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Abstract

When a confined long gas bubble rises in a vertical tube in a co-current liquid flow, its transla-
tional velocity is the result of both buoyancy and mean motion of the liquid. A thin film of liquid
is formed on the tube wall and its thickness is determined by the interplay of viscous, inertial,
capillary and buoyancy effects, as defined by the values of the Bond number (Bo = pgR? /o with p
being the liquid density, g the gravitational acceleration, R the tube radius and ¢ the surface ten-
sion), capillary number (Cay, = pUsy/o with Uy being the bubble velocity and u the liquid dynamic
viscosity) and Reynolds number (Rep, = 2pU, R/ ). We perform experiments and numerical simu-
lations to investigate systematically the effect of buoyancy (Bo = 0 — 5) on the shape and velocity
of the bubble and on the thickness of the liquid film for Cap, = 1072 —10~! and Rep, = 1072 — 103.
A theoretical model, based on an extension of Bretherton’s lubrication theory, is developed and
utilized for parametric analyses; its predictions compare well with the experimental and numerical
data. This study shows that buoyancy effects on bubbles rising in a co-current liquid flow make
the liquid film thicker and the bubble rise faster, when compared to the negligible gravity case. In
particular, gravitational forces impact considerably the bubble dynamics already when Bo < 0.842,
with Bog, = 0.842 being the critical value below which a bubble does not rise in a stagnant liquid
in a circular tube. The liquid film thickness and bubble velocity in a liquid co-flow may vary by
orders of magnitude as a result of small changes of Bo around this critical value. The reduction
of the liquid film thickness for increasing values of the Reynolds numbers, usually observed for
Rey, < 10?2 when Bo < 1, becomes more evident at larger Bond numbers. Buoyancy effects also
have a significant influence on the features of the undulation appearing near the rear meniscus of

the bubble, as they induce a substantial increase in its amplitude and decrease in its wavelength.
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I. INTRODUCTION

The flow of an elongated gas bubble in a narrow gap is of interest to many diverse processes
that span different science and engineering fields, e.g. microchannel two-phase cooling [1],
transport of pollutants in unsaturated soil [2], cleaning of bacterial cells from medical surfaces
3], medical therapy [4] and membrane-less electrolyzers for hydrogen production [5]. As the
bubble progresses through a liquid-filled duct, capillary and viscous forces promote the
formation of a thin film of liquid between the liquid-gas interface and the channel wall and
its thickness impacts the wall-fluid exchanges. Manifestations of this are exemplified by the
fact that the heat transfer coefficient in a slug flow boiling regime is inversely proportional to
this thickness [6], while the mass transfer from the gas to the walls of a multiphase monolith
reactor is enhanced by a short diffusion path [7, 8]. Gas bubbles generated in water-saturated
soil are effective in detaching micron-sized colloids adhering on the pore walls due to surface
tension forces, if the liquid film is thinner than the particle size [9]. In medical practice,
air bubbles are introduced in pulmonary airways by mechanical ventilation of a collapsed
lung, and the consequent shear stress exerted on the airway walls may injure the lung tissues
[10]. Therefore, the ability to predict the dynamics of long bubbles traveling in a confined
geometry attracts attention from a diverse range of research fields.

The present work focuses on vertically-oriented channels with a circular cross-section.
When a long gas bubble travels upward in a vertical tube in the presence of a co-current
liquid flow, its translational velocity, U,, is a superposition of the bubble velocity in a

stagnant liquid U, and a contribution due to the liquid flow rate [11]:
Up = Upo +T'U,, (1)

where U is the mean liquid velocity in the tube and I is an empirical coefficient that depends
on the dimensionless parameters of the problem. Within the assumption of an axisymmetric
flow, the thickness of the liquid film surrounding the bubble is constant along the perimeter
of the tube, as shown in the schematic depicted in Fig. 1. The impact of buoyancy on the
dynamics of the rising bubble may be quantified by the Bond number, Bo = pgR?/o, where
p denotes the liquid density (the density of the gas is considered negligible in this work), g
the gravitational acceleration, R the tube radius and o the surface tension. The dynamics of

long gas bubbles translating in a vertical tube has been investigated extensively in the limits



Table I. Selected studies on the dynamics of isolated long bubbles in co-current liquid flows and

circular tubes. References on bubble-trains or bubbles rising in a stagnant liquid are not considered

here. The nondimensional groups appearing below are defined as follows: Bo = pgR?/o, Cay, =

wUy /o, Rey, = 2pUp R/ 11, Rey = 2pUR/ 1w and Wey, = Cay, Rep,.

Bok1
Reference Flow parameters Methodology Main observations
Cayp, < 0.005, Lubrication theory applied to ho
Bretherton [12] o 1.34Ca,.2/3
Rep, <« 1 the flow in the liquid film R ’ b
Cay, up to 2 Experimental measurement
Taylor [13] ho — R/3 as Cap, — 2
Rep, <« 1 of liquid film thickness
Cay, <2 Experimental measurements h 1.34Cay, 2/3
Aussillous and Quéré [14] ’ - e
Rep, <« 1 and fit to Taylor’s data R 1+ 3.35Ca,2/3
Cap <2 Lubrication theory Data of [13] and [14]
de Ryck [15]
Rep, < 103 including inertia well predicted by the model
Cap < 0.2 Experimental measurement | p Cap2/3
Han and Shikazono [16] —
Rep, < 103 of liquid film thickness R 1+ Cap2/3 + f(Cayp, Rep) — g(Wep)
Cap < 0.1 Lubrication theory and ‘When Wey, > 1, undulations appear
Magnini et al. [17]
Rep, < 103 numerical simulations at the rear meniscus and A = A\(Wey,)

Bo > 1, vertical tubes

Reference

Flow conditions

Study performed

Main observations

Nicklin et al. [11]

Re; up to 60000

Experimental measurement

Up,o = 0.35(2gR)'/2. T = 1.2

Bo =22 of bubble velocity for Re; > 8000, " - 1.8 as U; — 0
Re; up to 20000 Potential flow theory I' = 2.27 if laminar flow
Collins et al. [18]
Bo > 90 and experiments and I' = 1.2 — 1.4 if turbulent flow
Rep, > 100 Potential flow theory including Both Uy g and I" decrease as
Bendiksen [19]
Bo > 10 surface tension effects Bo decreases

Bo ~ 1, vertical tubes

Reference

Flow conditions

Study performed

Main observations

Bretherton [12]

Cayp, < 0.005,
Rep < 1

Lubrication theory applied to
the flow in the liquid film

ho/R is increased by a factor

1+ %Bo for upward/downward flow

Thulasidas et al. [7]

0.004 < Cay, < 3,
Rep <2, Bo=40.43

Experimental measurement

of liquid film thickness

ho at the lowest Cay, tested does not agree

with Bretherton’s correction factor

Bo > 1 (large tubes), and Bo < 1, where gravity effects vanish and the pipe orientation is

not important. A summary of the most relevant works is provided in Table I.

The Bo « 1 regime (where U, = 0) is pertinent to flow in tubes with radii smaller
than the capillary length /o /(pg), e.g. the flow of a bubble in an aqueous solution with
p = 1000kg/m? o = 0.073N/m in a tube of diameter 2R = 1mm gives Bo = 0.03 at

4



terrestrial gravity, and it was originally studied as a model for enhanced oil recovery and
flow in porous media [20]. In this regime, the bubble dynamics is fully determined by the
interplay between viscous and capillary forces, characterized by the bubble capillary number
Ca, = pUy/o (with p being the liquid dynamic viscosity), and by the ratio of inertial to
viscous effects expressed by the bubble Reynolds number, Rey, = 2pU, R/p. In the visco-
capillary regime Re;, < 1, the theoretical analysis of Bretherton [12] was based on the model
of an annular liquid film region separating the front and rear menisci of the bubble, where in
the limit that Ca;, < 1072 the thickness of the film can be predicted as hy/R = 1.34Cab2/3.
Later, Aussillous and Quéré [14] performed a scaling analysis of the forces acting on the front
meniscus of the bubble and utilized the film thickness measurements of Taylor [13] for very
viscous liquids to set an empirical constant in their scaling law. In the visco-inertial regime
Rey, > 1, inertial forces tend to reduce the liquid film thickness at intermediate values of the
Reynolds number (Re, < 10%) and to increase it when Rey, > 10% [8, 16]. The theoretical
models of de Ryck [15] and Magnini et al. [17] adopted a lubrication approximation to
describe the dynamics of the free-surface in the presence of inertia and derived a third-order
ordinary differential equation for the liquid film thickness; solution of this equation yielded

the entire profiles of the front and rear menisci of the bubble.

The Bo > 1 regime is obtained in large vertical tubes (Bo > 10 for an aqueous solution in
a tube of diameter 2R > 20 mm) and it was originally motivated by submarine applications
21, 22]. The main focus of the studies in this regime was on the determination of U, ¢ and of
the coefficient I in Eq. (1) for co-current flows. The first study for co-current flow conditions
was apparently performed by Nicklin et al. [11], who reported values of T' = 1.2 for turbulent
flows (Re; = 2pU,R/p > 8000) and values converging to about 1.8 as the liquid flow rate
was reduced to zero. Theoretical analyses were limited to the inertia-controlled regime,
which was assumed to occur when Rep, > 105 and Bo > 25 [18]. Collins et al. [18] adopted
potential flow theory to study the inviscid axisymmetric flow of liquid around the bubble
nose, which was assumed spherical. They obtained the theoretical values of I' = 2.27 for
laminar flow (Re; < 2100) and I' = 1.2 — 1.4 for turbulent flow (Re, > 2100) which matched
their experimental data well. Bendiksen [19] included the effect of surface tension on the
bubble profile in the theory developed by Collins et al. [18], and proposed a correlation to
evaluate I' as a function of Bo for Bo > 10. More recently, new empirical correlations have

been obtained to estimate I', albeit in the limit of large tubes and large Reynolds numbers
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[23-25].

In contrast, the vertical flow of individual long bubbles in co-current liquid for Bo ~ 1
has received far less attention. This is now of interest for a number of applications such as
compact heat exchangers, where the refrigerants utilized (hydro-fluoro-carbons and hydro-
fluoro-olefins) have values of the liquid density marginally above that of water but much
smaller surface tensions, typically in the range of o = 0.01 — 0.02N/m, thus giving Bond
numbers within the range Bo = 0.1 — 5 for tubes of diameter 2R = 1 — 5mm. In the low
capillary number limit, Bretherton [12] proposed to correct the film thickness by a factor
1+ %Bo for upward and downward flow, respectively. He compared this corrected scaling
with the results of experiments performed in a vertical tube, however the scatter of the data
available makes it difficult to draw clear conclusions regarding the validity of the correction
term. Thulasidas et al. [7] performed experiments in vertical capillaries with isolated bubbles
at Bo = 0.43 by systematically varying Cay,. They observed that, at the lowest experimental
Cay, (Cap = 0.01), the film thicknesses for both upward and downward flow did not agree
with Bretherton’s correction term when compared to the horizontal flow case. The same
observation was reported in the numerical study of Hazel and Heil [26] with Bo = 0.45.
Also, it is worthwhile to mention that, in the second part of his classical paper, Bretherton
[12] modified his theory to analyze the upward motion of a long bubble in a stagnant liquid
and observed that no steady solution for the profile of the bubble nose exists if the Bond
number is below a critical value, Bo,, = 0.842, as confirmed in other experimental studies
[27-29]. This critical value of the Bond number is often assumed as the lower limit for the

importance of gravitational effects also in the presence of a bulk liquid flow [30].

The objective of the present work is to investigate the dynamics of individual long bubbles
rising in a vertical circular channel in a co-current laminar liquid flow, for values of the Bond
number around the critical condition Bo., = 0.842. In particular, we assess the influence of
buoyancy effects when the Bond number transitions across the critical value (Bo = 0 — 5).
This study adopts a combination of theory, experiments and numerical simulations. The
theoretical model is based on an extension of the Bretherton theory to describe the flow
in the liquid film surrounding the bubble, and incorporates the effects of capillary, viscous,
inertial and gravitational forces. The experiments are based on a refractive-index-matching
technique, and are employed for a quantitative analysis of the bubble shape and velocity in

the Rep, < 1 regime. The numerical simulations are based on a Volume-Of-Fluid (VOF)
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method [31], and are utilized to explore the Rey, > 1 regime. Experiments and numerical
simulations also provide validation to the theoretical model. The rest of this article is
organized as follows: in Sec. II, a description of the flow problem is presented; the results
of the theoretical and experimental analyses for flows with negligible inertia are discussed
in Sec. III; in Sec. IV, the outcome of the theoretical model and numerical simulations for

flows with inertial effects are described.

II. PROBLEM FORMULATION

We consider an elongated gas bubble rising at a steady velocity U, in a vertical channel
of circular cross-section of radius R. The tube is filled with liquid, which flows with an
average velocity denoted U; in the same direction as the bubble. The flow is subject to a
gravitational force acting downward with acceleration g, so that buoyancy contributes to
the upward motion of the bubble. Figure 1 shows a sketch of the flow configuration under
consideration, in a reference frame attached to the gas bubble. The bubble profile and the
flow field are assumed to be axisymmetric. In order to describe the thin liquid film, the
radial direction y is chosen from the tube wall inwards. The axial coordinate x is directed
upward, and the reference x = 0 will be changed, as convenient, during this work. In
these coordinates, the axial and radial liquid velocity components are defined as v and v,
respectively, with v being positive when directed towards the axis of the tube. The walls
move with velocity (u,v) = (=U,0), in accordance with the no-slip and no-penetration
conditions. At steady-state, the gas-liquid interface is located at h(z).

Following the notation and description of Bretherton [12], we assume that there exists
a region of uniform film thickness, region C'D in Fig. 1, where the liquid moves parallel to
the wall of the tube and the film has a uniform film thickness hy. From point C', moving
towards its nose, the bubble presents a front dynamic meniscus region indicated as AC, with
A identified as the intersection between the interface profile and the axis of the pipe. Here,
the liquid film thickness increases monotonically from h = hg at C to h = R at A. From
point D, moving towards the bubble rear, there exists a dynamic meniscus region DF where
the liquid film thickness first undulates around hq [17] then eventually grows monotonically
to h = R at point F, thus forming the rear cap.

We assume that the flow is laminar, steady, and incompressible, and that the fluid is
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Figure 1. Sketch of a confined elongated bubble flowing within a vertical tube and notation used
in this work. Regions AC and DF represent the front and rear menisci, respectively; region C'D
represents the uniform film zone. Points B and E, which in the original work of Bretherton [12]
defined static menisci regions AB (front) and EF (rear), are not included in the figure because
under the conditions presently studied the bubble profile does not necessarily end with two static

menisci regions.

Newtonian. The steady-state Navier-Stokes equations governing the flow in the liquid film
surrounding the bubble are reported in Appendix A in dimensional form. We nondimen-

sionalize according to:

IS

~_ T S Y s Py _ho K @)
) - ga y_ h(), p_,ng/h(Q); - hov - h0/£27

i=2 =

v
U %

where p denotes the pressure, p the dynamic viscosity of the liquid and & the interface curva-

ture. We assume that the uniform film thickness hq is much smaller than the characteristic



length of the dynamic meniscus ¢, i.e. € = hy/l¢ < 1, so that from the continuity equation
it follows that V' = eU. The bubble velocity U, is used hereafter as a velocity scale, so that
U = U,. We now suppress the hat decoration. The dimensionless Navier-Stokes equations,

written in the axisymmetric, cylindrical coordinates introduced in Fig. 1, are given by

H
Uy + Uy — Um =0, (3a)
eRe, H H BoH?
5 (wty +vuy) = =Py + Uy + Uy — Uy Ty Cay (3b)
e Re, H 4 9 9 H 9 H?
o = - T - - ) 3
) (uvy + vvy) Py + € Vgy + €0y Evyl—Hy EU(l—Hy)Q (3c)

where the subscripts indicate derivatives and the nondimensional groups are

h U 2pUsR R?
H=-2 Ca= M, Rep, = P~b , Bo= P9 , (4)
R o 1 o

with p being the liquid density and o the surface tension. The no-slip and no-penetration

conditions apply at the channel wall:
u=—1 and v=0, at y=0. (5)

When neglecting the viscous stress within the gas phase, and setting the pressure within the
bubble to a zero reference value, the tangential and normal-stress conditions at the interface

are given by

2¢%h,

u, + v, + T—en (vy —uy) =0, at y = h(z), (6)
3

and p— 2%, + (uy + e'v,) by = —CE—K,, at  y = h(x). (7)
ap

The unit normal vector at the interface is directed into the bubble (see Fig. 1) and has

components

1
(1+ e2h2)172

—eh,, 1), (8)

and the interface curvature is

[, H 1

L+ 2Pk & (1 Hh)(1+ i) ©)

K =K1+ Ko =

where k1 indicates the curvature in the x — y plane and k9 the contribution due to the axial

symmetry.



III. FLOWS WITH NEGLIGIBLE INERTTIA

In this section, we study the dynamics of the bubble in the Rey, < 1 regime. Sections III A
and B illustrate the theoretical model; the experimental setup adopted to analyze the bubble
dynamics in the absence of inertial effects is described in Sec. II1 C; the results obtained with

the model and experiments are compared and discussed in Sections IIID and E.

A. Approximate model

We develop a model to derive the shape of the front meniscus of the rising bubble, based
on the numerical solution of an approximate set of equations governing the steady flow in the
liquid film. Starting from the complete nondimensional equations formulated in Section II,
we assume that € = hg/f < 1. The capillary number is considered to scale as Cay, = O(€?),
so that it follows from Eq. (7) at leading-order that pressure and surface tension forces are
balanced at the interface. This choice determines the scaling of the length of the dynamic
meniscus, ¢ = hoCap /%, According to the theory of Bretherton [12] for Ca, < 1, we
set the nondimensional film thickness to scale as H = O(€®). In this section, we neglect
the contribution of inertial forces by assuming Re, = O(1) or smaller. We assume that

Bo = O(e™!), so that the buoyancy term in Eq. (3b) appears with the same order as the

streamwise pressure gradient. At leading-order in €, Eq. (3) becomes

ux+vy - Oa (10&)
Uy, = pe+ 17, (10b)
py = 0, (10c¢)
where
Bo
T? = H>*—/—. 11
Cab ( )

At the tube wall, the no-slip and no-penetration boundary conditions expressed in Eq. (5)
apply. The boundary conditions at the gas-liquid interface are rewritten from Eqgs. (6) and

(7) at leading-order in €:

u, =0, at y = h(x), (12)
and p= —-K, at  y = h(z). (13)
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A consistent leading-order expression for the interface curvature is Kk = hy, + H/ Cab2/ 3
which is accurate in the thin-film region, where |h,| < 1. However, near the bubble front
and rear caps, |h;| becomes large. Therefore, to obtain a set of equations that describe
the liquid flow both in the thin-film and the bubble caps regions, we retain the complete

expression of the interface curvature [32, 33]
_ By N H 1
(14 Cap??h2)3/2  Ca,® (1 — Hh)(1 + Ca,?/3h2)1/2’

By integrating once the y—momentum Eq. (10c) along y and using the boundary condition

(14)

Eq. (13) to fix the integration constant, the pressure gradient along x in Eq. (10b) can be
written as p, = —k,. Integrating the r—momentum equation twice along y, with the
boundary conditions expressed in Egs. (5) and (12), the velocity profile in the dynamic

meniscus is derived:

2
u(z,y) = (—ke + T7) (% — hy) —1. (15)
At steady-state, the volume-flux of liquid across the dynamic meniscus region AC equals
the flux of liquid across the flat-film region C'D:
1
Qz/ww v= [ ueo(wdy (16)
0 0
where ucp is the liquid velocity profile in the flat-film region

zmwhﬂﬂg—@—L (1)

Introducing Egs. (15) and (17) into Eq. (16), calculating the integrals and rearranging the
terms, a third-order nonlinear ordinary differential equation (ODE) for the liquid film profile

is obtained:

/fz:3(h_1)+T2(h3_1). (18)

h3 h3
—_—— ——

viscous term buoyancy term

In Eq. (18), the first term on the right-hand side is the standard leading-order viscous term
that enters the Bretherton problem, while the last term introduces the gravitational force.
Using the complete expression of the interface curvature shown in Eq. (14), the left-hand

side of Eq. (18) reads as:

- h.h?, Hh,
fio = —ort — 30y 7 — [Hf1 — Cay?3(1 — Hh)hyo|, (19)
1 fi | pab (1—Hh)*f
curvatur;rﬁrst term curvature,‘s,econd term
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where
fi =1+ Cap?/®h. (20)

A detailed analysis of the importance of the various terms appearing in Egs. (18) and (19)
is included in the Supplemental Material.

The presence of a liquid upflow with average velocity U; does not appear explicitly in
Eq. (18). However, U; and U, are linked via the material balance of the liquid flow (see
Appendix B for full derivation)

 Cy (1—H)*log(1—H) 1 1 3(1—H)?
Cab——(l_H)2+Bo 5 §+8(1—H)2+ g . (21)

where Ca; = pU;/o. The ODE can be solved for independent values of Ca;, and Bo to
yield the uniform film thickness H, then utilizing Eq. (21) to extract an estimate of Cay.
Alternatively, we assume that Ca; is known, then Egs. (18) and (21) can be solved iteratively

to yield converged values of both H and Cay,.

B. Numerical integration

The profile of the front meniscus of the elongated bubble, for a given set of Ca;, and Bo
numbers, can be obtained by a numerical integration of Eq. (18). The numerical integration
is performed by means of the Matlab solver ode45. The integration starts from the flat-
film region, point C' in Fig. 1, where the boundary conditions h(xz¢) = 1, hy(zc) = 0
and h,.(zc) = 0 apply, and proceeds towards  — +o0o. The initial conditions for the
numerical solution are derived as a linear perturbation of the boundary conditions above,
h(z) = 14 €%, hy(z) = s€%*, hy,(x) = s?e*, where § = €** is a small perturbation (set to
10~ in our calculation) and s is the solution of the following equation derived by linearization
of Eq. (18):

2

3 2
- ~-3(1+7T%) =0. 22
’ Cap?3(1 — H)?S ( ) (22)

The bubble cap does not end with a static meniscus region when the capillary number is
increased above 1072 (see Fig. 1(f) in the Supplemental Material), and hence the matching to
a static profile as done by Bretherton [12] cannot be used. Therefore, Eq. (18) is integrated
until the interface profile reaches the channel axis, point A in Fig. 1, where h = 1/H.
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Since the nondimensional film thickness H depends on both Ca;, and Bo and is not known
beforehand, the first numerical integration is performed with an initial guess for the value
of H. Once terminated, the numerical integration is repeated by updating the value of H,
according to an iterative procedure. This procedure has the objective to find the value of

H that yields an interface profile that satisfies the asymptotic condition [15, 17]

1
K1 = Ka, when h = I (23)

The results of validation tests conducted versus literature data for the Bo < 1 regime are
reported in the Supplemental Material. The bubble profiles and uniform film thickness
obtained utilizing the approximate model in the Bo ~ 1 regime will be compared with

experimental results in Section IIID.

C. Experimental setup

Experiments in the Re, < 1 (Rey, &~ 1072) regime were performed using glycerol as the
liquid phase (density p = 1186kg/m3, viscosity u = 0.84Pa-s and surface tension o =
0.063N/m) and air as the gas phase. Three different radii of glass tubes R = 1.01,1.51 and
2.91 mm corresponding to Bo = 0.19,0.42 and 1.56 were tested, thus allowing investigation
of bubble dynamics as the Bond number transitions from below to above the critical value
of 0.842 [12]. The tube diameters were measured optically using pre-calibrated microscope
objectives. The glass tubes were 30 cm long and were held vertical within a refractive-index-
matching box that ensured no optical deformation in the images due to the curvature of the
tube wall [34]. The rigid glass capillary was connected to a syringe pump using flexible
tubings to inject liquid at constant flow rate. A long air bubble was injected through a
T-junction upstream of the glass capillary. This setup was used to study only the Rep, < 1
regime due to the large flow development length required in Rey, > 1 conditions.

The region of interest (ROI) was illuminated from the back using a LED light panel and
shadowgraph images, see examples in Fig. 2, were captured at the rate of 30 frames per
second through the front side of the refractive-index-matching box using a Nikon D5100
camera. A horizontal homemade tube microscope with 10X and 5X objectives was used
for imaging the ROI on the centreplane of the glass capillaries of R = 1.01 and 1.51 mm,

respectively, whilst a macrolens was used for the larger radius tube. These configurations
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1 mm

AN
11

Ca, =0.0038 =0.018 =0.056

flow direction

Figure 2. Examples of bubble shapes extracted from experiments in the R = 1.51 mm tube (Bo =
0.42) at different liquid flow rates (Rej < 1). Images contain visualization of the nose and of the

central part of the bubble, where the film thickness is uniform.

ensured a minimum number of 10 pixels in the film region, so that the relative error in the film
thickness measurement never exceeded 10 %. The interface between the air bubble and the
liquid phase was detected in the thresholded image sequence using a Canny edge detection
algorithm [34]. The flow rate of the liquid phase, thus Ca;, was the control parameter in all
experiments, whilst the corresponding Cay, (Caj, = 1073 — 0.15) was measured by tracking
the nose of the bubble at each test condition. The experimental uncertainties for the average
liquid velocity, bubble velocity, liquid viscosity and surface tension are 0.5%, 1%, 4% and
1%, respectively, that yield less than 5% uncertainty in the calculated values of Ca; and
Cay,. The steady-state motion of the bubble at the measurement section was verified by
calculating the velocity of the bubble nose frame-by-frame while the bubble crossed the
ROL.

D. Theoretical predictions and experimental results

The theoretical model based on the numerical integration of Eq. (18) is utilized to obtain
predictions of the profile of the bubble nose, bubble velocity and uniform film thickness

under the experimental conditions. In the experiments, the liquid capillary number Ca, is the
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control parameter, while the solution of the ODE requires knowledge of Cay,. Therefore, the
theoretical model is run iteratively, according to the following steps: (i) the input values of
Cay and Bo are defined; (ii) at the first iteration, Cay, is taken equal to Cay; (iii) Equation (18)
is solved iteratively, starting with a guess value of H, to find the value of H that satisfies
the asymptotic condition Eq. (23); (iv) the material balance in Eq. (21) is used, with the
converged value of H from the previous iteration, to update Cayp; (v) steps (iii) and (iv) are
repeated until the relative variation of Cay, between two consecutive iterations is below 1073,
The profile of the bubble nose, the nondimensional film thickness H and bubble capillary

number Cay, at convergence are the final results corresponding to Ca; and Bo.

The shapes of the bubble nose predicted by the model and extracted from the experiments
for selected values of Ca; and Bo are presented in Fig. 3. It can be seen that as the Bond
number is increased, the liquid film becomes thicker as more liquid flows downwards through

the film region. A comparison of the entire experimental database with the liquid film

o L
-0.5
o
X
x p
=
-1.5 |
2t —*— Bo0=0.19
—=—Bo=0.42
s —+—Bo=1.56
-2.5 : :
-1 -0.5 0 0.5 1
h/R-1

Figure 3. Comparison of shapes of the bubble front predicted by the theoretical model (solid lines)
and shapes extracted from the experiments (symbols). Flow conditions all refer to Ca; ~ 0.005

(Re; < 1). In this figure, x and h indicate dimensional quantities.
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Figure 4. Comparison of the (a) thickness of the uniform film region and (b) capillary number
associated to the bubble velocity given by the model (solid lines) and experiments (symbols),
Re; <« 1. The error bars (in some cases obscured by the solid symbols) refer to the experimental

uncertainty measured by taking the average of three measurements for each test condition.

thickness and bubble velocity obtained with the theoretical model is provided in Fig. 4. The
results are displayed as a function of Ca; because, for a given geometry, the average liquid
velocity was the control parameter. The predictions for negligible gravity effects, Bo = 0,
are also reported as a reference.

When the capillary number of the liquid is increased (see Fig. 4(a)), i.e. when the average
velocity of the liquid in the experiment is increased, the liquid film becomes thicker as
expected from the traditional capillary theory. The nondimensional film thickness increases
with the Bond number, i.e. the diameter of the tube in the experiment, and already at the
lowest Bond number tested H is larger than the value predicted for Bo = 0. Hence, buoyancy
influences the flow even when Bo < 0.842. The results for different Bond numbers seem to
converge at high Ca,, thus indicating that viscous forces overcome buoyancy forces. However,
as the average liquid velocity (Cay) is reduced, both the nondimensional film thickness and
bubble velocity (Cayp) exhibit very different trends depending on the Bond number. For
Bo = 0.19 and 0.42, Ca;, — 0 as Ca; — 0 (the bubble slows down) and the film thickness
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decreases continuously following a Cay?® scaling analogous to the Bo = 0 case (assuming
that Cay, =~ Ca as Ca, — 0). Therefore, as the liquid velocity decreases, buoyancy alone is
not sufficient to sustain the upward motion of the bubble, although the liquid film remains
thicker than the case where gravity is negligible. In contrast, for Bo = 1.56 as the liquid
flow rate is decreased both the bubble speed and film thickness decrease down to asymptotic
values. This result is in line with Bretherton’s theory, for which if Bo > Bo., = 0.842, the
bubble would still rise in the absence of a mean liquid flow.

The theoretical model captures well the experimental trends of liquid film thickness and
bubble speed; the model slightly underpredicts H at lower Bo and overpredicts it at larger
Bo. Nonetheless, the average deviations between experimental data and theoretical results
are 10 % for H and 5.3 % for Cay,, which are within the experimental uncertainties. In order
to better understand the dynamics of the bubble in the Bo ~ 1 regime, in the next section

we outline the results of a parametric analysis conducted by using the theoretical model.

E. Discussion

A parametric analysis was performed by utilizing the theoretical model to systematically
explore the range Ca; = 1075 — 10! and Bo = 0 — 2.5. The predictions for the liquid
film thickness as a function of Ca; are presented in Fig. 5(a). In agreement with the trends
observed in Fig. 4, the following three regimes are identified: (i) when Ca; approaches a
value of about 0.1, the trends of the liquid film thickness for different Bond numbers tend
to converge as viscous forces become dominant over buoyancy effects; (ii) when Ca; — 0
and Bo < Bog,, the curves follow the same trend as the Bo = 0 case, although H increases
considerably with Bo; (iii) when Ca; — 0 and Bo > Boy,, the uniform film thickness (and the
bubble speed, not shown here) decreases down to an asymptotic value, which is a function
of Bo. The results recompiled as a function of the Bond number are illustrated in Fig. 5(b).
When the liquid capillary number is decreased below 0.1, the liquid film thickness may vary
by orders of magnitude as the Bond number crosses the critical value Bo., = 0.842. This
transition becomes steeper as the capillary number of the liquid is further reduced; the
highest rate of change of H versus Bo is always detected at Bo = Bo,,.

We have verified that the correction term proposed by Bretherton [12] to include buoyancy

effects in his lubrication theory for bubbles displaced by a flowing liquid in a vertical tube,
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Figure 5. Predictions of the thickness of the uniform film region given by the theoretical model

when varying (a) the capillary number of the liquid flow and (b) the Bond number, for Re; < 1.

H(Bo>0)/HBo=0) =1+ %Bo, agrees with the model’s predictions in the asymptotic
limit that Caj,, — 0 and Bo — 0. Deviations are below 10 % when Ca;, < 1072 and Bo < 0.4.

A further analysis of the transition value of the Bond number was performed by running
the theoretical model with a very small value of the liquid capillary number, Ca; = 10719,
to simulate the limit of no imposed liquid flow. The results are reported in Fig. 6. The
predictions of the present model confirm the critical value derived by Bretherton [12], as
the values of the bubble capillary number sharply deviate from the Bo = 0 case (where
Cap ~ Ca = 10_10) as the Bond number is increased above the value 0.842. Figure 6 includes
also a curve depicting the capillary number of the bubble estimated using a relationship

derived in the second part of Bretherton’s paper:
Bo — 0.842 = 1.25Ca;,%/® 4 2.24Cay /2. (24)

Equation (24) agrees remarkably well with the results of the present model for 0.842 <
Bo < 1, while deviations quickly grow above 10 % when Bo is increased above 1. As pointed
out by Bretherton, the deviations may be attributed to his assumption that the interface

curvature due to the axial symmetry, ko, is constant along the thin-film.
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Figure 6. Trends of the bubble capillary number versus Bond number predicted by the model (blue
line) when the liquid capillary number is set to a very small value, Ca; = 107!° (and Re; < 1). The
black dashed line indicates the results of the theory developed by Bretherton [12] for long bubbles

rising in a stagnant liquid, Eq. (24).

Following the approach of Aussillous and Quéré [14], a scaling analysis for the liquid film
thickness in the Bo < Bo, regime is developed (Re, < 1). Balancing the viscous force
with the pressure gradient and buoyancy term in the equation of motion along the dynamic
meniscus at the bubble front yields

ply 1 o
h2 T U{R—hy

+ pg, (25)

where the characteristic length of the dynamic meniscus ¢ can be derived by matching the

curvatures of the dynamic and static menisci,

ho o 12 1
2 R—hy R—hy a

(26)

with a = y/0/(pg) being the capillary length scale. Equation (26) is expected to hold as
long as buoyancy effects are mild (Bo < Bo,,), because the curvature of the static menisci is

calculated as the curvature of the bubble nose in the absence of gravity effects, 2/(R — hy),
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with the correction —1/a, which accounts for the linear curvature reduction induced by
buoyancy (see Fig. 1(d) in the Supplemental Material). Using Eq. (26) to extract ¢ and
substituting it into Eq. (25), an implicit scaling law for the nondimensional film thickness is

derived:

2/3
H o~ Can (27)

23 12 / H 1/2 2/37
C 1—(B B —
ap”’” + (Bo')"" 4+ Bo (1—H>

where Bo' = pg(R — hg)?/o. Using Aussillous and Quéré’s [14] scaling for the film thickness

at large capillary numbers to express the term H/(1 — H) at the denominator of Eq. (27),

the following scaling law is finally obtained:

C 2/3
H~ & . (28)

273
Cap?/® + [ 1— (Bo')Y? + B Cabl/gl

T T T

ol =~ ~Model: Bo=0
10°F ——Bo=0.25
——Bo0=0.5
Bo=0.75
® Experiment: Bo=0.19
B Bo=0.42

10—2 /

Figure 7. Scaling performance of Eq. (28) versus the theoretical and experimental data

(Rey <« 1) for Bo < Bog.  The rescaled film thickness H* is defined as H* =
2/3

H [3.35Cab2/3 + (\/ 1—1.12Bo'/2 + v1.34Bo Cab1/3> ] The rescaled data collapse along a

Cap?/? line.
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The entire experimental and theoretical film thickness database for Bo < Bo,,, rescaled
as indicated in Eq. (28), is plotted in Fig. 7. For simplicity, it is assumed that Bo’ &~ Bo. The
rescaled data collapse along a Cay,?/® line. The coefficients 3.35 and v/1.34 used to rescale the
data in Fig. 7 derive from Aussillous and Quéré’s [14] fit of Taylor’s data and Bretherton’s
law, respectively, while the coefficient 1.12 is obtained by a best fit of the present database.

IV. FLOWS WITH INERTIA

In this section, we investigate the dynamics of the bubble in the Re;, > 1 regime. The
theoretical model including inertial effects is developed in Sections IV A and B; the numer-
ical model for the VOF-based solution of the full Navier-Stokes equations is described in
Sec. IV C; the results obtained with the theoretical model and the full numerical simulations

are compared and discussed in Sections IV D and E.

A. Approximate model

Inertial forces are introduced in the theoretical model based on Egs. (3)-(7) with the
assumption that Re, = O(e™?), so that the inertial term in the z—momentum equation
is of the same order as the pressure gradient while that in the y—momentum equation is

negligible. Hence, the nondimensional z—momentum equation at leading-order in € becomes
L 13 2
§Cab RenH (uwuy + vuy) = —py + uyy — 17, (29)

while the other equations governing the flow at leading-order, Egs. (10a) and (10c), and the
boundary conditions, Egs. (5), (12) and (13), remain unchanged.

Due to the presence of the nonlinear inertial term on the left-hand side of Eq. (29),
the procedure to derive the ODE governing the film profile differs from the Re, < 1 case.
We adopt the methodology originally introduced by Shkadov [35] to study the nonlinear

dynamics of waves appearing on the surface of a thin liquid film flowing along a vertical
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plate. The continuity and z—momentum equations are integrated from y = 0 to y = h(x):

h h
/uxdy—k/vydy =0, (30a)
0 0
. h h h h h
§Cab1/3RebH /uuxdy—l—/vuydy = //fxdyjt/uyydy— /TQdy, (30b)
0 0 0 0 0
where p, = —k, has been used. In order to evaluate the integrals appearing in the equations

above, a closure relationship for the velocity profile in the liquid film u(z,y) is necessary.
This profile must satisfy the boundary conditions u = —1 at y = 0 and u, = 0 at y = h(z),
and continuity as expressed in Eq. (16), and therefore the following parabolic profile is

chosen:

o= 2 (Z i) (£ ) 1 -

Using Eq. (31) to express u and its derivatives, and the continuity Eq. (30a) to derive a
relationship for v, Eq. (30b) yields a new third-order ODE for the liquid film profile in the

presence of inertial effects:

(h — 1) 9 (hg — 1) 1 1/3 9 2 2 4 hy
o = 3 TP G HCa TRey (W6 TP ST R (32)
——— ——— .,

viscous term buoyancy term

TV
inertial term

while £, can be expressed as indicated in Eq. (19). A detailed analysis of the importance of

the various terms appearing in Eq. (32) is included in the Supplemental Material.

B. Numerical integration

The numerical integration of Eq. (32) is performed as for the Re,, < 1 case, see Sec-
tion III B. The linearized conditions to start the integration procedure, appropriate to the

uniform film region, are now extracted from the solution of the equation:

H? 1 2
3 — HCal®Rey, [ 5+ 472 + 274 —3(1+7T2) =0. (33
57+ Cab2/3(1 BT + oG, Rew + + 3 s ( + ) (33)

The numerical integration for the front meniscus starts from the flat-film region and proceeds
towards x — —4o00. The iterative procedure adopted to fix the value of H is the same as

explained in Section III B.
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Inertial effects have been demonstrated to yield significant undulations on the surface of
the elongated bubble [17], near its rear meniscus. Therefore, the combined effect of buoyancy
and inertial forces on the profile of the rear meniscus is of interest. The profile of the rear
meniscus of the bubble in the presence of inertia can be calculated by numerical integration
of Eq. (32), starting from close to the flat-film region (point D in Fig. 1) and proceeding
towards © — —oo. The nondimensional film thickness H is now fixed by the solution at
the front meniscus. As discussed by Magnini et al. [17], the linearized initial condition for
the solution at the bubble back is a sinusoidal function that contains a phase shift ¢ as an
integration constant. Different values of ¢ yield interface profiles that are shifted along z.
Therefore, an iterative procedure is utilized to find the value of ¢ which gives a profile of
the rear meniscus that satisfies the asymptotic condition reported in Eq. (23). Profiles of
the bubble rear obtained by numerical integration will be compared with the results of full

numerical simulations in Section IV D.

C. Numerical simulations

Numerical simulations of the co-current flow of liquid and an elongated bubble in the
Rep, > 1 regime were performed by means of the open-source CFD package EST OpenFOAM,
release 2.3.1. The unsteady Navier-Stokes equations are solved for both the liquid and gas
phases, which are treated as a single mixture fluid according to a Volume-Of-Fluid (VOF)
[31] formulation. The flow is assumed incompressible and the fluid Newtonian. The surface
tension force is included within the momentum equation as a body force according to the
Continuum Surface Force (CSF) method [36]. The self-developed f£1exCLV (flexible coupled
Level Set and VOF) [37] algorithm is adopted to enhance the calculation of the surface
tension force. This routine reconstructs a level set function (distance from the liquid-gas
interface) from the VOF volume fraction field at every time-step, and then evaluates the
interface topology (curvature and normal vector) based on derivatives of the level set.

The numerical simulations are run with an axisymmetric flow model. An elongated
bubble is initialized near the inlet boundary of the domain (as in Fig. 1). The initial bubble
length is of about 20R, in order to ensure that a flat-film region is formed between the front
and rear caps. At the inlet boundary, liquid enters the domain with a parabolic velocity

profile. A no-slip condition is set at the wall. At the outflow section, the pressure is set to a
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zero reference value while the velocity gradient along the stream direction is set to zero [38].
The gravitational force acts parallel to the axis of the tube and is directed towards the inlet
boundary. The liquid to gas density and viscosity ratios are respectively fixed to 1000 and
100. These ratios ensure that the results are independent of the bubble density and viscosity
as indicated by the numerical study of Kang et al. [39]. The simulations are run forward in
time until the bubble translates with a constant velocity. The independent parameters in
the numerical model are Caj, Re; and Bo. A parametric analysis is conducted by varying

these groups within the range Ca; = 0.00464 — 0.069, Re; = 0.07 — 1400 and Bo = 0 — 5.

D. Theoretical predictions and results of numerical simulations

The theoretical model based on the numerical integration of Eq. (32) is utilized to obtain
predictions of the profiles of the bubble nose and rear, bubble velocity and uniform film
thickness under the range of conditions explored by the numerical simulations. The Bond
number and the liquid capillary and Reynolds numbers are the independent parameters. For
each set of Bo, Ca; and Rej, the model is run iteratively until converged values of H, Cay,
and Rey, are achieved, as was done for the Re, < 1 case (see Section 111 D).

Examples of the profiles of the rear meniscus obtained with the theoretical model and
the full simulations for fixed values of Ca; and Re; and increasing values of Bo are illustrated
in Fig. 8. When Bo = 0, the undulation at the bubble rear exhibits only one crest, which
suggests that inertial effects are weak [17]. This response is consistent with the Weber
number of the flow being smaller than 1, as We,, = Ca;, Re, = 0.5. As the Bond number
is increased, a significant increase of the amplitude of the undulation and a slight decrease
of its wavelength are evident, with three crests becoming apparent near the bubble tail.
The theoretical model based on the solution of Eq. (32) predicts very well the value of the
uniform film thickness and the entire profile of rear meniscus and undulations for the three
cases shown in Fig. 8, with a slight tendency to overestimate the undulation amplitude at
larger Bond numbers.

A systematic analysis of the trends of the nondimensional film thickness H, bubble to
liquid speed ratio U,/U, and nondimensional wavelength A/¢ (see Fig. 1) of the interface
undulation at the rear meniscus (with ¢ = hoCay, ™ ®) has been performed by varying Re

and Bo, for three constant values of Ca;. The results for both the numerical simulations and
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Figure 8. Comparison of shapes of the bubble rear predicted as solution of Eq. (32) (solid lines) and
shapes extracted from the full numerical simulations (symbols). Flow conditions are: Ca; = 0.00464
and Re; = 92.8. x(hyin) denotes the axial location where the minimum value of the film thickness

is measured. In this figure, x and h indicate dimensional quantities.

the theoretical model are summarized in Fig. 9, where they are compiled as a function of
Rey, which is an independent parameter in the analysis. From the numerical simulations and
theoretical profiles, the wavelength of the undulation is calculated as the distance between
the two most upstream crests; see the sketch in Fig. 1.

As a general trend, the liquid film thickness and speed ratio increase with the Bond num-
ber. Relative to the case of negligible gravity, Bo = 0, buoyancy effects are more apparent
at smaller capillary numbers, which is consistent with the buoyancy term in Eq. (32) being
proportional to Bo/Cay. The reduction of H with increasing Rey, at intermediate values
of the Reynolds number becomes more pronounced as Bo is increased; for instance, when
Bo = 1.25 and Ca; = 0.069 (see the orange triangles in Fig. 9(g)), H decreases by more than
20 % within the range Re; = 107! — 102. The velocity ratio follows the same trends versus
Re; and Bo as the nondimensional film thickness.

Magnini et al. [17] showed that in the Bo = 0 case the wavelength of the undulations on
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Figure 9. Comparison of the thickness of the uniform film region H, bubble to average liquid
velocity Uy /U; and wavelength \/¢ of the ripples appearing at the rear meniscus of the bubble, for
three constant values of the liquid capillary number. Full markers identify the results of numerical

simulations and solid lines are the predictions of the model, Eq. (32).

the surface of the bubble decreases as Wey, increases above 0.1 due to the effects of inertial

forces, while it reaches an asymptotic value A/¢ ~ 4.8 — 5 (approximately independent of
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Cay,) as Rep, — 0. The present analysis demonstrates that buoyancy effects have a significant
impact on the dynamics of the interfacial ripples. When inertial forces are negligible (Re; < 1
in Figs. 9(c), (f) and (1)), the asymptotic value of the nondimensional wavelength decreases as
Bo is increased. However, no appreciable change of the amplitude of the ripple is observed
when increasing Bo from 0 to 1.25, so that only one undulation crest is clearly visible.
When inertial forces are important (Re; 2 10 — 100), gravitational effects further reduce the
wavelength of the interfacial ripple and we observe that the amplitude of the undulation
grows considerably. This feature cannot be attributed solely to the larger bubble velocity
(i.e. larger Weber number, which increases the amplitude of the ripple and decreases its

wavelength), but it represents a direct effect of buoyancy on the dynamics of the undulation.

The results of a systematic analysis of the influence of the Bond number in the range
Bo = 0 — 5, while keeping constant Ca; and Rej, are reported in Fig. 10. The effect of
buoyancy on the flow is substantial, as the film thickens by a factor of about 4 between
Bo = 0 and Bo = 5. The bubble velocity increases mildly with Bo as long as Bo < Bo,, and
more steeply at larger values of the Bond number. The wavelength of the undulation at the

bubble rear diminishes considerably as gravitational forces become important, see Fig. 10(c),
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Figure 10. Comparison of the (a) thickness of the uniform film region H, (b) bubble to average
liquid velocity U,/U; and (c) wavelength A\/¢ of the ripples appearing at the rear meniscus of
the bubble obtained as solution of Eq. (32) (solid lines) and numerical simulations (symbols), for
Ca; = 0.00464 and Re; = 92.8. The numerical simulation for Bo = 5 gave time-dependent profiles

of the bubble rear, the value of the wavelength reported in the figure is an average in time.
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while the amplitude of the undulation grows as shown in Figure 8. In the range Bo = 0 — 5,
the Weber number of the bubble increases from about 0.5 to 5. The data of Magnini et al.
[17] for Bo = 0 and similar capillary numbers indicate that, in the same range of Weber
numbers (i.e. inertial effects of comparable magnitude), the nondimensional wavelength of
the ripple decreases from about A\/¢ = 4.5 to 3.5, which is a substantially smaller variation
than that observed in Fig. 10(c). This further confirms that gravitational forces directly
impact the profile of the undulation at the rear meniscus of the bubble.

The average deviation between the results of the numerical simulations and theoretical
model for all the data points included in Figs. 9 and 10 is 4.8 % for the film thickness, 2.2 %
for the bubble velocity and 15.3 % for the undulation wavelength.

E. Discussion

The scaling analysis for the film thickness in the negligible inertia regime proposed in
Section III E is now corrected to account for inertial effects. Inertial forces tend to increase
the curvature of the bubble nose [16, 40], which is here accounted for by introducing a

correction to the curvature matching condition Eq. (26):

ho 14+fi 200+f) 1
~ _ L 4
2 R _h” R—hy a (34)

where fj, can be estimated as f;, &~ CapRel? according to the empirical fit of Han and
Shikazono [16] to their experimental film thickness data. Balancing viscous, inertial and
gravitational forces and the pressure gradient in the equation of motion along the dynamic

meniscus yields

uUlea(l—i—fk) _1 2

Using Eq. (34) to express ¢ in the equation above, the following scaling law is obtained:

C 2/3
H~ o (36)

2/3°
Cap?? + {(1 + fr — We{D)\/l + fr — (Bo’)l/2 + Bo' Cay,'/?

where Wej, = pUZ(R — hy)/o. Equation (36) can be used to infer the influence of capillary,
viscous, inertial and buoyancy forces on the uniform liquid film thickness trends presented

in Figs. 9 and 10. For simplicity, we assume that Bo’ ~ Bo and We}, ~ Wey,. For small
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values of the capillary number, the positive term Bo Cap,'/? is small and the thickening of the
liquid film due to buoyancy (relative to the Bo = 0 case) is more apparent. As the capillary
number is increased, the relative impact of the Bond number is reduced due to the presence
of the positive Ca,?? term in the denominator.

When Re,, < 1, inertial forces are negligible; We, < 1 and f; < 1 so that Eq. (36)
reduces to Eq. (28). For increasing values of Rey, fi increases and the argument of the
square root becomes less sensitive to Bo; therefore, the values of H for different Bo numbers
tend to get closer, as observed in particular in Fig. 9(g) at Re; ~ 100. This mixed effect
of inertia and buoyancy forces makes the decreasing trend of H with increasing Re; more
evident for larger Bo numbers, as demonstrated in the previous section. As Rey, is increased

further, fr > Bo'/? and inertial effects overcome buoyancy; eventually, at large Reyp, the film

thickness curves for different Bond numbers tend to converge as indicated in Fig. 9.

V. CONCLUSIONS

In this paper we performed a systematic analysis of the effect of buoyancy on the dynamics
of long gas bubbles rising in a vertical circular channel in a co-current liquid flow. The bubble
speed, shape, uniform film thickness and features of the undulation appearing nearby the
rear meniscus have been quantified for a range of capillary numbers Ca;, = 1073 — 1071,
Reynolds numbers from Rep, < 1 to about 103, and Bond numbers Bo = 0 — 5. We
carried out experiments to explore the Rep, < 1 regime and numerical simulations to study
the Rey, > 1 regime. A theoretical model that implements inertial and buoyancy effects to
extend the classical Bretherton theory was developed and utilized to run parametric analyses
across the entire range of dimensionless parameters of interest. In general, when bubbles rise
in a co-current liquid flow buoyancy effects are manifest already when Bo < Bo,, = 0.842,
with a substantial increase of the film thickness compared to the Bo = 0 case. As the
capillary number of the liquid tends to zero, the bubble velocity and uniform film thickness
decrease indefinitely when Bo < Bo,,, whereas they decrease down to non-zero asymptotic
values when Bo > Bo.,. As a consequence, when Ca; < 1072 small variations of the Bond
number across the critical value may induce orders of magnitude changes in the liquid film
thickness and bubble velocity. In the Re, > 1 regime, the reduction of the liquid film

thickness and bubble velocity observed for increasing values of the Reynolds number (up
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to Re, = 100 — 500) is largely amplified when Bo > 0. The undulation at the rear end
of the bubble exhibits higher amplitude and smaller wavelength as the Bond number is
increased. The theoretical model developed in this work quantitatively predicts the present
experimental and numerical database within a 10 % error with respect to the uniform film

thickness and 5 % for the bubble velocity.

SUPPLEMENTAL MATERIAL

Supplemental Material associated with this article includes a detailed analysis of the
forces acting along the front meniscus of the bubble and the validation of the theoretical

model versus literature data in the case of negligible buoyancy effects.

Appendix A: Equations governing the flow in the liquid film

The equations governing the flow in the liquid film in the axisymmetric, cylindrical co-

ordinates introduced in Fig. 1, in dimensional form are

v

ux+vy——R_y = 0, (Ala)
u
p (uuy +vuy) = —py + p (um + Uy — R——yy) — pg, (Alb)
P (U,Ux + ?J’Uy) = Dy + 1% |}wa + Vyy — & - = 2:| . (A]'C)
R—y (R-y)

At the wall boundary,
u=—U, and v=0, at y=0, (A2)

while at the gas-liquid interface

2h,

uy+%+1—h2

(vy —uy) =0, at y = h(x), (A3)
and p+ ok + phy (uy +v,) — 2pv, =0, at y = h(z). (A4)

The unit normal vector at the interface has components
1
(1+ h2)1/2
and the interface curvature is

P 1
A+ 02092 (R—h)(1+ )7~

_ha:7 1) ) (A5)

K =K1+ Ky =
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Appendix B: Liquid mass conservation

In a stationary reference frame, the liquid swept out by the rising bubble must equal the

sum of liquid flow rate in the tube and liquid flow rate within the film; in dimensional units:
Uyt (R — ho)® = U R? — Uyrr [R? — (R — hy)?] (B1)

where Uy is the average velocity of the liquid in the uniform film region, which can be
obtained by integrating the liquid velocity profile u(y) in the uniform film region C'D:

ho

- 2 / u(y) (R —y)dy. (B2)

U, =
"7 R (R—hy)

In the uniform film region (h, = hye = 0), Uy = Uy = 0, v = 0 and p, = 0 because the

curvature of the interface is constant. Therefore, the z—momentum Eq. (Alb) simplifies as

u
f (uyy R ~ y) = pg. (B3)

This equation is integrated twice along y with the boundary conditions

u=0, at y=0, (B4)
and u, =0, at y = ho, (B5)

thus leading to the following expression for the velocity profile in C'D:

) = 2 |22 B g ()] (B6)

Substituting Eq. (B6) in Eq. (B2) and integrating gives:

Uy

:pgR2 1 {(1—H)ﬂog(1—H)+(1—H)2 1 3(1—H)4}’ (B7)

n H(2—H) 2 2 8 38
so that Eq. (B1) can be finally rearranged to express the bubble velocity as a function of
the average liquid velocity in the tube and the dimensionless uniform film thickness:
U, R? 1—H)?log(l—-H 1 1 3(1— H)?
L o[ (= HPlog(1—H) 1 (-1 g
(1-H)* p

U, =
’ 2 > T8O —meE T 3

The first term on the right-hand side of Eq. (B8) represents the contribution to the bubble

motion given by the liquid flow rate within the tube, while the second term brings in the

contribution of buoyancy. Since the term between square brackets is always positive, if
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buoyancy and liquid flow have the same direction, ¢ > 0 with the present notation, the

bubble moves faster compared to the g = 0 case, while for g < 0 the bubble moves slower. A

dimensionless form of Eq. (B8) can be derived by multiplying both the left- and right-hand

side terms by p/o, thus leading to Eq. (21) in the manuscript.
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