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Abstract

This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of finite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic verification tool. Domain-specific optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and refinement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated

reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and

its engineering → Domain specific languages.

Keywords Network verification, Probabilistic Programming

ACM Reference Format:

Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin

Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Verification

of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI ’19), June 22ś26, 2019, Phoenix, AZ, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3314221.3314639

∗Work performed at Cornell University.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314639

1 Introduction

Networks are among the most complex and critical com-
puting systems used today. Researchers have long sought
to develop automated techniques for modeling and analyz-
ing network behavior [40], but only over the last decade
has programming language methodology been brought to
bear on the problem [5, 6, 28], opening up new avenues
for reasoning about networks in a rigorous and principled
way [3, 12, 19, 21, 25]. Building on these initial advances,
researchers have begun to target more sophisticated net-
works that exhibit richer phenomena. In particular, there is
renewed interest in randomization as a tool for designing
protocols and modeling behaviors that arise in large-scale
systemsÐfrom uncertainty about the inputs, to expected
load, to likelihood of device and link failures.

Although programming languages for describing random-
ized networks exist [11, 15], support for automated reasoning
remains limited. Even basic properties require quantitative
reasoning in the probabilistic setting, and seemingly sim-
ple programs can generate complex distributions. Whereas
state-of-the-art tools can easily handle deterministic net-
works with hundreds of thousands of nodes, probabilistic
tools are currently orders of magnitude behind.
This paper presents McNetKAT, a new tool for reason-

ing about probabilistic network programs written in the
guarded and history-free fragment of Probabilistic NetKAT
(ProbNetKAT) [3, 11, 12, 35]. ProbNetKAT is an expressive
programming language based on Kleene Algebra with Tests,
capable of modeling a variety of probabilistic behaviors and
properties including randomized routing [22, 38], uncer-
tainty about demands [30], and failures [17]. The history-free
fragment restricts the language semantics to input-output be-
havior rather than tracking paths, and the guarded fragment
provides conditionals and while loops rather than union and
iteration operators. Although the fragment we consider is a
restriction of the full language, it is still expressive enough
to encode a wide range of practical networking models. Ex-
isting deterministic tools, such as Anteater [27], HSA [19],
and Veriflow [21], also use guarded and history-free models.
To enable automated reasoning, we first reformulate the

semantics of ProbNetKAT in terms of finite state Markov
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We can model the topology as a cascade of conditionals
that match packets at the end of each link and update their
locations to the link’s destination:

t ≜ if sw=1 ; pt=2 then sw�2 ; pt�1 else . . .

To build the overall network model, we first define predicates
for the ingress and egress locations,

in ≜ sw=1 ; pt=1 out ≜ sw=2 ; pt=2

and then combine the forwarding policy p with the topology
t . More specifically, a packet traversing the network starts
at an ingress and is repeatedly processed by switches and
links until it reaches an egress:

M(p, t) ≜ in ;p ;while ¬out do (t ;p)

We can now state and prove properties about the network
by reasoning about this model. For instance, the following
equivalence states that p forwards all packets to the destina-
tion:

M(p, t) ≡ in ; sw�2 ; pt�2

The program on the right can be regarded as an ideal speci-
fication that łteleportsž each packet to its destination. Such
equations were also used in previous work to reason about
properties such as waypointing, reachability, isolation, and
loop freedom [3, 12].

Probabilistic reasoning. Real-world networks often exhib-
it nondeterministic behaviors such as fault tolerant routing
schemes to handle unexpected failures [26] and random-
ized algorithms to balance load across multiple paths [22].
Verifying that networks behave as expected in these more
complicated scenarios requires a form of probabilistic rea-
soning, but most state-of-the-art network verification tools
model only deterministic behaviors [12, 19, 21].
To illustrate, suppose we want to extend our example

with link failures. Most modern switches execute low-level
protocols such as Bidirectional Forwarding Detection (BFD)
that compute real-time health information about the link
connected to each physical port [4]. We can enrich our model
so that each switch has a boolean flag upi that indicates
whether the link connected to the switch at port i is up. Then,
we can adjust the forwarding logic to use backup paths when
the link is down: for switch 1,

p̂1 ≜ if up2=1 then pt�2 else

if up2=0 then pt�3 else drop

and similarly for switches 2 and 3. As before, we can package
the forwarding logic for all switches into a single program:

p̂ ≜ if sw=1 then p̂1 else if sw=2 then p̂2 else p̂3

Next, we update the encoding of our topology to faithfully
model link failures. Links can fail for a wide variety of rea-
sons, including human errors, fiber cuts, and hardware faults.

A natural way to model such failures is with a probabilis-
tic modelÐi.e., with a distribution that captures how often
certain links fail:

f0 ≜ up2�1 ; up3�1

f1 ≜ ⊕
{
f0 @

1
2
, (up2�0 ; up3�1)@ 1

4
, (up2�1 ; up3�0)@ 1

4

}

f2 ≜ (up2�1 ⊕
.8 up2�0) ;(up3�1 ⊕

.8 up3�0)

Intuitively, in f0 no links fail, in f1 the links ℓ12 and ℓ13 fail
with probability 25% but at most one link fails, while in f2
the links fail independently with probability 20%. Using the
up flags, we can model a topology with possibly faulty links
like so:

t̂ ≜ if sw=1 ; pt=2 ; up2=1 then sw�2 ; pt�1 else . . .

Combining the policy, topology, and failure model yields a
model of the entire network:

M̂(p, t, f ) ≜ var up2�1 in

var up3�1 in

M((f ;p), t)

This refined model M̂ wraps our previous modelM with dec-
larations of the two local fields up2 and up3 and executes the
failure model (f ) at each hop before executing the programs
for the switch (p) and topology (t ).

Now we can analyze our resilient routing scheme p̂. As a
sanity check, we can verify that it delivers packets to their
destinations in the absence of failures. Formally, it behaves
like the program that teleports packets to their destinations:

M̂(p̂, t̂, f0) ≡ in ; sw�2 ; pt�2

More interestingly, p̂ is 1-resilientÐi.e., it delivers packets
provided at most one link fails. Note that this property does
not hold for the original, naive routing scheme p:

M̂(p̂, t̂, f1) ≡ in ; sw�2 ; pt�2 . M̂(p, t̂, f1)

While p̂ is not fully resilient under failure model f2, which
allows two links to fail simultaneously, we can still show
that the refined routing scheme p̂ performs strictly better
than the naive scheme p by checking

M̂(p, t̂, f2) < M̂(p̂, t̂, f2)

where p < q intuitively means that q delivers packets with
higher probability than p.
Going a step further, we might want to compute more

general quantitative properties of the distributions generated
for a given program. For example, we might compute the
probability that each routing scheme delivers packets to the
destination under f2 (i.e., 80% for the naive scheme and 96%

for the resilient scheme), potentially valuable information to
help an Internet Service Provider (ISP) evaluate a network
design to check that it meets certain service-level agreements
(SLAs). With this motivation in mind, we aim to build a
scalable tool that can carry out automated reasoning on
probabilistic network programs expressed in ProbNetKAT.



PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

3 ProbNetKAT Syntax and Semantics

This section reviews the syntax of ProbNetKAT and presents
a new semantics based on finite state Markov chains.

Preliminaries. A packet π is a record mapping a finite set
of fields f1, f2, . . . , fk to bounded integers n. As we saw in the
previous section, fields can include standard header fields
such as source (src) and destination (dst) addresses, as well
as logical fields for modeling the current location of the
packet in the network or variables such as upi . These logical
fields are not present in a physical network packet, but they
can track auxiliary information for the purposes of verifi-
cation. We write π .f to denote the value of field f of π and
π [f :=n] for the packet obtained from π by updating field f

to hold n. We let Pk denote the (finite) set of all packets.

Syntax. ProbNetKAT terms can be divided into two classes:
predicates (t,u, . . .) and programs (p,q, . . .). Primitive pred-
icates include tests (f =n) and the Boolean constants false
(drop) and true (skip). Compound predicates are formed us-
ing the usual Boolean connectives: disjunction (t & u), con-
junction (t ;u), and negation (¬t ). Primitive programs include
predicates (t ) and assignments (f �n). The original version
of the language also provides a dup primitive, which logs
the current state of the packet, but the history-free fragment
omits this operation. Compound programs can be formed
using parallel composition (p & q), sequential composition

(p ;q), and iteration (p∗). In addition, the probabilistic choice
operator p ⊕r q executes p with probability r and q with
probability 1 − r , where r is rational, 0 ≤ r ≤ 1. We some-
times use an n-ary version and omit the r ’s: p1 ⊕ · · · ⊕ pn
executes a pi chosen uniformly at random. In addition to
these core constructs (summarized in Figure 2), many other
useful constructs can be derived. For example, mutable local
variables (e.g., upi , used to track link health in ğ2), can be
desugared into the language:

var f �n in p ≜ f �n ;p ; f �0

Here f is a field that is local to p. The final assignment f �0

sets the value of f to a canonical value, łerasingž it after the
field goes out of scope. We often use local variables to record
extra information for verificationÐe.g., recording whether
a packet traversed a given switch allows reasoning about
simple waypointing and isolation properties, even though
the history-free fragment of ProbNetKAT does not model
paths directly.

Guarded fragment. Conditionals and while loops can be
encoded using union and iteration:

if t then p else q ≜ t ;p & ¬t ;q

while t do p ≜ (t ;p)∗ ;¬t

Note that these constructs use the predicate t as a guard,
resolving the inherent nondeterminism in the union and
iteration operators. Our implementation handles programs

Naturals n ::= 0 | 1 | 2 | · · ·

Fields f ::= f1 | · · · | fk
Packets Pk ∋ π ::= {f1 = n1, . . . , fk = nk }

Probabilities r ∈ [0, 1] ∩ Q

Predicates t,u ::= drop False

| skip True

| f =n Test

| t & u Disjunction

| t ;u Conjunction

| ¬t Negation

Programs p,q ::= t Filter

| f �n Assignment

| p & q Union

| p ;q Sequence

| p ⊕r q Choice

| p∗ Iteration

Figure 2. ProbNetKAT Syntax.

in the guarded fragment of the languageÐi.e., with loops
and conditionals but without union and iterationÐthough
we will develop the theory in full generality here, to make
connections to previous work on ProbNetKAT clearer. We
believe this restriction is acceptable from a practical per-
spective, as the main purpose of union and iteration is to
encode forwarding tables and network-wide processing, and
the guarded variants can often perform the same task. A
notable exception is multicast, which cannot be expressed
in the guarded fragment.

Semantics. Previous work on ProbNetKAT [11] modeled
history-free programs as maps 2Pk → D(2Pk), whereD(2Pk)
denotes the set of probability distributions on 2Pk. This se-
mantics is useful for establishing fundamental properties of
the language, but we will need a more explicit representation
to build a practical verification tool. Since the set of packets
is finite, probability distributions over sets of packets are
discrete and can be characterized by a probability mass func-

tion, f : 2Pk → [0, 1] such that
∑
b⊆Pk f (b) = 1. It will be

convenient to view f as a stochastic vector of non-negative
entries that sum to 1.
A program, which maps inputs a to distributions over

outputs, can then be represented by a square matrix indexed
by Pk in which the stochastic vector corresponding to input
a appears as the a-th row. Thus, we can interpret a program
p as a matrix BJpK ∈ [0, 1]2

Pk×2Pk indexed by packet sets,
where the matrix entry BJpKab gives the probability that
p produces output b ∈ 2Pk on input a ∈ 2Pk. The rows of
the matrix BJpK are stochastic vectors, each encoding the
distribution produced for an input set a; such a matrix is
called right-stochastic, or simply stochastic. We write S(2Pk)
for the set of right-stochastic matrices indexed by 2Pk.
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BJpK ∈ S(2Pk)

BJdropKab ≜ [b = ∅]

BJskipKab ≜ [a = b]

BJf =nKab ≜ [b = {π ∈ a | π . f = n}]

BJ¬tKab ≜ [b ⊆ a] · BJtKa,a−b

BJf �nKab ≜ [b = {π [f := n] | π ∈ a}]

BJp & qKab ≜
∑

c ,d

[c ∪ d = b] · BJpKa,c · BJqKa,d

BJp ;qK ≜BJpK · BJqK

BJp ⊕r qK ≜ r · BJpK + (1 − r ) · BJqK

BJp∗Kab ≜ lim
n→∞
BJp(n)Kab

Figure 3. ProbNetKAT Semantics. The notation BJpKab de-
notes the probability that p produces b on input a.

Figure 3 defines an interpretation of ProbNetKAT pro-
grams as stochastic matrices; the Iverson bracket [φ] is 1 if
φ is true, and 0 otherwise. Deterministic program primitives
are interpreted as {0, 1}-matricesÐe.g., the program primi-
tive drop is interpreted as the following stochastic matrix:

BJdropK =



∅ b2 ... bn

∅ 1 0 · · · 0

...
...
...
. . .
...

an 1 0 · · · 0



a2
.
.
.

an

a1 = ∅

1

1

1 (1)

which assigns all probability mass to the ∅-column. Simi-
larly, skip is interpreted as the identity matrix. Sequential
composition can be interpreted as matrix product,

BJp ;qKab =
∑

c

BJpKac · BJqKcb = (BJpK · BJqK)ab

which reflects the intuitive semantics of composition: to
step from a to b in BJp ;qK, one must step from a to an
intermediate state c in BJpK, and then from c to b in BJqK.
As the picture in (1) suggests, a stochastic matrix B ∈

S(2Pk) can be viewed as a Markov chain (MC)Ði.e., a proba-
bilistic transition system with state space 2Pk. The Bab entry
gives the probability that the system transitions from a to b.

Soundness. The matrix BJpK is equivalent to the denota-
tional semantics JpK defined in previous work [11].

Theorem 3.1 (Soundness). Let a,b ∈ 2Pk. The matrix BJpK
satisfies BJpKab = JpK(a)({b}).

Hence, checking program equivalence for p and q reduces
to checking equality of the matrices BJpK and BJqK.

Corollary 3.2. JpK = JqK if and only if BJpK = BJqK.

In particular, because the Markov chains are all finite state,
the transition matrices are finite dimensional with rational

⟨p∗,a,b⟩ ⟨skip & p ;p∗,a,b⟩ ⟨p ;p∗,a,b ∪ a⟩

⟨p∗,a′,b ∪ a⟩

1 1

BJpKa,a′
BJpKa

,a ′

Figure 4. The small-step semantics is given by a Markov
chain with states ⟨program, input set, output accumulator⟩.
The three dashed arrows can be collapsed into the single
solid arrow, rendering the program component superfluous.

entries. Accordingly, program equivalence and other quan-
titative properties can be automatically verified provided
we can compute the matrices for given programs. This is
relatively straightforward for program constructs besides
BJp∗K, whose matrix is defined in terms of a limit. The next
section presents a closed-form definition of the stochastic
matrix for this operator.

4 Computing Stochastic Matrices

The semantics developed in the previous section can be
viewed as a łbig-stepž semantics in which a single step
models the execution of a program from input to output.
To compute the semantics of p∗, we will introduce a finer,
łsmall-stepž chain in which a transition models one iteration
of the loop.
To build intuition, consider simulating p∗ using a transi-

tion system with states given by triples ⟨p,a,b⟩ in which p
is the program being executed, a is the set of (input) packets,
and b is an accumulator that collects the output packets gen-
erated so far. Tomodel the execution ofp∗ on inputa, we start
from the initial state ⟨p∗,a,∅⟩ and unroll p∗ one iteration
according to the characteristic equation p∗ ≡ skip & p ;p∗,
yielding the following transition:

⟨p∗,a,∅⟩
1

−−−−−−−−−→ ⟨skip & p ;p∗,a,∅⟩

Next, we execute both skip and p ;p∗ on the input set and
take the union of their results. Executing skip yields the
input set as output, with probability 1:

⟨skip & p ;p∗,a,∅⟩
1

−−−−−−−−−→ ⟨p ;p∗,a,a⟩

Executing p ;p∗, executes p and feeds its output into p∗:

∀a′ : ⟨p ;p∗,a,a⟩
BJpKa,a′
−−−−−−−−−→ ⟨p∗,a′,a⟩

At this point we are back to executing p∗, albeit with a differ-
ent input set a′ and some accumulated output packets. The
resulting Markov chain is shown in Figure 4.

Note that as the first two steps of the chain are determin-
istic, we can simplify the transition system by collapsing all
three steps into one, as illustrated in Figure 4. The program
component can then be dropped, as it now remains constant
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across transitions. Hence, we work with a Markov chain over
the state space 2Pk × 2Pk, defined formally as follows:

SJpK ∈ S(2Pk × 2Pk)

SJpK(a,b),(a′,b′) ≜ [b ′ = b ∪ a] · BJpKa,a′ .

We can verify that the matrix SJpK defines a Markov chain.

Lemma 4.1. SJpK is stochastic.

Next, we show that each step in SJpK models an iteration
of p∗. Formally, the (n + 1)-step of SJpK is equivalent to the
big-step behavior of the n-th unrolling of p∗.

Proposition 4.2. BJp(n)Ka,b =
∑

a′ SJpKn+1
(a,∅),(a′,b)

Direct induction on the number of stepsn ≥ 0 fails because
the hypothesis is too weak. We generalize from start states
with empty accumulator to arbitrary start states.

Lemma 4.3. Let p be program. Then for all n ∈ N and

a,b,b ′ ⊆ Pk, we have∑

a′

[b ′ = a′ ∪ b] · BJp(n)Ka,a′ =
∑

a′

SJpKn+1
(a,b),(a′,b′).

Proposition 4.2 then follows from Lemma 4.3 with b = ∅.
Intuitively, the long-run behavior of SJpK approaches the

big-step behavior of p∗: letting (an,bn) denote the random
state of the Markov chain SJpK after taking n steps starting
from (a,∅), the distribution of bn for n → ∞ is precisely
the distribution of outputs generated by p∗ on input a (by
Proposition 4.2 and the definition of BJp∗K).

Closed form. The limiting behavior of finite state Markov
chains has been well studied in the literature (e.g., see Ke-
meny and Snell [20]). For so-called absorbing Markov chains,
the limit distribution can be computed exactly. A state s of
a Markov chain T is absorbing if it transitions to itself with
probability 1,

s 1 (formally: Ts ,s ′ = [s = s
′])

and a Markov chain T ∈ S(S) is absorbing if each state can
reach an absorbing state:

∀s ∈ S . ∃s ′ ∈ S,n ≥ 0. T n
s ,s ′ > 0 and Ts ′,s ′ = 1

The non-absorbing states of an absorbing MC are called
transient. Assume T is absorbing with nt transient states
and na absorbing states. After reordering the states so that
absorbing states appear first, T has the form

T =

[
I 0

R Q

]

where I is the na ×na identity matrix, R is an nt ×na matrix
giving the probabilities of transient states transitioning to
absorbing states, and Q is an nt × nt matrix specifying the
probabilities of transitions between transient states. Since
absorbing states never transition to transient states by defi-
nition, the upper right corner contains a na ×nt zero matrix.

From any start state, a finite state absorbing MC always
ends up in an absorbing state eventually, i.e. the limit T∞ ≜

limn→∞T
n exists and has the form

T∞ =

[
I 0

A 0

]

where the nt ×na matrix A contains the so-called absorption

probabilities. This matrix satisfies the following equation:

A = (I +Q +Q2
+ . . . )R

Intuitively, to transition from a transient state to an absorb-
ing state, the MC can take an arbitrary number of steps
between transient states before taking a singleÐand finalÐ
step into an absorbing state. The infinite sum X ≜

∑
n≥0Q

n

satisfies X = I +QX , and solving for X yields

X = (I −Q)−1 and A = (I −Q)−1R. (2)

(We refer the reader to Kemeny and Snell [20] for the proof
that the inverse exists.)
Before we apply this theory to the small-step semantics
SJ−K, it will be useful to introduce some MC-specific nota-

tion. Let T be an MC. We write s
T
−→n s ′ if s can reach s ′ in

precisely n steps, i.e. ifT n
s ,s ′ > 0; and we write s

T
−→ s ′ if s can

reach s ′ in some number of steps, i.e. if T n
s ,s ′ > 0 for some

n ≥ 0. Two states are said to communicate, denoted s
T
←→ s ′,

if s
T
−→ s ′ and s ′

T
−→ s . The relation

T
←→ is an equivalence

relation, and its equivalence classes are called communica-

tion classes. A communication class is absorbing if it cannot

reach any states outside the class. Let Pr[s
T
−→n s ′] denote the

probabilityT n
s ,s ′ . For the rest of the section, we fix a program

p and abbreviate BJpK as B and SJpK as S . We also define
saturated states, those where the accumulator has stabilized.

Definition 4.4. A state (a,b) of S is called saturated if b has

reached its final value, i.e. if (a,b)
S
−→ (a′,b ′) implies b ′ = b.

After reaching a saturated state, the output of p∗ is fully
determined. The probability of ending up in a saturated state
with accumulator b, starting from an initial state (a,∅), is

lim
n→∞

∑

a′

Sn
(a,∅),(a′,b)

and, indeed, this is the probability that p∗ outputs b on in-
put a by Proposition 4.2. Unfortunately, we cannot directly
compute this limit since saturated states are not necessarily
absorbing. To see this, consider p∗ = (f �0 ⊕1/2 f �1)∗ over
a single {0, 1}-valued field f . Then S has the form

0, 0 0, {0, 1}

0,∅

1, 0 1, {0, 1}
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where all edges are implicitly labeled with 1
2
, and 0 and 1

denote the packets with f set to 0 and 1 respectively. We omit
states not reachable from (0,∅). The right-most states are
saturated, but they communicate and are thus not absorbing.

To align saturated and absorbing states, we can perform a
quotient of this Markov chain by collapsing the communi-
cating states. We define an auxiliary matrix,

U(a,b),(a′,b′) ≜ [b
′
= b] ·

{
[a′ = ∅] if (a,b) is saturated

[a′ = a] else

which sends a saturated state (a,b) to a canonical saturated
state (∅,b) and acts as the identity on all other states. In our
example, the modified chain SU is as follows:

0, 0 0, {0, 1}

0,∅ ∅, {0, 1}

1, 0 1, {0, 1}

and indeed is absorbing, as desired.

Lemma 4.5. S , U , and SU are monotone in the sense that:

(a,b)
S
−→ (a′,b ′) implies b ⊆ b ′ (and similarly forU and SU ).

Proof. By definition (S andU ) and by composition (SU ). □

Next, we show that SU is an absorbing MC:

Proposition 4.6. Let n ≥ 1.

1. (SU )n = SnU

2. SU is an absorbing MC with absorbing states {(∅,b)}.

Arranging the states (a,b) in lexicographically ascending
order according to ⊆ and letting n = |2Pk |, it then follows
from Proposition 4.6.2 that SU has the form

SU =

[
In 0

R Q

]

where, for a , ∅, we have

(SU )(a,b),(a′,b′) =
[
R Q

]
(a,b),(a′,b′)

.

Moreover, SU converges and its limit is given by

(SU )∞ ≜

[
In 0

(I −Q)−1R 0

]
= lim

n→∞
(SU )n . (3)

Putting together the pieces, we can use the modified Markov
chain SU to compute the limit of S .

Theorem 4.7 (Closed Form). Let a,b,b ′ ⊆ Pk. Then

lim
n→∞

∑

a′

Sn
(a,b),(a′,b′) = (SU )

∞
(a,b),(∅,b′).

The limit exists and can be computed exactly, in closed-form.

5 Implementation

We have implemented McNetKAT as an embedded DSL in
OCaml in roughly 10KLoC. The frontend provides functions
for defining and manipulating ProbNetKAT programs and
for generating such programs automatically from network
topologies encoded using Graphviz. These programs can
then be analyzed by one of two backends: the native back-
end (PNK), which compiles programs to (symbolically rep-
resented) stochastic matrices; or the PRISM-based backend

(PPNK), which emits inputs for the state-of-the-art proba-
bilistic model checker PRISM [24].

Pragmatic restrictions. Although our semantics developed
in ğ3 and ğ4 theoretically supports computations on sets
of packets, a direct implementation would be prohibitively
expensiveÐthe matrices are indexed by the powerset 2Pk of
the universe of all possible packets! To obtain a practical
analysis tool, we restrict the state space to single packets. At
the level of syntax, we restrict to the guarded fragment of
ProbNetKAT, i.e. to programs with conditionals and while
loops, but without union and iteration. This ensures that no
proper packet sets are ever generated, thus allowing us to
work over an exponentially smaller state space. While this
restriction does rule out some uses of ProbNetKATÐmost
notably, modeling multicastÐwe did not find this to be a
serious limitation because multicast is relatively uncommon
in probabilistic networking. If needed, multicast can often
be modeled using multiple unicast programs.

5.1 Native Backend

The native backend compiles a program to a symbolic repre-
sentation of its big step matrix. The translation, illustrated in
Figure 5, proceeds as follows. First, we translate atomic pro-
grams to Forwarding Decision Diagrams (FDDs), a symbolic
data structure based on Binary Decision Diagrams (BDDs)
that encodes sparse matrices compactly [34]. Second, we
translate composite programs by first translating each sub-
program to an FDD and then merging the results using stan-
dard BDD algorithms. Loops require special treatment: we (i)
convert the FDD for the body of the loop to a sparse stochas-
tic matrix, (ii) compute the semantics of the loop by using an
optimized sparse linear solver [7] to solve the system from
ğ4, and finally (iii) convert the resulting matrix back to an
FDD. We use exact rational arithmetic in the frontend and
FDD-backend to preempt concerns about numerical preci-
sion, but trust the linear algebra solver UMFPACK (based on
64 bit floats) to provide accurate solutions.1 Our implemen-
tation relies on several optimizations; we detail two of the
more interesting ones below.

Probabilistic FDDs. Binary Decision Diagrams [1] and vari-
ants thereof [13] have long been used in verification and

1UMFPACK is a mature library powering widely-used scientific computing

packages such as MATLAB and SciPy.
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if pt=1 then

pt�2 ⊕0.5 pt�3

else if pt=2 then

pt�1

else if pt=3 then

pt�1

else

drop
pt�2 ⊕0.5 pt�3 pt�1 drop

pt=3

pt=2

pt=1



∅ pt=1 pt=2 pt=3 pt=∗

∅ 1

pt=1
1
2

1
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pt=3 1

pt=∗ 1



Program Probabilistic FDD Sparse matrix
Compile Convert

Solve

Figure 5. Implementation using FDDs and a sparse linear algebra solver.

model checking to represent large state spaces compactly. A
variant called Forwarding Decision Diagrams (FDDs) [34]
was previously developed specifically for the networking
domain, but only supported deterministic behavior. In this
work, we extended FDDs to probabilistic FDDs. A probabilis-
tic FDD is a rooted directed acyclic graph that can be un-
derstood as a control-flow graph. Interior nodes test packet
fields and have outgoing true- and false- branches, which
we visualize by solid lines and dashed lines in Figure 5. Leaf
nodes contain distributions over actions, where an action
is either a set of modifications or a special action drop. To
interpret an FDD, we start at the root node with an initial
packet and traverse the graph as dictated by the tests until a
leaf node is reached. Then, we apply each action in the leaf
node to the packet. Thus, an FDD represents a function of
type Pk→ D(Pk +∅), or equivalently, a stochastic matrix
over the state space Pk +∅ where the ∅-row puts all mass
on ∅ by convention. Like BDDs, FDDs respect a total order
on tests and contain no isomorphic subgraphs or redundant
tests, which enables representing sparse matrices compactly.

Dynamic domain reduction. As Figure 5 shows, we do
not have to represent the state space Pk +∅ explicitly even
when converting into sparse matrix form. In the example, the
state space is represented by symbolic packets pt = 1, pt = 2,
pt = 3, and pt = ∗, each representing an equivalence class

of packets. For example, pt = 1 can represent all packets
π satisfying π .pt = 1, because the program treats all such
packets in the same way. The packet pt = ∗ represents the
set {π | π .pt < {1, 2, 3}}. The symbol ∗ can be thought
of as a wildcard that ranges over all values not explicitly
represented by other symbolic packets. The symbolic packets
are chosen dynamically when converting an FDD to a matrix
by traversing the FDD and determining the set of values
appearing in each field, either in a test or a modification.
Since FDDs never contain redundant tests or modifications,
these sets are typically of manageable size.

5.2 PRISM backend

PRISM is a mature probabilistic model checker that has been
actively developed and improved for the last two decades.
The tool takes as input a Markov chain model specified sym-
bolically in PRISM’s input language and a property specified
using a logic such as Probabilistic CTL, and outputs the
probability that the model satisfies the property. PRISM sup-
ports various types of models including finite state Markov
chains, and can thus be used as a backend for reasoning about
ProbNetKAT programs using our results from ğ3 and ğ4. Ac-
cordingly, we implemented a second backend that translates
ProbNetKAT to PRISM programs. While the native backend
computes the big step semantics of a programÐa costly op-
eration that may involve solving linear systems to compute
fixed pointsÐthe PRISM backend is a purely syntactic trans-
formation; the heavy lifting is done by PRISM itself.
A PRISM program consists of a set of bounded variables

together with a set of transition rules of the form

ϕ → p1 · u1 + · · · + pk · uk

where ϕ is a Boolean predicate over the variables, the pi
are probabilities that must sum up to one, and the ui are
sequences of variable updates. The predicates are required
to be mutually exclusive and exhaustive. Such a program
encodes a Markov chain whose state space is given by the
finite set of variable assignments and whose transitions are
dictated by the rules: if ϕ is satisfied under the current as-
signment σ and σi is obtained from σ by performing update
ui , then the probability of a transition from σ to σi is pi .

It is easy to see that any PRISM program can be expressed
in ProbNetKAT, but the reverse direction is slightly tricky:
it requires the introduction of an additional variable akin to
a program counter to emulate ProbNetKAT’s control flow
primitives such as loops and sequences. As an additional
challenge, we must be economical in our allocation of the
program counter, since the performance of model checking
is very sensitive to the size of the state space.

We address this challenge in three steps. First, we translate
the ProbNetKAT program to a finite state machine using a
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Figure 11. (a) AB FatTree topology with p = 4. (b) Evaluating k-resilience. (c) Comparing schemes under k failures.

7 Case Study: Data Center Fault-Tolerance

In this section, we go beyond benchmarks and present a case
study that illustrates the utility of McNetKAT for probabilis-
tic reasoning. Specifically, we model the F10 [26] data center
design in ProbNetKAT and verify its key properties.

Data center resilience. An influential measurement study
by Gill et al. [17] showed that data centers experience fre-
quent failures, which have a major impact on application
performance. To address this challenge, a number of data cen-
ter designs have been proposed that aim to simultaneously
achieve high throughput, low latency, and fault tolerance.

F10 topology. F10 uses a novel topology called an AB Fat-

Tree, see Figure 11(a), that enhances a traditional FatTree [2]
with additional backup paths that can be used when fail-
ures occur. To illustrate, consider routing from s7 to s1 in
Figure 11(a) along one of the shortest paths (in thick black).
After reaching the core switch C in a standard FatTree (re-
call Figure 6), if the aggregation switch on the downward
path failed, we would need to take a 5-hop detour (shown
in red) that goes down to a different edge switch, up to a
different core switch, and finally down to s1. In contrast, an
AB FatTree [26] modifies the wiring of the aggregation later
to provide shorter detoursÐe.g., a 3-hop detour (shown in
blue) for the previous scenario.

F10 routing. F10’s routing scheme uses three strategies to
re-route packets after a failure occurs. If a link on the current
path fails and an equal-cost path exists, the switch simply
re-routes along that path. This approach is also known as
equal-cost multi-path routing (ECMP). If no shortest path
exist, it uses a 3-hop detour if one is available, and otherwise
falls back to a 5-hop detour if necessary.
We implemented this routing scheme in ProbNetKAT in

several steps. The first, F100, approximates the hashing be-
havior of ECMP by randomly selecting a port along one of
the shortest paths to the destination. The second, F103, im-
proves the resilience of F100 by augmenting it with 3-hop
re-routingÐe.g., consider the blue path in Figure 11(a). We
find a port on C that connects to a different aggregation
switch A′ and forward the packet to A′. If there are multiple

such ports which have not failed, we choose one uniformly
at random. The third, F103,5, attempts 5-hop re-routing in
cases where F103 is unable to find a port on C whose adja-
cent link is upÐe.g., consider the red path in Figure 11(a).
The 5-hop rerouting strategy requires a flag to distinguish
packets taking a detour from regular packets.

F10 network and failure model. We model the network
as discussed in ğ2, focusing on packets destined to switch 1:

M(p) ≜ in ;do (p ; t) while (¬sw=1)

McNetKAT automatically generates the topology program
t from a Graphviz description. The ingress predicate in is
a disjunction of switch-port tests over all ingress locations.
Adding the failure model and some setup code to declare
local variables tracking the health of individual links yields
the complete network model:

M̂(p, f ) ≜ var up1�1 in . . . var upd�1 in M(f ;p)

Here, d is the maximum degree of a topology node. The
entire model measures about 750 lines of ProbNetKAT code.
To evaluate the effect of different kinds of failures, we

define a family of failure models fk indexed by the maximum
number of failures k ∈ N∪ {∞} that may occur, where links
fail otherwise independently with probability pr ; we leave
pr implicit. To simplify the analysis, we focus on failures
occurring on downward paths (note that F100 is able to route
around failures on the upward path, unless the topology
becomes disconnected).

Verifying refinement. Having implemented F10 as a series
of three refinements, we would expect the probability of
packet delivery to increase in each refinement, but not to
achieve perfect delivery in an unbounded failure model f∞.
Formally, we should have

drop < M̂(F100, f∞) < M̂(F103, f∞)

< M̂(F103,5, f∞) < teleport

where teleport moves the packet directly to its destination,
and p < q means the probability assigned to every input-
output pair by q is greater than the probability assigned by p.
We confirmed that these inequalities hold using McNetKAT.
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rate. In fact, there are examples where the approximations
do not converge after any finite number of steps, which is
obviously undesirable in a tool. The implementation only
scaled to 10s of switches. In contrast, this paper presents
a straightforward and implementable semantics; the imple-
mentation computes limits precisely in closed form, and it
scales to real-world networks with thousands of switches.
McNetKAT achieves this by restricting to the guarded and
history-free fragment of ProbNetKAT, sacrificing the ability
to reason about multicast and path-properties directly. In
practice this sacrifice seems well worth the payoff: multicast
is somewhat uncommon, and we can often reason about
path-properties by maintaining extra state in the packets. In
particular, McNetKAT can still model the examples studied
in previous work by Smolka et al. [35].
Our work is the latest in a long line of techniques using

Markov chains as a tool for representing and analyzing prob-
abilistic programs. For an early example, see the seminal
paper of Sharir et al. [32]. Markov chains are also used in
many probabilistic model checkers, such as PRISM [23].
Beyond networking applications, there are connections

to other work on verification of probabilistic programs. Di
Pierro, Hankin, and Wiklicky used probabilistic abstract in-
terpretation to statically analyze probabilistic λ-calculus [8];
their work was extended to a language pWhile , using a store
and program location state space similar to Sharir et al. [32].
However, they do not deal with infinite limiting behavior be-
yond stepwise iteration, and do not guarantee convergence.
Olejnik, Wicklicky, and Cheraghchi provided a probabilistic
compiler pwc for a variation of pWhile [29]; their optimiza-
tions could potentially be useful for McNetKAT. A recent
survey by Gordon et al. [18] shows how to give semantics
for probabilistic processes using stationary distributions of
Markov chains, and studies convergence. Similar to our ap-
proach, they use absorbing strongly connected components
to represent termination. Finally, probabilistic abstract inter-
pretation is also an active area of research [39]; it would be
interesting to explore applications to ProbNetKAT.

9 Conclusion

This paper presents a scalable tool for verifying probabilis-
tic networks based on a new semantics for the history-free
fragment of ProbNetKAT in terms of Markov chains. Natural
directions for future work include further optimization of our
implementationÐe.g., using Bayesian networks to represent
joint distributions compactly. We are also interested in apply-
ing McNetKAT to other systems that implement algorithms
for randomized routing [22, 33], load balancing [10], traffic
monitoring [31], anonymity [9], and network neutrality [41],
among others.
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