Computational Optimization and Applications (2019) 74:1-42
https://doi.org/10.1007/510589-019-00104-x

®

Check for
updates

On level regularization with normal solutions in
decomposition methods for multistage stochastic
programming problems

Wim van Ackooij'® - Welington de Oliveira? - Yongjia Song3

Received: 6 December 2017 / Published online: 2 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

We consider well-known decomposition techniques for multistage stochastic program-
ming and a new scheme based on normal solutions for stabilizing iterates during the
solution process. The given algorithms combine ideas from finite perturbation of con-
vex programs and level bundle methods to regularize the so-called forward step of these
decomposition methods. Numerical experiments on a hydrothermal scheduling prob-
lem indicate that our algorithms are competitive with the state-of-the-art approaches
such as multistage regularized decomposition, nested decomposition and stochastic
dual dynamic programming.

Keywords Normal solution - SDDP algorithm - Stochastic optimization -
Nonsmooth optimization

1 Introduction

Multistage stochastic programs with recourse are important modeling tools in real-

life applications such as the ones coming from the areas of energy [7,22,27,39,44,49],
transportation [20,23] and finance [16,17,41]. The typical approach to solve these

X Welington de Oliveira
welington.oliveira@mines-paristech.fr

Wim van Ackooij
wim.van-ackooij @edf.fr

Yongjia Song
yongjis @clemson.edu
I EDFR&D. OSIRIS 7, Boulevard Gaspard Monge, F-91120 Palaiseau Cedex, France

2 MINES ParisTech, PSL - Research University, CMA - Centre de Mathématiques Appliquées,
Sophia Antipolis, France

3 Clemson University, Clemson, SC, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00104-x&domain=pdf
http://orcid.org/0000-0002-9943-3572

2 W. van Ackooij et al.

problems is to approximate the underlying random process by using a scenario tree.
This yields, in general, large-scale mathematical programming problems that can be
handled using specialized algorithms that employ decomposition techniques (and
very often sampling). Two very popular decomposition schemes for handling mul-
tistage stochastic programs are the nested decomposition (ND) proposed by [4] and
the stochastic dual dynamic programming (SDDP) proposed by [40]. Both methods
underestimate the cost-to-go functions (resulting from dynamic programming) using
iteratively refined piecewise linear functions, defined by cutting planes computed by
solving linear programs (LPs) in the so-called backward step.

Due to curse of dimensionality, ND is usually applied to multistage stochastic prob-
lems of moderate size (e.g., up to hundreds of scenarios). Under the assumption that
the underlying stochastic process is stagewise independent, much larger scenario trees
can be handled by combining decomposition and sampling, [5,15,25,40]. The opti-
mization strategies proposed in these references mitigate the curse of dimensionality
by sharing cuts among different nodes of the scenario tree. Among these methods,
the most successful algorithm for solving large-scale multistage stochastic programs
is SDDP [40]. Mathematical properties of SDDP have been extensively investigated.
The first formal proof of almost-sure convergence of multistage sampling algorithms
akin to SDDP is due to Chen and Powell [5]. This proof is extended by Linowsky and
Philpott to cover the SDDP algorithm and other sampling-based methods in [35]. The
convergence analysis of SDDP is revisited in [43], and more recently in [47].

Nested decomposition and SDDP techniques have been applied in a variety of
applications, just to mention a few: [10,22,23,42,49]. An extensive computational
study and new algorithmic techniques to accelerate the ND’s solution process in a
parallel enviroment are presented in [54]. Nested decomposition and SDDP have also
been extended to cope with more general convex multistage stochastic programs, see
e.g., [21].

The workhorse in the optimization techniques mentioned above is the Kelley’s
cutting-plane method [29], which is well-known for having slow convergence (in some
cases, the number of trial points generated by the cutting-plane method grows expo-
nentially with the problem dimension, [38, pp. 158-160]). As a result, ND and SDDP
can also exhibit slow convergence, especially in high-dimensional problems. It has
been largely demonstrated, in deterministic convex and nonsmooth optimization, that
bundle methods [32-34] provide faster convergence than the Kelley’s cutting-plane
method, due to a regularization scheme that stabilizes iterates during the solution
process. Such a class of methods has been successfully adapted and extended to
two-stage stochastic programs in [9,11,18,45,51,53]. In the two-stage context, the
stochastic decomposition of [24] combines sampling with a regularization scheme
akin to proximal bundle methods. In [50] regularization is also combined with dynamic
selection/aggregation of scenarios.

In the multistage setting, deploying these regularization ideas is more involved. Two
regularization-based algorithms for multistage stochastic programming were recently
proposed in [1] and [46]. Sen and Zhou [46] have extended the stochastic decompo-
sition of [24] to the multistage setting. At every iteration of their algorithm, a sample
path is randomly drawn and trial points are obtained by solving a quadratic program
regularizing candidate solutions. Regularization is performed by adding a quadratic

@ Springer

Level decomposition for multistage stochastic programs 3

term to the objective function of the LP subproblems, which is used to prevent next
trial points to be far away from the ones used in the current iteration.

Asamov and Powell [1] propose the same kind of regularization as [46], but extend
the regularized decomposition of [45] to the multistage stochastic programming setting
with an algorithmic scheme closer to SDDP. Regularization is performed only in
the forward step, and the multistage regularized decomposition employs the same
backward step as the one in SDDP.

Both works [46] and [1] make use of stability centers, which strongly impact the
iteration process by keeping iterates close to such centers. Stability centers can be
understood as “anchors”, the surroundings of which should be explored priority-wise
by the algorithm. In general, a stability center is set to the best solution candidate
obtained up to the current iteration of the algorithm. While such points are easily
determined in the two-stage setting (because the objective function is known through
an oracle), it turns out that choosing stability centers in the multistage setting is a
tricky task. Choosing a stability center for every node of the underlying scenario tree
would be impractical for large scenario trees commonly handled by SDDP.

In [1] the authors cope with this difficulty by defining stability centers as part
of the state variables (denoted by post-decision state variables, see Definition 3 in
[1]) of x; for each stage ¢ generated by the forward step in the previous iteration.
When stability centers are improved due to better approximations of the cost-to-go
functions, the algorithm of [1] diminishes the influence of these stability centers in the
regularization scheme by decreasing the prox-parameter weighing the quadratic term.
In other words, regularization is dismissed when it is still needed: it is well known in
the nonsmooth optimization community that regularization plays a major role when
iterates get closer to the set of optimal solutions.

To overcome this shortcoming, we propose a scheme for regularizing decomposition
methods for multistage stochastic linear programs (MSLPs) that does not suffer from
the effect of possibly bad quality stability centers. Our algorithms take inspiration in
the level bundle methods for nonsmooth optimization, [31,34], well known for their
efficiency [3,8], flexibility in defining stability centers and dealing with functions for
which gradients and values are only computed approximately, [9].

Our approaches define trial points either as normal solutions of the LP subproblems
solved by SDDP, or as specific points in the level sets of cutting planes approximating
the cost-to-go functions. The given algorithms combine level bundle methods [34]
with some results on finite perturbation of convex programs. As in [1] and [46], the
proposed algorithms employ regularization only in the forward step. The backward
step improving the cutting-plane approximations is exactly the same one employed
by SDDP.

As a subproduct of the regularization scheme proposed in this paper, we show that
after finitely many steps the multistage regularized decomposition of [1] boils down
to a particular case of SDDP, which seeks specific policies during the forward step. As
a conclusion, the convergence analysis of the multistage regularized decomposition
follows directly from the analysis of SDDP, already studied in [15,43,47].

The remainder of this work is organized as follows: the dynamic equations and
cost-to-go functions of a general MSLP, as well as the decomposition scheme of ND
and SDDP, are presented in Sect. 2. Section 3 reviews some known results on finite

@ Springer

4 W. van Ackooij et al.

perturbation of convex programs. Such results are crucial for the normal-level ND and
normal-level SDDP algorithms proposed in Sect. 4. Convergence analysis of these new
algorithms are also given in this section. Section 5 reports some preliminary numerical
results on a large-scale hydrothermal scheduling problem and on three smaller multi-
stage stochastic problems found in the literature. We compare the new proposals with
the multistage regularized decomposition of [1], the nested decomposition of [4] and
an implementation of the standard SDDP, and show the effectiveness of our proposed
regularization scheme. Finally, we conclude in Sect. 6 with some final remarks.

2 Preliminaries on multistage stochastic linear programs and
decomposition schemes

Multistage stochastic programs explicitly model a series of decisions interplayed with
partial observation of uncertainty. If the given set of possible realizations of the under-
lying stochastic process is discrete, uncertainty can be represented by a scenario tree.
Multistage stochastic linear programs (MSLPs) are a special case of this class wherein
the optimization problem solved in each stage is an LP. Hence, on a scenario tree the
resulting model is a very large LP. In this section we will provide an overview of
two popular decomposition approaches for MSLPs, nested decomposition (ND) and
stochastic dual dynamic programming (SDDP). From an abstract viewpoint coming
from non-linear non-smooth optimization, both methods are variants of Kelley’s cut-
ting plane method [29].
Consider the following MSLP:

: T : T : T
min c; x; + Eg, min X2+ Epgy | o+ Eigry [min crxrl ,
Arx1=b; Baxi+Axxa=by Brxr—1+Arxr=br

x1>0 x>0 x7=0

ey

where some (or all) data & = (¢, B;, A;, by) can be subject to uncertainty for
t = 2,...,T. The expected value E\E[r] [-] is taken with respect to the conditional
probability measure of random vector &, € &;.

For numerical tractability, we assume that the number N of realizations (scenarios)
of the data process is finite, i.e., support sets =; (f = 1, ..., T') have finite cardinality.
This is, for instance, the case in which (1) is a sample average approximation (SAA)
of a more general MSLP having a continuous probability distribution. For a discussion
on the relationship between a SAA problem and the underlying true problem with a
continuous distribution we refer to [47].

As in the classical work of [40] we also make the basic assumption that the random
data process is stagewise independent, i.e., random vector &,y is independent of
&i=(1, ..., &), the history of the data process up to time ¢. In this case EI%‘[:] [-]is
simply E[-]. In some cases, problems with dependence between stages can either be
reformulated to problems with stagewise independence by adding state variables to
the model [47], or be dealt with by performing a cut-sharing strategy [14].

@ Springer

Level decomposition for multistage stochastic programs 5

We highlight that stagewise independence is not required for either ND nor its
regularized version proposed in this work. However, since we aim to present our
approaches in a unified manner, we will adopt this assumption throughout this paper.

Under these assumptions, the dynamic programming equations for problem (1) take
the form

{ min Ctht + Qry1(xr)
Qr(x(—1, &)= %=0 (2)
S.t. Afx, = b[— Bt.X17] s
where Q;y1(x;):=E[Q;41(xs,&41)] fort =T —1,...1, and Qr1(x7):=0. The
first-stage problem becomes

min ¢ x; + Qa(x1)
X120 3)
s.t. Aix;=by.
An implementable policy for (1) is a collection of functions x; = X;(§;)), t =
1,...,T. Such a policy gives a decision rule at every stage ¢ of the problem based

on a realization of the data process up to time ¢ and based on previous decisions. A
policy is feasible for problem (1) if it satisfies all the constraints under any realization
in each stage ¢.

As in [47], we assume that the cost-to-go functions Q,()’s are finite valued, in
particular we assume relatively complete recourse. Since the number of scenarios is
finite, the cost-to-go functions are convex piecewise linear functions [48, Chap. 3].
Decompositions. As already mentioned, two very important decomposition techniques
for solving MSLPs are ND (see [4]), and SDDP (see [40]). Both methods consist of
the following two main steps:

— Forward step, that goes from stage ¢t = 1 up to + = T solving subproblems to
define feasible policies x;(&[;]). After this step an (estimated) upper bound z for
the optimal value is determined.

— Backward step, that comes from stage t = T down to t = 1 solving subproblems
to generate cuts that improve the cutting-plane approximations for the cost-to-go
functions Q; (). After this step a lower bound z is obtained.

Below we discuss these steps in more detail, starting with the backward one.
Backward step Let x; = x;(§s]) be a trial decision at stage t = 1,..., T — 1, and
Q,(-) be the current approximation of the cost-to-go function Q,(-),t = 2,..., T,

given by the maximum of a collection of cutting planes. At stage t = T the following
problem is solved

~ min c—TrxT
Q,(xr—1,ér) = { *1=0 _ “
- s.t. Arxyr =by — Brxr—_;

for all &7 = (cr, Br, Ar,br) € E7. Let iy = wr(€7) be an optimal dual solution

of problem (4). Then ar:=E[b] 7] and Br:= — E[B;} 7] € dQr (¥7_1) define the
linearization

qr(xr—1):=Pppxr_1 +ar = Qr(Fr_1)+ (Br,xr—1 —ir_1),

@ Springer

6 W. van Ackooij et al.

satisfying
Or(xr—1) = qr(xr—1) Yxr_1,

and Q7 (X7-1) = qr(XT-1),1.e., g7 (+) is a supporting plane for QT (+). This lineariza-
tion is added to the collection of supporting planes of Q7 (-): Qr(-) is replaced by
QT (x7_1):= maX{QT (x7-1), gr (x7—1)}. In other words, the cutting-plane approxi-
mation QT () is constructed from a collection J7 of linearizations:

y - .
Or(xr—1) = max{By xr_1 +ay}.
JeJr

By starting with a model approximating the cost-to-go function from below, the
cutting-plane updating strategy will ensure that Q7 (-) is an underestimate of Q7 (-).
The updated model Or (-) is then used at stage T — 1, and the following problem needs
tobe solved forallt =7 —1,...,2:

mln ¢ xp + Q1 ()
Q (X-1, &) = !
St A,xt = bt — tht,]

min ., c[Tx, + Frg1
(xr.rr41)ERY xR

= S.t. Azxt =b; — Bix; 1)
,3t+1xt +Olt+1 =14t J € Jigr.

Let 7, = 7,;(&) and p, = p] (Et) be optlmal dual multipliers associated with con-

straints A;x; = b; — B;x;—1 and ,Bt th + ozt 11 = T, respectively. Then the
linearization

q,(x,_l):zﬂ;x,_l ‘o = E[Q,(Et—l,ft)] + (Br, Xi—1 — Xi—1)

of Q,(-) is constructed with

ar=Elb/ 7 + Y ol 5] and Bi=—E[B 7] €EDQ % 1.6)] (6)

J€Ji+1

and satisfies Q;(x;—1) > ¢;(x;—1) V x;—1. (To see why the inequality above
holds, set t = T — 1 and recall that QT(~) approximates Qr(-) from below;
then QT_I()ET,Z, Er_1) < Or-1(X7-2, E7_1) yielding that g7_1(-) underestimates
Qr_1(-). The result then follows from induction on T, T — 1,...,t.) Once the
above linearization is computed, the cutting-plane model at stage 7 is updated:
Qr(x,—1) = max{Q;(x;—1), q:(x,—1)}. Since Q;41(-) can be a rough approxima-
tion (at early iterations) of Q,41(-), the linearization g, is not necessarily a supporting
plane (but a cutting plane) for Q;+1(-): ¢;(-) might be a strict underestimator for Q, (-)
for all x;_1 feasible.

@ Springer

Level decomposition for multistage stochastic programs 7

At the first stage, the following LP is solved

T . min ci'—xl +r
min ¢, x1 + Q2(x1) (x1,r2)€R xR
2= x120 S.t Ai1x1 = by
s.t. Ajx; =b o T .
J J .
B, xi+a, <r, j€J.
)

The value z is a lower bound for the optimal value of (1). The computed cutting-

plane models Qt(-), t =2,...,T, and a solution x| of problem (7) can be used for
constructing an implementable policy as follows.

Forward step Given ascenario & = (&1, ..., &r) € &1 X...x E7 (realization of the
stochastic process), decisions x; = X;(§;1), ¢t = 1, ..., T, are computed recursively
going forward with x| being a solution of (7), and x; being an optimal solution of

. min c,Tx, + ri41
. T nt
m11(1) ¢ X+ Qry1(xr) (e re41)€ERY XR
Xr=> = =
- s.t. Aixy = by — BiXs—
S.t. A,xt Zb; - th,,1 ;Tt ! j =1 X
,3,+1Xt +a;, Srv1, J € Jigr.
) ®)
forall t = 2,...,T, with Q74(-):=0. Notice that x; is a function of x;,_; and

& = (¢1, Ay, By, by),i.e., x (&) is afeasible and implementable policy for problem (1)
(up to stage t). As a result, the value

T
Z=E [Z o % (sm)} O

=1

is an upper bound for the optimal value of (1) as long as all scenarios § € &
are considered for computing the policy. This is the case for ND. However, the
forward step of SDDP consists in taking a sample J with || < N scenar-

ios {£/} jeg of the data process and computing x; (S[jt]) and the respective values
2&) = Y ¢/ %], j € J. The sample average z = ‘17| Y jegz(€7) and
the sample variance 62 = |—\17‘ 3 jeg (& 7y — 7)? are easily computed. The sample
average is an unbiased estimator of the expectation (9) (that is an upper bound for
the optimal value of (1)). In the case of sampling, z + 1.966 //|J| gives an upper
bound for the optimal value of (1) with confidence of approximately 95%. As a result,

a possible stopping test for SDDP is z 4 1.966 /+/|J| — z < €, for a given tolerance
€ > 0. We refer to [47, Sec.3] for a discussion on this topic.

3 Normal solutions and finite perturbation of convex programs

The regularization scheme of MSLPs to be proposed later in Sect. 4 relies on finite
perturbation of convex programs. We put aside for a while the uncertainty and focus on
deterministic convex programs, thus generalizing individual subproblems (8) solved
during the forward step. In what follows we collect several well-known results on

@ Springer

8 W. van Ackooij et al.

finite perturbation of convex programs of the form:

mi}r(l f(x), whereX C R"is a polyhedral set and f : R” — R is a convex function.
Xe

(10)
We assume that f is bounded from below on X and that (10) has a minimizer. We
denote the set of optimal solutions of (10) as X*, and the optimal value of (10) as f*.
Let ¢ : R" — R be another convex function. In this section we are concerned with
the following problem:
min ¢(x), (11
xeX*
which is equivalent to min,cx ¢ (x) s.t. f(x) < f*. We make the assumption that
problem (11) has a solution. When ¢(x) = x x, the unique solution of (11) is said to
be the normal solution of problem (10).
As an attempt to solve (11), one might consider solving the following perturbed
problem

1
mi)r(l f(x)+ —p(x), witht > 0 a given parameter. (12)
X€ T

The work [19] studies finite perturbation of (11), that is, assumptions on ¢ and (10)
that ensure existence of a finite parameter T > 0 such that for all ¢ > 7, any solution
of (12) is also a solution of (11). Finite perturbation is achieved, for instance, when
f is polyhedral and ¢ is a strongly convex function; see Proposition 1 below. Prior
to showing this result, we gather some results related to [6, Theorem 2.1] and [30,
Lemma 2.1] in the following lemma, the proof of which is moved to the appendix.

Lemma 1 Let t > 0 be a given parameter, x(t) be an optimal solution of problem
(12), and ¢* be the optimal value of (11), which is assumed to be finite. Then:

(@) p(x(1)) < ¢* forallt > 0.

Let {11} be an arbitrary sequence of positive numbers. If ¢ is a strongly convex
function and X is the unique solution of problem (11), then

(b) {x(tx)} is a bounded sequence and there exists a constant L < oo bounding all
subgradients of ¢ at x(tx) for all k.

©) p(X) = p(x(1)) <& [f(X)= f(x(r)) < x(r) € X* and if one of these
three equalities holds for T, then x(t') = X forall T/ > 7.

Finite perturbation of a class of optimization problems is established in the following
proposition.

Proposition 1 Let X € R" be a polyhedral setand f : R" — R be a convex piecewise
linear function.

1. If ¢ is a strongly convex function, then there exists T > O such that

1
argmin ¢(x) = argmin f(x) + —p(x) VT >T7T.
xeX* xeX T

@ Springer

Level decomposition for multistage stochastic programs 9

2. Suppose that ¢ is only convex (not necessarily strongly convex) and X is a bounded
polyhedral set. Then there exists T > 0 such that

1
argmin ¢(x) 2 argmin f(x) + —¢(x) VT >7T.
xeX* xeX T

Proof 1. Letiy be the indicator function of the polyhedral set X and F (x):=f(x) +
ix(x). Then (12) is equivalent (in terms of solution set and optimal value) with the
unconstrained problem min,err F(x) + ¢(x)/t. Optimality conditions for this
problem ensure that there exist vectors v(t) € dF(x(r)) and s(t) € dp(x(1))
such that 0 = v(7) + %s(r) . By employing this equation with T = 7, passing to
the limit as 7 — oo and recalling Lemma 1 item (b) we obtain

. L
< lim — =0.
k—00 T

1
lim [Jv(z)|| = lim H—_S(Tk)
k—o00 k— 00 Tk

As f and X are polyhedral, so is function F. This ensures that there exist only
finitely many different subdifferential sets d F'. Hence, there exists a constant > 0
such that if 9 F'(x) N B(0,) # ¥ for some x € R", then x € argmin, yx F(x).
(Here B(0, n) stands for the closed Euclidean ball centered at zero and with radius
n.) Since v(tx) € 0 F (x(tx)) and limg_, o v(7) = 0, there exists an index k such
that |lv(tp)|l < n, implying that x(z;) € X*. The result thus follows by taking
7 = 7z and by using Lemma 1 item (c).

2. Without the strong convexity assumption, problems (11) and (12) can have more
than one solution for every given 7 > 0. Let us assume that x(7¢) is an arbitrary
solution of (12). By noting that {x(7¢)} is a bounded sequence and the subdiffer-
ential dp(x) is uniformly bounded on the compact set X, we can use the same
reasoning employed in the previous item to conclude that there exists a k such that
X = x(tz) satisfies X € X* and, by Lemma 1 item (a) ¢(X) < ¢*. As aresult, x
also solves (11).

O

Under the assumption of Proposition 1 item 1) and ¢ (x) = %xTx, the work [30] pro-
poses an algorithm that solves problem (11) after finitely many steps by successively
solving (12) with an appropriate rule for defining 7. In the next section we rely on
Proposition 1 with x = x; and f(x;) = C,Tx, + Qt+1 (x) to regularize subproblem (8)
for each stage t = 2,3, ..., T — 1 during the forward step of ND and SDDP.

4 Regularized decompositions for multistage stochastic linear
programs

Since both ND and SDDP employ a cutting-plane method in all stagest = 1, ..., T—1,
its convergence can be slow. Due to its proximity with cutting plane methods and the
success of bundle-type stabilization (e.g., [13]), an attempt to stabilize ND and SDDP
similarly is a natural idea. There is however an essential difficulty hindering the direct

@ Springer

10 W. van Ackooij et al.

application of bundle methods to problem (2)—(3): feasible sets change along the
iterative process due to the dynamic equation A;x; = by — By x;—1 (With X;—1 = xlk_l
being the current iterate k at the previous stage ¢ — 1). Convergence analysis of bundle
methods rely on the fact that the feasible set is fixed. In particular, proximal and trust-
region bundle methods require the stability center to be feasible at the current iteration
(a stability center X, can be seen as a landmark that assists, together with a stability
function ¢, the search for trial points; see (13) below where ¢ is a quadratic function).
As argued, this might not be the case for a direct application of the bundle methods to
MSLPs.

A more flexible bundle method is of the level family, see, e.g., [31,34]. This class
of bundle methods does not require stability centers to be feasible, but relies on valid
lower bounds that are iteratively updated to approach the optimal value of the con-
vex program; see for instance [9,18,31,34,53]. This property cannot be ensured for
subproblems (8) because, once again, feasible sets are not fixed and thus a current
lower bound might not be valid in subsequent iterations (except at the stage t = 1, in
which the feasible set does not change). As a result, bundle methods cannot be applied
to MSLPs without considerable modifications. A first attempt in this direction is the
main goal of this paper.

Remark 1 Regularizing only the first stage of MSLPs can be done without much diffi-
culties by following the general lines of recent bundle methods [9] and [13], which can
deal with inexact computations of the objective function and subgradients. Notice that
vector B, computed according to (6) is a subgradient of E[O) (x1, &)] but not necessar-
ily of Q> (x1) (at least at the beginning of the iterative process). Nevertheless, we could
take c; + B> as an inexact subgradient of cirxl + Q>(x1); and c?xl + E[Qz(xl, &)]
(respec. 7) as a lower approximation (respec. upper approximation) of c?xl + Q2 (x1).
Since the feasible set does not change in the first-stage problem, the theory of [13] is
applicable to the context by seeing the forward and backward steps as an oracle proce-
dure returning (inexact) information on Q5 (-). However, stabilizing only the first-stage
subproblem in MSLPs may be unsatisfactory, even if the benefits in the two-stage case
can be spectacular (e.g., [52]).

4.1 A connection between regularized decomposition and finite perturbation of
convex programs

An attempt to accelerate SDDP through regularization has been proposed in [1]. The
regularized decomposition of [1] employs the backward step of SDDP but modifies
the forward step by replacing subproblem (8) with the quadratic program:

. x 1 A A
min) xi 4 Q1 (x) + 5o (x; — £, Go(xg — &) 13
S.t. A[.Xt = bl‘ — B[)zt_] y

where G, is a positive semi-definite matrix and X, is a given stability center. In [1]
the authors define G; from the identity matrix and set some elements to zero in the
diagonal, to stabilize only the (post-decision) state variable R} in the vector x;. Such

@ Springer

Level decomposition for multistage stochastic programs 1

a post-decision state variable R} (see Definition 3 in [1]) is a part of x; that does not
depend directly on the sample path history nor the current node being visited. The
stability center for iteration k + 1 at time stage ¢ is chosen to be the state visited in
iteration k at stage ¢.

The quadratic term is weighted by the prox-parameter t > 0, which is required to
satisfy T — o0 to ensure convergence of the regularized decomposition according to
[1, Theorem 6].

Under the light shed by Proposition 1 item 2) with ¢(-) = (- — X7, G;(- — X;))
(provided the feasible set is bounded), there exists a constant T < oo such that the
solution of problem (13) also solves

where S, (x;—1) is the set of optimal solutions to problem (8),

(14)

minx,eR”r (xr — X, G (xp — %))
s.t. x; € SF(x-1),

for all = > 7. Hence the regularized decomposition of [1] boils down to a variant of
SDDP (that seeks particular solutions of (8) in the forward step). Consequently, the
results of [1, Theorem 6] can be simplified to the analysis of SDDP; see for instance
[15,43] and [47, Proposition 3.1].

Although the method of [1] becomes a special case of SDDP when 7 is large enough,
the former is an enhancement of the latter when problem (8) has multiple solutions:
the quadratic term (x; — %,, G,(x; — X;)) in (13) allows for picking specific points
(post-decision state variables) in the set of optimal solutions to (8). However, if the
subproblems do not have multiple solutions then the method of [1] does not provide
any regularization when 7 is large enough. One can argue that this will happen only late
in the iteration process when trial points are approaching the solution set. However,
regularization plays, in general, a significant role when iterates get closer to the set of
optimal solutions.

In what follows we rely on level bundle methods for proposing another type of
regularization to multistage stochastic programs. Depending on a level parameter ¢;
estimating the optimal value of (2), the regularization by level sets (of cutting-plane
models) can be active till the end of the iterative process.

4.2 Normal and level iterates

We next provide a scheme akin to level bundle methods for regularizing the decom-
position methods for MSLPs that does not rely on specific choices of stability centers
X¢, which, e.g., can be simply chosen as the vector of zeros. As in the method of [1],
our algorithm performs the backward step exactly the same way as that of SDDP. We
change the forward step as follows. Let £; € R be a given parameter. Given a trial
point x;_1 we define by X, (x;_1; ¢;) the set of optimal solutions to the following LP:

. T X
~ argmin max {c Xt + Qr1(xp), £ }
Xi(Xr—15)= x>0 e ! ! !

S.t. A[.xt = b[— B[)E[_l .

5)

@ Springer

12 W. van Ackooij et al.

Instead of solving LP (8) as SDDP does, or solving the QP (13) as the multistage
regularized decomposition of [1] (and [46]) does, we define the trial point x; = X; (&),
at stage ¢ and scenario &, as an optimal solution of

min ¢ (x;)
x €Rm (16)
st xr € Xp(xp—13 4r),
where ¢; : R — R is a given convex function. It follows from Proposition 1 that
(16) can be solved by dealing with the perturbed problem

min {max {C,Tx; + Qt-{-l(xt)a ﬁt} + 21_f(pl('xf)}

x>0

S.t. A,xt = b[- Bt-i'l‘—l)

min w4 32 (x)
(xr,w)€RY xR
= S.t. A,x, = bf — B[)_Ct_] (17)
Ctht + Qi1 (x) < wy
£ < wy,

for alarge enough prox-parameter T > 0. For the choice ¢, ()ct):zxtT X, the specialized
QP algorithm proposed in [30] solves (16) in finitely many steps by determining an
appropriate parameter T for the perturbed problem above. Still for this choice, the
solution x; of (16), is called the normal solution of problem (15), justifying thus the
name of the algorithms below.

Remark 2 We now distinguish two cases regarding problem (16):

— Case 1: normal iterate Parameter ¢, is less than or equal to the optimal value of
(8).
In this case, the objective function of problem (15) becomes c[Tx, + Q,+ 1(xs), and
the set X; (x;—1; £;) in (15) coincides with the set of optimal solutions S} (X;—1) of
problem (8). As a result, the point x; obtained by solving (16) is also a solution of
(8), the subproblem solved by the forward step of ND/SDDP. In this case we say
that x; is a normal iterate.

— Case 2: level iterate Parameter ¢, is strictly greater than the optimal value of (8).
In this case, the optimal value of (15) is just ¢;, and the set of optimal solutions to
(15) is

Xe(X—134) = {xt € Ril

Axy = bvt — Bix; 1 }
Cszt + Qi1 (x) < 4.

As a result, the point x; obtained by solving (16) is an optimal solution of

min ¢ (x;)

x>0

S.t. A[X[= b[— B;)E,_l (18)
ef xi+ Q1 (x) < 4y,

@ Springer

Level decomposition for multistage stochastic programs 13

which is a typical subproblem of level bundle methods. In this case we say that X,
is a level iterate.

We highlight that the optimal value of (8) depends on the previous decisions
X1, . ..X;—1. Therefore, the algorithms presented below will have to adjust the level
parameter ¢; in every iteration depending on the values of the current iterate x, =

xf ().
4.3 The normal-level nested decomposition algorithm

In this section we do not require the assumption that the stochastic process {.;*,}IT:1
is stagewise independent, although we employ for convenience the same notation
introduced in Sect. 2.

Consider an algorithm that takes all scenarios in the forward step. In this case, ZFin
(9) is indeed an upper bound for the optimal value of problem (1). We can thus define
the optimality gap (observed at iteration k) by

Gapti=zF —ZF >0 Vk=1,2,...

where gk is given in (7). If Gap* = 0 at iteration k, the policy issuing 7* is optimal
for (1).

The Normal-level Nested Decomposition algorithm presented below is very similar
in spirit to ND, with the sole difference being that the forward step solves subproblems
(16) rather than (8). We leave unspecified a rule to define the level parameters. We
will discuss this topic in Sect. 4.3.1 below.

Algorithm 1 Normal-level Nested Decomposition.

Step 0: initialization Let k = 0 and Q;('):: —oofort =2,...,T. Choose a
tolerance € > 0 and parameters y; € (0, 1).

Step 1: forward Forallr = 1,..., T—1 andallétj € B, get(cs, By, Ar, by) = g,-",
choose level parameters Ef’ j according to some rule, and solve subproblem (16)
with &, = £ to obtain &¥:=%, ().

Solve (4) for all scenarios and compute an upper bound Z* for (1).

Step 2: backward Compute o7 and Br and update the model QT(~). For t =
T —1,...,2andall “g‘,] € &; solve LP (5), compute «; and B; and update model
Q,(~). Solve LP (7) to compute gk.

Step 3: loop Define Gap* = ZF —gk and stop if GapX < €. Otherwise setk < k+1
and go back to Step 1.

Depending on the rule for defining level parameters it may happen that Ef’ j is less

than the optimal value of (8). In this case, the computed trial point x; = X; (E[Jt]) is a
normal iterate, meaning that such a point not only lies in the set of optimal solutions
to (8), but also minimizes the function ¢, (if ¢;(-) = | - ||%, then x; is indeed the
normal solution of (8). If Z’;’ j is greater than the optimal value of (8), then by Case

@ Springer

14 W. van Ackooij et al.

2 of Remark 2 we have that c,T)E,k + Qz+1 ()Etk) < Zfﬁ i which is equivalent, (by the
development between (5)—(6)) to

e H By [0, G 6 + (@ + Bl) G =5 <4 Yi<k. (19)

In this case, the computed trial point)E,k =X (?;‘[/t]) is a level iterate, meaning that)E,k
solves (18).

Hence, while normal iterates are particular ND iterates, level iterates have a different
nature and depend strongly on the given level parameter Zf’ j In order to have an
effective regularization/stabilization of the optimization process, the level parameter
should be properly chosen. In what follows we discuss some possible rules for defining
th(, j in Algorithm 1.

4.3.1 Heuristic rules for setting level parameters

Level bundle methods for deterministic convex programs define the level parameter
¥ (estimating the optimal value of the problem) as a value between known lower and
upper bounds. In the first stage of an MSLP, choosing Z’f € [gk_l , " as in standard
level bundle methods makes sense. However, the choice Ef € [_k -1z for stages
t > 1 does not seem appropriate. The reason is that the lower bound gk ~! (obtained

at stage t = 1) might be greater than the value Q,()Etk_l, EtJ) given in (2) because the
former estimates the cost associated with the entire time horizon, while the latter takes
into account only a part of it, from stage ¢ up to stage 7.

Discount rule A more consistent manner for setting level parameters for + > 1 and
scenario node (¢, j) (at stage ¢ and scenario £/) would discount (subtract) from the

lower and upper bounds the costs issued by the history of trial points)E]T‘::)EIT‘ (E[jr])

(fort = 1,...,t — 1) generated in the current forward step and scenario £/. More
precisely, one possible rule to define level parameters in Algorithm 1 is the following
one

t—1 t—1
k k—1 T-k =k—1 Tk
tj € |2 —Zcrx,, < —Zcrx, ’

=1 =1
t—1
eg. £ =n -y =) i (20)
=1

forsome given y; € (0, 1). We call this inexpensive and easily implementable approach
the discount rule.

Minimum upper bound rule In this rule, we also use an estimated upper bound for

Q,()Etk_ s Et"), but we dismiss its lower bound estimation. The idea is to set level
parameters to be less than the lowest (present plus future) cost associated with node
(t, j). More specifically, given the node (¢, j) of the scenario tree, we denote by

@ Springer

Level decomposition for multistage stochastic programs 15

! (respectively gfjl) an estimated upper bound (respectively lower bound) on

0,k | E)):

7 =i > NI DECE @
T=t+1 !
> cfxf - Q,+1(xf—1)

> o) 57 4+ QT =45 (22)

To this end, we keep track of the lowest value of Zf’;l computed in (21):

k' <k—1 k' <k—

Zming =, W0 T = min {c, 5o+ Z B |el® @m]}. (23)

Notice the minimum above is taken with respect to all previous computed policies X!
for the descendant nodes of "g“[]l]. As aresult, for stager = 1,71 = Z’{ (&17) is an upper
bound for the optimal value of problem (1). Given this bound on node (¢, j), we can
define the level parameter for every stage, iteration, and node of the scenario tree by

Zk _fmnl 1~V Gapk_l, with a giveny; > 0. (24)

This defines a simple and cheap rule for setting up level parameters.

4.3.2 Convergence analysis

It follows from the observations right after Algorithm 1 that if one periodically defines
the level parameter sufficiently low so that only normal iterates are produced in such
iterations, the convergence analysis of Algorithm 1 follows from the analysis of ND.
Indeed, in this situation, the forward steps with level iterates in Algorithm 1 can be
seen as an extra procedure for improving the cutting-plane models: it generates trial
points at which the backward step constructs new (and valid) cuts that can enrich the
models. Convergence of ND follows directly if one relies only on the normal iterates.
As a result, any of the above heuristic rules can be applied with Algorithm 1 without
hindering convergence as long as periodically one performs a normal forward step, i.e.,
only normal iterates are generated during such a step. This can be easily accomplished,
for instance, by setting Zf! j=—00 in all nodes (¢, j) of the scenario tree from time
to time.

In what follows we show that when the level parameters are updated according to
the minimum upper bound rule, i.e., rule (24), then Algorithm 1 is convergent without
resorting to the above artifice. Forallt = 1,...,7 — 1 and S,/ € E; we denote by
L j C {1,2,...,} the set of indices of iterations that correspond to level iterates.
Since the backward step of the algorithm is exactly the one of standard ND, and every
trial point defined in the forward step by solving (16) is either a normal or level iterate,

@ Springer

16 W. van Ackooij et al.

convergence analysis of Algorithm 1 relies on the analysis of standard ND and level
bundle methods, by studying the following cases:

— if the algorithm stops generating level steps, then convergence results follow from
the analysis of standard ND. In this case, the algorithm stops after finitely many
steps.

— if the algorithm generates infinitely many level iterates, then convergence results
are shown by following the general lines of analysis for level bundle methods. We
note that, as discussed in [12], level bundle methods do not have finite convergence.
Therefore, we cannot ensure that Algorithm 1 will terminate after finitely many
steps when the requested accuracy e is set to zero. However, this is not really an
issue since a user usually will set a tolerance € > 0 anyway.

We start with the following lemma.

Lemma2 Lett = 1, ..., T — 1 be given and assume that there exists an iteration index
k > 1such that the lower-approximating function x +]ng [Qz+1(x’ & +1)] coincides
=

with the cost-to-go function Q;41(-) at)E,k for all k > k. Furthermore, suppose that
the level parameter is defined by the minimum upper bound rule given by (24), and
assume that for at least a fixed node (t, j), the inequality Efnjnl’t’j < C,Tx,k + Qi1 ()Etk)

holds for all k > k' > k, withz"-1 given in (23). If k € L, j, then

min,z, j
llee + BE NIEF = 551l = v Gap* ™! forallk = k' = k.
Proof If k € L, j, then inequality (19) becomes, under the given assumptions,

Tk —k’ K \T =k =k —k—1 k—1
e X + Qi1 () + (e + By (O — X)) =Ty, — V1 Gap
1

Y i _
<7+ 0 GER) — yicaph,

forall k > k' > k. The stated result thus follows from the Cauchy-Schwarz inequality.
(]

Notice that the above result is always true for t = T — 1, because

— the definition of Q_.(-,) in (4) yields Eg[ipu [Q,C.é)]= or();

_ Zﬁ;nlj,l, i is by definition the lowest known bound on the objective c¥71x7_1 +

Qr (x7—1) defined at scenario node (T — 1, j).

The inequality in Lemma 2 shows that a fraction of the optimality gap bounds
the distances among all level iterates from below. Since the feasible set is compact,
generating infinitely many level iterates will thus force the gap to vanish (because
bounded sequences possess convergent subsequences in finite-dimensional spaces).
This reasoning is employed by the following proposition to establish convergence of
Algorithm 1.

Proposition 2 Consider Algorithm 1 with level parameter given by (24). Assume rela-
tively complete recourse, the feasible sets are compact, and ¢, : R — R are convex

@ Springer

Level decomposition for multistage stochastic programs 17

functions for all t. Moreover, assume that in the backward steps basic optimal solu-
tions are employed. Then Algorithm 1 asymptotically computes an optimal policy for
problem (1).

Proof Under the assumption of relatively complete recourse, all cost-to-go functions
9, (+)’s are finitely valued. Furthermore, feasible sets are compact and all these assump-
tions imply that vectors 3;,1 = 2, ..., T, (inexact subgradients of Q; (-)’s) are bounded
as well. Therefore, there exists a constant A; > 0 such that ||¢; — B;+1]| < A; for all
t=1,...,T — 1. We proceed by inductionont =7 — 1, T — 2, ..., 1. Let us first
fix t = T — 1 and an arbitrary scenario node (¢, j). For this stage, all assumptions of
Lemma 2 are satisfied and thus k € L7 ; implies [lc7—1 + ,3§|| ||JE’}_1 — JE'T_I | >
YT—1 Gap*~! forall i < k. Lemma 2 thus yields

Y71 Gap*~! foralli < k.

[]
T-1
In what follows we distinguish two cases, regarding infinitely and finitely many level
iterates.

Suppose that the sequence of level iterates at some scenario node (7 — 1, j) is
infinite, i.e., |L7_1, j| = oo, then compactness of the feasible set (see also Remark 3
below) ensures that there exists a convergent subsequence {i’};l }i. By plugging this
subsequence into the above inequality (with k = k" andi = k' — 1) and passing to the
limit as k¥’ — oo we conclude that Gap* — 0, proving convergence of the algorithm
in this case (because {GapX}; is monotone and Gap* is the global optimality gap at
iteration k).

Suppose now that [L7_ ;| is finite for all scenario nodes (I' — 1, j). Then for
all k large enough the algorithm will generate only normal iterates, i.e.,)E];_l =

Xp_y (E[JT_I]) also solves (8) (and minimizes the stability function ¢, as well). Since
the feasible set is compact and cut coefficients fr and a7 are constructed via basic
optimal solutions, which are finitely many, we conclude that after finitely many steps
k, model Q7 (-) will remain fixed (only repeated cuts will be generated). Hence, for
all k > k the optimal value of subproblem (8) will coincide with the optimal value
of (2) atstage T — 1,

xr—1=0

) min c—Tr_le_1 + Or(x7-1)
9, (r-2,87-1) = -
st. Ar_ixr—1 =br_1 — Br_1xr—
{ min c;_lxrfl + Or(xr—1)
— x7-1>0

st. Ar_yxr_1=by_1— Br_1Xr_2,

because otherwise a new cut improving model QT(~) would be generated. _Then,
Q, &k . Er1) = cf_ ¥p_ + Qr(xf_)) for all given ¥}, with k > k and,
moreover,

Elg[jﬁm [ngl(il;—Z’ Er-1)] = Qr_1(¥f_,)

=Ey (7175 + By lef #51] Yz, (25)

@ Springer

18 W. van Ackooij et al.

where the last equality is due to the fact that QT (x’}_l) = QT(x’;_l) for k > k.
Notice that (25) satisfies the first assumption of Lemma 2 for t = T — 2. We now
proceed to show that the second assumption also holds. Indeed, definition (23) and
identity (25) (with k replaced by k' > k) provide

k1 T K , T K T oK
Tmin7-2.j = 12212+ By [CT—lefl +Eigry [CTXT]]

=) oK 4+ Qr G) V=K >k.

Therefore, the assumptions of Lemma 2 are both satisfied. We can thus repeat the
same reasoning for r = T — 2 and conclude that:

— either L7 _» ; is infinite for at least one node (7' — 2, j), but then Gapt — 0;
— or L7, ; is finite for all nodes (T — 2, j), and therefore after finitely many steps

of normal iterates, Qr,2(~) coincides with Q7 _5(+) after finitely many steps.

By continuing recursively down to ¢+ = 1 we conclude that either £ ; is infinite

and thus Gap* — 0 or QQ () coincides with Q> (-) after finitely many steps. In the
latter case, when solving (16) for r = 1 its optimal value will be an upper bound on the
optimal value of (1). Moreover, such a value is by definition gk . Hence, Gapk =0and
the corresponding)E{‘ is a first-stage optimal solution of (1). This concludes the proof. O

Remark 3 (On compactness) In proposition 2 one may wonder how to interpret “com-
pactness of the feasible sets”. Does this mean, at stage ¢, that the feasible solutions
x; all belong to a compact set independent of the current node and solution at the
previous stage, or simply that for the latter items fixed the feasible set (now thus
dependent on the “scenario” and solution at the previous stage) is compact? Let us
argue that the second option implies the first. Indeed observe that at stage ¢ for a fixed
scenario and fixed decision x;_1, the set of feasible solutions at stage ¢ belongs to
{y : Ay = by — B;x;—1}. For a fixed scenario we may thus study the set-valued
map: x' — M,(x"):={y : A,y = b, — B;x'}. This is a special case of the study
of polyhedral valued set-valued maps under modifications in the right-hand side, i.e.,
b— {y : Ay < b}.

First, as a result of relatively complete recourse at any x’, M;(x") # @ and thus as a
result of [2, Theorem 3.4.1], M, is Hausdorff-continuous. Moreover, at a fixed X', by
assumption, M; (x") is compact. For some given ¢ > 0, we may thus identify a compact
set K (%), such that M; (x")+¢eB C K (x'). Hence by Hausdorff upper semi-continuity,
we may find a neighbourhood U of x’ such that M;(x") € M;(x") + eB C K (x') for
all x’ € U. Here B denotes the unit ball in an appropriate space.

Next observe that at stage r = 1 the set of all feasible solutions X is independent
of the scenario (and of any past decisions) and is moreover compact. Hence for any
possible fixed scenario at# = 2 and for any possible x; € X| we may find a compact set
K (x1) and neighbourhood U (x1) of x such that M>(x}) € K (x1) forall x| € U (xy).
We may extract a finite subcover of U (x1) to cover X1, say U (x 11), LU (xf’) and define
the compact set Ky:= le K(xi). Then for all x; € X it holds that M>(x;) C K>.
Since the total number of scenarios at stage 2 is finite, we may take a further union
over this finite number. Next we may proceed by induction to conclude the argument.

@ Springer

Level decomposition for multistage stochastic programs 19

4.4 The normal-level SDDP algorithm

This section incorporates the proposed regularization approach into SDDP, which is
applicable when the stochastic process {&;},_, is stagewise independent. The main
difference between ND and SDDP is that the latter employs sampling in the forward
step: instead of considering all N scenarios, the algorithm samples a subset 7 with
|J| < N and solves subproblems (8) (t = 1,..., T — 1) only for these scenarios.
In this case, 7 = ﬁ Zrej[Zszl ¢, ik (§77)] is an estimated upper bound for the
optimal value of problem (1). We can thus define an estimate for the optimality gap
(observed at iteration k) by

——k -
Gap ::max{O,zk —gk}, Vk=1,2,...,
where gk is given in (7). Notice that the difference z¥ — z¥ can be negative in some iter-

ations, which does not necessarily mean that problem (_1) is solved (see the discussion
in [47]).

Algorithm 2 Normal-level regularized SDDP algorithm

Step 0: initialization Same as Step 0 of Algorithm 1.
Step 1: forward Randomly draw (with replacement) a sample J kwith1 < | 7% <
N scenarios. Foreachtr =1,...,T—1 andeachék’f € Jk,get (¢, By, As, by) =

& ,k J ,choose level parameter Ef, j according to some rule, and solve subproblem (16)
(with ¢, = Kf’ j) to obtain)Etk =X (é[’;’]j). Solve (4) for all |7¥| scenarios and
compute an upper bound estimate ¥ for (1).

Step 2: backward Same as Step 2 of Algorithm 1, evaluate the polices generated
in the forward step.

Step 3: loop Define 655" = max{0, z¥ — gk}, set k < k + 1 and go back to Step
L.

Algorithm 2 is similar to standard SDDP, with the difference being that the forward
step above solves subproblems (16) rather than (8). A stopping test for the algorithm
should be placed in Step 3 of Algorithm 2. We skip this matter since any stopping-test
rule used in SDDP can be employed here as well. We refer the interested reader to
[27,37,47].

4.4.1 A heuristic for setting level parameters

Under the stagewise independence assumption, every node (¢, j) of the scenario tree
is not only shared by the descendant scenarios of node (¢, j) in the scenario tree,
but also by scenarios that do not share the same history S[Jt]. For instance, the gray
node in the third stage of the tree represented in Fig. 1 is traversed by 12 scenarios,
instead of only 4 scenarios having the same history up to time ¢ = 3. For this reason
we employ the following alternative to the minimum upper bound rule given by (23),
when estimating an upper bound for each node:

@ Springer

20 W. van Ackooij et al.

Fig. 1 Stagewise independent scenario tree (lattice) with 4 stages and 24 scenarios. Notice the black node
in stage 3 composes 12 scenarios. Whenever one of these 12 scenarios is chosen in the forward step, such
node will be visited and therefore its upper bound estimate Z; (£;) might be updated

~k—1 o . . 14 o -
Tming,j = k@?ll Ll;lﬁ/ cost‘ém s.t.(¢, j) is a node
traversed by sample path (scenario) £ ¢ , (26a)
where
T _
costlg, i=¢, % (&) —|—E|: D el |- (26b)
T=t+1 .

The inner minimum above is taken with respect to all drawn scenarios that share
tree node (7, j), and the expected value is taken with respect to all scenarios in J° ' that
traverse node (¢, j) and have the same history &[;). In other words, the value Zﬁ;nly 1
is an estimation of present (at stage ¢) plus expected future costs of the “cheapest”
scenario history &[;) containing node (¢, j). Although this value might not be a valid
upper bound for ctht + Qy+1(x;) defined at the node (¢, j) of an “expensive” scenario
history, it might still be useful in guiding the algorithm (through level parameter ¢) to
search for trial points yielding lower costs. We illustrate the definitions in (26) in the
following example.

Example 1 Consider Fig. 1 and denote black nodes by (B), gray nodes by (G), light
gray by (LG) and white nodes by (W). Suppose that at iteration k’ the following 5
scenarios were considered in the forward step: J= {&4, gb, &°, 5"", £¢}, with &4 =
€L e el e)). " = ¢l 800 6 = P e ¢ = P el ED).
and &¢ = (ElB §2W 533 EIV). Let’s use the notation x; (&g]) to represent the decision
made at stage ¢ of scenario £ after the forward step.! In order to compute 213‘ (533), we
first compute the present and expected future cost with respect to the first 3 scenarios
sharing the same history &3] = (513 SZB Ef):

Costlyy = COSt i p cpy = €3 Fa(Efy) + leg Ealkfiy) + ed Talhily) + i TaCEa)/3.

Then we compute the present and expected future cost with respect to the remaining

scenarios sharing the history &[3; = (SIB $2W 533): costfém = costf@lB £ eB) =

! Note that %3 (§(3)) = %3(5(3)) = F3(63)) and F3(5(3)) = %3503

@ Springer

Level decomposition for multistage stochastic programs 21

c3T X3 (f[d?,]) + [CI)E“(S&]) + CI)E4 (5[64])] /2 . The inner minimization problem in (26a)
is thus:

K

k/
(&P ebepy COSt b

. 1’4 i _ .
min {cost‘sm s.t. & beanodeof&} = min{cost (6P £V ¢B)

geJ¥

estimating the cost of the cheapest scenario history up to node 533. (The other visited
nodes 523 , $2W and élB are updated accordingly.) We then take the minimum of the
value above over all k' < k to define Z§ (Ef). O

Given this estimated bound on node (z, j), we can define the level parameter for
every stage, iteration, and node of the scenario tree by

~ ke k1 . .
Ef j= zﬁ] inl’ 0~V Gap , withy, > 0 a given parameter. 27
As argued above, the value an;nlt i by itself can be an underestimation of the present

and future costs. Therefore, a small value for y; is advisable (in our numerical exper-
iments we take y; = «/t, with k = 0.5). When the upper bound estimation obtained
from the forward step is not reliable, e.g., when only a single sample path is employed
in the forward step at each iteration, we perform an upper bound estimation step period-
ically by employing a larger number of samples using our most updated approximate
cost-to-go functions. Other rules that require a reasonable estimation on the upper
bound, such as the discount rule (20), can also be used in this setting.

4.4.2 Convergence analysis

Again, if one occasionally picks the level parameter sufficiently low so that only normal
iterates are produced in these iterations, the convergence analysis of Algorithm 2
follows from the analysis of standard SDDP. In order to resort to the convergence
results of [47], we assume that at every forward step Algorithm 2 arbitrarily selects
a scenario & e J k for which the level parameter is set to —oo. In this manner, all

iterates X; (é[ﬁ) issued by (16) (with scenario &/ "y will be of the normal type, and the
analysis of standard SDDP applies.

Proposition 3 Consider Algorithm 2 and assume that the problem satisfies relatively
complete recourse. Assume moreover, that the feasible sets are compact and ¢;
R™ — R are convex functions, for all t. Finally, assume that

() in every forward step k, a scenario &/ e Jkis randomly chosen and the level
parameters are set as Ei‘ o= —ooforallt =1,2,...onsample path (scenario)

j*
& .

(i) in the backward steps basic optimal solutions are employed.

Then the algorithm asymptotically computes, with probability one, an optimal pol-
icy for problem (1).

@ Springer

22 W. van Ackooij et al.

Proof 1t follows from the assumptions on the feasible set, regularizing function ¢, and

hypothesis (i) that all iterates)Etk (é[Jt;) issued by scenario &/ " and subproblem (16) are of
the normal type. We recall that normal iterates also solve (8), the subproblem handled
by SDDP in forward step. As result, at least for such a randomly selected scenario
gl Algorithm 2 behaves like? a variant of SDDP that selects only one scenario in
the forward step. Convergence analysis of such variant follows from assumption (ii)
and [47, Proposition 3.1]. Hence, Algorithm 2 defines with probability one an optimal
policy for problem (1). O

4.5 General comments on the proposed algorithms

Many variants of Algorithms 1 and 2 are possible, since there is considerable freedom
in choosing the functions ¢, (these functions are only required to be convex). A possible
choice is ¢; (x;):=||x; — X;||, where || - || is a given norm (for instance the Euclidean
one) and X, € R™ a given stability center, not necessary belonging to the feasible

set. One could take x;, = 0, X, =)E,k_l(g[,]) (the trial point used in the previous

iteration), x; = ﬁ Zre Tk [)Etk_l(é[’,])] (the average of all trial points used in the

previous iteration), etc. We recall that: if ¢, (x;) = x[T X;, then the QP solver of [30]
is an appropriate choice for solving (16) directly without resorting to the perturbed
problem (17); if ¢;(x;) = ||x; — X;||1, then subproblem (17) is an LP.

We highlight that even if the total number of level iterates is finite, the resulting
algorithms would still differ from the standard ND/SDDP because (8) can have mul-
tiple solutions and x; from (16) is the normal one (when ¢; (x;) = x[Txt). A situation
wherein problem (8) has multiple solutions can be found, for instance, in hydro-thermal
planning problems of a predominantly hydraulic power system, whose hydropower
plants can be planned in several ways to provide the same amount of power with
the same (present) cost. Many problems arising in the energy application exhibit this
“symmetry” structure.

Finally we would like to highlight that the level bundle method’s strength is achieved
when level parameters estimate the optimal values of the nonlinear subproblems (2)
(with a given optimal policy x;_; = x;ﬂl). Notice, however, that if the level parameter
is set to be too low, then more normal iterates are likely to be performed by the
algorithms. Although such iterates regularize the forward step in the case of multiple
solutions, such regularization may not be as effective as the one provided by level
iterates. This is observed in our numerical experiments, which we present in the next
section.

5 Numerical experiments

We conduct numerical experiments to test the performance of the proposed normal-
level ND and normal-level SDDP algorithms for MSLPs. We first present in Sect. 5.1
a set of instances that are used in our experiments for both the normal-level SDDP

2 Although the regularization effect still presents if (8) has multiple solutions.

@ Springer

Level decomposition for multistage stochastic programs 23

algorithm and normal-level ND algorithm. In Sect. 5.2, we focus on the normal-level
SDDP algorithm proposed in Sect. 4.4, and compare it with standard SDDP as well
as the multistage regularized decomposition of [1]. In Sect. 5.3, we focus on the
normal-level ND algorithm proposed in Sect. 4.3, and compare it with standard ND
algorithm. We implemented all algorithms in C++ using commercial solver CPLEX,
version 12.5.1 to solve the subproblems. All tests are conducted on an iMac desktop
with four 4.00GHz processors and 16Gb memory. The number of threads is set to be
one.

Although not exhaustive, the numerical experiments illustrate well the effectiveness
and the potential interest of the normal-level ND and SDDP techniques. A thorough
numerical assessment of the interests and limits of the algorithms would deserve a
whole study of itself to take into account various rules for setting level parameters,
stability centers and stability functions. Here we consider three basic implementa-
tion of the algorithms in a serial setting and four test problems. Extensive numerical
experiments and more effective implementations of the algorithms in a parallel set-
ting (investigating different sequencing protocols as suggested in [54]) are beyond the
scope of this paper.

5.1 Test problem description

We consider a multistage hydro-thermal power generation planning problem in our
numerical experiments. The problem instance is provided by E. Finardi and F. Beltran,
and models the Brazilian hydro-thermal power system. The objective of the model is
to minimize the (expected) total cost over a certain number of time stages, including
the power generation cost and the penalty of insufficient power to satisfy the demand,
under the uncertainty on the amount of rainfall in the future. Power can be generated
by a set H of hydro power plants (| H| = 30) and a set F of thermal plants (| F'| = 38)
that are interconnected with each other (see the hydro plant network structure in the
Appendix). Among the 30 hydro power plants, 16 of them have reservoirs (denoted
by Hpr) so that we could control the state of reservoir level, while the other 14 of them
are the so-called “run-of-river” plants (denoted by Hj), which do not have a reservoir.
Hydro power generation has no cost, but there are upper and lower limits (denoted by
v, and v, respectively) on the water level in each reservoir 4 € Hg. The inflow of
water in each reservoir l;;l is random, and a finite set of scenarios for each time stage
(monthly by default) in the planning horizon is available from prediction. In each
stage, we need to make decisions for each hydro power plant 2 € H on the amount
of water used for hydro power generation (denoted by £}), the amount of water to
spill in order to keep the water level of the reservoir within the limits (denoted by s}),
and the amount of power generated by each thermal plant f € F (denoted by g;).
The original data set contains monthly data for demand, power generation capacity
for each plant, and generation cost for the thermal plants, over a planning horizon of
a total of 120 months. It is assumed that the water inflows follow an autoregressive
stochastic process of the form ELH = @f’I;fz + eth, where the white noise eth is
stagewise independent. The problem thus presents a dependence between stages, but
can be made stagewise independent by applying the well-known trick recalled in [47,

@ Springer

24

W. van Ackooij et al.

Table 1 Notation for the stage-t problem of the multistage hydro-thermal power generation planning

problem

Notation Description

cr Unit cost of thermal power generated from plant f

cp Unit penalty cost for unsatisfied demand

l;;l Random inflows to hydro plant / during stage ¢

r Amount of power generated by releasing one unit of water flow in hydro plant /
d' Demand in stage ¢

)7;’ Maximum allowed amount of turbined flow in hydro plant % in stage ¢

gf’ gi, Minimum/maximum allowed amount of power generated by thermal plant f in stage ¢
Uy, U Minimum/maximum level of water allowed in hydro plant /

U(h) Set of immediate upper stream hydro plants of £ in the network

x;l Water level of hydro plant 4 in stage ¢

y;l Amount of turbined water flow released by plant / in stage ¢

x;l Amount of spilled water (without generating power) by plant / in stage ¢

g; Amount of thermal power generated by plant f in stage ¢

' Amount of unsatisfied demand in stage ¢

Eq. 1.2]: enlarge the decision variables with BZ (.e., (x;, 52)), set & = €, and enlarge
the constraint matrices with &/

With notation as in Table 1, let Q,11(x") be the expected cost-to-go function at
stage 7. Then the problem at stage ¢ can be written as:

Z crgy +epp’ + Qi1 (xh)

! t ot
gf,P’,xh,yh,S,, feF

s.t.x) = x;[_l + b+ Z b 4+ si) | — O +s,), Yh € Hg

meU (h)

Yhtsh =+ Y b +sh) | Yhe H
meU (h)

S+ Y g+ pt = d

heH feF
v, < ¥, Yhe H
8, =8y =8p VfeF

v, < xj, < Up, Vh € Hg. (28a)

We customize this data set and create a variety of instances with different number
of time stages T € {25, 61, 97}. We then sample from a given distribution of random
amount of inflows for each hydro plant in each time stage with sample sizes: | EZ;| €

@ Springer

Level decomposition for multistage stochastic programs 25

{20, 50, 80}, = 2, ..., T. For simplicity, we let the number of realizations be the
same for each stage. Therefore, if the planning horizon of the problem is 7 = 97 and
the sample size is 80, then the resulting scenario tree has approximately 4.9732 x
1082 scenarios. We remark that SDDP type algorithms are more appropriate for these
considered problem instances.

5.2 Computational experiments on the normal-level SDDP algorithm
5.2.1 Implementation details

In our experiments, we consider the following variants of SDDP for comparison:

— The standard SDDP algorithm.

— The proposed normal-level SDDP algorithm (Algorithm 2).

The normal-solution SDDP algorithm, which disables the level regularization of
Algorithm 2 by setting level parameters to be ¢, = —oo (so that only normal
solutions of (8) are considered at each forward step).

The multistage regularized decomposition algorithm proposed by [1].

Implementation of the standard SDDP algorithm We follow the description in Sect. 2
for the implementation of the standard SDDP algorithm. To get an initial lower bound
for the cost-to-go function Q,), t=1,2,..., T—1,wesolve the mean value problem
with respect to the (¢ + 1)-th stage problem by taking the expectations of the random
amount of inflows b and treating X, as decision variables. We consider two variants
of this algorithm according to the number of scenarios employed in the forward pass:

— SDDP-1: the algorithm uses only one scenario per forward step;
— SDDP: the algorithm employs ten scenarios per forward step.

Implementation of the normal-level SDDP algorithm (Algorithm 2) The backward
pass of the normal-level SDDP algorithm is identical to that of SDDP. The difference
between the two algorithms is in the forward pass. In each forward pass, the trial
points are obtained by solving (16). Instead of using a specialized QP algorithm pro-
posed in [30] to solve (16), we solve the equivalent problem (17) by setting T = 103
for the convenience of implementation. Exactly solving these QPs with high preci-
sion could be time consuming, and thus we set the optimality tolerance parameter to
be 10~*. We implement the minimum upper bound rule (27) for choosing the level
parameters. We have tried other heuristic rules such as the simple discount rule (20)
in our implementation, and concluded that the minimum upper bound rule yielded
the best performance according to our numerical study. We set the level parameter
as yr = 0.5/t fort = 2,...,T — 1. As rule (27) makes use of estimated upper
bounds Zj, our implementation of the normal-level SDDP considers ten scenarios per
forward step: Zj is then iteratively estimated based upon these scenarios. To compare
with SDDP-1 we have also tested a variant taking only one scenario per forward step.
However, the results were not competitive in terms of CPU time: the extra compu-
tational effort to obtain reasonable estimates of upper bounds z; makes this variant
noncompetitive with SDDP-1.

@ Springer

26 W. van Ackooij et al.

We follow [1] by regularizing the iterates only on the state variables (post-decision
state variables). This algorithm is denoted by normal-level in what follows. In
addition, we consider the following two variants of normal-level:

— normal-level-LP: this algorithm uses the L-1 norm for regularization, moti-
vated by the fact that the regularized formulation with L-1 norm can be formulated
as an LP, which is easier to solve and is more robust to numerical issues. Every
forward step employs ten scenarios (the same ones as SDDP).

— normal-level-prev: different from normal-level and normal-
level-LP that set the vector of zeros as the stability center during all the stages
and the entire iterative process, this algorithm sets stability centers as the previous
trial points. This is akin to [1] but with an important difference: as every for-
ward step employs ten scenarios (therefore ten different trial points are produced
per iteration), we randomly choose a stability center among the ten previous trial
points.

Implementation of the normal-solution SDDP algorithm The implementation
of the normal-solution SDDP algorithm is identical to that of the algorithm
normal-level, except that we set the level parameter to —oo, so that only nor-
mal iterates will be performed. This algorithm is denoted by normal throughout this
section. Again, every forward step considers ten scenarios.

Implementation of the multistage regularized decomposition proposed by [1] We fol-
low [1] to implement the multistage regularized decomposition algorithm: in each
iteration k > 1, one single scenario is employed per forward step and we use the trial
point produced at the previous iteration k — 1 as the stabilization center. Moreover,
we set the regularization parameter (coefficient of the quadratic term) to be 0.95% as
suggested by [1]. This algorithm is denoted by multi-reg in the remainder of this
section. We adopt the setting used in [1], which is to use only one single scenario
per forward step. We have also investigated a variant of multi-reg considering
ten scenarios per forward step. Similar to the algorithm normal-level-prev we
randomly chose the stability center among the ten previous trial points. However, this
variant was not found to be competitive and therefore we do not report its results.

5.2.2 Performance on lower bounds with fixed CPU time

In this section, we report the quality of lower bounds obtained by each variant of
the SDDP algorithm described above given a fixed time limit of three hours (10800
seconds). To make the comparison fair, we set the number of threads to be one. Except
for SDDP-1 and multi-reg algorithms that employ one single scenario per forward
step, all the other investigated algorithms use ten scenarios in each forward step, so that
reasonable upper bound estimates can be obtained from these scenarios for variants
“normal-level”. (We also performed experiments by varying the number of scenarios
in the forward step, but did not observe significant differences, and therefore chose to
report results using 10 as the sample size.)

Table 2 reports the lower bounds yielded by each one of the seven considered algo-
rithms on nine different instances of the multistage hydro-thermal power generation

@ Springer

Level decomposition for multistage stochastic programs 27

planning problem described in Sect. 5.1. We compare the progress on lower bounds
with the ones provided by algorithm SDDP-1 after one, two and three hours of pro-
cessing. The last column of Table 2 reports the number of iterations performed by
every algorithm in each one of the nine problem instances. The time horizon of the
considered instances are T = 25, T = 61 and T = 97 months, which represent 1
deterministic month (the first-stage) plus an uncertain future of respectively 2, 5 and
8 years split into months.

We care to mention that the lower bound progress is the feature of major interest
when dealing with the considered application. More importantly, the main goal in
solving the hydro-thermal power generation planning problem of Sect. 5.1 is to obtain
a good cutting-plane approximation 05 (-) of the cost-to-go function Q5. Indeed, the
cutting-plane function Qs(+)is given as an input to a more detailed optimization model.
Such a model (with a shorter planning horizon but with hourly, daily or weekly time
steps) appends Q5 (+) in its last stage to represent “future costs” in decision making on
power generation (sometimes for every turbine of all considered plants) and operation
of transmission lines [36]. The importance of lower bound progress is then directly
connected to the quality of the cutting-plane model [0}Y0) by subproblem (7). This
justifies our interest in a fast progress of lower bounds.

From Table 2, we see that the performance of algorithms varies depending on
the time limit of processing: after one hour of processing all the algorithms (except
normal) performed better (in most of the instances) than the algorithm SDDP-1 in
terms of lower bounds. After three hours of processing the improvement on lower
bounds yielded by the regularized algorithms are, as expected, less expressive: the
reason is that the sequence of lower bounds stabilizes near the optimal value of
the underlying problem. Nonetheless, the proposed algorithms normal-level and
normal-level-LP still provide better bounds for all instances with more dense
scenario trees, i.e., | Z;| equal to 50 and 80.

Asnormal-level-LP usesthe L1-norm (applied to the post-decision state vari-
ables) as the stability function ¢; in (17), the subproblems solved in the forward steps
are LPs, which are much more efficient to solve than the QPs. This explains why the
algorithm normal-1level-LP performs more iterations than normal-level.In
fact, the total number of iteration of normal-1level-LP is comparable to the num-
ber of iterations performed by SDDP. One can thus conclude that the regularization
yielded by the Euclidean norm as stability function is more effective than the regu-
larization issued by the L1 norm: the algorithm normal-level performed fewer
iterations thannormal -1level-LP but provided as good as (sometimes better) lower
bounds. From this perspective, we see that the SDDP-1 performed better than the reg-
ularized algorithms and SDDP on our test instances when the number of realizations
in each stage is relatively small (]&;| = 20). Moreover, the SDDP algorithm and the
proposed normal-level SDDP algorithms yield similar performance on these smaller
instances. On the other hand, we see that the proposed normal-level SDDP algorithms
are more competitive when the number of realizations per stage is larger. Indeed, in
this case all the algorithms will take more time in the backward step, leading to fewer
iterations within the time limit overall (see for example the instance 7 = 97 and
|&¢| = 80). Therefore, the impact of computational inefficiency on solving a QP (17)
compared to solving an LP (8) is less significant on the overall computational time.

@ Springer

W. van Ackooij et al.

28

8ICI SISTTT— 099106 126’11 — 09¢'LLL8 8€9°6 — 068'96¢8 0C 19 Poa-TaTnw
e - 00t°61201 - 080°5886 - 0057266 0C 19 [-daas
ILT 78yl — 060°61CI Y0L'0— 0€9°60C1 [! 06¢°T611 08 S¢ Teurxou
€L1 €Cro 0L6'8€TI g8C'1 0s0°¢eT 069'C 005°60CT 08 4 A21d-ToART-TRUWIOU
¢8¢ 6¥9°C 0€coLel ¥66'C 081°¢scl £99°¢ 096°0¢Cl 08 4 dT-T3AST-TeWwIou
OLIT Yoy 0ST'L8CI 660°S 086'LLCIT oIT'L 0€9°19¢1 08 4 TeAST-TewIou
S6C 8YSC— 0c6's0cl S§C6'c— 0LV €811 soLCc— 096°SP11 08 4 dadas
9691 9600 — 09T9¢Cl €eL’0 0s¢9cel Ge9'C 088°80¢1 08 4 Boa-TaTnw
Iele - 0sv'LeT - 0c6'LICI - 0C8'LLIT 08 4 [-daas
LLT 12C0 0covict 19v°1 0L8'L6CI Sev'e 0L6°1LCT 0S 4 Teuxou
181 [020'LTel sol'e 081'6I¢cI ver'o 096°LOET 0S Y4 £2Id-TRAST-TRWIOU
09¢ 06Lv 0c6'cLE] [44%°% 00t'ssel 9¢9°L 001 €cel 0S Y4 dT-TeAST-TewIou
8LI SYL'S 091°98¢1 011'8 08S°6LET 6SET1 019°89¢1 0S 4 ToAST-TewIou
69¢ 19¢°¢ 00T ssel 6eey oreeeel £C8'e 000°9LC1 0S Y4 daas
8CLI 99°0 — 0ercoel c6L0 09'68¢C1 or'e 0€6°1LCl 0s 4 Poa-T3Tnw
8L6E - ocIIIel - 016'6LC1 - 010°6CCl 0s 4 [-ddds
(444 8CC'l — 6£9'8CL 96¢°l — 11T9IL £e6'1 CLSCOL 0C 4 Teuxou
¥0¢ €89V — €S1°€0L VLYY — 766769 98¢0 — 1657989 0C Y4 A2Id-TRAST-TRWIOU
€8¢ ¥CC0— 670°9¢L 9¢0'l — 769°'8IL eol'l SLY'L69 0C Y4 dT-TeAST-TewIou
So6l 8¥C°0 0cs6¢L we'l 6L0°SEL 918'¢ 8€C6CL 0C Y4 TSAST-TewIou
6S 9CL0— SYECEL L60'T — ELTBIL Sl 896°L69 0C S¢ daas
€eIT 6SL'E— 696'60L 6¥9°¢ — £89°00L 0LT'0 9Ty 069 0c 4 Box-TaTnu
LYS9 - 869°LEL - TEY'STL - 1ST°689 0C 4 [-daas
10 # 1% a1 q471% a1 1% a1 el Az WOy

yg¢ yzg qyr sooue)su|

*SINOY 9AIY) PUE SINOY 0M] INOY SUO JO JIWI[W} PAXY B [JIM SWYILIOS[E SNOLIBA AQ PAUIRIO SPUNO Jomo] g d|qe)

pringer

as

29

Level decomposition for multistage stochastic programs

144 0080 — 009'92161 Y20 — 00079281 6CS€— 001 #7991 0T L6 daaas
0201 6£0°6— 001'8ESLT 86901 — 00S'L9L91 SHE6— 00L 0%9ST 0T L6 fox-TaTnu
619C - 006'08261 - 00T'€1981 - 006'CSTLI 0T L6 [-aaas
011 9896 — 015°0966 €T o1 — 0T0°LSS6 IST6— 0601998 08 19 TewIou
41! SYTT— 001°18L01 101°0 00£°09501 €0’ 009°8%001 08 19 A21d-TBAST-TRWIOU
L91 6LY'9 00€ EPLIT £99'6 006 TLPTT LY6°01 001°LLSOT 08 19 dT-ToAST-TRWIOU
48 8491 00€' T#STT €18 006'STETT 8€S°TI 008'8TLOT 08 19 ToAST-TewIou

L91 9LT0— 00€'86601 17€°0 00T'€8S01 TLeT 0S0°0SL6 08 19 daas
901 LEV'E— 009°6¥901 59T — 006'L6201 ey 088'9766 08 19 fox-TaTnu
TILT - 00L'8T0T1 - 00L°0SS0T - 08%'€£56 08 19 [-aaas
181 SST01 — 006'192C1 9eL'TT — 009°SLLTT 85S¢l — 009°S€LOT 0S 19 TeuIou
811 LOS T — 00€"LYOET 8It'c— 00$'808C1 9L0— 001" €TETT 0S 19 £21d-TOAST-TRWIOU
LOT LT9'1 00%'S88€1 0LY'C 00L'6£SET 6CLE 001°188CI 0S 19 dT-T9AST-TeuLIOu
L11 6£5°0 008'9€LET LT9'1 000°SEVET wsy 00S°6L6C1 0S 19 T9AST-TRWIOU
LOT 890'T 000'608€T Y6T'1 00L'€6€€T P61 00$°€09CT 0S 19 daas
8111 wLy— 006°L10€1 8TLE— 000°0LLTT £ree— 006'200C1 0S 19 Box-TaTnu
¥S1¢T - 001°€99¢€1 - 000°€€TEl - 000'81+C1 0S 19 [-daas
sel 8711 — 0t8'$706 67011 — 0t€'8588 6€L°6— 081°L8¢8 0T 19 TeuIou
(¥4 8GL01 — 0S6'6116 7986 — 0578968 ST6'9— 000°6%98 0T 19 £2Id-TOAST-TRWIOU
1403 SE9'T — 00€'2S001 1060 — 0€€'1086 8800 00L°00£6 0C 19 dT-T9AST-TeuLIou
¥l 15’8 — 09L'SS€6 61T'L— 09S°€T26 LTy — 06817068 0T 19 T9AST-TRWIOU
cle SPTI1— 002°26001 085°0— or1'1€86 0201 0TE'L8E6 0C 19 aaas
1001 # q41% a1 a1% a1 a1% a1 el 1z w3y
yg¢ ytc yi sadueIsuy

penunuod ga|qel

pringer

as

W. van Ackooij et al.

30

I19139q pauriozrad WY)IIoS e pauTwex? Ay} 1By} SUBAW anfeA (danesou) oantsod e ‘a10joray], A

(punoq 1omoy) uonewrxoidde uonouny 03-03-)s00 dY) JO SWLIA) UT [-JAJS UBY) (9SIOM)

T-dadsg 7 .
%v 007 I0J spues g1 9 ‘uostredwon Jo siseq & se [-dAAS eI M

6 8056 — 00L'TEILT €796 — 00€°20L9T €0L'0— 00S'1LSP1 08 L6 TewIou
6 SET0— 001°65t61 9’8 001°CSL8T 9Er Pl 001°€6L91 08 L6 A91d-TOAST - TRWIOU
€el 188°S 00€°1€90¢ CEVIT 001°0T61 I181°01 00L'89191 08 L6 dT-ToAST-TeWIoU
6 LOL'T 009'+200¢C 091°11 001°S9161 ¥99°CI 001°€€S91 08 L6 ToAST-TeWIou
43 0011 — 000'1LT61 8LI't 00S°0t181 L6E'S 00L'99%S1 08 L6 daaas
788 06€t — 006'62981 Str'y 008'9L18I 88L°SI 009" 16691 08 L6 fox-TaTnu
SoEl - 0078761 - 00%'LTSLT - 00L ¥L9%1 08 L6 [-aaas
86 LEO6— 00€°0662T LEY'L— 000'0€€TT 60S°S — 008'26861 0S L6 TewIou
66 8570 009'6£€ST TTLe 00€'€9LYT €€8°01 001" €EEET 0S L6 £21d-TBAST-TRWIOU
91 926’1 00€°19LST £68°¢ 00€°66L¥CT 6L9'9 00S'8S+TT 0S L6 dT-ToAST-TRWIOU
66 ¥99'1 000°S69S¢T 549 00€'90LYT Sot'9 000°10¥CT 0S L6 T9AST-TewIou
€91 €600 — 001°'192ST SL6'T 009°'S6£+C Twe'e 000'9SL1T 0S L6 daas
L¥6 SE6'€— 006'6LTHC 1S1°¢— 007'91€€T eLY'E 009°€8L1T 0S L6 fox-TaTnu
0691 - 00%'¥LTST - 008'6L6€T - 00$°2S01¢C 0S L6 [-daas
So1 L8E8T — 00L'SELST 65861 — 000°L8IST §9T°0T — 009'9SLET 0c L6 TewIou
So1 1€7°01 — 008'69TLI 90€0T — 0075891 €9¢°6— 00S°LE9ST 0T L6 £21d-TOAST-TRWIOU
T 91+'0 00T'19¢61 019°0— 000'80S81 S0L0— 00T TEILT 0C L6 dT-T9AST-TeuLIoOu
901 7909 — 001°CII8I ¥09'S — 00%'9%9L1 007 — 00$'79591 0C L6 ToAST-TeWIou
1001 # q41% a1 a1% a1 a1% a1 I’z 1z w3y

yg¢ ytc yi sadueIsuy

panunuod g 3jqel

pringer

as

Level decomposition for multistage stochastic programs 31

Comparing normal-level, normal-level-LP, normal-level-prev
and multi-reg across all cases, we conclude that algorithms normal-level and
normal-level-LP perform better onthe testinstances (withnormal-level-LP
providing the best performance on the large instances).

Regarding the algorithm multi-reg, we notice that its improvements on lower
bounds are significant within the first minutes of processing (see Figs. 2, 3 and 4
below) but becomes less evident after a few hours of processing: at the end of three
hours of processing the lower bounds yielded by multi-reg are poorer than the
ones issued by the unregularized solvers SDDP-1 and SDDP. An explanation for such
a performance is the fact that multi-reg eventually dismisses regularization: as
already argued, the algorithm multi-reg eventually computes normal solutions of
(8), which for the considered problem do not yield an effective regularization. To see
this, note from Table 2 that the algorithm normal was often less competitive than the
unregularized algorithm SDDP-1. Such a poor performance of normal then explains
why multi-reg was not competitive at the end of three hours of processing (in
contrast to its good performance in the first hour).

We care to mention that algorithm normal-level-prev was not competitive
at the end of three hours of processing. This shows that the naive strategy of randomly
choosing stability centers out of ten previous trial points is inappropriate for the con-
sidered test problems. Further rules to update stability centers in Algorithm 2 should
be investigated in a future computational study.

Figure 2 presents the lower bound progress yielded by the seven considered algo-
rithms on the instance of the problem with 7 = 25 and | &;| = 20. The top-left image
presents the solution progress “CPU time (s) x LB” in the first 20 minutes of process-
ing whereas the top-right image displays the whole iterative process of three hours.
The same data is presented again in the bottom-left image but with the abscissa in the
logarithmic scale. The abscissa of bottom-right image is the logarithm of iterations,
and not CPU time. We can see from Fig. 2 that multi-reg was the most effec-
tive algorithm up to nearly 200 seconds of processing, and then it was overtaken by
normal-level up to the end of the three hours of processing. Moreover, the lower
bound 1311.130 computed by SDDP-1 in three hours was obtained by the algorithm
normal-level in only eleven minutes. As the figure shows, multi-reg was not
able to reach such a bound (see also Table 2).

The results for instance with T = 61 stages (1 + 5 x 12 months) and |Z;| = 80
are illustrated in Fig. 3. Once again, algorithm multi-reg starts very well but then
is overtaken by the normal-level algorithms. As in theory multi-reg eventually
becomes algorithm normal, the bad performance (on this test problem) of the latter
explains the limiting behaviour of multi-reg.

We repeat the same analysis for the instance of the hydro-thermal power
generation planning problem with T = 97 stages (I + 8 x 12 months) and
|Z;| = 80. Comparing among options normal-level, normal-level-LP and
normal-level-prev, we see that option normal-level-LP finishes a much
larger number of iterations within the time limit, due to the fact that LPs as opposed
to QPs are solved in the forward pass. The performances of the first two algorithms
are more competitive than option normal-level-prev.

@ Springer

32 W. van Ackooij et al.
First 20 minutes of processing Iterative process: 3 hours
1u00 - - - - - - - - - - - - - -
1200
1000
12
2
o
S oo
&
8 eor-R(f |esass
. —*—normal-level 1
=——normal-level-LP
200 —=—normal-level-prev|
—normal
3 20 w o = o 20 o oo mm wm am w0 o0 7000 w0 500 10000
CPU time (s) CPU time (s)
Iterative process: 3 hours Iterative process: 3 hours
1400 T T T 1 1400 T . T ™
-
1200 1 1200 P -~ 1
4
1000 1 1000} / i
0 [7] J
4 4
o Q ol]
S ool 1 S0
o o
Q Q
o ool P 1 & oor 4
]] =
400 /" 1 4 400 4
Fo
200 ! 4 200 4
Pt
. i 1 . . . L. . .
10° 10 102 10° 10* 10° 10 102 10° 10*
CPU time (s): logarithm scale Iterations: logarithm scale
Fig.2 Solution progress for instance 7 = 25 stages and | Z¢| = 50 scenarios per stage
First 20 minutes of processing Iterative process: 3 hours
11500 [K
10000 | J
11000 [~
» 8000F ’a‘—— s 105001
3 - 3
g -, e SDDP-1 £ oo
g eooor 7 — -multi-reg 1€ =
a | S e SDDP o wof oS J
- —*—normal-level T~ sk g |
= normal-level-LP
—=—normal-level-prev| ssoo- A 1
_]
|] T normal 1 BO00T) g, 1 i 1 1 I I 1 1 I
00 0 0 1000 1200 0 1000 2000 3000 4000 5000 6000 7000 8000 000 10000
CPU time (s) CPU time (s)
Iterative process: 3 hours Iterative process: 3 hours
’ ',/"
10000 | 1 ool 4
7’
e
& S0of 1 4 o0 4
2 2
o o
{=2] {=2]
E 6000 |- 1 9 6000 [~ 1
(=% o
1] 1]
— 4000 4 = a000f q
2000~ s B 2000~ 4
r
o L .
10° 10" 107 10° 10* 10° 10" 107 10° 10*

Fig.3 Solution progress for instance 7 = 61

@ Springer

CPU time (s): logarithm scale

Iterations: logarithm scale

stages and |Z| = 80 scenarios per stage

Level decomposition for multistage stochastic programs

33

10t

First 20 minutes of processing

z[---SDDP-1 1
} 2F

18|= =multi-reg .

N SDDP] ol

14| normal-level - -
» -- »
2 =—normal-level-LP - @ 15l
012 1 8
2 —=—normal-level-prev| , -~ ~ 5
& '|——normal avr
m osf o
4 =6k

06

045 e 151

02 A ’

RN wp oy KES
200 400 600 800 1000 1200 o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
CPU time (s) CPU time (s)
L Iterative process: 3 hours o Iterative process: 3 hours

SF r : . . SF " : : —

e 1 18F 4

16 1 16F 4
 F 1 ot 1
173 173
O 12f 1 ©i2f 1
D D
o 1t 4 92t g
Q Q
m osf 4 m osf 1
- -

06 4 06 1

04 7 4 04 1

02l e E 02l ,

_/

102 10°

CPU time (s): logarithm scale

10"

102 10°

Iterations: logarithm scale

Fig.4 Solution progress for instance 7 = 97 stages and | Z¢| = 80 scenarios per stage

35

30

Percentage of level iterates per stage
T T T T T

——normal-level
—normal-level-LP
——normal-level-prev

10°

Fig.5 Instance T = 97 stages and | = | = 80 scenarios per stage. Percentage of level iterates per stage

Finally, Figure 5 presents the percentage of level iterates performed by these three
solvers in each stage. Since each iterate generated by our approach is either a level

or a normal iterate, the percentage of normal iterates is complementary to the data

of Fig. 5. Notice that although the percentage of level iterates is at least 15% in the
first ten stages, this percentage decreases significantly at the last stages (more normal

@ Springer

34 W. van Ackooij et al.

iterates are generated in the last few stages). From this observation we can conclude
the following:

— rule (27) is very often unable to estimate useful level parameters at the last few
stages;

— the level regularization is compelling because the iterative process has been
improved (with respect to the unregularized SDDP algorithm) even with a rea-
sonably small percentage of level iterates. We recall that although the normal
iterates are the majority in the iterative process of algorithms normal-level,
normal-level-LPand normal-level-prev,the algorithm normal that
performs only normal iterates presented a poorer performance (see for instance
Fig. 4).

All in all, these results indicate that the proposed level-like regularization can be
very effective provided an appropriate heuristic for determining the level parameters
is employed: even the simple rule (27), which presented its weakness in the last stages
(c.f. Fig. 5), could significantly improve the numerical performance of the SDDP-like
algorithms.

5.3 Computational experiments on the normal-level ND algorithm

Our implementations of the standard ND algorithm and normal-level ND algorithm
are similar to their SDDP counterparts, respectively. The key difference is that the cost-
to-go functions Q;(-) are defined not only for each non-terminal stage #, but for each
non-leaf node of the scenario tree (although the same notation was used in Sect. 4.3 for
notational convenience). The standard ND implementation follows the description in
Sect. 2. The normal-level ND implementation follows Algorithm 1, using the minimum
upper bound rule for setting level parameters. The normal-solution ND implementation
is identical to that of normal-level ND except that the level parameter is set to —oo
always.

The test instances for our ND algorithm come from three different sources: (i)
instances directly available from the literature [54]; (ii) instances constructed by mod-
ifying those in the literature; and (iii) instances constructed from the hydro-thermal
power generation planning problem described above in Sect. 5.1. For (ii), we take
the pltexpA instances with 3 and 4 stages, but generate more scenarios than the ones
provided by [26], according to their scenario data. For (iii), we consider instances with
4 and 5 stages (these stages are taken from the Ist, 7th, 13th, 19th, and 25th stage from
the full data, due to the cyclic rainfall pattern), and use different samples from the full
set of scenarios with various sizes.

We see from Table 3 that, normal-level ND works better in terms of both com-
putational time and number of iterations performed by the algorithm than standard
ND on the set of hydropower planning instances. However, this is not the case
for instances pltexpA and sgpf, where the help from regularization brought by the
normal-level ND is less significant, resulting in more computational time in
many cases. In spite of the somewhat mixed results, the normal-level ND tends
to be more effective on instances that require more iterations to converge. This is in
accordance to what is known in the literature for the two-stage setting: see for instance

@ Springer

Level decomposition for multistage stochastic programs 35

Table 3 Nested decomposition: a comparison of with two regularization strategies

Instances T | &% standard ND normal-level ND normal ND
Time (s) # iter Time (s) # iter Time (s) # iter
Hydro 4 10 2984.7 126 899.3 43 1414.2 69
20 7377.8 51 5173.3 42 6527.3 46
5 5 121.4 109 287.0 59 215.4 56
10 3784.1 138 2379.7 74 2482.9 76
pltexpA 3 100 23.0 8 24.8 8 243
200 154.9 9 159.7 9 159.9 9
4 30 169.2 10 242.1 14 172.1 10
40 649.0 11 584.1 9 674.7 11
sgpf 4 5 0.1 3 0.1 3 0.1
0.6 5 0.8 6 0.7 5
4.3 8 4.6 7 4.8

the analysis on Benders decomposition versus level bundle method for two-stage
stochastic programming presented in [53, Table 14].

6 Conclusions

In this paper, we have proposed a regularization scheme based on normal solutions
and level sets to well-known decomposition methods for MSLPs. We have discussed
convergence of the suggested algorithms and shown their interest in a set of instances
coming from a large scale hydrothermal scheduling problem. In our implementation of
Algorithm 2, we have considered the minimum upper bound rule (27) for choosing the
level parameters for all the scenarios in the forward step. However, the convergence of
the normal-level SDDP algorithm has only been shown for setting £, = —oo for one
arbitrary scenario in the forward step, but not for other rules for setting level parameters.
Showing convergence without this assumption, as was done for the regularized nested
decomposition, should be considered for the future.

As perspectives are concerned we can think of extending the given algorithms
to deal with risk-averse MSLPs [28], as well as furnishing the backward step with
an adaptive partition-based scheme akin to [50] to reduce the computational burden.
Furthermore, other alternatives to define level parameters ¢; shall be addressed in
future research, in addition to the possibility of extending the complexity analysis of
level bundle methods to the proposed normal-level ND and SDDP algorithms.

From the numerical point of view, an extensive analysis comparing specialized
algorithms for solving the perturbed subproblems, different stability functions and
different rules for defining stability centers shall be investigated. Moreover, the given
algorithms will benefit from paralellization techniques and an analysis of different
sequencing protocols as investigated in [54].

@ Springer

36 W. van Ackooij et al.

Acknowledgements We would like to acknowledge the coordinating editor and two anonymous referees
for their constructive suggestions that considerably improved the original version of this article. We also
thank C. Wolf and A. Koberstein for providing us with some test problems and E. Finardi and F. Beltrdn
for the instances of the multistage hydro-thermal power generation planning problem. Finally, the first and
the second authors would like to acknowledge the partial financial support of PGMO (Gaspard Monge
Program for Optimization and operations research) of the Hadamard Mathematics Foundation, through the
project “Models for planning energy investment under uncertainty”. The third author acknowledges partial
support by the National Science Foundation (NSF) under grant CMMI 1854960. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the NSF.

Appendix A: Proof of Lemma 1

Item (a) Let X be a solution of (11), then f(x) < f(x(t)) (recall that both x and
x(7) belong to X). Moreover, f(x(t))+ %(p(x(r)) < f(x)+ %(p()?). These
two inequalities show that ¢(x (7)) < @(X) = ¢* < oo.

Item (b) The previous item ensures that ¢ (x(tx)) < ¢(x) < oo for all k. Since ¢ is
a strong convex function, its level sets are compact. As a result, {x(tx)}is a
bounded sequence and, therefore, there exists a constant L < oo bounding
all subgradients of ¢ at x (%) for all k.

Item (c) We first prove that

e(x(T)) < e(x(x”)) and f(x(z") < f(x(T”) forall0 <t/ < 7”. (29)
It follows from optimality of x(z’) and x(z”") and strongly convexity of ¢ that

fEEN +oa@E)/t" < fx@) + o)/
fEE) + @/t < fO@) +ox@)/". (30)

By summing these inequalities we obtain ¢(x(z’)) (%—%) < o)

(& - %), showing that ¢(x(t")) < @(x(t”)). Inequality (30) implies f(x(z")) —

fx()) < #[(p(X(T/)) —(x(")] < 0, yielding f(x(")) < f(x(z).
Next we show that

x(r) = argmin{f(x) s.t.x € X, ¢(x) < ¢(x(1))}
= argmin{p(x) s.t.x € X, f(x) < f(x(r))}, VYT >0. a3

To thisend, letx € X suchthatx # x(t). Then %[go(x(t))—fp(x)] < f(x)— f(x(1))
from the definition of x (7). If (x) < ¢(x(7)) then f(x(r)) < f(x), showing that
x(7) is the unique solution of min{ f (x) s.t. x € X, ¢(x) < ¢(x(7))}. Furthermore,
if f(x) < f(x(1)), then p(x(7)) < ¢(x), showing that x(t) is the unique solution of
minf{p(x) st.x € X, f(x) < f(x(r))}.

We are now in position to proof item (c). Recall that ¢ (x (7)) < ¢(X) from item (a).
The equivalences follow from (31) ¢(¥) = ¢(x(7)) & f(X) = f(x(7)) & x(7) €
X*, and the identity x(z") = X for all T/ > t follows from (29). O

@ Springer

Level decomposition for multistage stochastic programs 37

Appendix B: Detailed descriptions of the test instances

We describe the test instances used in our numerical experiments in more detail. The
interconnected network structure of the hydrothermal power plants in Brazil is depicted
in Fig. 6, and the detailed data on hydro and thermo plants are given in Table 4 and
Table 5, respectively. In addition, we set the demand to be a constant 14,500 in each
stage, and we set the unit penalty cost of not satisfying the demand to be 4500. The
scenario data file is too big to be displayed here, but will be available upon request.

CAMARGOS
* Hydro plant with reservoir

ITUTINGA
¢ Run-of-river hydro plant

FUNIL - GRANDE

FURNAS

MASCARENHAS
DE MORAES

L. C. BARRETO

JAGUARA

ITUMBIARA (16)
\GARAPAVA CACONDE

E. DA CUNHA

C. DOURADA (1) Ho €) VOLTA GRANDE

A.S. OUVEIRA
PORTO COLOMBIA
SAO SIMAO (6)

H14'W' MARIMBONDO (16)

His W AGua VERMELHA (10)

NOVA AVANHANDAVA PROMISSAQ IBITINGA BARIRI BARRA BONI
<3 <& @ @ <
Hx Hzs Has Hz4 Hzs

23 W ILHA SOLTEIRA

H2o @) s
Hao) PORTO PRIMAVERA

Fig.6 The interconnected network structure of the hydrothermal power plants in Brazil

@ Springer

38 W. van Ackooij et al.

Table 4 Hydro plant data: the maximum allowed amount of turbined flow, the minimum/maximum level
of water allowed, the initial water level, and the amount of power generated by releasing one unit of water
flow in each hydro plant 2 = 1,2, ..., 30

Plant 5t (m3/%) v, (hm?) o (hm3) xD(%) r(MWa/(m3/%))
H, 220 120 792 50 0.178645
Hy 236 11 11 - 0.244686
Hs 585 304 304 - 0.350193
Hy 1692 5733 22950 50 0.748479
Hs 1328 1540 4040 50 0.315981
Hg 2028 1423 1423 - 0.562731
Hy 1076 450 450 - 0.404259
Hg 1480 480 480 - 0.154781
Hy 1584 2244 2244 - 0.247221
Hig 1988 1524 1524 - 0.203826
Hij 94 51 555 50 0.775442
Hia 148 14 14 - 0.746079
Hi3 178 25 25 - 0.206450
Hia 2944 890 6150 50 0.466867
His 2958 5856 11025 50 0.456953
Hig 570 470 1500 50 0.576865
Hy7 1048 4669 17725 50 1.041320
Hig 576 2412 12792 50 0.940192
Hig 675 974 1120 50 0.617276
Ha 2940 4573 17027 50 0.645664
Hy) 2513 460 460 - 0.282615
Hy 2670 7000 12540 50 0.609431
Hy3 759 569 3135 50 0.156818
Hoa 771 544 544 - 0.188124
Hys 702 985 985 - 0.187166
Hog 1293 5280 7408 50 0.199675
Hy7 1431 2720 2720 - 0.260129
Hog 11604 25467 34432 50 0.383595
Hno 8344 3354 3354 - 0.198022
Hxo 8904 14400 20000 50 0.171769

@ Springer

Level decomposition for multistage stochastic programs 39

Table 5 Thermo plant data:
maximum allowed amount of
power generated and the unit 640 2321
cost of thermal power generated

Plant '/ (MWa) ¢ (R$/MWa)

from each thermo plant f b) 1350 20.12
T3 530 89.33
T4 36 937
Ts 157 262.56
T 59 273.52
Ty 28 189.41
Ty 529 511.77
Ty 44 838.15
To 235 151.2
T 321 230.31
Ti> 65 275.53
T13 572 399.02
Ti4 140 895.17
Tis 226 274.79
Ti6 131 653.43
T17 87 213.84
T1g 204 166.44
Tg 400 37.8
T 100 58.89
T 200 102.84
Ty 127 282.05
T3 176 731.91
T4 200 470.34
Is 30 421.52
Tre 436 310.41
Ty7 500 111.1
Iy 31 90
T2 134 155.61
T30 216 274.03
T31 340 678.04
T3 929 421.02
133 770 182.87
T34 266 275.03
T35 10 1047.38
T36 175 440.24
T37 206 197.85
T33 54 1171.37

@ Springer

40 W. van Ackooij et al.
References
1. Asamov, T., Powell, W.B.: Regularized decomposition of high-dimensional multistage stochastic pro-

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

grams with markov uncertainty. SIAM J. Optim. 28(1), 575-595 (2018)

Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization.
Birkhduser, Basel (1982)

Ben-Tal, A., Nemirovski, A.: Non-euclidean restricted memory level method for large-scale convex
optimization. Math. Program. 102(3), 407-456 (2005)

Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper.
Res. 33(5), 989-1007 (1985)

. Chen, Z.L., Powell, W.B.: Convergent cutting-plane and partial-sampling algorithm for multistage

stochastic linear programs with recourse. J. Optim. Theory Appl. 102(3), 497-524 (1999)

Clark, D.I., Osborne, M.R.: A descent algorithm for minimizing polyhedral convex functions. SIAM
J. Sci. Stat. Comput. 4(4), 757-786 (1983)

de Matos, V.L., Morton, D.P., Finardi, E.C.: Assessing policy quality in a multistage stochastic program
for long-term hydrothermal scheduling. Ann. Oper. Res. 253, 713-731 (2016)

de Oliveira, W.: Target radius methods for nonsmooth convex optimization. Oper. Res. Lett. 45(6),
659-664 (2017)

de Oliveira, W., Sagastizdbal, C.: Level bundle methods for oracles with on demand accuracy. Optim.
Methods Softw. 29(6), 1180-1209 (2014)

de Oliveira, W., Sagastizabal, C., Jardim Penna, D.D., Maceira, M.E.P., Damazio, J .M.: Optimal
scenario tree reduction for stochastic streamflows in power generation planning problems. Optim.
Methods Softw. 25(6), 917-936 (2010)

de Oliveira, W., Sagastizdbal, C.A., Scheimberg, S.: Inexact bundle methods for two-stage stochastic
programming. SIAM J. Optim. 21(2), 517-544 (2011)

de Oliveira, W., Solodov, M.: A doubly stabilized bundle method for nonsmooth convex optimization.
Math. Program. 156(1), 125-159 (2016)

de Oliveira, W., Sagastizdbal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified
analysis for inexact oracles. Math. Prog. Ser. B 148, 241-277 (2014)

de Queiroz, Anderson Rodrigo, Morton, David P: Sharing cuts under aggregated forecasts when decom-
posing multi-stage stochastic programs. Oper. Res. Lett. 41(3), 311-316 (2013)

. Donohue, C., Birge, J.R.: The abridged nested decomposition method for multistage stochastic linear

programs with relatively complete recourse. Algorithmic Oper. Res. 1(1), 20-30 (2006)

Dupacovd, J., Polivka, J.: Asset-liability management for Czech pension funds using stochastic pro-
gramming. Ann. Oper. Res. 165(1), 5-28 (2009)

Dupacova, J.: Portfolio Optimization and Risk Management via Stochastic Programming. Osaka Uni-
versity Press, Osaka (2009)

Fabidn, C.I.: Bundle-type methods for inexact data. In: Proceedings of the XXIV Hungarian Operations
Researc Conference (Veszprém, 1999). Special issue, T. Csendes and T. Rapcsdk (eds.), vol. 8, pp.
35-55, (2000)

Ferris, M.C., Mangasarian, O.L.: Finite perturbation of convex programs. Appl. Math. Optim. 23(1),
263-273 (1991)

Fhoula, B., Hajji, A., Rekik, M.: Stochastic dual dynamic programming for transportation planning
under demand uncertainty. In: 2013 International Conference on Advanced Logistics and Transport,
pp. 550-555, May (2013)

Girardeau, P., Leclere, V., Philpott, A.B.: On the convergence of decomposition methods for multistage
stochastic convex programs. Math. Oper. Res. 40(1), 130-145 (2014)

Goel, V., Grossmann, LLE.: A stochastic programming approach to planning of offshore gas field
developments under uncertainty in reserves. Comput. Chem. Eng. 28(8), 1409-1429 (2004)

Herer, Y.T., Tzur, M., Yiicesan, E.: The multilocation transshipment problem. IIE Trans. 38(3), 185-200
(2006)

Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage linear programs with
recourse. Math. Oper. Res. 16(3), 650-669 (1991)

Hindsberger, M., Philpott, A.B.: Resa: A method for solving multi-stage stochastic linear programs.
In: SPIX Stochastic Programming Symposium, Berlin (2001)

Holmes, D.: A (po)rtable (s)tochastic programming (t)est (s)et (posts). http://users.iems.northwestern.
edu/~jrbirge/html/dholmes/post.html (1995)

@ Springer

http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html

Level decomposition for multistage stochastic programs 41

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Homem de Mello, T., de Matos, V.L., Finardi, E.C.: Sampling strategies and stopping criteria for
stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling. Energy
Syst. 2(1), 1-31 (2011)

Homem de Mello, T., Pagnoncelli, B.: Risk aversion in multistage stochastic programming: a modeling
and algorithmic perspective. Eur. J. Oper. Res. 249, 188-199 (2016)

Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4),
703-712 (1960)

Kiwiel, K.C.: Finding normal solutions in piecewise linear programming. Appl. Math. Optim. 32(3),
235-254 (1995)

Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point
problems and variational inequalities. Math. Program. 69(1), 89—109 (1995)

Lemaréchal, C.: An extension of davidon methods to nondifferentiable problems. Math. Program.
Study 3, 95-109 (1975)

Lemaréchal, C.: Constructing bundle methods for convex optimization. In: Hiriart-Urruty, J. B. (ed.)
Fermat Days 85: Mathematics for Optimization. North-Holland Mathematics Studies, vol. 129, pp.
201-240. North-Holland (1986)

Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1),
111-147 (1995)

Linowsky, K., Philpott, A.B.: On the convergence of sampling-based decomposition algorithms for
multistage stochastic programs. J. Optim. Theory Appl. 125(2), 349-366 (2005)

Maceira, M.E.P,, Terry, L.A., Costa, E.S., Damdzio, J.M., Melo, A.C.G.: Chain of optimization models
for setting the energy dispatch and spot price in the Brazilian system. In: Proceedings of the 14th Power
Systems Computation Conference—PSCC, pp. 1-7. Servilla, Spain (2002)

Morton, D.P.: Stopping rules for a class of sampling-based stochastic programming algorithms. Oper.
Res. 46(5), 710-718 (1998)

Nesterov, Y.: Introductory Lectures on Convex Optimization. A Basic Course. Applied Optimization,
vol. 87. Springer, Berlin (2004)

Pereira, M. V., Granville, S., Fampa, M.H.C., Dix, R., Barroso, L.A.: Strategic bidding under uncer-
tainty: a binary expansion approach. IEEE Trans. Power Syst. 11(1), 180-188 (2005)

Pereira, M.V.E,, Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math.
Program. 52(2), 359-375 (1991)

Ch Pflug, G., Romisch, W.: Modeling. Measuring and Managing Risk. World Scientific, Singapore
(2007). https://www.worldscientific.com/worldscibooks/10.1142/6478

Philpott, A.B., de Matos, V.L.: Dynamic sampling algorithms for multi-stage stochastic programs with
risk aversion. Eur. J. Oper. Res. 218(2), 470483 (2012)

Philpott, A.B., Guan, Z.: On the convergence of stochastic dual dynamic programming and related
methods. Oper. Res. Lett. 36(4), 450-455 (2008)

Rebennack, S.: Combining sampling-based and scenario-based nested benders decomposition meth-
ods: application to stochastic dual dynamic programming. Math. Program. 156(1), 343-389 (2016)
Ruszczyniski, A.: On the regularized decomposition method for stochastic programming problems. In:
Marti, K., Kall, P. (eds.) Stochastic Programming: Numerical Techniques and Engineering Applica-
tions, pp. 93—108. Springer, Berlin (1995)

Sen, S., Zhou, Z.: Multistage stochastic decomposition: a bridge between stochastic programming and
approximate dynamic programming. SIAM J. Optim. 24(1), 127-153 (2014)

Shapiro, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209, 63-72
(2011)

Shapiro, A., Dentcheva, D., Ruszczyinski, A.: Lectures on stochastic programming. Modeling and
Theory. MPS-SIAM Series on Optimization. SIAM and MPS, vol. 9. Philadelphia, (2009)

Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse stochastic dual
dynamic programming method. Eur. J. Oper. Res. 224(2), 375-391 (2013)

van Ackooij, W., de Oliveira, W., Song, Y.: An adaptive partition-based level decomposition for solving
two-stage stochastic programs with fixed recourse. Inf. J. Comput. 30(1), 57-70 (2018)

van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized Benders’ decomposition approaches:
with application to chance-constrained problems with finite support. Comput. Optim. Appl. 65(3), 637—
669 (2016)

van Ackooij, W., Lebbe, N., Malick, J.: Regularized decomposition of large-scale block-structured
robust optimization problems. Comput. Manag. Sci. 14(3), 393421 (2017)

@ Springer

https://www.worldscientific.com/worldscibooks/10.1142/6478

42 W. van Ackooij et al.

53. Wolf, C., Fabidn, C .I., Koberstein, A., Stuhl, L.: Applying oracles of on-demand accuracy in two-stage
stochastic programming. A computational study. J. Oper. Res. 239(2), 437-448 (2014)

54. Wolf, C., Koberstein, A.: Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested
L-shaped method. Eur. J. Oper. Res. 230(1), 143-156 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems
	Abstract
	1 Introduction
	2 Preliminaries on multistage stochastic linear programs and decomposition schemes
	3 Normal solutions and finite perturbation of convex programs
	4 Regularized decompositions for multistage stochastic linear programs
	4.1 A connection between regularized decomposition and finite perturbation of convex programs
	4.2 Normal and level iterates
	4.3 The normal-level nested decomposition algorithm
	4.3.1 Heuristic rules for setting level parameters
	4.3.2 Convergence analysis

	4.4 The normal-level SDDP algorithm
	4.4.1 A heuristic for setting level parameters
	4.4.2 Convergence analysis

	4.5 General comments on the proposed algorithms

	5 Numerical experiments
	5.1 Test problem description
	5.2 Computational experiments on the normal-level SDDP algorithm
	5.2.1 Implementation details
	5.2.2 Performance on lower bounds with fixed CPU time

	5.3 Computational experiments on the normal-level ND algorithm

	6 Conclusions
	Acknowledgements
	Appendix A: Proof of Lemma 1
	Appendix B: Detailed descriptions of the test instances
	References

