part of oceanic upper mantle, inferences based on convective
802 instability are common. For example, based on the notable thinning of oceanic lithosphere at
803 ~ 70 Ma in their seismic tomographic model, Ritzwoller et al. (2004) suggested the asthenospheric
804 viscosity of 4×10^{19} Pa s with the activation energy of 120 kJ mol^{-1} . The lithospheric thinning
805 of such extent is, however, not seen in later tomographic models (e.g., Maggi et al. 2006; Debayle
806 and Ricard 2012; Isse et al. 2019). As discussed in section 2.3, the onset of small-scale convection
807 at ~ 70 Ma seems to be consistent with the record of seafloor subsidence, but the amplitude of
808 seafloor flattening alone does not uniquely constrain asthenospheric viscosity and activation energy
809 (Korenaga 2015b).

810 Besides old seafloor, beneath which thick lithosphere can become convectively unstable, a
811 fracture zone is another locus for lithospheric instability because substantial lateral temperature
812 variations across a fracture zone can facilitate the onset of small-scale convection (Huang et al.
813 2003). Cadio and Korenaga (2014) developed a new geoid inversion scheme to constrain density
814 anomalies in the shallow mantle, and based on its application to geoid anomalies around major
815 fracture zones in the Pacific, Cadio and Korenaga (2016) identified numerous small-scale density
816 anomalies, which require temperature contrast of ~ 300 K. If such anomalies result from the con-
817 vective delamination of oceanic lithosphere, the scaling of Solomatov and Moresi (2000) indicates
818 that the activation energy of temperature-dependent viscosity has to be as low as 100 kJ mol^{-1} for
819 the case of diffusion creep and 225 kJ mol^{-1} for dislocation creep (assuming the stress exponent
820 of 3.5), both of which are considerably lower than laboratory-based estimates (Table 1). At the

821 moment, the cause of this discrepancy remains unclear.

822 Another type of dynamics-related inference is based on interpreting heat flow at old ocean floor
 823 using the scaling law derived for steady-state sublithospheric convection (Davaille and Jaupart
 824 1994; Doin et al. 1997; Dumoulin et al. 1999; Solomatov and Moresi 2000), providing estimates
 825 on asthenospheric viscosity in the range of 10^{18} - 10^{19} Pa s. Even if small-scale sublithospheric
 826 convection takes place, it is not clear whether such convection has reached a steady state beneath
 827 old seafloor (Korenaga and Jordan 2002a). A scaling derived by Korenaga (2009) suggests that
 828 the time scale to achieve steady-state convection is $\sim 8 \pm 2$ times greater than the onset time of
 829 convection, so if small-scale convection initiates at 70-Ma seafloor, then it would take another
 830 ~ 300 -600 Myr to reach a steady state.

831 Other estimates on the viscosity of suboceanic mantle are not directly related to steady-state
 832 creep. For example, by applying the Maxwell frequency scaling of McCarthy et al. (2011) to the
 833 seismic tomographic models of the Pacific upper mantle, Priestley and McKenzie (2013) estimated
 834 the activation energy of ~ 400 kJ mol $^{-1}$ and the activation volume of ~ 8 cm 3 mol $^{-1}$. These
 835 estimates are comparable with laboratory-based estimates (Table 1), but with these temperature
 836 and pressure dependence, their estimate of reference viscosity (2×10^{22} Pa s, defined at 1473 K
 837 and 1.5 GPa) is equivalent to the asthenospheric viscosity of $\sim 6 \times 10^{21}$ Pa s (when evaluated at
 838 200 km depth). This inference relies on the assumption that the scaling of McCarthy et al. (2011)
 839 is valid for all relevant frequencies, which has been questioned by subsequent experiments (Takei
 840 et al. 2014; Yamauchi and Takei 2016). Also, microscopic processes responsible for anelasticity
 841 (and thus seismic velocity) and those for long-term creep could be different (Karato et al. 2015).

842 In recent years, a growing number of viscosity estimates have been published for the sub-
 843 oceanic mantle, based on the analyses of postseismic deformation data (e.g., Panet et al. 2010;
 844 Masuti et al. 2016; Freed et al. 2017; Agata et al. 2019). However, extracting constraints on
 845 steady-state creep from postseismic deformation is a challenging problem because transient creep
 846 is also thought to play an important role (e.g., Pollitz 2003; Freed et al. 2010). The analysis of

847 postseismic deformation is often conducted with the assumption that steady-state creep is well un-
848 derstood (e.g., Freed et al. 2012; Masuti et al. 2016), but as explained in the previous section, most
849 of steady-state flow-law parameters are still poorly constrained by laboratory experiments. Also,
850 the flow law of transient creep itself is still a matter of debate, and existing viscosity estimates
851 from postseismic deformation all depend on the assumed form of mantle rheology, which varies
852 among different studies. Nevertheless, utilizing postseismic deformation is a promising direction
853 given the prospects for the quantity and quality of future data.

854 Returning to the rheology of oceanic lithosphere, different weakening mechanisms predict dif-
855 ferent structural consequences, which may be tested against observations. For example, the grain-
856 size reduction hypothesis, when applied to growing oceanic lithosphere, predicts a grain size of
857 1 μm throughout a mature oceanic lithosphere if stress associated with asthenospheric drag is as
858 high as 50 MPa (Mulyukova and Bercovici 2018). Mantle xenoliths offer the most direct way
859 to observe grain size, but most of mantle xenoliths are from continental lithosphere. Rare mantle
860 xenoliths, derived from \sim 140-Ma oceanic lithosphere through petit-spot volcanism, exhibit a grain
861 size of \sim 1 mm (Yamamoto et al. 2014, see Supplementary Information); the absence of grain-size
862 reduction is actually consistent with the stress level expected for the asthenosphere, which is on the
863 order of only 0.1 MPa (Chu and Korenaga 2012). The thermal cracking hypothesis predicts that
864 the oceanic lithosphere is pervasively fractured by a cascade crack system, down to the isotherm of
865 \sim 700 $^{\circ}\text{C}$ (Korenaga 2007b). In principle, such a structure can be tested by combining lithospheric-
866 scale active-source seismic imaging (e.g., Lizarralde et al. 2004) with high-resolution magnetotell-
867 luric imaging. Also, hydration associated with thermal cracking should reduce the “effective”
868 thermal expansivity of oceanic lithosphere (Korenaga 2007a), which seems to be consistent with
869 the seafloor subsidence data (Korenaga and Korenaga 2008, 2016).

870 The efforts to constrain the rheology of the oceanic upper mantle are thus quite diverse and
871 still in a state of flux. There is also a new inverse approach to estimate flow-law parameters rel-
872 evant to lithospheric dynamics by running a massive number of regional-scale convection models

(Baumann et al. 2014; Baumann and Kaus 2015). In addition to this, promising directions to explore further include lithospheric flexure by seamount loading, convective instabilities beneath old seafloor or around fracture zones, and postseismic deformation. To properly interpret pertinent observations in terms of mantle rheology, we need to improve our theoretical understanding in each of these areas. For example, to understand the dynamical origin of small-scale mantle density anomalies found beneath fracture zones, it is not sufficient to study how convective instability develops beneath a fracture zone using simple, Newtonian temperature-dependent rheology. This is because the development of convective instability is expected to invoke multiple deformation mechanisms; the incipient growth of instabilities is likely to take place in the diffusion creep regime, but dislocation creep can also be triggered as the instability continues to raise the stress level. The investigation of convective instability with such a composite rheology is yet to be done with a proper understanding of the uncertainties associated with relevant flow-law parameters (section 3.3), even for the simplest case of half-space cooling, let alone the case of horizontally-varying thermal structure expected beneath fracture zones.

3.5 Implementation in numerical simulations

Regarding the implementation of mantle rheology, numerical simulation studies on mantle dynamics may be classified into two categories: (1) those which aim to incorporate as many realistic complications as possible, and (2) those which aim to use the simplest possible form of rheology for a given problem. Perhaps the most familiar example of the first category is those associated with seismic anisotropy (e.g., Kneller et al. 2005; Blackman 2007; Hedjazian et al. 2017). In order to compare with seismological observations, we put in what is known about mineral physics and geodynamics as much as possible, and try to infer flow patterns from observed seismic anisotropy. Dislocation creep responsible for the generation of seismic anisotropy takes place only when deviatoric stress exceeds some critical value, below which diffusion creep predominates, and this critical stress is known to depend on temperature, pressure, grain size, water content, and melt fraction.

898 Thus, connecting mantle flow and seismic anisotropy requires modeling with composite rheology,
899 which deals with this delicate competition between different creep mechanisms. Clearly, a careful
900 treatment of flow-law uncertainty is required in this type of modeling if one wants to evaluate the
901 reliability of geodynamical predictions. In the second category, on the other hand, we treat mantle
902 rheology as free parameters. One classic example is the scaling law for stagnant lid convection
903 (e.g., Grasset and Parmentier 1998; Dumoulin et al. 1999; Solomatov and Moresi 2000), which
904 quantifies the efficiency of heat transport of thermal convection when viscosity depends strongly
905 on temperature. To address this kind of question, we usually run a series of models by systemat-
906 ically varying rheological parameters such as activation energy and reference viscosity. We then
907 seek a scaling law that can capture the overall behavior of the system under consideration. Because
908 we need to explore the parameter space systematically and extensively, the form of rheology must
909 be simple for this approach to succeed.

910 These two types of approach can also be seen for the numerical simulation of plate tectonics.
911 Studies of the first type can be quite complex (e.g., Sizova et al. 2010; Gerya et al. 2015), to the
912 extent that the uncertainty of mantle rheology, which is significant on its own (section 3.3), is
913 dwarfed by other possible sources of uncertainty. For models with realistic complications, testing
914 for every source of uncertainty is impractical, and it may not be necessary to begin with if the
915 purpose of modeling is just to provide some stimulating ideas. But when we do decide to inves-
916 tigate the impact of uncertainty on modeling results, the uncertainty under consideration has to
917 be treated properly. Alisic et al. (2012), for example, conducted an impressive set of global plate
918 tectonics simulations with realistic mantle rheology, to investigate the relation between rheology
919 and surface observables, and they found that modeling results are highly sensitive to the stress
920 exponent of dislocation creep. Their exploration of flow-law parameters, however, is inconsistent
921 with how flow-law parameters are constrained by laboratory experiments. They changed the stress
922 exponent independently from other flow-law parameters, and the lack of parameter correlation in
923 their analysis undermines the claimed sensitivity of stress exponent (Mullet et al. 2015).

924 The second approach, with simplified rheology, is common when investigating the style of
 925 mantle convection, e.g., under what conditions plate tectonics can take place. With strongly
 926 temperature-dependent viscosity, thermal convection is known to be in the mode of stagnant lid
 927 convection (Solomatov 1995), and by adding a weakening mechanism, which usually has simple
 928 parameterization, it is possible to escape from the stagnant lid regime. The purpose of this type
 929 of research is to understand the dependence of the style of mantle convection on the temperature
 930 dependency of viscosity, reference viscosity, and additional parameters that characterize a given
 931 weakening mechanism. As this is directly related to one of the questions that this review paper
 932 tries to address (“Why does plate tectonics take place on Earth?”), the details of relevant numerical
 933 implementations are explained in the following. The strength of the top thermal boundary layer is
 934 what matters here, so the key is how to approximate upper-mantle rheology. In this regard, it is
 935 important to understand that a certain kind of approximation is meaningful under only some spe-
 936 cific contexts. That is, even if some particular approximation is adopted in a well-received study,
 937 it does not necessarily mean that the approximation remains appropriate in other situations. The
 938 following exposition thus focuses not only on typical numerical implementations of upper-mantle
 939 rheology, but also on their footing on rock mechanics as well as their valid range of application.

940 To capture the strongly temperature-dependent nature of mantle rheology, the following form
 941 of viscosity is often used:

$$\eta(T) = \eta_0 \exp\left(\frac{E}{RT} - \frac{E}{RT_0}\right), \quad (12)$$

942 where η_0 is reference viscosity defined at T_0 . This is Newtonian viscosity (i.e., viscosity does not
 943 depend on stress) with the Arrhenius form of temperature dependence, corresponding to diffusion
 944 creep. Compared with equation (5) or (6), dependence on other than temperature is neglected for
 945 simplicity. The lack of grain-size dependence is usually acceptable, because we have little un-
 946 derstanding of grain-size variations in the mantle. The omission of pressure dependence is also
 947 acceptable because the typical range of activation volume (i.e., on the order of $10 \text{ cm}^3 \text{ mol}^{-1}$) does
 948 not lead to a substantial viscosity increase in the upper mantle. Given the various uncertainties as-

949 sociated with the eight flow laws for olivine aggregates (equations (3)-(10)), using equation (12) is
 950 generally justifiable except, of course, when we want to study the competition between those flow
 951 laws, e.g., under what conditions dislocation creep dominates over diffusion creep. Equation (12)
 952 may even serve as a rough substitute for non-Newtonian viscosity if the activation energy is scaled
 953 down properly with the stress exponent (Christensen 1984).

954 When the range of temperature variations within the mantle is given by ΔT and the surface
 955 temperature is denoted by T_s , the absolute temperature of the mantle varies from T_s to $T_s + \Delta T$.
 956 Then, the nondimensional form of equation (12) may be expressed as

$$\eta^*(T^*) = \exp\left(\frac{E^*}{T^* + T_s^*} - \frac{E^*}{1 + T_s^*}\right), \quad (13)$$

957 where η^* is normalized by reference viscosity defined at $T_s + \Delta T$, E^* is normalized activation
 958 energy given by $E/(R\Delta T)$, T^* is normalized temperature varying from 0 to 1, and T_s^* corresponds
 959 to $T_s/\Delta T$. Equation (13) may further be approximated as

$$\eta^*(T^*) = \eta_0 \exp[\theta(1 - T^*)], \quad (14)$$

960 where θ is the Frank-Kamenetskii parameter defined as

$$\theta = \frac{E^*}{(1 + T_s^*)^2} = \frac{E\Delta T}{R(T_s + \Delta T)^2}. \quad (15)$$

961 This is a linear-exponential approximation of equation (13), having the same temperature depen-
 962 dence as the original Arrhenius form at $T^* = 1$ (Figure 7a).

963 It is common to weaken temperature-dependent viscosity by combining with nonlinear effec-
 964 tive viscosity corresponding to plastic deformation as (Moresi and Solomatov 1998):

$$\eta^* = \left(\frac{1}{\eta^*(T^*)} + \frac{1}{\eta_y^*} \right)^{-1}, \quad (16)$$

965 where η_y^* is defined as

$$\eta_y^* = \frac{\tau_y^*}{e_{II}^*}. \quad (17)$$

966 This is the so-called pseudoplastic rheology. Here τ_y^* is nondimensional yield stress, and e_{II}^* is the
 967 second invariant of the nondimensional strain rate tensor. The effective viscosity η_y^* is determined
 968 such that stress does not exceed the given yield stress. The use of harmonic mean in equation (16)
 969 ensures that the lower of these two viscosities controls the rate of deformation. As may be seen
 970 from Figure 5, imposing the yield strength of 100 MPa, which is a common choice in a number of
 971 numerical studies with this pseudoplastic viscosity, is equivalent to using the effective viscosity of
 972 10^{23} Pa s with the geological strain rate.

973 A few examples of purely temperature-dependent viscosity are shown in Figure 7a. The Ar-
 974 rhenius form of temperature dependence is super-exponential, and with the activation energy of
 975 300 kJ mol⁻¹, viscosity changes by \sim 47 orders of magnitude for the temperature range expected
 976 for lithosphere (Figure 7a, solid). Its linear exponential approximation is characterized by the
 977 Frank-Kamenetskii parameter of 18.5, and the total viscosity contrast is limited to just eight or-
 978 ders of magnitude (Figure 7a, dashed). The linear exponential approximation is perfectly ade-
 979 quate when modeling stagnant lid convection or small-scale convection, because only the warm
 980 part of the lithosphere (with a temperature difference of \sim 2.4 $\Delta T/\theta$, which is \sim 175 K in this ex-
 981 ample; (Solomatov and Moresi 2000)) is mobile enough to participate in convection; the exact
 982 strength of the colder part becomes unimportant in such a context. However, when discussing
 983 which weakening mechanism is most important for the operation of plate tectonics, simulating re-
 984 alistic temperature-dependent viscosity (i.e., using the Arrhenius form of temperature dependence)
 985 becomes important. It would be difficult to test the efficacy of a certain weakening mechanism if
 986 the lithosphere to be weaken does not have a realistic strength. Nevertheless, this point tends to be
 987 overlooked in numerical studies that attempt to simulate plate tectonics, even when the main goal
 988 of study is to discuss conditions for plate tectonics. For example, the convection models of O'Neill
 989 and his colleagues (e.g., O'Neill et al. 2007; O'Neill et al. 2016) employ the Frank-Kamenetskii

parameter of ~ 11 (Figure 7a, red). Though such a value is sufficient to simulate stagnant lid convection in the absence of any weakening mechanism, it makes the model lithosphere considerably more sensitive to additional weakening than the real lithosphere; combined with the effective viscosity of 10^{23} Pa s (i.e., the yield strength of 100 MPa), the stiff core of the lithosphere practically vanishes (Figure 7b, red). Another problematic approach is to use the Arrhenius form with a realistic activation energy but with a high surface temperature (e.g., 1000 K) (e.g., Nakagawa and Tackley 2005, 2012) Even if the activation energy is realistically high (e.g., 300 kJ mol^{-1}), the use of high surface temperature makes the temperature dependence of viscosity unrealistically low (Figure 7a,b, blue).

Using this pretended Arrhenius rheology is similar to using too low a value for the Frank-Kamenetskii parameter, and both of these approaches are troublesome in another aspect. The temperature dependence of viscosity dictates the nature of small-scale convection by determining how much of the lithosphere can be delaminated, and the lower the Frank-Kamenetskii parameter is, the greater the amount of delaminated lithosphere becomes. Small-scale convection is important for the onset of subduction (Solomatov 2004). Therefore, using an unrealistically low value for the Frank-Kamenetskii parameter is problematic in two ways: (1) it makes the whole lithosphere so weak that even an ineffective weakening mechanism could appear to be effective, and (2) it makes small-scale convection unrealistically strong, again, helping to validate ineffective weakening mechanisms.

Also, the use of constant yield strength, as shown in Figure 7b, is fairly common in previous studies, but as noted in section 3.1, it is equivalent to assuming a very high cohesive strength with zero friction coefficient. While we may regard this as the depth-averaged brittle strength, the style of mantle convection is sensitive to whether the brittle strength is depth-dependent or not; the so-called intermittent plate tectonics regime appears to require that the yield strength is depth-independent (Moresi and Solomatov 1998). If the strength of lithosphere is reduced by the effect of high pore fluid pressure on friction, as assumed in the thermal cracking hypothesis

1016 (Figure 5d), such a convection regime is unlikely because the brittle strength depends on depth and
1017 has a negligible cohesive strength.

1018 Simulating plate tectonics with grain-size reduction has a rock mechanics basis, but as dis-
1019 cussed in section 3.2 and shown in Figure 5c, grain-size reduction by itself does not weaken litho-
1020 sphere sufficiently. Although this seem to conflict with what is suggested by existing numerical
1021 studies (e.g., Foley et al. 2014; Foley 2018), there is no real contradiction. We can derive an as-
1022 sumed scaling law for grain size from other scaling laws given in Foley and Bercovici (2014) and
1023 Foley et al. (2014), and the grain size required by their theory for the present-day plate tectonics can
1024 be shown to be as small as \sim 50 nm. Also, they exclude the top 20 km of oceanic lithosphere from
1025 consideration because brittle deformation is beyond the scope of their theory. Grain-size reduction
1026 is expected to play an important role in the operation of plate tectonics, as it allows lithosphere to
1027 have the memory of localized weakness and maintain long-lived plate boundaries (e.g., Bercovici
1028 and Ricard 2014), but it probably needs to be combined with other weakening mechanisms to make
1029 the entire lithosphere deformable.

1030 Rheology is the most important element in mantle dynamics, and given its considerable uncer-
1031 tainty, setting up a meaningful numerical model presents a challenge, if we wish to obtain modeling
1032 results that are robust even with rheological uncertainties taken into account. For a model full of
1033 realistic complications, we would not be able to test all possible uncertainties. However, if we just
1034 want to demonstrate, for example, that the uncertainty of mantle rheology is not important for cer-
1035 tain modeling results, it may suffice to conduct a few additional runs in which some end-member
1036 mantle rheology (e.g., very high and very low viscosities) is used. For a model with simplified
1037 rheology, choosing a proper parameterization for a given problem is of central importance, and it
1038 is hoped that a collection of caveats presented in this section will be useful for future modeling
1039 studies on the style of mantle convection or the conditions of plate tectonics.

1040 4 Some outstanding questions: A status report

1041 With these preparations, Now I return to the three questions raised in the introduction section.

1042 4.1 Why does plate tectonics take place on Earth?

1043 The question of why plate tectonics takes place on Earth is closely connected to the question of
 1044 when and how plate tectonics began on Earth, which has also attracted a variety of ideas, such
 1045 as the spreading of weak continental lithosphere (Rey et al. 2014), the impingement of a plume
 1046 head (Gerya et al. 2015), and lithospheric damage by bolide impacts (O'Neill et al. 2017). These
 1047 hypotheses require a particular situation that is only attainable in the early Earth. Also, in these
 1048 numerical studies, the lithosphere is weakened differently, and it is worth examining whether each
 1049 of these different implementations can be justified. For example, Rey et al. (2014) used the cohe-
 1050 sion strength of 40 MPa and the reference friction coefficient of 0.268, and the friction coefficient
 1051 is lowered (down to 0.01) as strain accumulated. As noted in section 3.1, compared to laboratory
 1052 measurements, the cohesion strength is too high, and the friction coefficient is too low unless some
 1053 additional mechanism is assumed. Also, no justification is given for why the friction coefficient
 1054 can be reduced to such a low value by mere deformation. Likewise, the efficacy of melt-induced
 1055 weakening devised by Gerya et al. (2015) depends on the geometry of melt migration through
 1056 lithosphere, and the formulation of mantle rheology in the simulation of O'Neill et al. (2017) partly
 1057 inherits the questionable parameterization of O'Neill et al. (2007) (section 3.5). Nevertheless, it is
 1058 still interesting to ask whether the initiation of plate tectonics was made possible by some mecha-
 1059 nisms that could happen only in the early Earth and whether such an initiation is also responsible
 1060 for the subsequent operation of plate tectonics to the present. They are unresolved questions.

1061 If we take a less history-dependent view, i.e., the long-term operation of plate tectonics is en-
 1062 abled by the persistence of certain conditions, then, the lithosphere needs to be weaken by some
 1063 mechanisms that can take place even at present. Such mechanisms have better chances to be inves-
 1064 tigated by various angles, and our understanding of the strength of present-day oceanic lithosphere

1065 (section 3.2) becomes important. As the influence of grain-size reduction is likely to be limited to
1066 the relatively warm part of lithosphere, we need to identify a weakening mechanism for the cold
1067 part, or more specifically, a ‘physical’ mechanism that can reduce the effective friction coefficient.
1068 For example, the aforementioned strain-dependent friction coefficient used by Rey et al. (2014)
1069 could potentially be related to the gradual maturation of faults with large-scale deformation. In
1070 the field of earthquake dynamics, a variety of mechanisms have been suggested to reduce friction
1071 during fault slip, including flash heating and thermal pressurization (e.g., Rice 2006), and as faults
1072 grow, greater fault slips become possible, activating more dynamic weakening mechanisms that re-
1073 quire large enough slip or large enough rise in fault temperature (Di Toro et al. 2004; Rempel and
1074 Rice 2006; Han et al. 2007). It remains to be seen whether a strain-dependent friction coefficient
1075 emerges from the coarse-graining of a system with evolving faults.

1076 Thermal cracking can also be such a physical mechanism. One interesting aspect of this mech-
1077 anism is that it turns the rheological predicament to good advantage; the strongly temperature-
1078 dependent viscosity of silicate rocks facilitates thermal cracking, because higher viscosity leads to
1079 higher thermal stress (e.g., Boley and Weiner 1960; Muki and Sternberg 1961). Note that creating
1080 tension cracks by itself does not reduce the friction coefficient and thus the yield strength. To
1081 reduce the friction coefficient over an order of magnitude, as assumed in Figure 5d, the surface
1082 openings of cracks have to be closed by serpentinization to trap water within the cracks; high fluid
1083 pressure in such trapped water, likely achieved under tectonic compression, can then reduce the
1084 effective friction coefficient, in principle, down to almost zero. This process do not take place in
1085 the absence of surface water, so the thermal cracking hypothesis for the onset of plate tectonics
1086 naturally explains why plate tectonics is not observed on Venus and Mars. Venus is simply too
1087 close to the Sun to maintain surface water (Hamano et al. 2013), and Mars is too small to do so
1088 on a geological time scale (e.g., Shizgal and Arkos 1996). The contrasting tectonic styles on Earth
1089 and Venus have motivated other explanations based on high surface temperatures on Venus (e.g.,
1090 Lenardic et al. 2008; Landuyt and Bercovici 2009; Karato and Barbot 2018), but such explanations

1091 do not address the lack of plate tectonics on Mars.

1092 However, the thermal cracking hypothesis is not fully expounded yet, and it requires further
1093 theoretical and observational efforts. The numerical modeling of Korenaga (2007b) is limited
1094 to single-crack systems, and the coevolution of serpentinization and crack growth, as speculated
1095 by Korenaga (2017a), needs to be modeled quantitatively. The most prominent manifestation of
1096 thermal cracking is transform faults and fracture zones (Turcotte and Oxburgh 1973; Turcotte
1097 1974). The spacing of such features is too large to release all of thermal stress expected from the
1098 cooling of oceanic lithosphere, but smaller-scale crack systems have not been directly observed.
1099 So far, the state of pervasively cracked oceanic lithosphere is inferred only indirectly, based on the
1100 seismic structure of shallow oceanic lithosphere (Lizarralde et al. 2004; Korenaga 2007b), reduced
1101 effective thermal expansivity (Korenaga and Korenaga 2008, 2016), and the spatial distribution of
1102 lower-plane earthquakes in the double seismic zone (Kita et al. 2010; Korenaga 2017a). There is
1103 also a possibility to test the prediction of horizontal thermal contraction, which is directly related
1104 to thermal stress, with future space geodetic data (Kreemer and Gordon 2014).

1105 **4.2 Can we predict surface topography from first principles?**

1106 The surface of Earth is varied with continents and ocean basins, and it would be impractical to
1107 theoretically predict such complex features, many details of which have been shaped by historical
1108 accidentals. Characterizing the statistical nature of large-scale surface topography may be less
1109 prohibitive, but even if we limit ourselves to ocean basins, the task is far from being trivial.

1110 The most straightforward part is the normal seafloor unaffected by the emplacement of hotspot
1111 islands and oceanic plateaus, because its topography is mostly controlled by subsidence after its
1112 creation at mid-ocean ridges. To characterize the overall topography of such a normal part of
1113 seafloor, however, we need to know plate velocity as well as the size distribution of oceanic plates.
1114 It is possible to predict average plate velocity from mantle potential temperature (e.g., Christensen
1115 1985; Korenaga 2010), but a scaling law for plate size distribution is not yet available. The current

1116 lack of such a scaling law is understandable because the size distribution, i.e., the planform of man-
 1117 tle convection with plate tectonics, is expected to depend on the weakening mechanism of oceanic
 1118 lithosphere. Based on the subductability of oceanic lithosphere, the size distribution is estimated to
 1119 have been largely constant at least back to ~ 3 Ga (Korenaga 2006), but this is merely an empirical
 1120 constraint. Furthermore, the details of seafloor subsidence depends not only on the material prop-
 1121 erties that affect thermal contraction, i.e., thermal expansivity, thermal conductivity, specific heat,
 1122 and density (Turcotte and Oxburgh 1967; Davis and Lister 1974), and those that control small-
 1123 scale convection such as temperature- and depth-dependent viscosity (Davaille and Jaupart 1994;
 1124 Korenaga and Jordan 2002b), but also on thermal cracking, radiogenic heat production, and the
 1125 secular cooling of Earth (Korenaga and Korenaga 2016).

1126 The emplacement of hotspot islands and oceanic plateaus can disturb significantly the other-
 1127 wise steady seafloor subsidence. The fraction of seafloor characterized with thick igneous crust
 1128 resulting from such anomalous magmatism is only $\sim 10\%$, but the fraction of seafloor affected by
 1129 the emplacement of such anomalous crust (e.g., by the spreading of plume materials beneath litho-
 1130 sphere) is much greater ($> 50\%$) (see Figure 7 of Korenaga and Korenaga (2008)). Predicting the
 1131 magnitude of such anomalous magmatism and its frequency, from a purely theoretical ground, is
 1132 difficult. Even if we assume that all of such anomalous magmatism originates from mantle plumes,
 1133 predicting the plume flux from the core heat flux is not easy (Labrosse 2002; Zhong 2006), espe-
 1134 cially given the uncertainty associated with the rheology of the lower mantle (Solomatov 1996;
 1135 Korenaga 2005a). The magnitude of present-day core heat flux is quite uncertain to begin with
 1136 (e.g., Lay et al. 2008), and predicting the evolution of core heat flux requires modeling of the
 1137 thermal evolution of the entire Earth (e.g., Stevenson et al. 1983; O’Rourke et al. 2017).

1138 More important, it is unlikely that mantle plumes are responsible for all of such anomalous
 1139 magmatism (e.g., Anderson 1995; Foulger et al. 2005). The inevitable existence of chemical
 1140 heterogeneities, as introduced by the operation of plate tectonics (section 2.4), could account
 1141 for the formation of at least some oceanic plateaus, including Ontong Java Plateau (Korenaga

1142 2005b, 2011b) and Shatsky Rise (Korenaga and Sager 2012). The degree of chemical hetero-
 1143 geneities in the convecting mantle is still poorly constrained. A number of geochemical as well
 1144 as seismological studies indicate that the mantle is chemically heterogeneous at a range of scales
 1145 (e.g., Zindler and Hart 1986; Gudmundsson et al. 1990; Hofmann 1997; Kaneshima and Helffrich
 1146 1998; Korenaga and Kelemen 2000; Margerin and Nolet 2003; Trampert et al. 2004; Sobolev et al.
 1147 2007; Korenaga 2015a), but understanding the origin of such inferred heterogeneities and their re-
 1148 lation to plate tectonics requires us to better understand the efficiency of convecting mixing, which
 1149 depends on mantle rheology.

1150 **4.3 How does plate tectonics control surface environment?**

1151 Plate tectonics of course affects, either directly or indirectly, most of surface environment, from
 1152 the generation of continental crust (Campbell and Taylor 1983) to the modulation of atmospheric
 1153 composition (Berner 2004). Here I focus on the role of the oceanic upper mantle in the relation
 1154 between plate tectonics and surface environment. Perhaps the most important is its influence on
 1155 global sea level change, which controls the spatial extent of dry landmasses, which in turn controls
 1156 various geochemical cycles as well as the planetary albedo. Even with abundant continental crust,
 1157 the existence of dry landmasses is not guaranteed; too shallow ocean basins or too much ocean
 1158 water can inundate continents. Both seafloor topography and ocean volume can vary with time,
 1159 and both are influenced by the evolution of the oceanic upper mantle.

1160 Global sea level or, equivalently, the continental freeboard (the relative height of mean con-
 1161 tinental landmasses with respect to the sea level) is controlled by a number of components, in-
 1162 cluding continental crust, continental mantle lithosphere, oceanic crust, depleted oceanic mantle
 1163 lithosphere, asthenospheric mantle, and ocean volume, all of which exhibit secular evolution (Ko-
 1164 renaga et al. 2017). It is important to understand the complexity of the problem. The growth of
 1165 continental crust is more or less a geochemical problem (e.g., Armstrong 1981; Jacobsen 1988;
 1166 Campbell 2003; Korenaga 2018), but the emergence of continental crust above the sea level in-

volves both geophysics and geochemistry. The first-order control on the continental freeboard is brought by the relative buoyancy of the continental lithosphere with respect to the oceanic lithosphere. The intrinsic density structure of oceanic lithosphere is determined by mantle melting at mid-ocean ridges, which is a function of mantle potential temperature (McKenzie and Bickle 1988; Langmuir et al. 1992). That of continental lithosphere is also likely governed by mantle potential temperature (Kelemen et al. 1998; Herzberg 2004; Servali and Korenaga 2018), though the density of continental lithosphere at any given time is not a simple function of potential temperature because the structure of continental lithosphere reflects the history of lithospheric formation over the last three billion years. The zero-age depth of seafloor is controlled by this relative buoyancy between continental and oceanic lithosphere, and the capacity of ocean basins is determined by the zero-age depth as well as the subsequent evolution of seafloor topography. As summarized in the previous section, seafloor subsidence is affected by quite a few factors, and a new kind of physics-based reference model discussed in section 2.5 would become invaluable in this context.

The volume of oceans can vary with time, depending on a dynamic balance between water gain by mantle degassing and water loss by subduction. The present-day global water budget has consistently pointed to positive net water influx into the mantle (Ito et al. 1983; Jarrard 2003) (note that a zero influx estimate by Parai and Mukhopadhyay (2012) is based on their assumption of time-invariant hypsometry), and continental freeboard modeling also suggests long-term net water influx of $3-4.5 \times 10^{14} \text{ g yr}^{-1}$ over the last three billion years (Korenaga et al. 2017). Thus, the oceans are likely to have been more voluminous in the past, and correspondingly, the convecting mantle must have been drier. As predicted by freeboard modeling (Korenaga et al. 2017) and also suggested by geological and geochemical data (Arndt 1999; Bindeman et al. 2018; Johnson and Wing 2020), the early Archean is likely to have been a ‘water world’ with little stable dry landmass, and the gradual subduction of water, made possible by the seawater alteration of oceanic lithosphere, is essential to bring continents above the sea level. At the same time, the concurrent hydration of the convecting mantle results in the relative strengthening of continental lithospheric mantle (Korenaga

1193 2013), which affects the efficiency of crustal recycling through time (Rosas and Korenaga 2018;
 1194 Guo and Korenaga 2020). Thus, the seawater alteration of oceanic lithosphere, which by itself a
 1195 very shallow process, has far-reaching effects on the coevolution of Earth's interior and surface
 1196 environment over billions of years.

1197 5 Future directions

1198 I have already pointed out, at various places in this paper, what is critically needed to improve our
 1199 understanding of the oceanic upper mantle and its role in the big picture of Earth evolution. Our
 1200 to-do list includes the degree of hydration of oceanic lithosphere, the nature of chemical hetero-
 1201 geneities in the mantle, the role of small-scale convection in the lithosphere-asthenosphere bound-
 1202 ary, a new kind of physics-based reference model, and better experimental and observational con-
 1203 straints on mantle rheology. Most of these issues are under active research. Here I would like to
 1204 conclude with two overarching statements.

1205 The operation of plate tectonics is widely believed to be essential to build an Earth-like planet,
 1206 so conditions for plate tectonics have important implications for the origins of life in the universe
 1207 at large. Without the subduction of oceanic plates, plate tectonics is impossible to take place, and
 1208 a better understanding of oceanic lithosphere must come from marine geophysics. Thus, future
 1209 observational efforts in the field of marine geophysics, if they are targeted toward the nature of
 1210 normal oceanic lithosphere, could achieve lasting impacts on the broad community of earth and
 1211 planetary sciences, just as marine geophysics played a pivotal role in the plate tectonics revolution
 1212 in the 1960s and 1970s. For example, a more direct observational test of the thermal cracking
 1213 hypothesis may be possible by combining active-source seismology and magnetotelluric imaging.
 1214 For such an effort to be successful, the hypothesis also needs to be theoretically refined to yield
 1215 more detailed predictions to be compared with observations.

1216 However uncertain at the moment, mantle rheology is the most important factor in geody-
 1217 namics, and given its complex functionality, numerical modeling is essential. When designing a

1218 numerical model, a variety of approximations are possible and often necessary, and when doing
1219 so, it is always worthwhile to honor the current uncertainties of rock mechanics. It is better to test
1220 at least a few candidate rheological models, to represent the existing uncertainties or to demon-
1221 strate model sensitivity to mantle rheology. As earth and planetary sciences progress, various
1222 branches have gradually been compartmentalized, to the extent that most of non-geodynamicists
1223 cannot critically evaluate modeling studies. The well-being of geodynamics thus hinges on how
1224 the current generation of geodynamicists discipline themselves, digest rock mechanics, and strive
1225 to construct meaningful models. Otherwise, modeling results may soon (if not already) be seen
1226 arbitrary, carrying little scientific weight.

1227 **Competing interests**

1228 The authors declare that they have no competing interest.

1229 **Funding**

1230 This work was supported in part by U.S. National Science Foundation OCE-1736563 and the U.S.
1231 National Aeronautics and Space Administration through the NASA Astrobiology Institute under
1232 Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate.

1233 **Availability of Data and Materials**

1234 This work is a review of the existing relevant literature, and there is no additional data.

1235 **Acknowledgments**

1236 The author thanks Shun-ichiro Karato for discussion on mantle rheology. The author also thanks
 1237 Hitoshi Kawakatsu for his constructive comments on the earlier version of the manuscript and two
 1238 official reviewers, Norm Sleep and Taras Gerya, for a number of helpful comments and sugges-
 1239 tions.

1240 **References**

1241 Agata, R., Barbot, S. D., Fujita, K., Kyodo, M., Iinuma, T., Nakata, R., Ichimura, T., Hori, T., 2019. Rapid
 1242 mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. *Nature*
 1243 *Comm.* 10, 1385, <https://doi.org/10.1038/s41467-019-08984-7>.

1244 Aharonov, E., Scholz, C. H., 2019. The brittle-ductile transition predicted by a physics-based friction law. *J.*
 1245 *Geophys. Res. Solid Earth* 124, <https://doi.org/10.1029/2018JB016878>.

1246 Alisic, L., Gurnis, M., Stadler, G., Burstedde, C., Ghattas, O., 2012. Multi-scale dynamics and rheology of
 1247 mantle flow with plates. *J. Geophys. Res.* 117, B10402, doi:10.1029/2012JB009234.

1248 Alt, J. C., Honnorez, J., Laverne, C., Emmermann, R., 1986. Hydrothermal alteration of a 1 km sec-
 1249 tion through the upper oceanic crust, DSDP Hole 504B: The mineralogy, chemistry, and evolution
 1250 of seawater-basalt interactions. *J. Geophys. Res.* 91, 10309–10335.

1251 Alt, J. C., Teagle, D. A. H., 2000. Hydrothermal alteration and fluid fluxes in ophiolites and oceanic crust. In:
 1252 Dilek, Y., Moores, E. M., Elthon, D., Nicolas, A. (Eds.), *Ophiolites and Oceanic Crust: New Insights*
 1253 from Field Studies and the Ocean Drilling Program. Vol. 349 of *Geol. Soc. Am. Special Paper*. Geol.
 1254 Soc. Am., Boulder, CO, pp. 273–282.

1255 Anderson, D. L., 1995. Lithosphere, asthenosphere, and perisphere. *Rev. Geophys.* 33, 125–149.

1256 Anderson, D. L., Sammis, C., 1970. Partial melting in the upper mantle. *Phys. Earth Planet. Inter.* 3, 41–50.

1257 Armstrong, R. L., 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-
1258 continental-growth Earth. *Phil. Trans. R. Soc. Lond. A* 301, 443–472.

1259 Arndt, N., 1999. Why was flood volcanism on submerged continental platforms so common in the Precam-
1260 brian? *Precambrian Res.* 97, 155–164.

1261 Baba, K., Noriko, N., Matsuno, T., Liang, P., Li, R., Zhang, L., Shimizu, H., Abe, N., Hirano, N., Ichiki,
1262 M., Utada, H., 2017. Electrical conductivity of old oceanic mantle in the northwestern Pacific, I, 1-D
1263 profiles suggesting differences in thermal structure not predictable from a plate cooling model. *Earth*
1264 *Planets Space* 69, 111, doi:10.1186/s40623-017-0697-0.

1265 Bai, Q., Mackwell, S. J., Kohlstedt, D. L., 1991. High-temperature creep of olivine single crystals, 1, me-
1266 chanical results for buffered samples. *J. Geophys. Res.* 96, 2441–2463.

1267 Ballmer, M. D., van Hunen, J., Ito, G., Tackley, P. J., Bianco, T. A., 2007. Non-hotspot volcano
1268 chains originating from small-scale sublithospheric convection. *Geophys. Res. Lett.* 34, L23310,
1269 doi:10.1029/2007GL031636.

1270 Baumann, T. S., Kau, B. J. P., Popov, A. A., 2014. Constraining effective rheology through parallel joint
1271 geodynamic inversion. *Tectonophysics* 631, 197–211.

1272 Baumann, T. S., Kaus, B. J. P., 2015. Geodynamic inversion to constrain the non-linear rheology of the
1273 lithosphere. *Geophys. J. Int.* 202, 1289–1316.

1274 Behn, M. D., Kelemen, P. B., 2003. Relationship between seismic P-wave velocity and the com-
1275 position of anhydrous igneous and meta-igneous rocks. *Geochem. Geophys. Geosys.* 4, 1041,
1276 doi:10.1029/2002GC00393.

1277 Bercovici, D., Ricard, Y., 2012. Mechanisms for the generation of plate tectonics by two-phase grain-
1278 damage and pinning. *Phys. Earth Planet. Inter.* 202-203 (27-55).

1279 Bercovici, D., Ricard, Y., 2014. Plate tectonics, damage and inheritance. *Nature* 508, 513–516.

1280 Bercovici, D., Skemer, P., 2017. Grain damage, phase mixing and plate-boundary formation. *J. Geodyn.*
1281 108, 40–55.

1282 Bercovici, D., Tackley, P. J., Ricard, Y., 2015. The generation of plate tectonics from mantle dynamics. In:
1283 Treatise on Geophysics, 2nd ed. Vol. 7. Elsevier, pp. 271–318.

1284 Berner, R. A., 2004. The Phanerozoic Carbon Cycle: CO₂ and O₂. Oxford Univ. Press.

1285 Bickle, M. J., Teagle, D. A. H., 1992. Strontium alteration in the Troodos ophiolite: Implications for fluid
1286 fluxes and geochemical transport in mid-ocean ridge hydrothermal systems. *Earth Planet. Sci. Lett.* 113,
1287 219–237.

1288 Bindeman, I. N., Zakharov, D. O., Palandri, J., Greber, N. D., Dauphas, N., Retallack, G. J., Hofmann,
1289 A., Lackey, J. S., Bekker, A., 2018. Rapid emergence of subaerial landmasses and onset of a modern
1290 hydrologic cycle 2.5 billion years ago. *Nature* 557, 545–548.

1291 Blackman, D. K., 2007. Use of mineral physics, with geodynamic modelling and seismology, to investigate
1292 flow in the Earth's mantle. *Rep. Prog. Phys.* 70, 659–689.

1293 Boley, B. A., Weiner, J. H., 1960. Theory of Thermal Stresses. John Wiley & Sons, New York.

1294 Braun, J., Chery, J., Poliakov, A., Mainprice, D., Vauchez, A., Tomassi, A., Daignieres, M., 1999. A simple
1295 parameterization of strain localization in the ductile regime due to grain size reduction: A case study
1296 for olivine. *J. Geophys. Res.* 104, 25167–25181.

1297 Buck, W. R., Lavier, L. L., Poliakov, A. N. B., 2005. Modes of faulting at mid-ocean ridges. *Nature* 434,
1298 719–723.

1299 Buck, W. R., Parmentier, E. M., 1986. Convection beneath young oceanic lithosphere: Implications for
1300 thermal structure and gravity. *J. Geophys. Res.* 91, 1961–1974.

1301 Byerlee, J., 1978. Friction of rocks. *PAGEOPH* 116, 615–626.

1302 Cadio, C., Korenaga, J., 2012. Localization of geoid anomalies and the evolution of oceanic litho-
1303 sphere: A case study from the Mendocino Fracture Zone. *J. Geophys. Res.* 117, B10404,
1304 doi:10.1029/2012JB009524.

1305 Cadio, C., Korenaga, J., 2014. Resolving the fine-scale density structure of shallow oceanic mantle
1306 by Bayesian inversion of localized geoid anomalies. *J. Geophys. Res. Solid Earth* 119, 3627–3645,
1307 doi:10.1002/2013JB010840.

1308 Cadio, C., Korenaga, J., 2016. Macroscopic strength of oceanic lithosphere revealed by ubiquitous fracture-
1309 zone instabilities. *Earth Planet. Sci. Lett.* 449, 295–301.

1310 Cai, C., Wiens, D. A., Shen, W., Eimer, M., 2018. Water input into the Mariana subduction zone estimated
1311 from ocean-bottom seismic data. *Nature* 563, 389–392.

1312 Campbell, I. H., 2003. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton
1313 and other Archaean basalt-komatiite suites. *Am. J. Sci.* 303, 319–351.

1314 Campbell, I. H., Taylor, S. R., 1983. No water, no granites - no oceans, no continents. *Geophys. Res. Lett.*
1315 10, 1061–1064.

1316 Canales, J. P., Carbotte, S. M., Nedimovic, M. R., Carton, H., 2017. Dry Juan de Fuca slab revealed by
1317 quantification of water entering Cascadia subduction zone. *Nature Geosci.* 10, 864–870.

1318 Caress, D. W., McNutt, M. K., Detrick, R. S., Mutter, J. C., 1995. Seismic imaging of hotspot-related crustal
1319 underplating beneath the Marquesas Islands. *Nature* 373, 600–603.

1320 Carlson, R. L., 2003. Bound water content of the lower oceanic crust estimated from modal anal-
1321 yses and seismic velocities of oceanic diabase and gabbro. *Geophys. Res. Lett.* 30, 2142,
1322 doi:10.1029/2003GL018213.

1323 Carlson, R. L., Johnson, H. P., 1994. On modeling the thermal evolution of the oceanic upper mantle: An
1324 assessment of the cooling model. *J. Geophys. Res.* 99, 3201–3214.

1325 Carlson, R. L., Miller, D. J., 2004. Influence of pressure and mineralogy on seismic velocities in oceanic
1326 gabbros: Implications for the composition and state of the lower oceanic crust. *J. Geophys. Res.* 109,
1327 B09205, doi:10.1029/2003JB002699.

1328 Carmody, L., Barry, P. H., Shervais, J. W., Kluesner, J. W., Taylor, L. A., 2013. Oxygen isotopes in subducted
1329 oceanic crust: A new perspective from Siberian diamondiferous eclogites. *Geochem. Geophys. Geosys.*
1330 14, 3479–3493, doi:10.1002/ggge.20220.

1331 Chantel, J., Manthilake, G., Andrault, D., Novella, D., Yu, T., Wang, Y., 2016. Experimental evidence sup-
1332 ports mantle partial melting in the asthenosphere. *Sci. Adv.* 2, 31600246, doi:10.1126/sciadv.1600246.

1333 Chester, F. M., 1995. A rheologic model for wet crust applied to strike-slip faults. *J. Geophys. Res.* 100 (B7),
1334 13033–13044.

1335 Chopra, P. N., Paterson, M. S., 1984. The role of water in the deformation of dunite. *J. Geophys. Res.* 89,
1336 7861–7876.

1337 Christensen, N. I., 2004. Serpentinites, peridotites, and seismology. *Int. Geol. Rev.* 46, 795–816.

1338 Christensen, N. I., Smewing, J. D., 1981. Geology and seismic structure of the northern section of the Oman
1339 ophiolite. *J. Geophys. Res.* 86, 2545–2555.

1340 Christensen, U., 1984. Convection with pressure- and temperature-dependent non-Newtonian rheology.
1341 *Geophys. J. R. Astron. Soc.* 77, 343–384.

1342 Christensen, U. R., 1985. Thermal evolution models for the Earth. *J. Geophys. Res.* 90, 2995–3007.

1343 Chu, X., Korenaga, J., 2012. Olivine rheology, shear stress, and grain growth in the lithospheric mantle:
1344 Geological constraints from the Kaapvaal craton. *Earth Planet. Sci. Lett.* 333–334, 52–62.

1345 Cline, C. J., Faul, U. H., David, E. C., Berry, A., Jackson, I., 2018. Redox-influenced seismic properties of
1346 upper-mantle olivine. *Nature* 555, 355–358.

1347 Coffin, M. F., Eldholm, O., 1994. Large igneous provinces: Crustal structure, dimensions, and external
1348 consequences. *Rev. Geophys.* 32, 1–36.

1349 Coffin, M. F., Gahagan, L. M., 1995. Ontong Java and Kerguelen Plateaux: Cretaceous Iceland? *J. Geol.*
1350 *Soc London* 152, 1047–1052.

1351 Contreras-Reyes, E., Grevemeyer, I., Flueh, E. R., Scherwath, M., Bialas, J., 2008. Effect of trench-outer
1352 rise bending-related faulting on seismic Poisson's ratio and mantle anisotropy: a case study offshore of
1353 Southern Central Chile. *Geophys. J. Int.* 173, 142–156.

1354 Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the Earth's mantle.
1355 *Earth Planet. Sci. Lett.* 205, 295–308.

1356 Courtney, R. C., Beaumont, C., 1983. Thermally-activated creep and flexure of the oceanic lithosphere.
1357 *Nature* 305, 201–204.

1358 Crosby, A. G., McKenzie, D., Sclater, J. G., 2006. The relationship between depth, age and gravity in the
1359 oceans. *Geophys. J. Int.* 166, 443–573.

1360 Cross, A. J., Skemer, P., 2017. Ultramylonite generation via phase mixing in high-strain experiments. *J.*
1361 *Geophys. Res. Solid Earth* 122, 1744–1759, doi:10.1002/2016JB013801.

1362 Davaille, A., Jaupart, C., 1994. Onset of thermal convection in fluids with temperature-dependent viscosity:
1363 Application to the oceanic mantle. *J. Geophys. Res.* 99, 19853–19866.

1364 Davies, G. F., 1988. Ocean bathymetry and mantle convection: 1. large-scale flow and hotspots. *J. Geophys.*
1365 *Res.* 93, 10467–10480.

1366 Davis, E. E., Lister, C. R. B., 1974. Fundamentals of ridge crest topography. *Earth Planet. Sci. Lett.* 21,
1367 405–413.

1368 Debayle, E., Ricard, Y., 2012. A global shear wave velocity model of the upper mantle from fundamental
1369 and higher Rayleigh mode measurements. *J. Geophys. Res.* 117, B10308, doi:10.1029/2012JB009288.

1370 DeLaughter, J., Stein, S., Stein, C. A., 1999. Extraction of a lithospheric cooling signal from oceanwide
1371 geoid data. *Earth Planet. Sci. Lett.* 174, 173–181.

1372 deMartin, B., Hirth, G., Evans, B., 2004. Experimental constraints on thermal cracking of peridotite at
1373 oceanic spreading centers. In: Lin, J. (Ed.), *The Thermal Structure of the Oceanic Crust and Dynamics*
1374 of Hydrothermal Circulation

. Vol. 148. American Geophysical Union, Washington, D.C., pp. 167–185.

1375 Di Toro, G., Goldsby, D. L., Tullis, T. E., 2004. Friction falls toward zero in quartz rock as slip velocity
 1376 approaches seismic rates. *Nature* 427, 436–439.

1377 Dick, H. J. B., Natland, J. H., Alt, J. C., Back, W., Bideau, D., Gee, J. S., Haggas, S., Hertogen, J. G. H.,
 1378 Hirth, G., Holm, P. H., Ildefonse, B., Iturrino, G. J., John, B. E., Kelley, D. S., Kikawa, E., Kingdon,
 1379 A., LeRoux, P. J., Maeda, J., Meyer, P. S., Miller, D. J., Naslund, H. R., Niu, Y.-L., Robinson, P. T.,
 1380 Snow, J., Stephen, R. A., Trimby, P. W., Worm, H.-U., Yoshinobu, A., 2000. A long in situ section of
 1381 the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. *Earth Planet. Sci.*
 1382 *Lett.* 179, 31–51.

1383 Doin, M.-P., Fleitout, L., Christensen, U., 1997. Mantle convection and stability of depleted and undepleted
 1384 continental lithosphere. *J. Geophys. Res.* 102, 2772–2787.

1385 Druiventak, A., Trepmann, C. A., Renner, J., Hanke, K., 2011. Low-temperature plasticity of olivine during
 1386 high stress deformation of peridotite at lithospheric conditions — an experimental study. *Earth Planet.*
 1387 *Sci. Lett.* 311, 199–211.

1388 Drury, M. R., Vissers, R. L. M., Van der Wal, D., Hoogerduijn Strating, E. H., 1991. Shear localisation in
 1389 upper mantle pridotites. *PAGEOPH* 137, 439–460.

1390 Dumoulin, C., Doin, M.-P., Fleitout, L., 1999. Heat transport in stagnant lid convection with temperature-
 1391 and pressure-dependent Newtonian or non-Newtonian rheology. *J. Geophys. Res.* 104, 12759–12777.

1392 Dumoulin, C., Doin, M.-P., Fleitout, L., 2001. Numerical simulations of the cooling of an oceanic litho-
 1393 sphere above a convective mantle. *Phys. Earth Planet. Inter.* 125, 45–64.

1394 Durham, W. B., Mei, S., Kohlstedt, D. L., Wang, L., Dixon, N. A., 2009. New measurements of activation
 1395 volume in olivine under anhydrous conditions. *Phys. Earth Planet. Inter.* 172, 67–73.

1396 Dymkova, D., Gerya, T., 2013. Porous fluid flow enables oceanic subduction initiation on Earth. *Geophys.*
 1397 *Res. Lett.* 40, 5671–5676, doi:10.1002/2013GL057798.

1398 Faccenda, M., Gerya, T. V., Burlini, L., 2009. Deep slab hydration induced by bending-related variations in
 1399 tectonic pressure. *Nature Geosci.* 2, 790–793.

1400 Faul, U. H., Jackson, I., 2007. Diffusion creep of dry, melt-free olivine. *J. Geophys. Res.* 112, B04204,
1401 doi:10.1029/2006JB004586.

1402 Ferrachat, S., Ricard, Y., 1998. Regular vs. chaotic mantle mixing. *Earth Planet. Sci. Lett.* 155, 75–86.

1403 Foley, B. J., 2018. The dependence of planetary tectonics on mantle thermal state: applications to early
1404 Earth evolution. *Phil. Trans. R. Soc. A* 376, 20170409, <http://dx.doi.org/10.1098/rsta.2017.0409>.

1405 Foley, B. J., Bercovici, D., 2014. Scaling laws for convection with temperature-dependent viscosity and
1406 grain-damage. *Geophys. J. Int.* 199, 580–603.

1407 Foley, B. J., Bercovici, D., Elkins-Tanton, L. T., 2014. Initiation of plate tectonics from post-
1408 magma ocean thermochemical convection. *J. Geophys. Res. Solid Earth* 119, 8538–8561,
1409 doi:10.1002/2014JB011121.

1410 Forsyth, D., Uyeda, S., 1975. On the relative importance of the driving forces of plate motion. *Geophys. J.*
1411 *R. Astron. Soc.* 43, 163–200.

1412 Foulger, G. R., Natland, J. H., Presnell, D. C., Anderson, D. L., 2005. Plates, Plumes, and Paradigms.
1413 Geological Society of America.

1414 Freed, A. M., Hashima, A., Becker, T. W., Okaya, D. A., Sato, H., Hatanaka, Y., 2017. Resolving depth-
1415 dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011
1416 Tohoku-oki, Japan earthquake. *Earth Planet. Sci. Lett.* 459, 279–290.

1417 Freed, A. M., Herring, T., Bürgmann, R., 2010. Steady-state laboratory flow laws alone fail to explain
1418 postseismic observations. *Earth Planet. Sci. Lett.* 300, 1–10.

1419 Freed, A. M., Hirth, G., Behn, M. D., 2012. Using short-term postseismic displacements to in-
1420 fer the ambient deformation conditions of the upper mantle. *J. Geophys. Res.* 117, B01409,
1421 doi:10.1029/2011JB008562.

1422 Frost, H. J., Ashby, M. F., 1982. Deformation-mechanism maps: The plasticity and creep of metals and
1423 ceramics. Pergamon, New York.

1424 Gale, A., Langmuir, C. H., Dalton, C. A., 2014. The global systematics of ocean ridge basalts and their
1425 origin. *J. Petrol.* 55, 1051–1082.

1426 Gans, K. D., Wilson, D. S., Macdonald, K. C., 2003. Pacific plate gravity lineaments: Diffuse extension or
1427 thermal contraction? *Geochem. Geophys. Geosys.* 4 (9), 1074, doi:10.1029/2002GC000465.

1428 Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., Whattam, S. A., 2015. Plate tectonics on the Earth
1429 triggered by plume-induced subduction initiation. *Nature* 527, 221–225.

1430 Gillis, K. M., 1995. Controls on hydrothermal alteration in a section of fast-spreading oceanic crust. *Earth*
1431 *Planet. Sci. Lett.* 134, 473–489.

1432 Goetze, C., 1978. The mechanisms of creep in olivine. *Phil. Trans. R. Soc. Lond. A* 288, 99–119.

1433 Goetze, C., Evans, B., 1979. Stress and temperature in the bending lithosphere as constrained by experimen-
1434 tal rock mechanics. *Geophys. J. R. Astron. Soc.* 59, 463–478.

1435 Goutorbe, B., Hillier, J. K., 2013. An integration to optimally constrain the thermal structure of oceanic
1436 lithosphere. *J. Geophys. Res.* 118, 432–446, doi:10.1029/2012JB009527.

1437 Grasset, O., Parmentier, E., 1998. Thermal convection in a volumetrically heated, infinite Prandtl number
1438 fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution,. *J.*
1439 *Geophys. Res.* 103, 18171–18181.

1440 Gregory, R. T., Taylor, H. P., 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust,
1441 Samail ophiolite, Oman: Evidence for $\delta^{18}\text{O}$ buffering of the oceans by deep (>5 km) seawater-
1442 hydrothermal circulation at mid-ocean ridges. *J. Geophys. Res.* 86, 2737–2755.

1443 Grevemeyer, I., Ranero, C. R., Ivandic, M., 2018. Structure of oceanic crust and serpentinization at subduc-
1444 tion trenches. *Geosphere* 14, 395–418, doi:10.1130/GES01537.1.

1445 Gudmundsson, O., Davies, J. H., Clayton, R. W., 1990. Stochastic analysis of global traveltimes data: mantle
1446 heterogeneity and random errors in the ISC data. *Geophys. J. Int.* 102, 25–43.

1447 Guo, M., Korenaga, J., 2020. Argon constraints on the early growth of felsic continental crust. *Sci. Adv.* in
1448 press.

1449 Hager, B. H., 1983. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere.
1450 *Earth Planet. Sci. Lett.* 63, 97–109.

1451 Hager, B. H., 1991. Mantle viscosity: A comparison of models from postglacial rebound and from the geoid,
1452 plate driving forces, and advected heat flux. In: Sabadini, R., Lambeck, K., Boschi, E. (Eds.), *Glacial*
1453 *Isostasy, Sea-Level and Mantle Rheology*. Kluwer Academic, Dordrecht, pp. 493–513.

1454 Hamano, K., Abe, Y., Genda, H., 2013. Emergence of two types of terrestrial planet on solidification of
1455 magma ocean. *Nature* 497, 607–610.

1456 Han, R., Shimamoto, T., Hirose, T., Ree, J.-H., Ando, J., 2007. Ultralow friction of carbonate faults caused
1457 by thermal decomposition. *Science* 316, 878–881.

1458 Hansen, L. N., Kumamoto, K. M., Thom, C. A., Wallis, D., Durham, W. B., Goldsby, D. L., Breithaupt, T.,
1459 Meyers, C. D., Kohlstedt, D. L., 2019. Low-temperature plasticity in olivine: Grain size, strain harden-
1460 ing, and the strength of the lithosphere. *J. Geophys. Res. Solid Earth*, doi:10.1029/2018JB016736.

1461 Hansen, L. N., Zimmerman, M. E., Kohlstedt, D. L., 2011. Grain boundary sliding in San Carlos
1462 olivine: Flow law parameters and crystallographic-preferred orientation. *J. Geophys. Res.* 116, B08201,
1463 doi:10.1029/2011JB008220.

1464 Harmon, N., Forsyth, D. W., Weeraratne, D. S., Yang, Y., Webb, S. C., 2011. Mantle heterogeneity and off
1465 axis volcanism on young Pacific lithosphere. *Earth Planet. Sci. Lett.* 311, 306–315.

1466 Hatakeyama, K., Katayama, I., Hirauchi, K., Michibayashi, K., 2017. Mantle hydration along outer-rise
1467 faults inferred from serpentinite permeability. *Sci. Rep.* 7, 13870, doi:10.1038/s41598-017-14309-9.

1468 Hauri, E. H., 1996. Major-element variability in the Hawaiian mantle plume. *Nature* 382, 415–419.

1469 Haxby, W. F., Weissel, J. K., 1986. Evidence for small-scale mantle convection from Seasat altimeter data.
1470 *J. Geophys. Res.* 91, 3507–3520.

1471 Hedjazian, N., Garel, F., Davies, D. R., Kaminski, E., 2017. Age-independent seismic anisotropy under
1472 oceanic plates explained by strain history in the asthenosphere. *Earth Planet. Sci. Lett.* 460, 135–142.

1473 Heestand, R. L., Crough, S. T., 1981. The effect of hot spots on the oceanic age-depth relation. *J. Geophys.*
1474 *Res.* 86, 6107–6114.

1475 Herzberg, C., 2004. Geodynamic information in peridotite petrology. *J. Petrol.* 45, 2507–2530.

1476 Herzberg, C., Asimow, P. D., Arndt, N., Niu, Y., Lesher, C. M., Fitton, J. G., Cheadle, M. J., Saunders, A. D.,
1477 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites.
1478 *Geochem. Geophys. Geosys.* 8 (2), Q02206, doi:10.1029/2006GC001390.

1479 Hillier, J. K., Watts, A. B., 2005. Relationship between depth and age in the North Pacific ocean. *J. Geophys.*
1480 *Res.* 110, B02405, doi:10.1029/2004JB003406.

1481 Hirano, N., Koppers, A. A. P., Takahashi, A., Fujiwara, T., Nakanishi, M., 2008. Seamounts, knolls
1482 and petit-spot monogenetic volcanoes on the subducting Pacific Plate. *Basin Res.* 20 (543–553,
1483 doi:10.1111/j.1365-2117.2008.00363.x).

1484 Hirano, N., Machida, S., Abe, N., Morishita, T., Tamura, A., Arai, S., 2013. Petit-spot lava fields off the
1485 central Chile trench induced by plate flexure. *Geochem. J.* 47, 249–257.

1486 Hirano, N., Takahashi, E., Yamamoto, J., Machida, S., Abe, N., Ingle, S., Kaneoka, I., Hirata, T., Kimura,
1487 J., Ishii, T., Ogawa, Y., 2006. Volcanism in response to plate flexure. *Science* 313, 1426–1428.

1488 Hirschmann, M. M., 2010. Partial melt in the oceanic low velocity zone. *Phys. Earth Planet. Inter.* 179,
1489 60–71.

1490 Hirschmann, M. M., Stolper, E. M., 1996. A possible role for garnet pyroxenite in the origin of the "garnet
1491 signature" in MORB. *Contrib. Mineral. Petrol.* 124, 185–208.

1492 Hirth, G., Kohlstedt, D., 2003. Rheology of the upper mantle and the mantle wedge: A view from the experi-
1493 mentalists. In: Eiler, J. (Ed.), *Inside the Subduction Factory*. American Geophysical Union, Washington,
1494 DC, pp. 83–105.

1495 Hirth, G., Kohlstedt, D. L., 1995. Experimental constraints on the dynamics of the partially molten upper
1496 mantle: Deformation in the diffusion creep regime. *J. Geophys. Res.* 100, 1981–2001.

1497 Hirth, G., Kohlstedt, D. L., 1996. Water in the oceanic mantle: Implications for rheology, melt extraction,
1498 and the evolution of the lithosphere. *Earth Planet. Sci. Lett.* 144, 93–108.

1499 Hofmann, A. W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental
1500 crust, and oceanic crust. *Earth Planet. Sci. Lett.* 90, 297–314.

1501 Hofmann, A. W., 1997. Mantle geochemistry: The message from oceanic volcanism. *Nature* 385, 219–229.

1502 Hoggard, M. J., Winterbourne, J., Czarnota, K., White, N., 2017. Oceanic residual depth measurements, the
1503 plate cooling model, and global dynamic topography. *J. Geophys. Res. Solid Earth* 122, 2328–2372,
1504 doi:10.1002/2016JB013457.

1505 Holland, H. D., 2002. Volcanic gases, black smoker, and the great oxidation event. *Geochim. Cosmochim.
1506 Acta* 66, 3811–3826.

1507 Huang, J., Zhong, S., 2005. Sublithospheric small-scale convection and its implications for residual topog-
1508 raphy at old ocean basins and the plate model. *J. Geophys. Res.* 110, B05404, 10.1029/2004JB003153.

1509 Huang, J., Zhong, S., Hunen, J. v., 2003. Controls on sublithospheric small-scale convection. *J. Geophys.
1510 Res.* 108 (B8), 2405, doi:10.1029/2003JB002456.

1511 Idrissi, H., Bollinger, C., Boioli, F., Schryvers, D., Cordier, P., 2016. Low-temperature plasticity of olivine
1512 revisited with in situ TEM nanomechanical testing. *Sci. Adv.* 2, e1501671.

1513 Isacks, B., Oliver, J., Sykes, L. R., 1968. Seismology and the new global tectonics. *J. Geophys. Res.* 73,
1514 5855–5899.

1515 Isse, T., Kawakatsu, H., Yoshizawa, K., Takeo, A., Shiobara, H., Sugioka, H., Ito, A., Suetsugu, D., Rey-
1516 mond, D., 2019. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic obser-
1517 vations and plate thermal evolution. *Earth Planet. Sci. Lett.* 510, 116–130.

1518 Ito, E., Harris, D. M., Anderson, A. T., 1983. Alteration of oceanic crust and geologic cycling of chlorine
1519 and water. *Geochim. Cosmochim. Acta* 47, 1613–1624.

1520 Ito, G., Mahoney, J. J., 2005a. Flow and melting of a heterogeneous mantle: 1. method and importance to
1521 the geochemistry of ocean island and mid-ocean ridge basalts. *Earth Planet. Sci. Lett.* 230, 29–46.

1522 Ito, G., Mahoney, J. J., 2005b. Flow and melting of a heterogeneous mantle: 2. implications for a chemically
1523 nonlayered mantle. *Earth Planet. Sci. Lett.* 230, 47–63.

1524 Ivandic, M., Grevemeyer, I., Berholt, A., Flueh, E. R., McIntosh, K., 2008. Impact of bending related
1525 faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua. *J. Geophys.*
1526 *Res.* 113, B05410, doi:10.1029/2007JB005291.

1527 Jacobsen, S. B., 1988. Isotopic constraints on crustal growth and recycling. *Earth Planet. Sci. Lett.* 90, 315–
1528 329.

1529 Jaeger, J. C., Cook, N. G. W., 1976. *Fundamentals of Rock Mechanics*. Chapman & Hall, London.

1530 Jaffres, J. B. D., Shields, G. A., Wallmann, K., 2007. The oxygen isotope evolution of seawater: A critical
1531 review of a long-standing controversy and an improved geological water cycle for the past 3.4 billion
1532 years. *Earth Sci. Rev.* 83, 83–122.

1533 Jain, C., Korenaga, J., Karato, S., 2017. On the yield strength of oceanic lithosphere. *Geophys. Res. Lett.*
1534 44, 9716–9722, <https://doi.org/10.1002/2017GL075043>.

1535 Jain, C., Korenaga, J., Karato, S., 2018. On the grain-size sensitivity of olivine rheology. *J. Geophys. Res.*
1536 *Solid Earth* 123, 674–688, <https://doi.org/10.1002/2017JB014847>.

1537 Jain, C., Korenaga, J., Karato, S., 2019. Global analysis of experimental data on the rheology of olivine
1538 aggregates. *J. Geophys. Res. Solid Earth* 124, 310–334, <https://doi.org/10.1029/2018JB016558>.

1539 Jarrard, R. D., 2003. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. *Geochem. Geo-*
1540 *phys. Geosys.* 4, 8905, doi:10.1029/2002GC000392.

1541 Jaupart, C., Mareschal, J.-C., 2015. Heat flow and thermal structure of the lithosphere. In: Treatise on
1542 Geophysics, 2nd ed. Vol. 6. Elsevier, pp. 217–253.

1543 Johnson, B. W., Wing, B. A., 2020. Limited Archean continental emergence reflected in an early Archean
1544 ^{18}O -enriched ocean. *Nature Geosci.* 13, 243–248.

1545 Jung, H., Katayama, I., Jiang, Z., Hiraga, T., Karato, S., 2006. Effect of water and stress on the lattice-
1546 preferred orientation of olivine. *Tectonophysics* 421, 1–22.

1547 Kameyama, M., Yuen, D., Fujimoto, H., 1997. The interaction of viscous heating with grain-size dependent
1548 rheology in the formation of localized slip zones. *Geophys. Res. Lett.* 24, 2523–2526.

1549 Kaneshima, S., Helffrich, G., 1998. Detection of lower mantle scatterers northeast of the Mariana subduction
1550 zone using short-period array data. *J. Geophys. Res.* 103, 4825–4838.

1551 Karato, S., 1986. Does partial melting reduce the creep strength of the upper mantle? *Nature* 319, 309–310.

1552 Karato, S., 2008. Deformation of Earth Materials: Introduction to the Rheology of the Solid Earth. Cam-
1553 bridge, New York.

1554 Karato, S., 2010. Rheology of the Earth's mantle: A historical review. *Gondwana Res.* 18, 17–45.

1555 Karato, S., 2012. On the origin of the athenosphere. *Earth Planet. Sci. Lett.* 321–322, 95–103.

1556 Karato, S., Barbot, S., 2018. Dynamics of fault motion and the origin of contrasting tectonic style between
1557 Earth and Venus. *Sci. Rep.* 8, 11884, doi:10.1038/s41598–018–30174–6.

1558 Karato, S., Olugboji, T., Park, J., 2015. Mechanisms and geologic significance of the mid-lithosphere dis-
1559 continuity in the continents. *Nature Geosci.* 8, 509–514.

1560 Karato, S., Paterson, M. S., FitzGerald, J. D., 1986. Rheology of synthetic olivine aggregates: Influence of
1561 grain size and water. *J. Geophys. Res.* 91, 8151–8176.

1562 Karato, S., Wu, P., 1993. Rheology of the upper mantle: A synthesis. *Science* 260, 771–778.

1563 Karato, S.-I., 1998. Micro-physics of post glacial rebound. *GeoResearch Forum* 3–4, 351–364.

1564 Kasting, J. F., 2013. What caused the rise of atmospheric O₂? *Chem. Geol.* 362, 13–25.

1565 Kasting, J. F., Catling, D., 2003. Evolution of a habitable planet. *Annu. Rev. Astron. Astrophys.* 41, 429–
1566 463.

1567 Katayama, I., Karato, S., 2008. Low-temperature, high-stress deformation of olivine under water-saturated
1568 conditions. *Phys. Earth Planet. Inter.* 168, 125–133.

1569 Katzman, R., Zhao, L., Jordan, T. H., 1998. High-resolution, two-dimensional vertical tomography of the
1570 central Pacific mantle using ScS reverberations and frequency-dependent travel times. *J. Geophys. Res.*
1571 103, 17933–17971.

1572 Kaufmann, G., Lambeck, K., 2000. Mantle dynamics, postglacial rebound and radial viscosity profile. *Phys.*
1573 *Earth Planet. Inter.* 121, 301–324.

1574 Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., Suyehiro, K., 2009. Seismic
1575 evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. *Science* 324, 499–502.

1576 Kawakatsu, H., Utada, H., 2017. Seismic and electrical signatures of the lithosphere-asthenosphere system
1577 of the normal oceanic mantle. *Annu. Rev. Earth Planet. Sci.* 45, 139–167.

1578 Kawazoe, T., Karato, S., Otsuka, K., Jing, Z., Mookherjee, M., 2009. Shear deformation of dry polycrys-
1579 talline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). *Phys.*
1580 *Earth Planet. Inter.* 174, 128–137.

1581 Kelemen, P. B., Hart, S. R., Bernstein, S., 1998. Silica enrichment in the continental upper mantle via
1582 melt/rock reaction. *Earth Planet. Sci. Lett.* 164, 387–406.

1583 Kennett, B. L. N., Furumura, T., Zhao, Y., 2014. High-frequency *Po/So* guided waves in the oceanic litho-
1584 sphere: II — heterogeneity and attenuation. *Geophys. J. Int.* 199, 614–630.

1585 King, S. D., 1995. Models of mantle viscosity. In: *Global Earth Physics: A Handbook of Physical Constants*.
1586 American Geophysical Union, pp. 227–236.

1587 King, S. D., Adam, C., 2014. Hotspot swells revisited. *Phys. Earth Planet. Inter.* 235, 66–83.

1588 Kirby, S. H., 1985. Rock mechanics observations pertinent to the rheology of the continental lithosphere
1589 and the localization of strain along shear zones. *Tectonophysics* 119, 1–27.

1590 Kita, S., Okada, T., Hasegawa, A., Nakajima, J., Matsuzawa, T., 2010. Existence of interplane earthquakes
1591 and neutral stress boundary between the upper and lower planes of the double seismic zone beneath
1592 Tohoku and Hokkaido, northeastern Japan. *Tectonophysics* 496, 68–82.

1593 Klein, E. M., Langmuir, C. H., 1987. Global correlations of ocean ridge basalt chemistry with axial depth
1594 and crustal thickness. *J. Geophys. Res.* 92, 8089–8115.

1595 Kneller, E. A., van Keken, P. E., Karato, S., Park, J., 2005. B-type olivine fabric in the mantle wedge:
1596 Insights from high-resolution non-Newtonian subduction zone models. *Earth Planet. Sci. Lett.* 237,
1597 781–797.

1598 Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the lithosphere: Constraints imposed by
1599 laboratory experiments. *J. Geophys. Res.* 100, 17658–17602.

1600 Kohlstedt, D. L., Mackwell, S. J., 2009. Strength and deformation of planetary lithospheres. In: Watters,
1601 T. R., Schultz, R. A. (Eds.), *Planetary Tectonics*. Cambridge Univ. Press, pp. 397–456.

1602 Korenaga, J., 2005a. Firm mantle plumes and the nature of the core-mantle boundary region. *Earth Planet.*
1603 *Sci. Lett.* 232, 29–37.

1604 Korenaga, J., 2005b. Why did not the Ontong Java Plateau form subaerially? *Earth Planet. Sci. Lett.* 234,
1605 385–399.

1606 Korenaga, J., 2006. Archean geodynamics and the thermal evolution of Earth. In: Benn, K., Mareschal, J.-C.,
1607 Condie, K. (Eds.), *Archean Geodynamics and Environments*. American Geophysical Union, Washing-
1608 ton, D.C., pp. 7–32.

1609 Korenaga, J., 2007a. Effective thermal expansivity of Maxwellian oceanic lithosphere. *Earth Planet. Sci.*
1610 *Lett.* 257, 343–349.

1611 Korenaga, J., 2007b. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the genera-
1612 tion of plate tectonics? *J. Geophys. Res.* 112, B05408, doi:10.1029/2006JB004502.

1613 Korenaga, J., 2009. How does small-scale convection manifest in surface heat flux? *Earth Planet. Sci. Lett.*
1614 287, 329–322.

1615 Korenaga, J., 2010. Scaling of plate-tectonic convection with pseudoplastic rheology. *J. Geophys. Res.* 115,
1616 B11405, doi:10.1029/2010JB007670.

1617 Korenaga, J., 2011a. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the
1618 early Earth. *J. Geophys. Res.* 116, B12403, doi:10.1029/2011JB008410.

1619 Korenaga, J., 2011b. Velocity-depth ambiguity and the seismic structure of large igneous provinces: A case
1620 study from the Ontong Java Plateau. *Geophys. J. Int.* 185, 1022–1036.

1621 Korenaga, J., 2013. Initiation and evolution of plate tectonics on Earth: Theories and observations. *Annu.*
1622 *Rev. Earth Planet. Sci.* 41, 117–151.

1623 Korenaga, J., 2015a. Constraining the geometries of small-scale heterogeneities: A case study from the
1624 Mariana region. *J. Geophys. Res.* 120, 7830–7851, doi:10.1002/2015JB012432.

1625 Korenaga, J., 2015b. Seafloor topography and the thermal budget of Earth. In: Foulger, G. R., Lustrino, M.,
1626 King, S. D. (Eds.), *The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson*. GSA Special
1627 Paper 514 and AGU Special Publication 71. Geological Society of America, pp. 167–185.

1628 Korenaga, J., 2017a. On the extent of mantle hydration by plate bending. *Earth Planet. Sci. Lett.* 457, 1–9.

1629 Korenaga, J., 2017b. Pitfalls in modeling mantle convection with internal heating. *J. Geophys. Res. Solid*
1630 *Earth* 122, 4064–4085, doi:10.1002/2016JB013850.

1631 Korenaga, J., 2018. Crustal evolution and mantle dynamics through Earth history. *Phil. Trans. R. Soc. A*
1632 376, 20170408, <http://dx.doi.org/10.1098/rsta.2017.0408>.

1633 Korenaga, J., Jordan, T. H., 2002a. On ‘steady-state’ heat flow and the rheology of oceanic mantle. *Geophys.*
1634 *Res. Lett.* 29 (22), 2056, doi:10.1029/2002GL016085.

1635 Korenaga, J., Jordan, T. H., 2002b. Onset of convection with temperature- and depth-dependent viscosity.
1636 *Geophys. Res. Lett.* 29 (19), 1923, doi:10.1029/2002GL015672.

1637 Korenaga, J., Jordan, T. H., 2003. Physics of multiscale convection in Earth's mantle: Onset of sublitho-
1638 spheric convection. *J. Geophys. Res.* 108 (B7), 2333, doi:10.1029/2002JB001760.

1639 Korenaga, J., Jordan, T. H., 2004. Physics of multiscale convection in Earth's mantle: Evolution of sublitho-
1640 spheric convection. *J. Geophys. Res.* 109, B01405, doi:10.1029/2003JB002464.

1641 Korenaga, J., Karato, S., 2008. A new analysis of experimental data on olivine rheology. *J. Geophys. Res.*
1642 113, B02403, doi:10.1029/2007JB005100.

1643 Korenaga, J., Kelemen, P. B., 2000. Major element heterogeneity of the mantle source in the North Atlantic
1644 igneous province. *Earth Planet. Sci. Lett.* 184, 251–268.

1645 Korenaga, J., Kelemen, P. B., Holbrook, W. S., 2002. Methods for resolving the origin of large igneous
1646 provinces from crustal seismology. *J. Geophys. Res.* 107 (B9), 2178, doi:10.1029/2001JB001030.

1647 Korenaga, J., Planavsky, N. J., Evans, D. A. D., 2017. Global water cycle and the coevolution of Earth's
1648 interior and surface environment. *Phil. Trans. R. Soc. A* 375, 20150393, doi:10.1098/rsta.2015.0393.

1649 Korenaga, J., Sager, W. W., 2012. Seismic tomography of Shatsky Rise by adaptive importance sampling. *J.*
1650 *Geophys. Res.* 117, B08102, doi:10.1029/2012JB009248.

1651 Korenaga, T., Korenaga, J., 2008. Subsidence of normal oceanic lithosphere, apparent thermal expansivity,
1652 and seafloor flattening. *Earth Planet. Sci. Lett.* 268, 41–51.

1653 Korenaga, T., Korenaga, J., 2016. Evolution of young oceanic lithosphere and the meaning of seafloor
1654 subsidence rate. *J. Geophys. Res. Solid Earth* 121, 6315–6332, doi:10.1002/2016JB013395.

1655 Kranz, R. L., 1983. Microcracks in rocks: A review. *Tectonophysics* 100, 449–480.

1656 Kreemer, C., Gordon, R. G., 2014. Pacific plate deformation from horizontal thermal contraction. *Geology*
1657 42, 847–850.

1658 Kumamoto, K. M., Thom, C. A., Wallis, D., Hansen, L. N., Armstrong, D. E., Warren, J. M., Goldsby,
1659 D. L., Wilkinson, A. J., 2017. Size effects resolve discrepancies in 40 years of work on low-temperature
1660 plasticity in olivine. *Sci. Adv.* 3, e1701338.

1661 Labrosse, S., 2002. Hotspots, mantle plumes and core heat loss. *Earth Planet. Sci. Lett.* 199, 147–156.

1662 Lachenbruch, A. H., 1961. Depth and spacing of tension cracks. *J. Geophys. Res.* 66, 4273–4292.

1663 Landuyt, W., Bercovici, D., 2009. Variations in planetary convection via the effect of climate on damage.

1664 *Earth Planet. Sci. Lett.* 277, 29–37.

1665 Landuyt, W., Bercovici, D., Ricard, Y., 2008. Plate generation and two-phase damage theory in a model of

1666 mantle convection. *Geophys. J. Int.* 174, 1065–1080.

1667 Langmuir, C. H., Klein, E. M., Plank, T., 1992. Petrological systematics of mid-ocean ridge basalts: Con-

1668 straints on melt generation beneath ocean ridges. In: Phipps Morgan, J., Blackman, D. K., Sinton, J. M.

1669 (Eds.), *Mantle Flow and Melt Generation at Mid-Ocean Ridges*. Vol. 71 of *Geophys. Monogr. Ser.*

1670 AGU, Washington, D. C., pp. 183–280.

1671 Langseth, M. G., Le Pichon, X., Ewing, M., 1966. Crustal structure of the mid-ocean ridges, 5, heat flow

1672 through the Atlantic ocean floor and convection currents. *J. Geophys. Res.* 71, 5321–5355.

1673 Lay, T., Hernlund, J., Buffett, B. A., 2008. Core-mantle boundary heat flow. *Nature Geosci.* 1, 25–32.

1674 Lenardic, A., Jellinek, A. M., Moresi, L.-N., 2008. A climate induced transition in the tectonic style of a

1675 terrestrial planet. *Earth Planet. Sci. Lett.* 271, 34–42.

1676 Lin, P.-Y. P., Gaherty, J. B., Jin, G., Collins, J. A., Lizarralde, D., Evans, R. L., Hirth, G., 2016. High-

1677 resolution seismic constraints on flow dynamics in the oceanic asthenosphere. *Nature* 535, 538–541.

1678 Linckens, J., Bruijn, R. H. C., Skemer, P., 2014. Dynamic recrystallization and phase mixing in experimen-

1679 tally deformed peridotite. *Earth Planet. Sci. Lett.* 388, 134–142.

1680 Lister, C. R. B., 1974. On the penetration of water into hot rock. *Geophys. J. R. Astron. Soc.* 39, 465–509.

1681 Lizarralde, D., Gaherty, J. B., Collins, J. A., Hirth, G., Kim, S. D., 2004. Spreading-rate dependence of melt

1682 extraction at mid-ocean ridges from mantle seismic refraction data. *Nature* 432, 744–747.

1683 Long, H., Weidner, D. J., Li, L., Chen, J., Wang, L., 2011. Deformation of olivine at subduction zone
1684 conditions determined from *in situ* measurements with synchrotron radiation. *Phys. Earth Planet. Inter.*
1685 186, 23–35.

1686 Maggi, A., Debayle, E., Priestley, K., Barruol, G., 2006. Multimode surface waveform tomography of the
1687 Pacific Ocean: a closer look at the lithospheric cooling signature. *Geophys. J. Int.* 166, 1384–1397.

1688 Magni, V., Bouihol, P., van Hunen, J., 2014. Deep water recycling through time. *Geochem. Geophys.*
1689 *Geosys.* 15, 4203–4216, doi:10.1002/2014GC005525.

1690 Mahoney, J., Fitton, J., Wallace, P., the Shipboard Scientific Party, 2001. *Proceedings of the Ocean Drilling*
1691 *Program Initial Report* vol. 192. Ocean Drilling Program, College Station, TX.

1692 Manga, M., 1996. Mixing of heterogeneities in the mantle: Effect of viscosity differences. *Geophys. Res.*
1693 *Lett.* 23, 403–406.

1694 Margerin, L., Nolet, G., 2003. Multiple scattering of high-frequency seismic waves in the deep
1695 Earth: *PKP* precursor analysis and inversion for mantle granularity. *J. Geophys. Res.* 108, 2514,
1696 doi:10.1029/2003JB002455.

1697 Masuti, S., Barbot, S., Karato, S., Feng, L., Banerjee, P., 2016. Upper-mantle water stratification inferred
1698 from observations of the 2012 Indian Ocean earthquake. *Nature* 538, 373–377.

1699 McCarthy, C., Takei, Y., Hiraga, T., 2011. Experimental study of attenuation and dispersion over a broad
1700 frequency range, 2, the universal scaling of polycrystalline materials. *J. Geophys. Res.* 116, B09207,
1701 doi:10.1029/2011JB008384.

1702 McKenzie, D., Bickle, M. J., 1988. The volume and composition of melt generated by extension of the
1703 lithosphere. *J. Petrol.* 29, 625–679.

1704 McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal structure of oceanic and continental lithosphere.
1705 *Earth Planet. Sci. Lett.* 233, 337–349.

1706 McKenzie, D. P., 1967. Some remarks on heat flow and gravity anomalies. *J. Geophys. Res.* 72, 6261–6273.

1707 Mei, S., Kohlstedt, D. L., 2000a. Influence of water on plastic deformation of olivine aggregates, 1, diffusion
1708 creep regime. *J. Geophys. Res.* 105, 21457–21469.

1709 Mei, S., Kohlstedt, D. L., 2000b. Influence of water on plastic deformation of olivine aggregates, 2, disloca-
1710 tion creep regime. *J. Geophys. Res.* 105, 21471–21481.

1711 Mei, S., Suzuki, A. M., Kohlstedt, D. L., Dixon, N. A., Durham, W. B., 2010. Experimental constraints on
1712 the strength of the lithospheric mantle. *J. Geophys. Res.* 115, B08204, doi:10.1029/2009JB006873.

1713 Michael, P. J., 1999. Implications for magmatic processes at Ontong Java Plateau from volatile and major
1714 element contents of Cretaceous basalt glasses. *Geochem. Geophys. Geosys.* 1, 1999GC000025.

1715 Mitrovica, J. X., Forte, A. M., 2004. A new inference of mantle viscosity based upon joint inversion of
1716 convection and glacial isostatic adjustment data. *Earth Planet. Sci. Lett.* 225, 177–189.

1717 Miura, S., Suyehiro, K., Shinohara, M., Takahashi, N., Araki, E., Taira, A., 2004. Seismological structure
1718 and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean
1719 bottom seismometer-airgun data. *Tectonophysics* 389, 191–220.

1720 Miyashiro, A., 1973. The Troodos ophiolite complex was probably formed in an island arc. *Earth Planet.*
1721 *Sci. Lett.* 19, 218–224.

1722 Moresi, L., Solomatov, V., 1998. Mantle convection with a brittle lithosphere: thoughts on the global tectonic
1723 styles of the Earth and Venus. *Geophys. J. Int.* 133, 669–682.

1724 Morgan, W. J., 1971. Convection plumes in the lower mantle. *Nature* 230, 42–43.

1725 Muki, R., Sternberg, E., 1961. On transient thermal stresses in viscoelastic materials with temperature-
1726 dependent properties. *Journal of Applied Mechanics* 28, 193–207.

1727 Mullet, B. G., Korenaga, J., Karato, S.-I., 2015. Markov chain Monte Carlo inversion for the rheology of
1728 olivine single crystals. *J. Geophys. Res. Solid Earth* 120, 3142–3172, doi:10.1002/2014JB011845.

1729 Mulyukova, E., Bercovici, D., 2018. Collapse of passive margins by lithospheric damage and plunging grain
1730 size. *Earth Planet. Sci. Lett.* 484, 341–352.

1731 Naif, S., Key, K., Constable, S., Evans, R. L., 2015. Water-rich bending faults at the Middle America Trench.
1732 *Geochem. Geophys. Geosys.* 16, doi:10.1002/2015GC005927.

1733 Nakagawa, T., Tackley, P. J., 2005. Deep mantle heat flow and thermal evolution of the Earth's core in
1734 thermochemical multiphase models of mantle convection. *Geochem. Geophys. Geosys.* 6, Q08003,
1735 doi:10.1029/2005GC000967.

1736 Nakagawa, T., Tackley, P. J., 2012. Influence of magmatism on mantle cooling, surface heat flow and Urey
1737 ratio. *Earth Planet. Sci. Lett.* 329-330, 1–10.

1738 Ohuchi, T., Kawazoe, T., Higo, Y., Funakoshi, H., Suzuki, A., Kikegawa, T., Irifune, T., 2015. Dislocation-
1739 accomodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's
1740 upper mantle. *Sci. Adv.* 1, e1500360.

1741 Olive, J.-A., Behn, M. D., Tucholke, B. E., 2010. The structure of oceanic core complexes controlled by the
1742 depth distribution of magma emplacement. *Nature Geosci.* 3, 491–495.

1743 Olson, P., Yuen, D. A., Balsigar, D., 1984. Convective mixing and the fine structure of mantle heterogeneity.
1744 *Earth Planet. Sci. Lett.* 36, 291–304, very good paper!

1745 O'Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H., Lee, C.-T., 2007. Episodic Precambrian subduction.
1746 *Earth Planet. Sci. Lett.* 262, 552–562.

1747 O'Neill, C., Lenardic, A., Weller, M., Moresi, L., Quenette, S., Zhang, S., 2016. A window for plate tecton-
1748 ics in terrestrial planet evolution? *Phys. Earth Planet. Inter.* 255, 80–92.

1749 O'Neill, C., Marchi, S., Zhang, S., Bottke, W., 2017. Impact-driven subduction on the Hadean Earth. *Nature*
1750 *Geosci.* 10, 793–797.

1751 O'Rourke, J. G., Korenaga, J., Stevenson, D. J., 2017. Thermal evolution of Earth with magnesium precipi-
1752 tation in the core. *Earth Planet. Sci. Lett.* 458, 263–272.

1753 Panet, I., Pollitz, F., Mikhailov, V., Diament, M., Banerjee, P., Grijalva, K., 2010. Upper mantle rheol-
1754 ogy from GRACE and GPS postseismic deformation after the 2004 Sumatra-Andaman earthquake.
1755 *Geochem. Geophys. Geosys.* 11, Q06008, doi:10.1029/2009GC002905.

1756 Parai, R., Mukhopadhyay, S., 2012. How large is the subducted water flux? new constraints on mantle
1757 regassing rates. *Earth Planet. Sci. Lett.* 317-318, 396–406.

1758 Parsons, B., McKenzie, D., 1978. Mantle convection and the thermal structure of the plates. *J. Geophys.*
1759 *Res.* 83, 4485–4496.

1760 Parsons, B., Sclater, J. G., 1977. An analysis of the variation of ocean floor bathymetry and heat flow with
1761 age. *J. Geophys. Res.* 82 (5), 803–827.

1762 Paterson, M. S., Wong, T.-F., 2005. *Experimental Rock Deformation — The Brittle Field*. Springer.

1763 Phipps Morgan, J., Morgan, W. J., Price, E., 1995. Hotspot melting generates both hotspot volcanism and a
1764 hotspot swell? *J. Geophys. Res.* 100, 8045–8062.

1765 Pollack, H. N., Hurter, S. J., Johnson, J. R., 1993. Heat flow from the Earth's interior: Analysis of the global
1766 data set. *Rev. Geophys.* 31, 267–280.

1767 Pollitz, F. F., 2003. Transient rheology of the uppermost mantle beneath the Mojave Desert, California. *Earth*
1768 *Planet. Sci. Lett.* 215, 89–104.

1769 Priestley, K., McKenzie, D., 2013. The relationship between shear wave velocity, temperature, attenuation
1770 and viscosity in the shallow part of the mantle. *Earth Planet. Sci. Lett.* 381, 78–91.

1771 Proietti, A., Bystricky, M., Guignard, J., Béjina, F., Crichton, W., 2016. Effect of pressure on the strength of
1772 olivine at room temperature. *Phys. Earth Planet. Inter.* 259, 34–44.

1773 Raddick, M. J., Parmentier, E. M., Scheirer, D. S., 2002. Buoyant decompression melting: A possible
1774 mechanism for intraplate volcanism. *J. Geophys. Res.* 107, 2228, doi:10.1029/2001JB000617.

1775 Rampino, M. R., Caldeira, K., 1994. The Goldilocks problem: Climatic evolution and long-term habitability
1776 of terrestrial planets. *Annu. Rev. Astron. Astrophys.* 32, 83–114.

1777 Ranero, C. R., Morgan, J. P., McIntosh, K., Reichert, C., 2003. Bending-related faulting and mantle serpen-
1778 tinization at the Middle America trench. *Nature* 425, 367–373.

1779 Rempel, A. W., Rice, J. R., 2006. Thermal pressurization and onset of melting in fault zones. *J. Geophys. Res.* 111, B09314, doi:10.1029/2006JB004314.

1781 Rey, P. F., Coltice, N., Flament, N., 2014. Spreading continents kick-started plate tectonics. *Nature* 513, 1782 405–408.

1783 Ribe, N. M., Christensen, U. R., 1994. Three-dimensional modeling of plume-lithosphere interaction. *J. Geophys. Res.* 99, 669–682.

1785 Ribe, N. M., Christensen, U. R., 1999. The dynamical origin of Hawaiian volcanism. *Earth Planet. Sci. Lett.* 1786 171, 517–531.

1787 Rice, J. R., 2006. Heating and weakening of faults during earthquake slip. *J. Geophys. Res.* 111, B05311, 1788 doi:10.1029/2005JB004006.

1789 Richards, F. D., Hoggard, M. J., Cowton, L. R., White, N. J., 2018. Reassessing the thermal structure of 1790 oceanic lithosphere with revised global inventories of basement depths and heat flow measurements. *J. Geophys. Res. Solid Earth* 123, 9136–9161, <https://doi.org/10.1029/2018JB015998>.

1792 Richards, M., Contreras-Reyes, E., Lithgow-Bertelloni, C., Ghiorso, M., 2013. Petrological interpretation 1793 of deep crustal intrusive bodies beneath oceanic hotspot provinces. *Geochem. Geophys. Geosys.* 14, 1794 604–619, doi:10.1029/2012GC004448.

1795 Richards, M. A., Duncan, R. A., Courtillot, V. E., 1989. Flood basalts and hot-spot tracks: Plume heads and 1796 tails. *Science* 246, 103–107.

1797 Richards, M. A., Yang, W.-S., Baumgardner, J. R., Bunge, H.-P., 2001. Role of a low-viscosity zone in 1798 stabilizing plate tectonics: Implications for comparative terrestrial planetology. *Geochem. Geophys. Geosys.* 1799 2, 2000GC000115.

1800 Richardson, W. P., Stein, S., Stein, C. A., Zuber, M. T., 1995. Geoid data and thermal structure of the oceanic 1801 lithosphere. *Geophys. Res. Lett.* 22, 1913–1916.

1802 Ringwood, A. E., 1975. Compositions and petrology of the Earth's mantle. McGraw-Hill, New York.

1803 Ritzwoller, M. H., Shapiro, N. M., Zhong, S., 2004. Cooling history of the Pacific lithosphere. *Earth Planet. Sci. Lett.* 226, 69–84.

1805 Roberge, J., Wallace, P. J., White, R. V., Coffin, M. F., 2005. Anomalous uplift and subsidence of the Ontong Java Plateau inferred from CO₂ contents of submarine basaltic glasses. *Geology* 33, 501–504.

1807 Rosas, J. C., Korenaga, J., 2018. Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. *Earth Planet. Sci. Lett.* 494, 42–49.

1809 Rudolph, M. L., Lekic, V., Lithgow-Bertelloni, C., 2015. Viscosity jump in Earth's mid-mantle. *Science* 350, 1349–1352.

1811 Rüpke, L. H., Phipps Morgan, J., Hort, M., Connolly, J. A. D., 2004. Serpentine and the subduction zone water cycle. *Earth Planet. Sci. Lett.* 223, 17–34.

1813 Rychert, C. A., Shearer, P. M., 2011. Imaging the lithosphere-asthenosphere boundary beneath the Pacific using SS waveform modeling. *J. Geophys. Res.* 116, B07307, doi:10.1029/2010JB008070.

1815 Sallares, V., Charvis, P., Flueh, E. R., Bialas, J., Party, T. S. S., 2005. Seismic structure of the Carnegie ridge and the nature of the Galapagos hotspot. *Geophys. J. Int.* 161, 763–788.

1817 Sandwell, D., Fialko, Y., 2004. Warping and cracking of the Pacific plate by thermal contraction. *J. Geophys. Res.* 109, B10411, doi:10.1029/2004JB003091.

1819 Sarafian, E., Evans, R. L., Collins, J. A., Elsenbeck, J., Gaetani, G. A., Gaherty, J. B., Hirth, G., Lizarralde, D., 2015. The electrical structure of the central Pacific upper mantle constrained by the NoMelt experiment. *Geochem. Geophys. Geosys.* 16, 1115–1132, doi:10.1002/2014GC005709.

1822 Schmerr, N., 2012. The Gutenberg discontinuity: Melt at the lithosphere-asthenosphere boundary. *Science* 335, 1480–1483.

1824 Scholz, C. H., 2002. *The Mechanics of Earthquakes and Faulting*, 2nd ed. Cambridge Univ. Press.

1825 Schroeder, W., 1984. The empirical age-depth relation and depth anomalies in the Pacific ocean basin. *J. Geophys. Res.* 89, 9873–9883.

1827 Schubert, G., Turcotte, D. L., Olson, P., 2001. *Mantle Convection in the Earth and Planets*. Cambridge, New
1828 York.

1829 Searle, M., Cox, J., 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. *GSA Bulletin* 111,
1830 104–122.

1831 Servali, A., Korenaga, J., 2018. Oceanic origin of continental mantle lithosphere. *Geology* 46, 1047–1059.

1832 Shito, A., Suetsugu, D., Furumura, T., 2015. Evolution of the oceanic lithosphere inferred from
1833 *Po/So* waves travelling in the Philippine Sea Plate. *J. Geophys. Res. Solid Earth* 120, 5238–5248,
1834 doi:10.1002/2014JB011814.

1835 Shito, A., Suetsugu, D., Furumura, T., Sugioka, H., Ito, A., 2013. Small-scale heterogeneities in the oceanic
1836 lithosphere inferred from guided waves. *Geophys. Res. Lett.* 40, 1708–1712.

1837 Shizgal, B. D., Arkos, G. G., 1996. Nonthermal escape of the atmospheres of Venus, Earth, and Mars. *Rev.*
1838 *Geophys.* 34, 483–505.

1839 Sifre, D., Gardes, E., Massuyeau, M., Hashim, L., Hier-Majumder, S., Gaillard, F., 2014. Electrical conduc-
1840 tivity during incipient melting in the oceanic low-velocity zone. *Nature* 509, 81–85.

1841 Simmons, G., Richter, D., 1976. Microcracks in rock. In: Strens, R. G. J. (Ed.), *The Physics and Chemistry*
1842 *of Minerals and Rocks*. Wiley, pp. 105–137.

1843 Sizova, E., Gerya, T., Brown, M., Perchuk, L. L., 2010. Subduction styles in the Precambrian: Insight from
1844 numerical experiments. *Lithos* 116, 209–229.

1845 Sleep, N. H., 1987. Lithospheric heating by mantle plumes. *Geophys. J. R. Astron. Soc.* 91, 1–12.

1846 Sleep, N. H., 1990. Hotspots and mantle plumes: some phenomenology. *J. Geophys. Res.* 95, 6715–6736.

1847 Sleep, N. H., 2005. Dioxygen over geologic time. *Metal Ions in Biological Systems* 43, 49–73.

1848 Smith, W. H. F., Sandwell, D. T., 1997. Global sea floor topography from satellite altimetry and ship depth
1849 soundings. *Science* 277, 1956–1962.

1850 Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., Yaxley, G. M., Arndt, N. T., Chung, S.-L., Danyushevsky,
1851 L. V., Elliott, T., Frey, F. A., Garcia, M. O., Gurenko, A. A., Kamenetsky, V. S., Kerr, A. C., Krivo-
1852 lutskaya, N. A., Matvienkov, V. V., Nikogosian, I. K., Rocholl, A., Sigurdsson, I. A., Sushchevskaya,
1853 N. M., Teklay, M., 2007. The amount of recycled crust in sources of mantle-derived melts. *Science* 316,
1854 412–417.

1855 Solomatov, V. S., 1995. Scaling of temperature- and stress-dependent viscosity convection. *Phys. Fluids* 7,
1856 266–274.

1857 Solomatov, V. S., 1996. Can hotter mantle have a larger viscosity? *Geophys. Res. Lett.* 23, 937–940.

1858 Solomatov, V. S., 2004. Initiation of subduction by small-scale convection. *J. Geophys. Res.* 109, B01412,
1859 doi:10.1029/2003JB002628.

1860 Solomatov, V. S., Moresi, L.-N., 2000. Scaling of time-dependent stagnant lid convection: Application to
1861 small-scale convection on earth and other terrestrial planets. *J. Geophys. Res.* 105, 21795–21817.

1862 Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., Ghattas, O., 2010. The dynamics of plate
1863 tectonics and mantle flow: From local to global scales. *Science* 329, 1033–1038.

1864 Stakes, D. S., Taylor, H. P., 1992. The northern Samail ophiolite: An oxygen isotope, microprobe, and field
1865 study. *J. Geophys. Res.* 97, 7043–7080.

1866 Stein, C., Schmalzl, J., Hansen, U., 2004. The effect of rheological parameters on plate behavior in a self-
1867 consistent model of mantle convection. *Phys. Earth Planet. Inter.* 142, 225–255.

1868 Stein, C. A., Stein, S., 1992. A model for the global variation in oceanic depth and heat flow with lithospheric
1869 age. *Nature* 359, 123–129.

1870 Stein, C. A., Stein, S., 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from
1871 global heat flow. *J. Geophys. Res.* 99, 3081–3095.

1872 Stern, T. A., Henrys, S. A., Okaya, D., Louie, J. N., Savag, M. K., Lamb, S., Sato, H., Sutherland, R.,
1873 Iwasaki, T., 2015. A seismic reflection image for the base of a tectonic plate. *Nature* 518, 85–88.

1874 Stevenson, D. J., Spohn, T., Schubert, G., 1983. Magnetism and thermal evolution of the terrestrial planets.

1875 *Icarus* 54, 466–489.

1876 Stixrude, L., Lithgow-Bertelloni, C., 2005. Mineralogy and elasticity of the oceanic upper mantle: Origin

1877 of the low-velocity zone. *J. Geophys. Res.* 110, B03204, doi:10.1029/2004JB002965.

1878 Tackley, P. J., Stevenson, D., 1993. A mechanism for spontaneous self-perpetuating volcanism on the ter-

1879 restorial planets. In: Stone, D. B., Runcorn, S. K. (Eds.), *Flow and Creep in the Solar System: Obser-*

1880 *vations, Modeling and Theory*. Kluwer Academic, pp. 307–321.

1881 Takei, Y., 2017. Effects of partial melting on seismic velocity and attenuation: A new insight from ex-

1882 *periments. Ann. Rev. Earth Planet. Sci.* 45, 447–470, <https://doi.org/10.1146/annurev-earth-063016-015820>.

1884 Takei, Y., Karasawa, F., Yamauchi, H., 2014. Temperature, grain size, and chemical controls on polycrystal

1885 anelasticity over a broad frequency range extending into the seismic range. *J. Geophys. Res.* 119, 5414–

1886 5443, doi:10.1002/2014JB011146.

1887 Takeo, A., Kawakatsu, H., Isse, T., Nishida, K., Shiobara, H., Sugioka, H., Ito, A., Utada,

1888 H., 2018. *In situ characterization of the lithosphere-asthenosphere system beneath NW Pacific*

1889 *Ocean broadband dispersion survey with two OBS arrays. Geochem. Geophys. Geosys.* 19,

1890 <https://doi.org/10.1029/2018GC007588>.

1891 Takeuchi, N., Kawakatsu, H., Shiobara, H., Isse, T., Sugioka, H., Ito, A., Utada, H., 2017. Determination of

1892 *intrinsic attenuation in the oceanic lithosphere-asthenosphere system. Science* 358 (1593–5196).

1893 Trampert, J., Deschamps, F., Resovsky, J., Yuen, D., 2004. Probabilistic tomography maps chemical hetero-

1894 *geneities throughout the lower mantle. Science* 306, 853–856.

1895 Turcotte, D. L., 1974. Are transform faults thermal contraction cracks? *J. Geophys. Res.* 79, 2573–2577.

1896 Turcotte, D. L., Oxburgh, E. R., 1967. Finite amplitude convective cells and continental drift. *J. Fluid Mech.*

1897 28, 29–42.

1898 Turcotte, D. L., Oxburgh, E. R., 1973. Mid-plate tectonics. *Nature* 244, 337–339.

1899 1900 Turcotte, D. L., Schubert, G., 1982. *Geodynamics: Applications of Continuum Physics to Geological Problems*, 2nd Edition. John Wiley, New York.

1901 1902 Wallmann, K., 2001. The geological water cycle and the evolution of marine $\delta^{18}\text{O}$ values. *Geochim. Cosmochim. Acta* 65, 2469–2485.

1903 Watts, A. B., 2001. *Isostasy and Flexure of the Lithosphere*. Cambridge Univ. Press, New York.

1904 1905 Watts, A. B., ten Brink, U. S., Buhl, P., Brocher, T. M., 1985. A multichannel seismic study of lithospheric flexure across the Hawaiian-Emperor seamount chain. *Nature* 1985, 105–111.

1906 1907 Watts, A. B., Zhong, S., 2000. Observations of flexure and the rheology of oceanic lithosphere. *Geophys. J. Int.* 142, 855–875.

1908 1909 White, R. S., McKenzie, D., O’Nions, R. K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. *J. Geophys. Res.* 97, 19683–19715.

1910 1911 1912 1913 1914 1915 1916 1917 Wilson, D. S., Teagle, D. A. H., Alt, J. C., Banerjee, N. R., Umino, S., Miyashita, S., Acton, G. D., Anma, R., Barr, S. R., Belghoul, A., Carlut, J., Christie, D. M., Coggon, R. M., Cooper, K. M., Cordier, C., Grispini, L., Durand, S. R., Einaudi, F., Galli, L., Gao, Y., Geldmacher, J., Gilbert, L. A., Hayman, N. W., Herrero-Bervera, E., Hirano, N., Holter, S., Ingle, S., Jiang, S., Kalberkamp, U., Kerneklian, M., Koepke, J., Laverne, C., Lledo Vasquez, H. L., MacLennan, J., Morgan, S., Neo, N., Nichols, H. J., Park, S., Reichow, M. K., Sakuyama, T., Sano, T., Sandwell, R., Scheibner, B., Smith-Duque, C. E., Swift, S. A., Tartarotti, P., Tikku, A. A., Tominaga, M., Veloso, E. A., Yamazaki, T., Yamazaki, S., Ziegler, C., 2006. Drilling to gabbro in intact ocean crust. *Science* 312, 1016–1020.

1918 1919 Winterbourne, J., White, N., Crosby, A., 2014. Accurate measurements of residual topography from the ocean realm. *Tectonics* 33, 982–1015, doi:10.1002/2013tC003372.

1920 1921 Yamamoto, J., Korenaga, J., Nirano, N., Kagi, H., 2014. Melt-rich lithosphere-asthenosphere boundary inferred from petit-spot volcanoes. *Geology* 42, 967–970.

1922 Yamauchi, H., Takei, Y., 2016. Polycrystal anelasticity at nearsolidus temperatures. *J. Geophys. Res. Solid*
1923 *Earth* 121, 7790– 7820, <https://doi.org/10.1002/2016JB013316>.

1924 Yasuda, A., Fujii, T., Kurita, K., 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from
1925 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. *J. Geophys. Res.*
1926 99, 9401–9414.

1927 Zhong, S., 2006. Constraints on thermochemical convection of the mantle from plume heat flux,
1928 plume excess temperture, and upper mantle temperature. *J. Geophys. Res.* 111, B04409,
1929 doi:10.1029/2005JB003972.

1930 Zhong, S., Watts, A. B., 2013. Lithospheric deformation induced by loading of the Hawaiian Islands and its
1931 implications for mantle rheology. *J. Geophys. Res.* 118, 6025–6048, doi:10.1002/2013JB010408.

1932 Zindler, A., Hart, S., 1986. Chemical geodynamics. *Annu. Rev. Earth Planet. Sci.* 14, 493–571.

Table 1: Diffusion and dislocation creep parameters for olivine aggregates

Mechanism	Parameters ^a	Karato and Wu (1993)	Hirth and Kohlstedt (2003)	Jain et al. (2019) ^b
dry diffusion	A_3	$10^{9.38}$	$10^{9.18}$	$10^{7.86 \pm 0.15}$
	m_3	2.5	3	2.11 ± 0.15
	E_3	300	375 ± 50	370 ± 15
	V_3	6	2-10	—
wet diffusion	A_4	$10^{5.15}$	$10^{6.0}$	$10^{5.56 \pm 0.47}$
	m_4	2.5	3	1.74 ± 0.12
	r_4	-	1	0.84 ± 0.26
	E_4	240	335 ± 75	362 ± 60
	V_4	5	4	6.75 ± 13.23
dry dislocation	A_5	$10^{-1.22}$	$10^{5.04}$	$10^{2.10 \pm 0.20}$
	n_5	3.5	3.5 ± 0.3	3.64 ± 0.09
	E_5	540	530 ± 4	424 ± 23
	V_5	15-25	14-27	—
wet dislocation	A_6	$10^{1.0}$	$10^{1.95}$	$10^{-4.47 \pm 0.83}$
	n_6	3.0	3.5 ± 0.3	4.45 ± 0.32
	r_6	-	1.2	2.00 ± 0.02
	E_6	430	480 ± 40	425 ± 190
	V_6	10-20	11	27.96 ± 8.13

E_i are in kJ mol^{-1} and V_i are in $\text{cm}^3 \text{ mol}^{-1}$.

^aParameter naming follows equations (3)-(10). The values of pre-exponential factors A_i assume that grain size is given in microns, stress in MPa, and water content in ppm H/Si.

^bListed are model OL-DB₂ for dry diffusion and dislocation creep and model OL-WB₁ for wet diffusion and dislocation creep (see Jain et al. (2019) for parameter covariance).

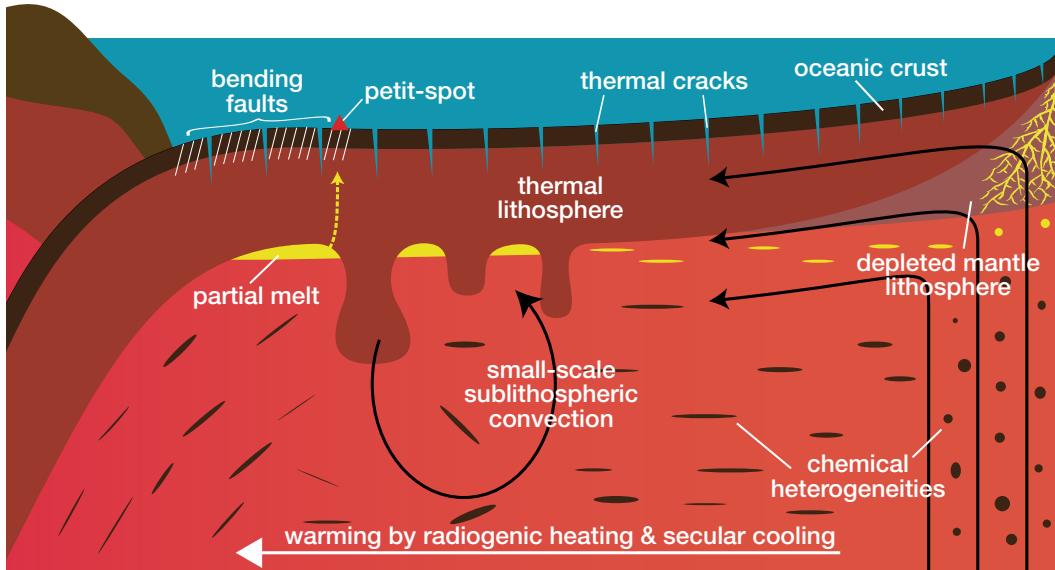


Figure 1: Schematic drawing for the evolution of 'normal' oceanic upper mantle (i.e., excluding the influence of perturbations from below such as mantle plumes). Partial melting associated with the upwelling beneath mid-ocean ridges creates oceanic crust as well as depleted mantle lithosphere. Thermal lithosphere grows by cooling from the above, and it eventually becomes convectively unstable, leading to the onset of small-scale sublithospheric convection. Preexisting chemical heterogeneities in the convecting mantle are stretched by corner flow, and some of them melt when brought to sufficiently shallow depths. Small-scale convection can further promote the partial melting of asthenospheric materials, and the ponding of partial melt beneath old lithosphere can result in the formation of petit-spot volcanos. The convecting mantle beneath older seafloor is slightly warmer owing to radiogenic heating and secular cooling. Thermal cracking gradually and pervasively hydrates oceanic lithosphere and also weakens it, with additional hydration brought by bending faults at subduction zones. All of these processes are discussed in this article. The illustration is not drawn to scale.

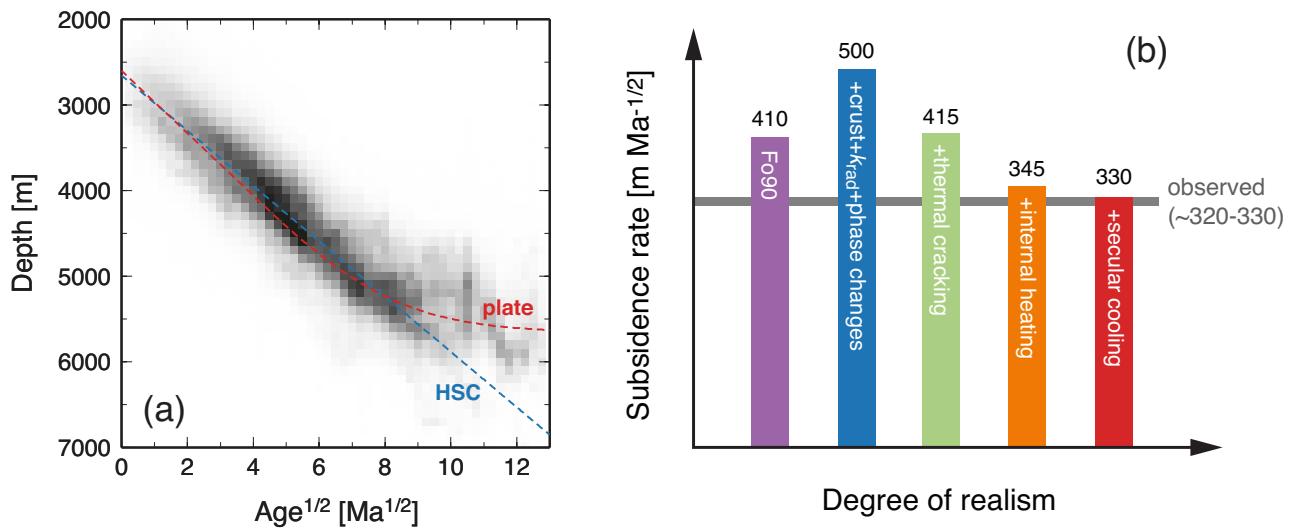


Figure 2: (a) Age-depth relation for the normal seafloor according to the correlation criterion of Korenaga and Korenaga (2008). Darker shading means larger area. Also shown are the predictions of the GDH1 plate model of Stein and Stein (1992) (red) and the best-fit half-space cooling trend, $2654 + 323\sqrt{t}$, where t is seafloor age in Ma, derived by Korenaga and Korenaga (2008) (blue). After Korenaga (2015b). (b) How predicted subsidence rate varies as more realistic complications are incorporated, based on the calculations of Korenaga and Korenaga (2016). “Fo90” (purple): mantle made entirely of Fo90 olivine without melt extraction and solid phase transition, “+crust+ k_{rad} +phase changes” (blue): pyrolytic mantle with the effects of oceanic crust, radiative thermal conductivity, melt extraction, and solid phase transition, “+thermal cracking” (green): with reduction in effective thermal expansivity caused by thermal cracking, “+internal heating” (orange): with the effect of radiogenic heating equivalent to 9 TW for the convecting mantle, and “+secular cooling” (red): with the effect of secular cooling at the rate of 100 K Gyr^{-1} . Observed subsidence rate ($\sim 320\text{--}330 \text{ m Ma}^{-1}$) is shown in gray.

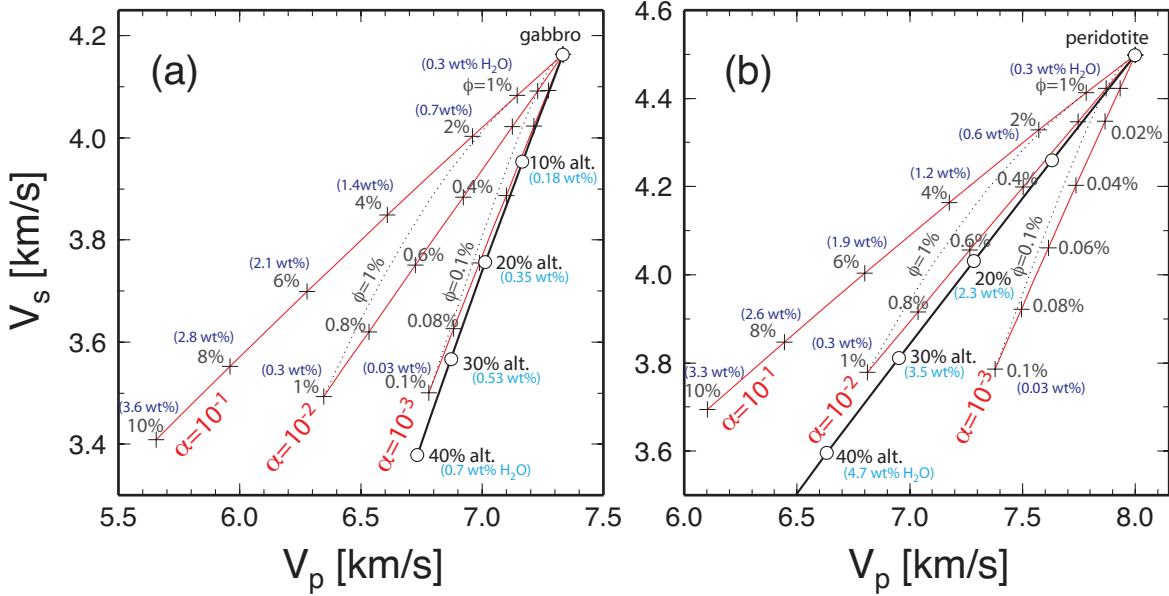


Figure 3: (a) Effects of alteration (solid line with open circles) and crack porosity (red lines with crosses) on the seismic velocities of gabbro, after Korenaga (2017a). Numbers next to symbols denote the degree of alteration or porosity. For crack porosity, the cases of three different aspect ratios (10^{-1} , 10^{-2} , and 10^{-3}) are shown. Numbers in parentheses are equivalent water contents. Dotted lines connecting different aspect ratios (but with the same porosity) illustrate the effect of varying the aspect ratio. (b) Effects of serpentinization and crack porosity on the seismic velocities of peridotite. For serpentinite, data for lizardite serpentinites are used here; this is appropriate when the mantle just below the normal oceanic crust near subduction zone is colder than 300 °C. For higher temperatures, antigorite forms instead, and its effect on seismic velocities follows the same trend of that for lizardite; the only difference is the corresponding degree of alteration, and a factor of ~ 2.5 should be multiplied to convert from lizardite values (e.g., V_p of ~ 6.6 km s $^{-1}$ and V_s of ~ 3.6 km s $^{-1}$ corresponds to 40 % alteration in case of lizardite, but to 100 % alteration in case of antigorite). See Korenaga (2017a) for further details.

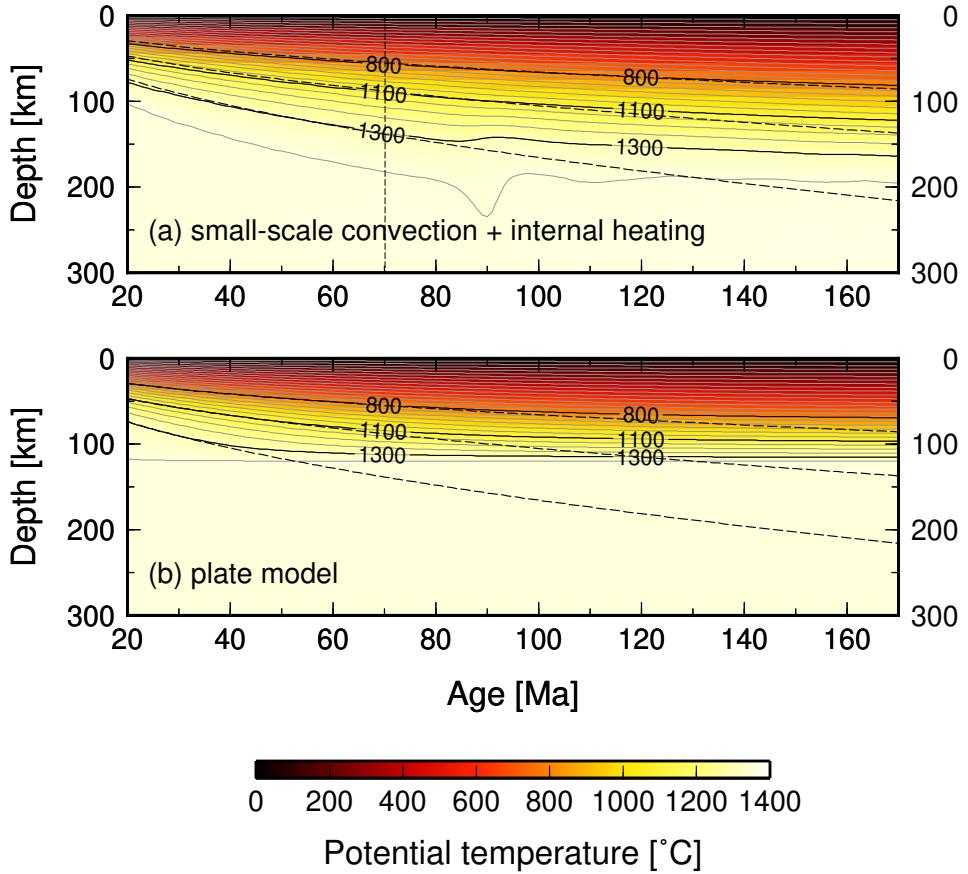


Figure 4: (a) Thermal evolution of oceanic upper mantle based on numerical modeling, after averaging out-of-plane (i.e., ridge-parallel) variations. Initial mantle potential temperature is set to 1350 °C. In this model, small-scale convection initiates at the age of 70 Ma, and the assumed amount of radiogenic heating corresponds to 13 TW for the convecting mantle. Gray contours are drawn at every 50 K, and isotherms of 800 °C, 1100 °C, and 1300 °C are shown in solid. Also shown are isotherms according to simple half-space cooling (dashed). After Korenaga (2015b). (b) Same as (a) but with the thermal evolution according to the plate model with the plate thickness of 120 km.

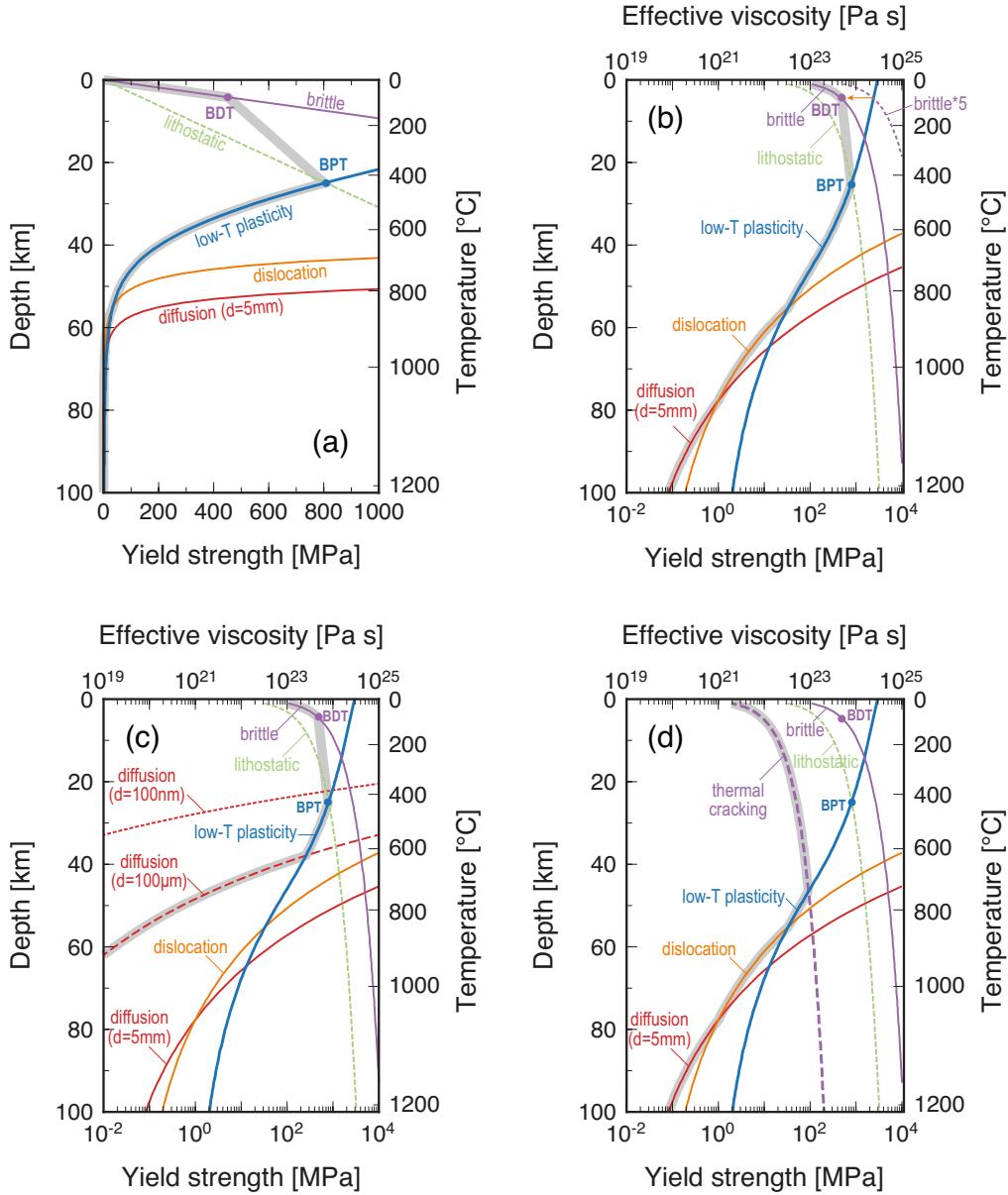


Figure 5: Hypothetical yield strength profiles for present-day oceanic lithosphere at the seafloor age of 60 Ma. Only the top 100 km is shown, and the assumed thermal structure, based on half-space cooling with the initial temperature of 1350 °C, is indicated on the right axis. Yield strength is calculated assuming the geological strain rate of 10^{-15} s^{-1} , so the yield strength of 1 GPa corresponding to the effective viscosity of 10^{24} Pa s . The effect of thin crustal layer is ignored, and deformation mechanisms considered here include: (1) diffusion creep with the activation energy of 300 kJ mol^{-1} and the grain size exponent of 2, with the reference viscosity of 10^{19} Pa s at 1350 °C and the grain size of 5 mm, (2) dislocation creep with the activation energy of 600 kJ mol^{-1} and the stress exponent of 3, with the reference viscosity of 10^{19} Pa s at 1350 °C and the deviatoric stress of 0.1 MPa, (3) low-temperature plasticity based on the reanalysis of the experimental data of Mei et al. (2010) by Jain et al. (2017), with the exponents of $p = 1$ and $q = 2$, (4) brittle strength with the friction coefficient of 0.8 under optimal thrust faulting, and (5) brittle-ductile and brittle-plastic transitions (Kohlstedt et al. 1995). (a) Yield strength profiles in the linear stress scale. Lithostatic stress is shown in dashed green, and yield stress envelope in gray. (b) Same as (a) but in the log stress scale. (c) Same as (b) but with diffusion creep with two different grain sizes (100 μm and 100 nm). (d) Same as (b) but with thermal cracking, assuming the effective friction coefficient of 0.03 (Korenaga 2011a).

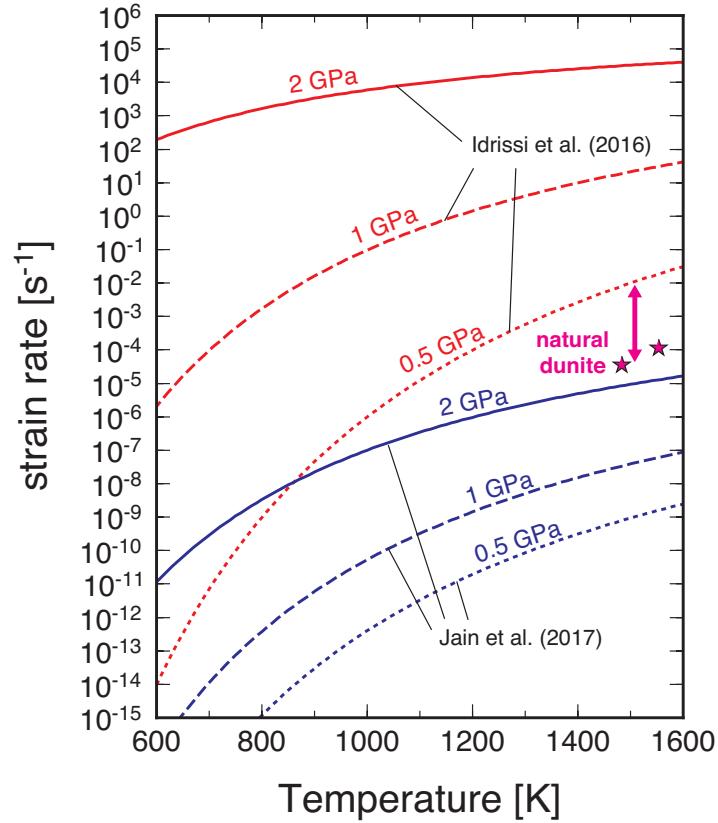


Figure 6: (a) Predicted strain rates as a function of temperature using the flow laws of Idrissi et al. (2016) (red) and Jain et al. (2017) with $p=1$ and $q=2$ (blue), for three different stresses: 0.5 GPa (dotted), 1 GPa (dashed), and 2 GPa (solid). The confining pressure is set to 6 GPa for the latter flow law. Stars denote the deformation data of natural dunite with $\sim 900 \mu\text{m}$ grain size (Chopra and Paterson 1984): stresses are 0.485 GPa for the 1483 K data and 0.481 GPa for the 1553 K data.

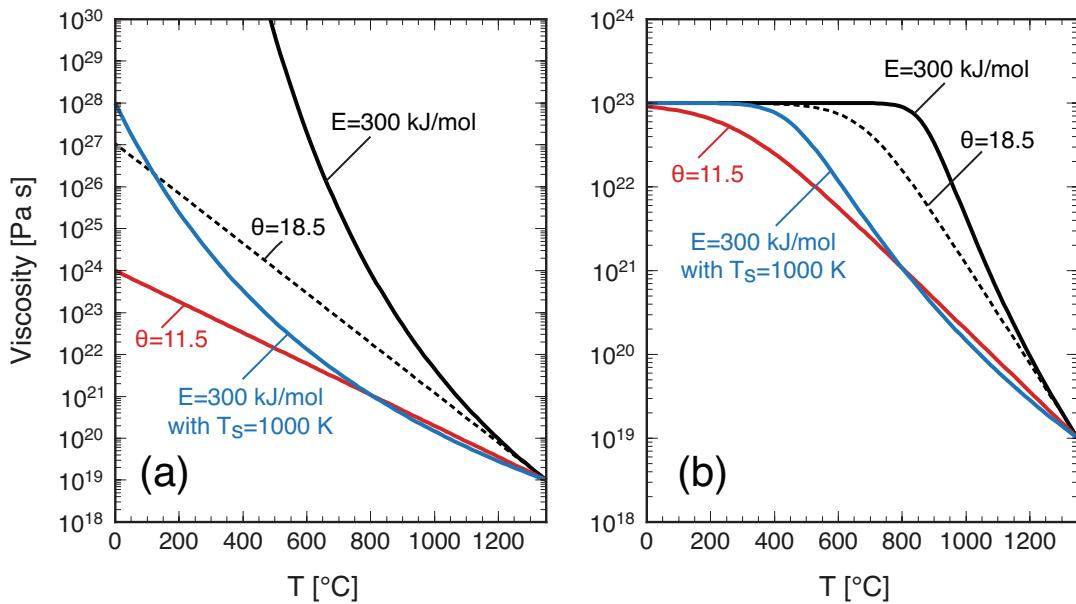


Figure 7: A few examples of temperature-dependent viscosity. In all cases, the reference viscosity is set to 10^{19} Pa s at the temperature of 1350 °C. (a) Purely temperature-dependent viscosity. Arrhenius-type dependence (equation (12)) with the activation energy of 300 kJ mol^{-1} and the surface temperature of 273 K (black) and 1000 K (blue), and linear-exponential dependence (equation (14)) with the Frank-Kamenetskii parameter of 18.5 (black-dashed) and 11.5 (red). (b) Harmonic mean of temperature-dependent viscosity and the viscosity of 10^{23} Pa s (equation (16)). The viscosity of 10^{23} Pa s corresponds to the yield stress of 100 MPa with the strain rate of 10^{-15} s^{-1} . Line legend is the same as in (a).