Scalable Verification of Probabilistic Networks

Steffen Smolka
Cornell University
Ithaca, NY, USA

Praveen Kumar
Cornell University
Ithaca, NY, USA

Justin Hsu"
University of Wisconsin
Madison, WI, USA

Abstract

This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of finite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic verification tool. Domain-specific optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and refinement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCS Concepts «Theory of computation — Automated
reasoning; Program semantics; Random walks and Markov
chains; « Networks — Network properties; « Software and
its engineering — Domain specific languages.

Keywords Network verification, Probabilistic Programming

ACM Reference Format:

Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Verification
of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI °19), June 22-26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3314221.3314639

“Work performed at Cornell University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6712-7/19/06....$15.00
https://doi.org/10.1145/3314221.3314639

Dexter Kozen
Cornell University
Ithaca, NY, USA

David M. Kahn"
Carnegie Mellon University
Pittsburgh, PA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

Alexandra Silva
University College London
London, UK

1 Introduction

Networks are among the most complex and critical com-
puting systems used today. Researchers have long sought
to develop automated techniques for modeling and analyz-
ing network behavior [40], but only over the last decade
has programming language methodology been brought to
bear on the problem [5, 6, 28], opening up new avenues
for reasoning about networks in a rigorous and principled
way [3, 12, 19, 21, 25]. Building on these initial advances,
researchers have begun to target more sophisticated net-
works that exhibit richer phenomena. In particular, there is
renewed interest in randomization as a tool for designing
protocols and modeling behaviors that arise in large-scale
systems—from uncertainty about the inputs, to expected
load, to likelihood of device and link failures.

Although programming languages for describing random-
ized networks exist [11, 15], support for automated reasoning
remains limited. Even basic properties require quantitative
reasoning in the probabilistic setting, and seemingly sim-
ple programs can generate complex distributions. Whereas
state-of-the-art tools can easily handle deterministic net-
works with hundreds of thousands of nodes, probabilistic
tools are currently orders of magnitude behind.

This paper presents McNetKAT, a new tool for reason-
ing about probabilistic network programs written in the
guarded and history-free fragment of Probabilistic NetKAT
(ProbNetKAT) [3, 11, 12, 35]. ProbNetKAT is an expressive
programming language based on Kleene Algebra with Tests,
capable of modeling a variety of probabilistic behaviors and
properties including randomized routing [22, 38], uncer-
tainty about demands [30], and failures [17]. The history-free
fragment restricts the language semantics to input-output be-
havior rather than tracking paths, and the guarded fragment
provides conditionals and while loops rather than union and
iteration operators. Although the fragment we consider is a
restriction of the full language, it is still expressive enough
to encode a wide range of practical networking models. Ex-
isting deterministic tools, such as Anteater [27], HSA [19],
and Veriflow [21], also use guarded and history-free models.

To enable automated reasoning, we first reformulate the
semantics of ProbNetKAT in terms of finite state Markov

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

chains. We introduce a big-step semantics that models pro-
grams as Markov chains that transition from input to out-
put in a single step, using an auxiliary small-step semantics
to compute the closed-form solution for the semantics of
the iteration operator. We prove that the Markov chain se-
mantics coincides with the domain-theoretic semantics for
ProbNetKAT developed in previous work [11, 35]. Our new
semantics also has a key benefit: the limiting distribution
of the resulting Markov chains can be computed exactly in
closed form, yielding a concise representation that can be
used as the basis for building a practical tool.

We have implemented McNetKAT in an OCaml prototype
that takes a ProbNetKAT program as input and produces a
stochastic matrix that models its semantics in a finite and
explicit form. McNetKAT uses the UMFPACK linear algebra
library as a back-end solver to efficiently compute limit-
ing distributions [7], and exploits algebraic properties to
automatically parallelize the computation across multiple
machines. To facilitate comparisons with other tools, we also
developed a back-end based on PRISM [23].

To evaluate the scalability of McNetKAT, we conducted
experiments on realistic topologies, routing schemes, and
properties. Our results show that McNetKAT scales to net-
works with thousands of switches, and performs orders
of magnitude better than a state-of-the-art tool based on
general-purpose symbolic inference [15, 16]. We also used
McNetKAT to carry out a case study of the resilience of a
fault-tolerant data center design proposed by Liu et al. [26].

Contributions and outline. The central contribution of
this paper is the development of a scalable probabilistic net-
work verification tool. We develop a new, tractable semantics
that is sound with respect to ProbNetKAT’s original denota-
tional model. We present a prototype implementation and
evaluate it on a variety of scenarios drawn from real-world
networks. In §2, we introduce ProbNetKAT using a running
example. In §3, we present a semantics based on finite stochas-
tic matrices and show that it fully characterizes the behavior
of ProbNetKAT programs (Theorem 3.1). In §4, we show how
to compute the matrix associated with iteration in closed
form. In §5, we discuss our implementation, including sym-
bolic data structures and optimizations that are needed to
handle the large state space efficiently. In §6, we evaluate the
scalability of McNetKAT on a common data center design
and compare its performance against state-of-the-art proba-
bilistic tools. In §7, we present a case study using McNetKAT
to analyze resilience in the presence of link failures. We sur-
vey related work in §8 and conclude in §9. Proofs can be
found in the extended version of this paper [36].

2 Overview

This section introduces a running example that illustrates
the main features of the ProbNetKAT language as well as
some quantitative network properties that arise in practice.

S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

/ 2\3 _
@ 1?2 1?2 E

Switch 1 Switch 2 -
Source Destination

Figure 1. Network topology for running example.

Background on ProbNetKAT. Consider the network in Fig-
ure 1, which connects a source to a destination in a topology
with three switches. We will first introduce a program that
forwards packets from the source to the destination, and
then verify that it correctly implements the desired behavior.
Next, we will show how to enrich our program to model
the possibility of link failures, and develop a fault-tolerant
forwarding scheme that automatically routes around fail-
ures. Using a quantitative version of program refinement,
we will show that the fault-tolerant program is indeed more
resilient than the initial program. Finally, we will show how
to compute the expected degree of resilience analytically.

To a first approximation, a ProbNetKAT program can be
thought of as a randomized function that maps input packets
to sets of output packets. Packets are modeled as records,
with fields for standard headers—such as the source (src)
and destination (dst) addresses—as well as two fields switch
(sw) and port (pt) encoding the current location of the packet.
ProbNetKAT provides several primitives for manipulating
packets: a modification f «n returns the input packet with
field f updated to n, while a test f =n returns either the input
packet unmodified if the test succeeds, or the empty set if
the test fails. The primitives skip and drop behave like a test
that always succeeds and fails, respectively. In the guarded
fragment of the language, programs can be composed se-
quentially (p;q), using conditionals (if p then g; else g),
while loops (while p do g), or probabilistic choice (p & g).

Although ProbNetKAT programs can be freely constructed
by composing primitive operations, a typical network model
is expressed using two programs: a forwarding program
(sometimes called a policy) and a link program (sometimes
called a topology). The forwarding program describes how
packets are transformed locally by the switches at each hop.
In our running example, to route packets from the source
to the destination, switches 1 and 2 can simply forward all
incoming packets out on port 2 by modifying the port field
(pt). This program can be encoded in ProbNetKAT by per-
forming a case analysis on the location of the input packet,
and then setting the port field to 2:

p = if sw=1then pt«<2 else
if sw=2 then pt«<2 else drop

The final drop at the end of this program encodes the policy
for switch 3, which is unreachable.

Scalable Verification of Probabilistic Networks

We can model the topology as a cascade of conditionals
that match packets at the end of each link and update their
locations to the link’s destination:

t2if sw=1;pt=2 then sw<2;pt«1else ...

To build the overall network model, we first define predicates
for the ingress and egress locations,

inéswzl;ptzl outéswzz;ptzz

and then combine the forwarding policy p with the topology
t. More specifically, a packet traversing the network starts
at an ingress and is repeatedly processed by switches and
links until it reaches an egress:

M(p, t) £ in;p;while —out do (t;p)

We can now state and prove properties about the network
by reasoning about this model. For instance, the following
equivalence states that p forwards all packets to the destina-
tion:

M(p,t) = in;swe2;pt2

The program on the right can be regarded as an ideal speci-
fication that “teleports” each packet to its destination. Such
equations were also used in previous work to reason about
properties such as waypointing, reachability, isolation, and
loop freedom [3, 12].

Probabilistic reasoning. Real-world networks often exhib-
it nondeterministic behaviors such as fault tolerant routing
schemes to handle unexpected failures [26] and random-
ized algorithms to balance load across multiple paths [22].
Verifying that networks behave as expected in these more
complicated scenarios requires a form of probabilistic rea-
soning, but most state-of-the-art network verification tools
model only deterministic behaviors [12, 19, 21].

To illustrate, suppose we want to extend our example
with link failures. Most modern switches execute low-level
protocols such as Bidirectional Forwarding Detection (BFD)
that compute real-time health information about the link
connected to each physical port [4]. We can enrich our model
so that each switch has a boolean flag up; that indicates
whether the link connected to the switch at port i is up. Then,
we can adjust the forwarding logic to use backup paths when
the link is down: for switch 1,

p1 £ if upy=1then pt«2 else
if up,=0 then pt«<3 else drop

and similarly for switches 2 and 3. As before, we can package
the forwarding logic for all switches into a single program:

p 2 if sw=1then p; else if sw=2 then p; else p3

Next, we update the encoding of our topology to faithfully
model link failures. Links can fail for a wide variety of rea-
sons, including human errors, fiber cuts, and hardware faults.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

A natural way to model such failures is with a probabilis-
tic model—i.e., with a distribution that captures how often
certain links fail:

fo £ upp1iupse1
fi ea{fo@%,(Up2<—0;up3<—1)@i,(Upz<—1;up3<—0)@i}
f2 = (upy< 1@ 5 upy<0);(ups<1 @ g upz«<0)

Intuitively, in f; no links fail, in f; the links £, and ¢;3 fail
with probability 25% but at most one link fails, while in f;
the links fail independently with probability 20%. Using the
up flags, we can model a topology with possibly faulty links
like so:

L
L

TEif sw=1;pt=2;up,=1then sw<2;pt<1else ...

Combining the policy, topology, and failure model yields a
model of the entire network:

I\7l(p, t, f) £ var up,<1in
var upz<1in

M((f;p). 1)

This refined model M wraps our previous model M with dec-
larations of the two local fields up, and up; and executes the
failure model (f) at each hop before executing the programs
for the switch (p) and topology (t).

Now we can analyze our resilient routing scheme p. As a
sanity check, we can verify that it delivers packets to their
destinations in the absence of failures. Formally, it behaves
like the program that teleports packets to their destinations:

M@Eﬁ)) = in;sw«2;pt<2

More interestingly, p is 1-resilient—i.e., it delivers packets
provided at most one link fails. Note that this property does
not hold for the original, naive routing scheme p:

M@Zﬁ) = in;swe2;pte2 M(p,zﬁ)

While p is not fully resilient under failure model f,, which
allows two links to fail simultaneously, we can still show
that the refined routing scheme p performs strictly better
than the naive scheme p by checking

Mp.t. f2) < MP.1. f2)
where p < g intuitively means that ¢ delivers packets with
higher probability than p.

Going a step further, we might want to compute more
general quantitative properties of the distributions generated
for a given program. For example, we might compute the
probability that each routing scheme delivers packets to the
destination under f> (i.e., 80% for the naive scheme and 96%
for the resilient scheme), potentially valuable information to
help an Internet Service Provider (ISP) evaluate a network
design to check that it meets certain service-level agreements
(SLAs). With this motivation in mind, we aim to build a
scalable tool that can carry out automated reasoning on
probabilistic network programs expressed in ProbNetKAT.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

3 ProbNetKAT Syntax and Semantics

This section reviews the syntax of ProbNetKAT and presents
a new semantics based on finite state Markov chains.

Preliminaries. A packet 7 is a record mapping a finite set
of fields fi, f2, . . ., fx to bounded integers n. As we saw in the
previous section, fields can include standard header fields
such as source (src) and destination (dst) addresses, as well
as logical fields for modeling the current location of the
packet in the network or variables such as up;. These logical
fields are not present in a physical network packet, but they
can track auxiliary information for the purposes of verifi-
cation. We write 7.f to denote the value of field f of 7 and
n[f:=n] for the packet obtained from x by updating field f
to hold n. We let Pk denote the (finite) set of all packets.

Syntax. ProbNetKAT terms can be divided into two classes:
predicates (t,u, .. .) and programs (p, q, . . .). Primitive pred-
icates include tests (f=n) and the Boolean constants false
(drop) and true (skip). Compound predicates are formed us-
ing the usual Boolean connectives: disjunction (¢ & u), con-
junction (t ; u), and negation (—t). Primitive programs include
predicates (t) and assignments (f <n). The original version
of the language also provides a dup primitive, which logs
the current state of the packet, but the history-free fragment
omits this operation. Compound programs can be formed
using parallel composition (p & q), sequential composition
(p; q), and iteration (p*). In addition, the probabilistic choice
operator p @, q executes p with probability r and g with
probability 1 — r, where r is rational, 0 < r < 1. We some-
times use an n-ary version and omit the r'’s: p; @ --- @ p,
executes a p; chosen uniformly at random. In addition to
these core constructs (summarized in Figure 2), many other
useful constructs can be derived. For example, mutable local
variables (e.g., up;, used to track link health in §2), can be
desugared into the language:

var feninp 2 fen;pife0

Here f is a field that is local to p. The final assignment f 0
sets the value of f to a canonical value, “erasing” it after the
field goes out of scope. We often use local variables to record
extra information for verification—e.g., recording whether
a packet traversed a given switch allows reasoning about
simple waypointing and isolation properties, even though
the history-free fragment of ProbNetKAT does not model
paths directly.

Guarded fragment. Conditionals and while loops can be
encoded using union and iteration:

if tthenpelseq = t;p&—t;q
= (tsp)" it

Note that these constructs use the predicate t as a guard,
resolving the inherent nondeterminism in the union and
iteration operators. Our implementation handles programs

while t do p

S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

Naturals nu=0|1]|2]---
Fields fa=fl-1f
Packets Pk 3> 7 == {fi = ny,...,fr = ng}
Probabilities ref01]nQ
Predicates t,u = drop False
| skip True
| f=n Test
| t&u Disjunction
| t;u Conjunction
| -t Negation
Programs p,q:u=t Filter
| fen Assignment
| p&gq Union
| p;q Sequence
| p&rq Choice
| p* Iteration

Figure 2. ProbNetKAT Syntax.

in the guarded fragment of the language—i.e., with loops
and conditionals but without union and iteration—though
we will develop the theory in full generality here, to make
connections to previous work on ProbNetKAT clearer. We
believe this restriction is acceptable from a practical per-
spective, as the main purpose of union and iteration is to
encode forwarding tables and network-wide processing, and
the guarded variants can often perform the same task. A
notable exception is multicast, which cannot be expressed
in the guarded fragment.

Semantics. Previous work on ProbNetKAT [11] modeled
history-free programs as maps 2" — D(2P%), where D(27¥)
denotes the set of probability distributions on 2°*. This se-
mantics is useful for establishing fundamental properties of
the language, but we will need a more explicit representation
to build a practical verification tool. Since the set of packets
is finite, probability distributions over sets of packets are
discrete and can be characterized by a probability mass func-
tion, f : 2P% — [0, 1] such that 3, cp f(b) = 1. It will be
convenient to view f as a stochastic vector of non-negative
entries that sum to 1.

A program, which maps inputs a to distributions over
outputs, can then be represented by a square matrix indexed
by Pk in which the stochastic vector corresponding to input
a appears as the a-th row. Thus, we can interpret a program
p as a matrix B[p] € [0,1]*"*2™ indexed by packet sets,
where the matrix entry B[p]., gives the probability that
p produces output b € 2P on input a € 2P, The rows of
the matrix B[p] are stochastic vectors, each encoding the
distribution produced for an input set a; such a matrix is
called right-stochastic, or simply stochastic. We write S(2P*)
for the set of right-stochastic matrices indexed by 2Pk,

Scalable Verification of Probabilistic Networks

Bp] € s2™)

B[drop]as = [b = 2]

Bskip]ap = [a = b]

Blf=nlay Zb={r€aln.f=n}
Bl-tlar =1[b S al - B[t]a.a-b

Blfnlay 2[b = {x[f :=n] | 7 € a}]
Blp & qlas 2) [cUd =b]- Blplac - Blglaa

c,d
Blp;q] = B[] - B4l
Blprq] =r-Blp] +(1-1)- B]q]
B[[P*]]ab lim B[[p(n)ﬂab

n—oo

Figure 3. ProbNetKAT Semantics. The notation B[p] . de-
notes the probability that p produces b on input a.

Figure 3 defines an interpretation of ProbNetKAT pro-
grams as stochastic matrices; the Iverson bracket [¢] is 1 if
@ is true, and 0 otherwise. Deterministic program primitives
are interpreted as {0, 1}-matrices—e.g., the program primi-
tive drop is interpreted as the following stochastic matrix:

D by ... by

zl10--- 0 !
Bldrop] = ¢ | ¢ D |m=2 D1 (1)
@ |[10 -0 -

which assigns all probability mass to the @-column. Simi-
larly, skip is interpreted as the identity matrix. Sequential
composition can be interpreted as matrix product,

Bp:qlas =) Blplac - Blales = (Blp] - Blalas

which reflects the intuitive semantics of composition: to
step from a to b in B[p;q], one must step from a to an
intermediate state ¢ in B[)p], and then from c to b in B[q].
As the picture in (1) suggests, a stochastic matrix B €
S(2P) can be viewed as a Markov chain (MC)—i.e., a proba-
bilistic transition system with state space 2P, The By, entry
gives the probability that the system transitions from a to b.

Soundness. The matrix B[p] is equivalent to the denota-
tional semantics [[p] defined in previous work [11].

Theorem 3.1 (Soundness). Let a, b € 2P, The matrix B[p]
satisfies Bplap = [p](a){b}).

Hence, checking program equivalence for p and g reduces
to checking equality of the matrices B[p] and B[q].

Corollary 3.2. [p] = [q] if and only if B[p] = B[q]-

In particular, because the Markov chains are all finite state,
the transition matrices are finite dimensional with rational

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

(p*, a, b) LR (skip & p;p*, a, b) LR (p;p*,a,buUa)
%0, Bl

A4

(p*,a’,bUa)

Figure 4. The small-step semantics is given by a Markov
chain with states (program, input set, output accumulator).
The three dashed arrows can be collapsed into the single
solid arrow, rendering the program component superfluous.

entries. Accordingly, program equivalence and other quan-
titative properties can be automatically verified provided
we can compute the matrices for given programs. This is
relatively straightforward for program constructs besides
B[p*], whose matrix is defined in terms of a limit. The next
section presents a closed-form definition of the stochastic
matrix for this operator.

4 Computing Stochastic Matrices

The semantics developed in the previous section can be
viewed as a “big-step” semantics in which a single step
models the execution of a program from input to output.
To compute the semantics of p*, we will introduce a finer,
“small-step” chain in which a transition models one iteration
of the loop.

To build intuition, consider simulating p* using a transi-
tion system with states given by triples (p, a, b) in which p
is the program being executed, a is the set of (input) packets,
and b is an accumulator that collects the output packets gen-
erated so far. To model the execution of p* on input a, we start
from the initial state (p*, a, &) and unroll p* one iteration
according to the characteristic equation p* = skip & p; p*,
yielding the following transition:

", a, D) 5 (skip & p;p*, a, &)

Next, we execute both skip and p;p* on the input set and
take the union of their results. Executing skip yields the
input set as output, with probability 1:

(skip & p;p*, a, &) - (p;p*,a a)
Executing p; p*, executes p and feeds its output into p*:

, . Blpla.a .
Va': (p;p’,a,a) ——— (p*,d’,a)
At this point we are back to executing p*, albeit with a differ-
ent input set a’ and some accumulated output packets. The
resulting Markov chain is shown in Figure 4.

Note that as the first two steps of the chain are determin-
istic, we can simplify the transition system by collapsing all
three steps into one, as illustrated in Figure 4. The program
component can then be dropped, as it now remains constant

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

across transitions. Hence, we work with a Markov chain over
the state space 2Pk % 2Pk defined formally as follows:

S[p] € S x 27
Slplab.@.py = b =bUal-Blplaa-
We can verify that the matrix S[[p] defines a Markov chain.
Lemma 4.1. S[p] is stochastic.

Next, we show that each step in S[p] models an iteration
of p*. Formally, the (n + 1)-step of S[p] is equivalent to the
big-step behavior of the n-th unrolling of p*.

Proposition 4.2. B[p™],;, = 3, S[[pﬂ(”atlg)’(a,’h)

Direct induction on the number of steps n > 0 fails because
the hypothesis is too weak. We generalize from start states
with empty accumulator to arbitrary start states.

Lemma 4.3. Let p be program. Then for alln € N and
a,b,b’ C Pk, we have

DI = Ul Bl L = Y, STV o
a’ a’
Proposition 4.2 then follows from Lemma 4.3 with b = &.
Intuitively, the long-run behavior of S[p] approaches the
big-step behavior of p*: letting (a,, b,) denote the random
state of the Markov chain S[p] after taking n steps starting
from (a, @), the distribution of b, for n — co is precisely
the distribution of outputs generated by p* on input a (by
Proposition 4.2 and the definition of B[p*]).

Closed form. The limiting behavior of finite state Markov
chains has been well studied in the literature (e.g., see Ke-
meny and Snell [20]). For so-called absorbing Markov chains,
the limit distribution can be computed exactly. A state s of
a Markov chain T is absorbing if it transitions to itself with
probability 1,

0=Y
and a Markov chain T € S(S) is absorbing if each state can

reach an absorbing state:

Vs€S. 3" e€S,n>0.T', >0and Ty gy = 1

(formally: Ts ¢ = [s = s'])

The non-absorbing states of an absorbing MC are called
transient. Assume T is absorbing with n, transient states
and n, absorbing states. After reordering the states so that
absorbing states appear first, T has the form

- [1 0]

R Q
where I is the n, X n, identity matrix, R is an n; X n, matrix
giving the probabilities of transient states transitioning to
absorbing states, and Q is an n; X n; matrix specifying the
probabilities of transitions between transient states. Since

absorbing states never transition to transient states by defi-
nition, the upper right corner contains a n, X n; zero matrix.

S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

From any start state, a finite state absorbing MC always
ends up in an absorbing state eventually, i.e. the limit T =
lim,, . T" exists and has the form

w [T 0
melid

where the n; X n, matrix A contains the so-called absorption
probabilities. This matrix satisfies the following equation:

A=(I+0+0Q*+..)R

Intuitively, to transition from a transient state to an absorb-
ing state, the MC can take an arbitrary number of steps
between transient states before taking a single—and final—
step into an absorbing state. The infinite sum X = ¥, Q"
satisfies X = I + QX, and solving for X yields

X=(I-Q)' and A=(I-0Q) 'R (2)

(We refer the reader to Kemeny and Snell [20] for the proof
that the inverse exists.)

Before we apply this theory to the small-step semantics
S[-], it will be useful to introduce some MC-specific nota-

. . T . .
tion. Let T be an MC. We write s —, s’ if s can reach s’ in

. .. . T .
precisely n steps, i.e. if TS”S, > 0; and we write s — s’ if s can
reach s’ in some number of steps, i.e. if TS"S, > 0 for some

. . T
n > 0. Two states are said to communicate, denoted s « s’,

T T . T . .

if s — s” and s’ — s. The relation « is an equivalence
relation, and its equivalence classes are called communica-
tion classes. A communication class is absorbing if it cannot

reach any states outside the class. Let Pr[s Ln s’] denote the
probability T{" . For the rest of the section, we fix a program
p and abbreviate B[p] as B and S[p] as S. We also define

saturated states, those where the accumulator has stabilized.

Definition 4.4. A state (a, b) of S is called saturated if b has

reached its final value, i.e. if (a, b) 3, (a’,b’) implies b’ = b.

After reaching a saturated state, the output of p* is fully
determined. The probability of ending up in a saturated state
with accumulator b, starting from an initial state (a, @), is

,}g{}o S(Ha,z),(a',b)
P
and, indeed, this is the probability that p* outputs b on in-
put a by Proposition 4.2. Unfortunately, we cannot directly
compute this limit since saturated states are not necessarily
absorbing. To see this, consider p* = (f <0 @y, f<1)* over
a single {0, 1}-valued field f. Then S has the form

/o,o:) 0,{0,1} D
|

1,0 — 1,{0,1} D

Scalable Verification of Probabilistic Networks

where all edges are implicitly labeled with % and 0 and 1
denote the packets with f set to 0 and 1 respectively. We omit
states not reachable from (0, @). The right-most states are
saturated, but they communicate and are thus not absorbing.

To align saturated and absorbing states, we can perform a
quotient of this Markov chain by collapsing the communi-
cating states. We define an auxiliary matrix,

[= 2]

’

if (a, b) is saturated

Ua.b)(@.b) = [0" =] { =a] else

[a

which sends a saturated state (a, b) to a canonical saturated
state (&, b) and acts as the identity on all other states. In our
example, the modified chain SU is as follows:

/0,0:_3
1

1,0 — 1,{0,1}

0, {0, 1}

\@{01}3
/ ’ ’

and indeed is absorbing, as desired.

Lemma 4.5. S, U, and SU are monotone in the sense that:
(a,b) 35, (a’,b") impliesb C b’ (and similarly for U and SU).
Proof. By definition (S and U) and by composition (SU). O
Next, we show that SU is an absorbing MC:

Proposition 4.6. Letn > 1.

1. (SU)" = S"U
2. SU is an absorbing MC with absorbing states {(<, b)}.

Arranging the states (a, b) in lexicographically ascending
order according to C and letting n = |2P¥|, it then follows
from Proposition 4.6.2 that SU has the form

I, o]

SUz[R 0

where, for a # &, we have

(SUabpa@.0) = [R Qi) ar -

Moreover, SU converges and its limit is given by

(SU)™® = lim (SU)". 3)

A I, 0
“la-0y'R o] T 2%

Putting together the pieces, we can use the modified Markov
chain SU to compute the limit of S.

Theorem 4.7 (Closed Form). Leta,b,b’ C Pk. Then

lim st = (SU) a.b)(2.0)"

202 P(ab)ab) T
~

The limit exists and can be computed exactly, in closed-form.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

5 Implementation

We have implemented McNetKAT as an embedded DSL in
OCaml in roughly 10KLoC. The frontend provides functions
for defining and manipulating ProbNetKAT programs and
for generating such programs automatically from network
topologies encoded using Graphviz. These programs can
then be analyzed by one of two backends: the native back-
end (PNK), which compiles programs to (symbolically rep-
resented) stochastic matrices; or the PRISM-based backend
(PPNK), which emits inputs for the state-of-the-art proba-
bilistic model checker PRISM [24].

Pragmatic restrictions. Although our semantics developed
in §3 and §4 theoretically supports computations on sets
of packets, a direct implementation would be prohibitively
expensive—the matrices are indexed by the powerset 2P of
the universe of all possible packets! To obtain a practical
analysis tool, we restrict the state space to single packets. At
the level of syntax, we restrict to the guarded fragment of
ProbNetKAT, i.e. to programs with conditionals and while
loops, but without union and iteration. This ensures that no
proper packet sets are ever generated, thus allowing us to
work over an exponentially smaller state space. While this
restriction does rule out some uses of ProbNetKAT—most
notably, modeling multicast—we did not find this to be a
serious limitation because multicast is relatively uncommon
in probabilistic networking. If needed, multicast can often
be modeled using multiple unicast programs.

5.1 Native Backend

The native backend compiles a program to a symbolic repre-
sentation of its big step matrix. The translation, illustrated in
Figure 5, proceeds as follows. First, we translate atomic pro-
grams to Forwarding Decision Diagrams (FDDs), a symbolic
data structure based on Binary Decision Diagrams (BDDs)
that encodes sparse matrices compactly [34]. Second, we
translate composite programs by first translating each sub-
program to an FDD and then merging the results using stan-
dard BDD algorithms. Loops require special treatment: we (i)
convert the FDD for the body of the loop to a sparse stochas-
tic matrix, (ii) compute the semantics of the loop by using an
optimized sparse linear solver [7] to solve the system from
§4, and finally (iii) convert the resulting matrix back to an
FDD. We use exact rational arithmetic in the frontend and
FDD-backend to preempt concerns about numerical preci-
sion, but trust the linear algebra solver UMFPACK (based on
64 bit floats) to provide accurate solutions.! Our implemen-
tation relies on several optimizations; we detail two of the
more interesting ones below.

Probabilistic FDDs. Binary Decision Diagrams [1] and vari-
ants thereof [13] have long been used in verification and

lUMFPACK is a mature library powering widely-used scientific computing
packages such as MATLAB and SciPy.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

pt=1 ()
if pt=1 then \\
pt<2 @ 5 pt«3 ‘o
else if pt=2 then pt=2
pt«1
else if pt=3 then
pt«1
else
A
drop O

pt<2 @5 pt3

Compile
Program —m—m—

S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

I pt=1 pt=2 pt=3 pt=x

1%} 1
Y
N _ 1 1
N \(pt=1 2 2
pt=3 pt=2 1
N
N pt=3 1
R Y
O O pt=s 1
pte1 drop
Solve
Convert

Probabilistic FDD —e—m——>

Sparse matrix

Figure 5. Implementation using FDDs and a sparse linear algebra solver.

model checking to represent large state spaces compactly. A
variant called Forwarding Decision Diagrams (FDDs) [34]
was previously developed specifically for the networking
domain, but only supported deterministic behavior. In this
work, we extended FDDs to probabilistic FDDs. A probabilis-
tic FDD is a rooted directed acyclic graph that can be un-
derstood as a control-flow graph. Interior nodes test packet
fields and have outgoing true- and false- branches, which
we visualize by solid lines and dashed lines in Figure 5. Leaf
nodes contain distributions over actions, where an action
is either a set of modifications or a special action drop. To
interpret an FDD, we start at the root node with an initial
packet and traverse the graph as dictated by the tests until a
leaf node is reached. Then, we apply each action in the leaf
node to the packet. Thus, an FDD represents a function of
type Pk — D(Pk + @), or equivalently, a stochastic matrix
over the state space Pk + & where the @-row puts all mass
on & by convention. Like BDDs, FDDs respect a total order
on tests and contain no isomorphic subgraphs or redundant
tests, which enables representing sparse matrices compactly.

Dynamic domain reduction. As Figure 5 shows, we do
not have to represent the state space Pk + @ explicitly even
when converting into sparse matrix form. In the example, the
state space is represented by symbolic packets pt = 1, pt = 2,
pt = 3, and pt = *, each representing an equivalence class
of packets. For example, pt = 1 can represent all packets
7 satisfying 7.pt = 1, because the program treats all such
packets in the same way. The packet pt = * represents the
set {m | n.pt ¢ {1,2,3}}. The symbol * can be thought
of as a wildcard that ranges over all values not explicitly
represented by other symbolic packets. The symbolic packets
are chosen dynamically when converting an FDD to a matrix
by traversing the FDD and determining the set of values
appearing in each field, either in a test or a modification.
Since FDDs never contain redundant tests or modifications,
these sets are typically of manageable size.

5.2 PRISM backend

PRISM is a mature probabilistic model checker that has been
actively developed and improved for the last two decades.
The tool takes as input a Markov chain model specified sym-
bolically in PRISM’s input language and a property specified
using a logic such as Probabilistic CTL, and outputs the
probability that the model satisfies the property. PRISM sup-
ports various types of models including finite state Markov
chains, and can thus be used as a backend for reasoning about
ProbNetKAT programs using our results from §3 and §4. Ac-
cordingly, we implemented a second backend that translates
ProbNetKAT to PRISM programs. While the native backend
computes the big step semantics of a program—a costly op-
eration that may involve solving linear systems to compute
fixed points—the PRISM backend is a purely syntactic trans-
formation; the heavy lifting is done by PRISM itself.

A PRISM program consists of a set of bounded variables
together with a set of transition rules of the form

¢ — pr-up+ -+ pr- Uk

where ¢ is a Boolean predicate over the variables, the p;
are probabilities that must sum up to one, and the u; are
sequences of variable updates. The predicates are required
to be mutually exclusive and exhaustive. Such a program
encodes a Markov chain whose state space is given by the
finite set of variable assignments and whose transitions are
dictated by the rules: if ¢ is satisfied under the current as-
signment o and o; is obtained from ¢ by performing update
u;, then the probability of a transition from o to oj is p;.

It is easy to see that any PRISM program can be expressed
in ProbNetKAT, but the reverse direction is slightly tricky:
it requires the introduction of an additional variable akin to
a program counter to emulate ProbNetKAT’s control flow
primitives such as loops and sequences. As an additional
challenge, we must be economical in our allocation of the
program counter, since the performance of model checking
is very sensitive to the size of the state space.

We address this challenge in three steps. First, we translate
the ProbNetKAT program to a finite state machine using a

Scalable Verification of Probabilistic Networks

XL X X DX

sl s2 s3 s4 s5 s6 s7 s8

Figure 6. A FatTree topology with p = 4.

Thompson-style construction [37]. Each edge is labeled with
a predicate ¢, a probability p;, and an update u;, subject to
the following well-formedness conditions:

1. For each state, the predicates on its outgoing edges
form a partition.

2. For each state and predicate, the probabilities of all
outgoing edges guarded by that predicate sum to one.

Intuitively, the state machine encodes the control-flow graph.

This intuition serves as the inspiration for the next transla-
tion step, which collapses each basic block of the graph into
a single state. This step is crucial for reducing the state space,
since the state space of the initial automaton is linear in the
size of the program. Finally, we obtain a PRISM program
from the automaton as follows: for each state s with adjacent

predicate ¢ and ¢-guarded outgoing edges s M t; for

1 < i < k, produce a PRISM rule

(pc=s A p) — p1-(ug;pc—ty) + -+ pi - (ug ; pe—tg).
The well-formedness conditions of the state machine guar-
antee that the resulting program is a valid PRISM program.
With some care, the entire translation can be implemented
in linear time. Indeed, McNetKAT translates all programs in
our evaluation to PRISM in under a second.

6 Evaluation

To evaluate McNetKAT we conducted experiments on sev-
eral benchmarks including a family of real-world data center
topologies and a synthetic benchmark drawn from the liter-
ature [15]. We evaluated McNetKAT’s scalability, character-
ized the effect of optimizations, and compared performance
against other state-of-the-art tools. All McNetKAT running
times we report refer to the time needed to compile programs
to FDDs; the cost of comparing FDDs for equivalence and
ordering, or of computing statistics of the encoded distri-
butions, is negligible. All experiments were performed on
machines with 16-core, 2.6 GHz Intel Xeon E5-2650 proces-
sors with 64 GB of memory.

Scalability on FatTree topologies. We first measured the
scalability of McNetKAT by using it to compute network
models for a series of FatTree topologies of increasing size.
FatTrees [2] (see also Figure 6) are multi-level, multi-rooted

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

0
el -
c |
o]
1%
Q
)
[
€ —#— PRISM i
= —$— PRISM (#f=0) 1
—$— native]
native (#f=0) 1
102 103 104

Number of switches

Figure 7. Scalability on a family of data center topologies.

trees that are widely used as topologies in modern data cen-
ters. FatTrees can be specified in terms of a parameter p
corresponding to the number of ports on each switch. A
p-ary FatTree connects ip3 servers using %pz switches. To
route packets, we used a form of Equal-Cost Multipath Rout-
ing (ECMP) that randomly maps traffic flows onto shortest
paths. We measured the time needed to construct the sto-
chastic matrix representation of the program on a single
machine using two backends (native and PRISM) and under
two failure models (no failures and independent failures with
probability 1/1000).

Figure 7 depicts the results, several of which are worth
discussing. First, the native backend scales quite well: in the
absence of failures (f = 0), it scales to a network with 5000
switches in approximately 10 minutes. This result shows that
McNetKAT is able to handle networks of realistic size. Sec-
ond, the native backend consistently outperforms the PRISM
backend. We conjecture that the native backend is able to
exploit algebraic properties of the ProbNetKAT program to
better parallelize the job. Third, performance degrades in the
presence of failures. This is to be expected—failures lead to
more complex probability distributions which are nontrivial
to represent and manipulate.

Parallel speedup. One of the contributors to McNetKAT’s
good performance is its ability to parallelize the computation
of stochastic matrices across multiple cores in a machine,
or even across machines in a cluster. Intuitively, because a
network is a large collection of mostly independent devices,
it is possible to model its global behavior by first modeling
the behavior of each device in isolation, and then combining
the results to obtain a network-wide model. In addition to
speeding up the computation, this approach can also reduce
memory usage, often a bottleneck on large inputs.

To facilitate parallelization, we added an n-ary disjoint
branching construct to ProbNetKAT:

case sw=1 then p; else

case sw=2 then p; else

case sw=n then p,

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

60 T T ,II T
,/ —@— FatTreep =14
FatTree p = 16 -

20 40 60 80 100
Number of cores

Figure 8. Speedup due to parallelization.

Semantically, this construct is equivalent to a cascade of
conditionals; but the native backend compiles it in parallel
using a map-reduce-style strategy, using one process per
core by default.

To evaluate the impact of parallelization, we compiled
two representative FatTree models (p = 14 and p = 16)
using ECMP routing on an increasing number of cores. With
m cores, we used one master machine together with r =
[m/16 — 1] remote machines, adding machines one by one as
needed to obtain more physical cores. The results are shown
in Figure 8. We see near linear speedup on a single machine,
cutting execution time by more than an order of magnitude
on our 16-core test machine. Beyond a single machine, the
speedup depends on the complexity of the submodels for
each switch—the longer it takes to generate the matrix for
each switch, the higher the speedup. For example, with a
p = 16 FatTree, we obtained a 30x speedup using 40 cores
across 3 machines.

Comparison with other tools. Bayonet [15] is a state-of-
the-art tool for analyzing probabilistic networks. Whereas
McNetKAT has a native backend tailored to the networking
domain and a backend based on a probabilistic model checker,
Bayonet programs are translated to a general-purpose prob-
abilistic language which is then analyzed by the symbolic in-
ference engine PSI [16]. Bayonet’s approach is more general,
as it can model queues, state, and multi-packet interactions
under an asynchronous scheduling model. It also supports
Bayesian inference and parameter synthesis. Moreover, Bay-
onet is fully symbolic whereas McNetKAT uses a numerical
linear algebra solver [7] (based on floating point arithmetic)
to compute limits.

To evaluate how the performance of these approaches
compares, we reproduced an experiment from the Bayonet
paper that analyzes the reliability of a simple routing scheme
in a family of “chain” topologies indexed by k, as shown in
Figure 9.

For k = 1, the network consists of four switches organized
into a diamond, with a single link that fails with probability

S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

OSSO DS TI

Pfail Prail

Figure 9. Chain topology

10%
Time limit = 3600s
m
©
S 10%: y
|9 3
[
=
g
1L -
E 10 E
10° ¢ 3
10° 10! 102 103 10 10°
Number of switches
—$— Bayonet —— Prism (exact) PNK

—— Prism (approx)
—¥— PPNK (approx)

—— PPNK (exact) —#— PNK (cluster)

Figure 10. Scalability on chain topology.

Prail = 1/1000. For k > 1, the network consists of k diamonds
linked together into a chain as shown in Figure 9. Within
each diamond, switch S, forwards packets with equal proba-
bility to switches Sy and Sz, which in turn forward to switch
Ss3. However, S, drops the packet if the link to S3 fails. We
analyze the probability that a packet originating at H1 is
successfully delivered to H2. Our implementation does not
exploit the regularity of these topologies.

Figure 10 gives the running time for several tools on
this benchmark: Bayonet, hand-written PRISM, ProbNetKAT
with the PRISM backend (PPNK), and ProbNetKAT with the
native backend (PNK). Further, we ran the PRISM tools in
exact and approximate mode, and we ran the ProbNetKAT
backend on a single machine and on the cluster. Note that
both axes in the plot are log-scaled.

We see that Bayonet scales to 32 switches in about 25
minutes, before hitting the one hour time limit and 64 GB
memory limit at 48 switches. ProbNetKAT answers the same
query for 2048 switches in under 10 seconds and scales to
over 65000 switches in about 50 minutes on a single core,
or just 2.5 minutes using a cluster of 24 machines. PRISM
scales similarly to ProbNetKAT, and performs best using the
hand-written model in approximate mode.

Overall, this experiment shows that for basic network
verification tasks, ProbNetKAT’s domain-specific backend
based on specialized data structures and an optimized linear-
algebra library [7] can outperform an approach based on a
general-purpose solver.

Scalable Verification of Probabilistic Networks

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

M(F100, fx) M(F105, fi) M(F1055, fi)

compare compare compare

= = = k F10 F103 F1035
teleport teleport teleport F103 F1035 teleport
0 v v v 0 = = =
1 X v v 1 < = =
2 X v v 2 < = =
3 X X v 3 < < =
4 X X X 4 < < <
sl s2 s3 s4 s5 s6 s7 s8 0 X X X (&Y < < <

Figure 11. (a) AB FatTree topology with p = 4.

7 Case Study: Data Center Fault-Tolerance

In this section, we go beyond benchmarks and present a case
study that illustrates the utility of McNetKAT for probabilis-
tic reasoning. Specifically, we model the F10 [26] data center
design in ProbNetKAT and verify its key properties.

Data center resilience. An influential measurement study
by Gill et al. [17] showed that data centers experience fre-
quent failures, which have a major impact on application
performance. To address this challenge, a number of data cen-
ter designs have been proposed that aim to simultaneously
achieve high throughput, low latency, and fault tolerance.

F10 topology. F10 uses a novel topology called an AB Fat-
Tree, see Figure 11(a), that enhances a traditional FatTree [2]
with additional backup paths that can be used when fail-
ures occur. To illustrate, consider routing from s; to s; in
Figure 11(a) along one of the shortest paths (in thick black).
After reaching the core switch C in a standard FatTree (re-
call Figure 6), if the aggregation switch on the downward
path failed, we would need to take a 5-hop detour (shown
in red) that goes down to a different edge switch, up to a
different core switch, and finally down to s;. In contrast, an
AB FatTree [26] modifies the wiring of the aggregation later
to provide shorter detours—e.g., a 3-hop detour (shown in
blue) for the previous scenario.

F10 routing. F10’s routing scheme uses three strategies to
re-route packets after a failure occurs. If a link on the current
path fails and an equal-cost path exists, the switch simply
re-routes along that path. This approach is also known as
equal-cost multi-path routing (ECMP). If no shortest path
exist, it uses a 3-hop detour if one is available, and otherwise
falls back to a 5-hop detour if necessary.

We implemented this routing scheme in ProbNetKAT in
several steps. The first, F10,, approximates the hashing be-
havior of ECMP by randomly selecting a port along one of
the shortest paths to the destination. The second, F103, im-
proves the resilience of F10, by augmenting it with 3-hop
re-routing—e.g., consider the blue path in Figure 11(a). We
find a port on C that connects to a different aggregation
switch A” and forward the packet to A’. If there are multiple

(b) Evaluating k-resilience.

(c) Comparing schemes under k failures.

such ports which have not failed, we choose one uniformly
at random. The third, F103 5, attempts 5-hop re-routing in
cases where F10; is unable to find a port on C whose adja-
cent link is up—e.g., consider the red path in Figure 11(a).
The 5-hop rerouting strategy requires a flag to distinguish
packets taking a detour from regular packets.

F10 network and failure model. We model the network
as discussed in §2, focusing on packets destined to switch 1:

M(p) £ in;do (p;t) while (-sw=1)

McNetKAT automatically generates the topology program
t from a Graphviz description. The ingress predicate in is
a disjunction of switch-port tests over all ingress locations.
Adding the failure model and some setup code to declare
local variables tracking the health of individual links yields
the complete network model:

M(p, f) £ varup;<1lin ...

Here, d is the maximum degree of a topology node. The
entire model measures about 750 lines of ProbNetKAT code.

To evaluate the effect of different kinds of failures, we
define a family of failure models fj indexed by the maximum
number of failures k € N U {co} that may occur, where links
fail otherwise independently with probability pr; we leave
pr implicit. To simplify the analysis, we focus on failures
occurring on downward paths (note that F10, is able to route
around failures on the upward path, unless the topology
becomes disconnected).

var upg<1in M(f;p)

Verifying refinement. Having implemented F10 as a series
of three refinements, we would expect the probability of
packet delivery to increase in each refinement, but not to
achieve perfect delivery in an unbounded failure model f.
Formally, we should have

drop < M(F10y, fa) < M(F10s, fa0)
< 1\7I(F103,5,f00) < teleport

where teleport moves the packet directly to its destination,
and p < q means the probability assigned to every input-
output pair by q is greater than the probability assigned by p.
We confirmed that these inequalities hold using McNetKAT.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

1.0 1

S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

1.00 - t‘::'t:——"——'*‘—'—*?-:; 4.8 -A- ABFatTree, F10o .-*
~a 5 —x- AB FatTree, F103 3
SS — L 46
0.95 - 'y =< 0.9 g —e— AB FatTree, F1035
—_ (N =
> N X! o 4.44 - FatTree, F103 s
[~ c kel
2 0.90 - 'y 308 : =
g \ oV bl A A A A= A=k =k c 4.2
= -Ak- AB FatTree, F10q 5 3 -A- AB FatTree, F10, §
0.851 - AB FatTree, F10; Ay = 07 —%- AB FatTree, F103 e 4.0
—e— AB FatTree, F103 5 \ &= —e— AB FatTree, F103 5 384
T 3.
0.80 7 .- FatTree, F103 5 \\ - FatTree, F103 5
v . ; . r A 0.6 : r " " r r 3.6 ey r i i " r
1/128 1/64 1/32 1/16 1/8 1/4 2 4 6 8 10 12 14 1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability Hop count Link failure probability

(@)

(b)

(©

Figure 12. Case study results (k = o0): (a) Probability of delivery vs. link-failure probability; (b) Increased path length due to
resilience (pr = 1/4); (c) Expected hop-count conditioned on delivery.

Verifying k-resilience. Resilience is the key property sat-
isfied by F10. By using McNetKAT, we were able to auto-
matically verify that F10 is resilient to up to three failures
in the AB FatTree Figure 11(a). To establish this property,
we increased the parameter k in our failure model f; while
checking equivalence with teleportation (i.e., perfect deliv-
ery), as shown in Figure 11(b). The simplest scheme F10,
drops packets when a failure occurs on the downward path,
so it is O-resilient. The F103 scheme routes around failures
when a suitable aggregation switch is available, hence it is
2-resilient. Finally, the F105 5 scheme routes around failures
as long as any aggregation switch is reachable, hence it is
3-resilient. If the schemes are not equivalent to teleport, we
can still compare the relative resilience of the schemes using
the refinement order, as shown in Figure 11(c). Our imple-
mentation also enables precise, quantitative comparisons.
For example, Figure 12(a) considers a failure model in which
an unbounded number of failures can occur. We find that
F10,’s delivery probability dips significantly as the failure
probability increases, while both F105 and F105 5 continue to
ensure high delivery probability by routing around failures.

Analyzing path stretch. Routing schemes based on de-
tours achieve a higher degree of resilience at the cost of
increasing the lengths of forwarding paths. We can quan-
tify this increase by augmenting our model with a counter
that is incremented at each hop and analyzing the expected
path length. Figure 12(b) shows the cumulative distribution
function of latency as the fraction of traffic delivered within
a given hop count. On AB FatTree, F10, delivers ~#80% of
the traffic in 4 hops, since the maximum length of a short-
est path from any edge switch to s1 is 4 and F10, does not
attempt to recover from failures. F103 and F103 5 deliver the
same amount of traffic when limited to at most 4 hops, but
they can deliver significantly more traffic using 2 additional
hops by using 3-hop and 5-hop paths to route around fail-
ures. F105 also delivers more traffic with 8 hops—these are
the cases when F103 performs 3-hop re-routing twice for a

single packet as it encountered failure twice. We can also
show that on a standard FatTree, F105 5 failures have a higher
impact on latency. Intuitively, the topology does not support
3-hop re-routing. This finding supports a key claim of F10:
the topology and routing scheme should be co-designed to
avoid excessive path stretch. Finally, Figure 12(c) shows the
expected path length conditioned on delivery. As the failure
probability increases, the probability of delivery for packets
routed via the core layer decreases for F10y. Thus, the distri-
bution of delivered packets shifts towards 2-hop paths via
an aggregation switch, so the expected hop-count decreases.

8 Related Work

The most closely related system to McNetKAT is Bayonet [15].
In contrast to the domain-specific approach followed in this

paper, Bayonet uses a general-purpose probabilistic program-
ming language and inference tool [16]. Such an approach,
which reuses existing techniques, is naturally appealing.
In addition, Bayonet is more expressive than McNetKAT:

it supports asynchronous scheduling, stateful transforma-
tions, and probabilistic inference, making it possible to model

richer phenomena, such as congestion due to packet-level

interactions in queues. Of course, the extra generality does

not come for free. Bayonet requires programmers to supply

an upper bound on loops as the implementation is not guar-
anteed to find a fixed point. As discussed in §5, McNetKAT

scales better than Bayonet on simple benchmarks. Another

issue is that writing a realistic scheduler appears challenging,
and one might also need to model host-level congestion con-
trol protocols to obtain accurate results. Currently Bayonet

programs use deterministic or uniform schedulers and model

only a few packets at a time [14].

Prior work on ProbNetKAT [35] gave a measure-theoretic
semantics and an implementation that approximated pro-
grams using sequences of monotonically improving esti-
mates. While these estimates were proven to converge in
the limit, [35] offered no guarantees about the convergence

Scalable Verification of Probabilistic Networks

rate. In fact, there are examples where the approximations
do not converge after any finite number of steps, which is
obviously undesirable in a tool. The implementation only
scaled to 10s of switches. In contrast, this paper presents
a straightforward and implementable semantics; the imple-
mentation computes limits precisely in closed form, and it
scales to real-world networks with thousands of switches.
McNetKAT achieves this by restricting to the guarded and
history-free fragment of ProbNetKAT, sacrificing the ability
to reason about multicast and path-properties directly. In
practice this sacrifice seems well worth the payoff: multicast
is somewhat uncommon, and we can often reason about
path-properties by maintaining extra state in the packets. In
particular, McNetKAT can still model the examples studied
in previous work by Smolka et al. [35].

Our work is the latest in a long line of techniques using
Markov chains as a tool for representing and analyzing prob-
abilistic programs. For an early example, see the seminal
paper of Sharir et al. [32]. Markov chains are also used in
many probabilistic model checkers, such as PRISM [23].

Beyond networking applications, there are connections
to other work on verification of probabilistic programs. Di
Pierro, Hankin, and Wiklicky used probabilistic abstract in-
terpretation to statically analyze probabilistic A-calculus [8];
their work was extended to a language pW hile, using a store
and program location state space similar to Sharir et al. [32].
However, they do not deal with infinite limiting behavior be-
yond stepwise iteration, and do not guarantee convergence.
Olejnik, Wicklicky, and Cheraghchi provided a probabilistic
compiler pwc for a variation of pWhile [29]; their optimiza-
tions could potentially be useful for McNetKAT. A recent
survey by Gordon et al. [18] shows how to give semantics
for probabilistic processes using stationary distributions of
Markov chains, and studies convergence. Similar to our ap-
proach, they use absorbing strongly connected components
to represent termination. Finally, probabilistic abstract inter-
pretation is also an active area of research [39]; it would be
interesting to explore applications to ProbNetKAT.

9 Conclusion

This paper presents a scalable tool for verifying probabilis-
tic networks based on a new semantics for the history-free
fragment of ProbNetKAT in terms of Markov chains. Natural
directions for future work include further optimization of our
implementation—e.g., using Bayesian networks to represent
joint distributions compactly. We are also interested in apply-
ing McNetKAT to other systems that implement algorithms
for randomized routing [22, 33], load balancing [10], traffic
monitoring [31], anonymity [9], and network neutrality [41],
among others.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Acknowledgments

We are grateful to the anonymous reviewers and our shep-
herd Michael Greenberg for their feedback and help in im-
proving the paper. Thanks also to Jonathan DiLorenzo for
suggesting improvements to the paper and for helping us
locate a subtle performance bug, and to the Bellairs Research
Institute of McGill University for providing a wonderful re-
search environment. This work was supported in part by
the National Science Foundation under grants NeTS-1413972
and AiTF-1637532, by the European Research Council under
grant 679127, by a Facebook TAV award, by a Royal Society
Wolfson fellowship, and a gift from Keysight.

References

[1] S.B. Akers. 1978. Binary Decision Diagrams. IEEE Trans. Comput. 27,
6 (June 1978), 509-516. https://doi.org/10.1109/TC.1978.1675141

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.

A Scalable, Commodity Data Center Network Architecture. In ACM

SIGCOMM Computer Communication Review, Vol. 38. ACM, 63-74.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-

nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:

Semantic Foundations for Networks. In POPL. 113-126.

Manav Bhatia, Mach Chen, Sami Boutros, Marc Binderberger, and

Jeffrey Haas. 2014. Bidirectional Forwarding Detection (BFD) on Link

Aggregation Group (LAG) Interfaces. RFC 7130. https://doi.org/10.

17487/RFC7130

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4: Programming Protocol-

Independent Packet Processors. SIGCOMM CCR 44, 3 (July 2014),

87-95.

[6] Martin Casado, Nate Foster, and Arjun Guha. 2014. Abstractions for
Software-Defined Networks. CACM 57, 10 (Oct. 2014), 86-95.

[7] Timothy A. Davis. 2004. Algorithm 832: UMFPACK V4.3—an
Unsymmetric-pattern Multifrontal Method. ACM Trans. Math. Softw.
30, 2 (June 2004), 196-199. https://doi.org/10.1145/992200.992206

[8] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. 2005. Prob-
abilistic A-calculus and quantitative program analysis. Journal of
Logic and Computation 15, 2 (2005), 159-179. https://doi.org/10.1093/
logcom/exi008

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor:
The Second-generation Onion Router. In USENIX Security Symposium
(SSYM). 21-21.

[10] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. 2013. On the impact
of packet spraying in data center networks. In IJEEE INFOCOM. 2130~
2138.

[11] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. 2016. Probabilistic NetKAT. In ESOP. 282-309.
https://doi.org/10.1007/978-3-662-49498-1_12

[12] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and
Laure Thompson. 2015. A Coalgebraic Decision Procedure for NetKAT.
In POPL. ACM, 343-355.

[13] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. 1997. Multi-Terminal Bi-
nary Decision Diagrams: An Efficient DataStructure for Matrix Rep-
resentation. Form. Methods Syst. Des. 10, 2-3 (April 1997), 149-169.
https://doi.org/10.1023/A:1008647823331

[14] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pas-
cal Wiesmann, and Martin T. Vechev. 2018. Bayonet: Probabilistic
Computer Network Analysis. Available at https://github.com/eth-sri/
bayonet/.

[3

—

[4

=

5

—

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

[15] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pas-
cal Wiesmann, and Martin T. Vechev. 2018. Bayonet: probabilistic
inference for networks. In ACM SIGPLAN PLDI. 586-602.

[16] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact

Symbolic Inference for Probabilistic Programs. 62-83.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Under-

standing Network Failures in Data Centers: Measurement, Analysis,

and Implications. In ACM SIGCOMM. 350-361.

[18] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K
Rajamani. 2014. Probabilistic programming. In Proceedings of the on
Future of Software Engineering. ACM, 167-181. https://doi.org/10.1145/
2593882.2593900

[19] Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header Space Analysis: Static Checking for Networks. In USENIX
NSDI 2012. 113-126. https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/kazemian

[20] John G Kemeny and James Laurie Snell. 1960. Finite markov chains.
Vol. 356. van Nostrand Princeton, NJ.

[21] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and Brighten
Godfrey. 2012. Veriflow: Verifying Network-Wide Invariants in Real
Time. In ACM SIGCOMM. 467-472.

[22] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,
Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-Oblivious
Traffic Engineering: The Road Not Taken. In USENIX NSDIL

[23] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Ver-
ification of Probabilistic Real-time Systems. In Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11) (LNCS),
G. Gopalakrishnan and S. Qadeer (Eds.), Vol. 6806. Springer, 585-591.
https://doi.org/10.1007/978-3-642-22110-1_47

[24] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011.
PRISM 4.0: Verification of Probabilistic Real-Time Systems. In CAV.
585-591.

[25] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun
Lee, Robert Soulé, Han Wang, Calin Cascaval, Nick McKeown, and
Nate Foster. 2018. p4v: Practical Verification for Programmable Data
Planes. In SIGCOMM. 490-503.

[26] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas E
Anderson. 2013. F10: A Fault-Tolerant Engineered Network. In USENLX
NSDI. 399-412.

[27] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. 2011. Debugging the
Data Plane with Anteater. In ACM SIGCOMM. 290-301.

[17

—

S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

[28] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM
CCR 38, 2 (2008), 69-74.

[29] Maciej Olejnik, Herbert Wiklicky, and Mahdi Cheraghchi.
2016. Probabilistic Programming and Discrete Time Markov
Chains. http://www.imperial.ac.uk/media/imperial-college/
faculty-of-engineering/computing/public/MaciejOlejnik.pdf

[30] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. 2015. Inside the Social Network’s (Datacenter) Network. In
ACM SIGCOMM. 123-137.

[31] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ra-
mana Rao Kompella, and David G. Andersen. 2008. CSAMP: A System
for Network-wide Flow Monitoring. In USENIX NSDI. 233-246.

[32] Micha Sharir, Amir Pnueli, and Sergiu Hart. 1984. Verification of
probabilistic programs. SIAM J. Comput. 13, 2 (1984), 292-314. https:
//doi.org/10.1137/0213021

[33] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and
Phillipa Gill. 2018. RADWAN: Rate Adaptive Wide Area Network. In
ACM SIGCOMM.

[34] Steffen Smolka, Spiros Eliopoulos, Nate Foster, and Arjun Guha. 2015.

A Fast Compiler for NetKAT. In ICFP 2015. https://doi.org/10.1145/
2784731.2784761

[35] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexan-
dra Silva. 2017. Cantor Meets Scott: Semantic Foundations for Prob-
abilistic Networks. In POPL 2017. https://doi.org/10.1145/3009837.
3009843

[36] Steffen Smolka, Praveen Kumar, David M Kahn, Nate Foster, Justin Hsu,
Dexter Kozen, and Alexandra Silva. 2019. Scalable Verification of Prob-
abilistic Networks (Extended Version). arXiv (2019). arXiv:1904.08096

[37] Ken Thompson. 1968. Regular Expression Search Algorithm. Commun.
ACM 11, 6 (1968), 419-422. https://doi.org/10.1145/363347.363387

[38] L. Valiant. 1982. A Scheme for Fast Parallel Communication. SIAM 7.
Comput. 11, 2 (1982), 350-361.

[39] Di Wang, Jan Hoffmann, and Thomas Reps. 2018. PMAF: An Algebraic
Framework for Static Analysis of Probabilistic Programs. In POPL 2018.
https://www.cs.cmu.edu/~janh/papers/WangHR17.pdf

[40] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert G.
Greenberg, Gisli Hjalmtysson, and Jennifer Rexford. 2005. On static
reachability analysis of IP networks. In INFOCOM.

[41] Zhiyong Zhang, Ovidiu Mara, and Katerina Argyraki. 2014. Network
Neutrality Inference. In ACM SIGCOMM. 63-74.

	Abstract
	1 Introduction
	2 Overview
	3 ProbNetKAT Syntax and Semantics
	4 Computing Stochastic Matrices
	5 Implementation
	5.1 Native Backend
	5.2 PRISM backend

	6 Evaluation
	7 Case Study: Data Center Fault-Tolerance
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

