Inorganic Chemistry

pubs.acs.org/IC Article

A Room-Temperature Stable Y(II) Aryloxide: Using Steric Saturation to Kinetically Stabilize Y(II) Complexes

Samuel A. Moehring, Matthias Miehlich, Christopher J. Hoerger, Karsten Meyer,* Joseph W. Ziller, and William J. Evans*

Cite This: Inorg. Chem. 2020, 59, 3207-3214

ACCESS

Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: The utility of the bulky aryloxide ligands 2,6-Ad₂-4-Me-C₆H₂O⁻ (Ad,Ad,Me</sup>ArO⁻) and 2,6-Ad₂-4-*t*-Bu-C₆H₂O⁻ (Ad,Ad,t-Bu</sup>ArO⁻; Ad = 1-adamantyl) for stabilizing the Y(II) ion is reported and compared with the results with 2,6-*t*-Bu₂-4-Me-C₆H₂O⁻ (Ar'O⁻). In contrast to the reduction product obtained from reducing Y(OAr')₃ with potassium graphite, which is only stable in solution for 60 s at room temperature, KC₈ reduction of Y(OAr^{Ad,Ad,t-Bu})₃ in THF in the presence of 2.2.2-cryptand (crypt) produces the room-temperature stable, crystallographically characterizable Y(II) aryloxide [K(crypt)]-[Y(OAr^{Ad,Ad,t-Bu})₃]. The X-band EPR spectrum at 77 K shows an axial pattern with resonances centered at $g_{\perp} = 1.97$ and $g_{\parallel} = 2.00$ and hyperfine coupling constants of $A_{\perp} = 156.5$ G and $A_{\parallel} = 147.8$ G and at

Y O Me e Y O Me Ad Ad Ad 3

room temperature shows an isotropic pattern with $g_{iso} = 1.98$ and $A_{iso} = 153.3$ G, which is consistent with an S = 1/2 spin system with nuclear spin I = 1/2 for the ⁸⁹Y isotope (100% natural abundance).

■ INTRODUCTION

Rare-earth reductive chemistry has undergone a transformation through the discovery that all of the lanthanide metals (except radioactive promethium) as well as yttrium can form crystalline molecular species containing ions in the formal +2 oxidation state.¹⁻⁸ For years, it was thought that only Eu, Yb, Sm, Tm, Dy, and Nd would form such species, and these had $4f^{n+1}$ electron configurations formed by the reduction of 4f¹ Ln(III) precursors. The isolation of the first Y(II) complex² and the first Ln(II) complexes of La, Ce, Pr, Gd, Tb, Ho, Er, and Lu4 involved the silylcyclopentadienyl ligands $C_5H_3(SiMe_3)_2^-$ (Cp"-) and $C_5H_4SiMe_3^-$ (Cp'-) in complexes of formulas [Cp"3Ln] and [Cp'3Ln]. In these coordination environments, the new lanthanide ions had nontraditional $4f^{n}5d^{1}$ electron configurations instead of the traditional $4f^{n+1}$ found earlier. Since the discovery of the Cp"- and Cp'complexes, the number of ligand systems that have been shown to support the "new" $4f^n5d^1$ Ln(II) ions has grown substantially to include $C_5Me_4H^{-9}C_5H_4Me^{-10}C_5H_4-t$ -Bu $^{-11}C_5-i$ -Pr $_5^{-12}$ $^{(Ad,Me}ArO)_3mes^{3-13,14}$ $^{(t-BuO)_3}SiO^{-15}$ and $^{(Me_3Si)_2}N^{-16}$

Although the chelating tris(aryloxide)mesitylene ligand, $(^{Ad,Me}ArO)_3mes^3$, can support Ln(II) complexes, 13,14 monodentate aryloxide ligands did not readily yield examples of new Ln(II) ions despite the fact that aryloxides have been common ligands in rare-earth chemistry for decades. 17,18 The only exception to this statement was the isolation of the Sc(II) complex, $[K(crypt)][Sc(OAr')_3]$ $(Ar'O^- = 2,6-t-Bu_2-4-Me-t)$

 $C_6H_2O^-$, crypt = 2.2.2-cryptand) formed by potassium graphite reduction of $Sc(OAr')_3$. The Sc(II) compound is stable for 40 min at room temperature and could be characterized by optical and EPR spectroscopy as well as X-ray crystallography. In contrast, reduction of the congeneric Y(III) complex Y(OAr')_3 formed a dark blue solution that decomposes at room temperature within 1 min. The EPR and UV–visible spectra of the dark solution were consistent with the presence of an Y(II) analog of the Sc(II) species, i.e., "[Y(OAr')_3]-," but crystallographic confirmation has been elusive.

It seemed possible that the yttrium complex was kinetically unstable due to the larger ionic radius of Y(III) (0.90 Å for six coordination) compared to Sc(III) (0.745 Å for six coordination),²⁰ which made the yttrium complex less sterically saturated.¹⁹ Since steric saturation is a critical component in the isolation of 4fⁿ Ln(III) rare-earth complexes,^{19,21} this condition could also apply for Ln(II) complexes. However, the range of lanthanides that yielded crystalline Ln(II) complexes for a given ligand did not show a clear dependence on steric saturation, Table 1.

Received: December 9, 2019 Published: February 12, 2020

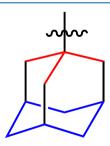


Table 1. Crystallographically-Characterized Nontraditional Ln(II) Complexes As a Function of Ligand

ligand	La	Ce	Pr	Nd	Gd	Tb	Dy	Но	Y	Er	Lu	Sc
$(C_5H_4SiMe_3^{-})^{2-4,6}$	+	+	+	+	+	+	+	+	+	+	+	
$[C_5H_3(SiMe_3)_2^{-}]^{1,5}$	+	+	+	+								
$(C_5Me_4H^-)^9$	+	+	+	+	+	+	+					
$(C_5H_4-t-Bu^-)^{11}$		+										
$(C_5H_4Me^-)^{10}$						+	+	+		+		
$(C_5-i-Pr_5^{-})^{12}$						+	+					
$[(^{Ad,Me}ArO)_3mes^{3-}]^{13,14}$					+		+			+		
$[(t-BuO)_3SiO^-]^{15}$		+										
$[(Me_3Si)_2N^-]^{16,22,23}$				+	+	+	+	+	+	+		+
$(2,6-t-Bu_2-4-MeC_6H_2O^-)^{19}$												+

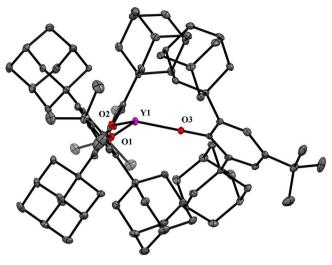
In order to examine the importance of steric saturation for isolating Ln(II) complexes of aryloxides, an aryloxide ligand alternative to Ar'O $^-$ was sought that would not appreciably differ from the electronic structure of Ln(OAr') $_3$ but would be more sterically demanding. 2,4,6-Tris(alkyl)aryloxides were thus considered, and it was expected that the metal-proximate 2 and 6 positions would be the most important for controlling steric saturation. Indeed, changing the substituent at the 2 and 6 positions of aryloxide ligands has been shown to change the nuclearity of rare-earth(III) aryloxides, *e.g.*, compare Y(OAr') $_3$ and [Y(μ -2,6-Me $_2$ C₆H $_3$ O)(2,6-Me $_2$ C₆H $_3$ O)(2,7-Me $_2$ C₆H $_$

The Ar'O⁻ ligand has *tert*-butyl groups at the 2 and 6 positions, so substituents larger than *tert*-butyl were sought. Aryloxides, synthesized first by Watanabe et al. with 1-adamantyl groups at the 2 and 6 positions, *i.e.*, Ad,Ad,MeArO⁻ and Ad,Ad,t-BuArO⁻ (Ad,Ad,MeArO⁻ = 2,6,-Ad₂-4-Me-C₆H₂O⁻; Ad,Ad,t-BuArO⁻ = 2,6-Ad₂-4-t-Bu-C₆H₂O⁻; Ad = 1-adamantyl), have been used to stabilize Zr(IV) aryloxide-alkyls against C– H activation²⁵ and to synthesize two-coordinate Fe(II) aryloxides. Furthermore, to a first approximation, 1-adamantyl is electronically similar to *tert*-butyl in that it is bonded to the aryloxide ring by a tertiary carbon. However, 1-adamantyl is sterically larger than *tert*-butyl in that 1-adamantyl is nearly equivalent to adding a cyclohexyl moiety to *tert*-butyl, Figure 1. Previously, the Ad,Ad,MeArO⁻ ligand has also been used

Figure 1. An illustration of the analogy between *tert*-butyl and 1-adamantyl. The wavy line through a single bond designates a bond to an aryloxide ring carbon atom. The red portion of the drawn 1-adamantyl group is the portion similar to *tert*-butyl, and the blue portion is the part similar to cyclohexyl.

to synthesize $U(OAr^{Ad,Ad,Me})_3$, a complex of the reducing U(III) ion.²⁷ In this work, these (adamantyl)aryloxides are assessed for their utility in stabilizing an Y(II) aryloxide complex.

RESULTS


Y(OAr^{Ad,Ad,Me})₃, 1-Y. U(OAr^{Ad,Ad,Me})₃ had previously been synthesized by salt metathesis of UI₃(dioxane)_{1.5} with 3 equiv

of KOAr^{Ad,Ad,Me}·1.5 DME (DME = 1,2-dimethoxyethane) in benzene, and this synthesis was used as a guide. ²⁷ In contrast, salt metathesis of YX₃ compounds (X = Cl, I, OTf) in THF with 3 equiv of KOAr^{Ad,Ad,Me}·1.5 DME both at room temperature and at 65 °C did not yield Y(OAr^{Ad,Ad,Me})₃ as the major product in useful quantities in our hands. However, protonolysis of 1.2 equiv of Y(NR₂)₃ (R = SiMe₃) with 3 equiv of ^{Ad,Ad,Me}ArOH in toluene for 48 h at 100 °C gave Y(OAr^{Ad,Ad,Me})₃, 1-Y, but the samples also contained ^{Ad,Ad,Me}ArOH. Since 1-Y and ^{Ad,Ad,Me}ArOH have similar solubilities, it was not possible to separate them by extraction. Complex 1-Y was only sparingly soluble in arenes (benzene, toluene, mesitylene), and X-ray quality crystals were not isolated.

Y(OArAd,Ad,t-Bu)₃, 2-Y. In an effort to increase the solubility of the Y(III) aryloxide complex, as well as to effect a greater differential solubility between the phenol and the Y(III) aryloxide, the *tert*-butyl derivative of ^{Ad,Ad,Me}ArO⁻, namely, 2,6-Ad₂-4-t-Bu-C₆H₂O⁻ (Ad₃Ad₄t-Bu</sup>ArO⁻), was investigated to see the effect of replacing the 4-methyl substituent with 4-tertbutyl. Protonolysis of 1.2 equiv of Y(NR₂)₃ with 3 equiv of Ad,Ad,t-BuArOH in toluene for 48 h at 100 °C gave Y(OAr^{Ad,Ad,t-Bu})₃, 2-Y, which was still contaminated with Ad,Ad,t-BuArOH (by ¹H NMR spectroscopy). Complex 2-Y was dissolved in boiling *n*-hexane and cooled to room temperature to yield colorless crystals that showed an IR spectrum that only contained a weak signal for the characteristically sharp O-H stretch of Ad,Ad,t-Bu ArOH at 3628 cm⁻¹. Since the ¹H NMR spectrum of this sample still showed ~15% of Ad,Ad,t-BuArOH, the Ad, Ad, t-Bu ArOH may be formed from 2-Y in the course of preparing the NMR sample. 2-Y was identified by ¹H NMR spectroscopy and single-crystal X-ray diffraction, Figure 2. 2-Y is sparingly soluble in benzene, toluene, and THF. Unlike $Y(OAr')_3$, 2-Y will not sublime even at 300 °C and 10^{-5} Torr, although it does not decompose under these conditions.

 $Y(OAr^{Ad,Ad,t-Bu})_3$, 2-Y, crystallizes in the $P2_1/n$ space group with two equivalents of hexane in the lattice. The complex is pseudo- C_3 symmetric. Selected metrical parameters are detailed in Table 2 alongside those of $Y(OAr')_3$ ($OAr' = 2,6-t-Bu_2-4-Me-C_6H_2O$).

The six Ad groups in 2-Y point toward the yttrium center in two orientations. Two of the groups have an edge of the adamantyl framework oriented toward the metal such that one CH₂ group points toward yttrium [C(38) and C(82)]. Four of the Ad groups have the open six-membered ring pointed toward the Y [groups involving C(8), C(29), C(58), and C(79)]. The Ad,Ad,t-Bu ArO ligands confer greater steric saturation on the Y(III) center than Ar'O, as shown by the 92% G parameter of 2-Y compared to the 81–82% of Y(OAr')₃. Despite this difference in G parameter, the average

Figure 2. Molecular representation of $Y(OAr^{Ad,Ad,f\cdot Bu})_3$ in crystals of **2-Y**·2C₆H₁₆. Hydrogen atoms and lattice *n*-hexane molecules are omitted for clarity. Ellipsoids are drawn at the 50% probability level. Atoms and bonds in the foreground are more darkly shaded than those in the background.

Table 2. Selected Metrical Parameters of $Y(OAr^{Ad,Ad,t-Bu})_3$, 2-Y, and $Y(OAr')_3$ (Which Has Five Molecules of $Y(OAr')_3$ in Its Unit Cell)^{19a}

	$Y(OAr^{Ad,Ad,t-Bu})_3$, 2-Y	$Y(OAr')_3$
Y-O	2.038(2) - 2.069(1)	2.032(2) - 2.053(2)
Average Y-O	2.049(3)	2.045(7)
OAr _{cent} -C _{ipso} -O angle	175-177	176-180
Y-O-C _{ipso} angle	150.0(2)	156.5(2)-171.5(2)
	155.3 (2)	
	155.7(2)	
$OAr_{cent} - C_{para} - C_{exo}$ angle	177-178	178-180
δ	0.431	0.009 - 0.479
Θ	51-60	39-78
γ	0.001(4) - 0.058(4)	0.000(4) - 0.027(4)
G	92	81-82

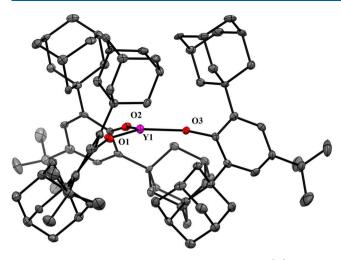
"Distances are in Ångstroms; angles are in degrees, Centroids OAr_{cent} are for the aryloxide C_6 ring. $C_{\rm exo}$ is the carbon atom bonded to the 4 position of the aryloxide, *i.e.*, the 4-Me carbon on $Ar'O^-$ and the tertiary carbon of the 4-tert-butyl on $^{\rm Ad,Ad,t-Bu}ArO^-$. δ is the displacement of Y from the O_3 plane. Θ is the angle between the O_3 plane and the plane of the aryloxide ligand. γ is the displacement of C_6 aryloxide ring carbon atoms from the plane of the aryloxide ring; error is taken from the C–C bond distance error of the C_6 aryloxide rings since the C_6 plane is a calculated average and not a measured quantity. G is the Guzei G parameter and is listed in percent. 28

Y–O distances are the same for Y(OAr')₃ and **2-Y** within error and the distance of the yttrium metal center out of the plane of the three oxygen donor atoms (the pyramidalization δ) in **2-Y** is similar to the value of the most-pyramidal Y(OAr')₃ in the unit cell. The Y–O–C_{ipso} angles in **2-Y** are 150.0(2), 155.3 (2), and 155.7(2) compared to 156–172° in Y(OAr')₃.

There is a slightly increased distortion from planarity of aryloxide ligands in **2-Y** vs $Y(OAr')_3$ as shown by the greater deviation of the C_6 aryloxide ring carbon atoms from the C_6 aryloxide ring plane (γ value) and slightly less linear $OAr_{cent}-C_{ipso}-O$ and $OAr_{cent}-C_{para}-C_{exo}$ angles. This is not accompanied by a significant deviation in C-C bond lengths in the C_6 ring of the aryloxide ligands, however. It appears that this

deviation of the C_6 ring from planarity is a common feature of aryloxide complexes with the 2,6-Ad $_2$ substitution pattern: for example, $U(OAr^{Ad,Ad,Me})_3$ has $\gamma=0.000(5)-0.064(5)$ Å, 27 $ZrCl_2(OAr^{Ad,Ad,Me})_2$ has $\gamma=0.001(5)-0.085(5)$ Å, and $Zr(CH_2Ph)_2(OAr^{Ad,Ad,Me})_2$ has $\gamma=0.015(6)-0.067(6)$ Å. 25 The two-coordinate Fe(II) aryloxides Fe(OAr^{Ad,Ad,Me})_2 [$\gamma=0.001(8)-0.009(8)$ Å] and Fe(2,6-Ad $_2$ -4-i-Pr-C $_6$ H $_2$ O) $_2$ [$\gamma=0.001(6)-0.019(6)$ Å] 26 display significantly less distortion of the C_6 ring, despite having a smaller ionic radius than Y(III) and U(III). 20

The 1 H and 13 C{ 1 H} NMR of **2-Y** are unremarkable, as expected for a complex of diamagnetic Y(III), except that the resonance for the *ipso*-carbon of the $^{Ad,Ad,t-Bu}$ ArO $^{-}$ ring is split into two equal-intensity signals in $C_{6}D_{6}$ (J=4.0 Hz) and in toluene- d_{8} (room temperature and 3 $^{\circ}$ C, J=4.0 and 4.3 Hz, respectively). A characteristic change in the resonances of the 1-adamantyl-CH₂ protons in the 1 H NMR spectrum of $^{Ad,Ad,t-Bu}$ ArOH compared to **2-Y** clearly indicates binding of the $^{Ad,Ad,t-Bu}$ ArO $^{-}$ ligand.


[K(crypt)][Y(OAr^{Ad,Ad,t-Bu})₃], 3-Y. The addition of KC₈ to a stirred room-temperature mixture of 2-Y and crypt in THF, under an atmosphere of either Ar or N₂, results in the development of a dark blue color that intensifies as the mixture is allowed to stir, eq 1. The resulting blue material is more

$$[K(crypt)]\begin{bmatrix} & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

soluble in THF than 2-Y. Removing the dark blue solids from the blue solution by filtration and distilling off the solvent *in vacuo* from the deep-blue solution yields dark blue solids, but no crystalline material suitable for X-ray crystallography. Spectroscopic characterization of the blue solids is described below. If the reaction is run in diethyl ether instead of THF and chilled to $-35\,^{\circ}\text{C}$, dark blue crystals of [K(crypt)][Y-(OAr^Ad,Ad,t-Bu)_3], 3-Y, form, and these were identified by single-crystal X-ray diffraction.

3-Y crystallizes in $P\overline{1}$ with two equivalents of diethyl ether in the lattice, Figure 3. The complex is pseudo- C_3 symmetric like 2-Y. Selected metrical parameters are listed in Table 3 alongside those of 2-Y, Sc(OAr')₃, and [K(crypt)][Sc-(OAr')₃]. Unlike 2-Y, all of the 1-adamantyl groups in 3-Y have a six-membered ring pointed toward the Y ion.

The Ln–O average distance in 3-Y is 0.06 Å larger than that in 2-Y. In comparison, the average Sc–O distance in $[Sc(OAr')_3]^{-17,19}$ is 0.09 Å larger than that in $Sc(OAr')_3$.¹⁷ In yttrium complexes, the metal-ring centroid distance in $[Cp'3Y]^{-2}$ is 0.03 Å larger than that in Cp'_3Y , and the Y–N average distance in $[Y(NR_2)_3]^{-22}$ is 0.07 Å larger than that in $Y(NR_2)_3$.²⁹ The Y(II) ion in 3-Y deviates less from the O₃

Figure 3. Molecular representation of anionic $[Y(OAr^{Ad,Ad,t-Bu})_3]^-$ in crystals of $3-Y\cdot 2OEt_2$. Hydrogen atoms, the $[K(crypt)]^{1+}$ countercation, and lattice diethyl ether molecules are omitted for clarity. Ellipsoids are drawn at the 50% probability level. Atoms and bonds in the foreground are more darkly shaded than those in the background.

Table 3. Selected Metrical Parameters of $[K(crypt)][Y(OAr^{Ad,Ad,t\cdot Bu})_3]$ (3-Y), $Y(OAr^{Ad,Ad,t\cdot Bu})_3$ (2-Y), $[K(crypt)][Sc(OAr')_3]$, ¹⁹ and $Sc(OAr')_3$.

	3-Y	2-Y	$[Sc(OAr')_3]^-$	Sc(OAr')
Ln-O	2.106(2)- 2.118(4)	2.038(2)- 2.069(1)	1.960(2)- 1.964(2)	1.853- 1.889
average Ln-O	2.111(6)	2.049(3)	1.962(3)	1.869
$ \begin{array}{c} \operatorname{OAr}_{\operatorname{cent}} - \operatorname{C}_{\operatorname{ipso}} - \\ \operatorname{O angle} \end{array} $	171-172	175-177	179-180	178-179
Ln-O-C _{ipso} angle	158.2(3)	150.0(2)	175.6(1)	163.8
	160.2(3)	155.3 (2)	178.4(1)	168.3
	164.8(3)	155.7(2)	179.1(1)	173.2
$\begin{array}{c} \mathrm{OAr_{cent}} - \mathrm{C_{para}} - \\ \mathrm{C_{exo}} \ \mathrm{angle} \end{array}$	175-177	177-178	178-179	178
δ	0.125	0.431	0.027	0.133
Θ	55-61	51-60	61-64	41-72
γ	0.018(8)- 0.088(8)	0.001(4)- 0.058(4)	0.000(4)- 0.004(4)	0.000- 0.028
G	90	92	83	90

"Distances are in Ångstroms, angles in degrees. Centroids OAr_{cent} are for the aryloxide C_6 ring. C_{exo} is the carbon atom bonded to the 4 position of the aryloxide, *i.e.*, the 4-Me carbon on OAr' and the tertiary carbon of the 4-tert-butyl on $^{Ad,Ad,t-Bu}ArO^-$. δ is the displacement of Ln from the O_3 plane. Θ is the angle between the O_3 plane and the plane of the aryloxide ligand. γ is the displacement of C_6 aryloxide ring carbon atoms from the plane of the aryloxide ring; error is taken from the C-C bond distance error of the C_6 aryloxide ring since the C_6 plane is a calculated average and not a measured quantity. G is the Guzei G parameter and is listed in percent. 28

plane than in 2-Y. The value of γ does not change (within error) between 2-Y and 3-Y although the $OAr_{cent}-C_{ipso}-O$ angle does deviate more from linearity in 3-Y.

The optical spectrum of 3-Y recorded in THF at room temperature is shown in Figure 4. There is a strong, broad absorption band centered at $\lambda_{\text{max}} = 629$ nm with an extinction coefficient ε of 8100 M⁻¹cm⁻¹, which is consistent with other Y(II) compounds.^{2,29} In THF, 3-Y keeps its dark blue color for ~48 h at room temperature, contrary to the putative "[Y(OAr')₃]⁻", characterized by EPR spectroscopy, which decomposes in 60 s at room temperature in THF. Since

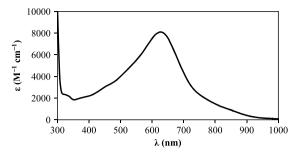
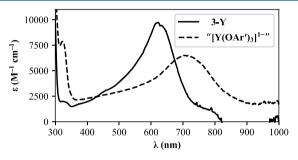



Figure 4. Optical spectrum of 3-Y at room temperature in THF.

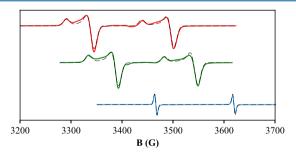

" $[Y(OAr')_3]^{-n}$ " is thermally unstable, UV-visible spectroscopy could only be performed at -78 °C. The UV-visible spectrum of 3-Y at -78 °C was thus also collected in order to compare it with " $[Y(OAr')_3]^{-n}$, Figure 5. At -78 °C, 3-Y has

Figure 5. Optical spectra of 3-Y and " $[Y(OAr')_3]$ " obtained from reduction of $Y(OAr')_3$, ¹⁹ recorded in THF at -78 °C [isopropanol/ $CO_2(s)$ cold bath] with a film of isopropanol around the cuvette from the cold bath.

its strongest feature at $\lambda_{\rm max}=622$ nm, with $\varepsilon=9700~{\rm M}^{-1}{\rm cm}^{-1}$, blue-shifted from "[Y(OAr')₃]" with its strongest feature at $\lambda_{\rm max}=704$ nm and $\varepsilon=6500~{\rm M}^{-1}{\rm cm}^{-1}$.

The X-band EPR spectrum of 3-Y, recorded at 77 K in frozen THF, Figure 6, contains an axial signal with g values g_{\perp}

Figure 6. X-band EPR spectra of 3-Y, recorded at 77 K in THF (red, top), " $[Y(OAr')_3^1]^{-n}$ in THF at 77 K (green, middle), and 3-Y in THF at room temperature (blue, bottom) with associated simulated spectra in black dashed lines.

= 1.97 and g_{\parallel} = 2.0, and hyperfine coupling constants A_{\perp} = 156.5 G and A_{\parallel} = 147.8 G. At room temperature, the spectrum shows an isotropic doublet signal with $g_{\rm iso}$ = 1.98 and $A_{\rm iso}$ = 153.3 G. The EPR spectra are consistent with a single unpaired electron interacting with a single ⁸⁹Y nucleus (I = 1/2, 100% natural abundance). The axiality seen in the 77 K spectrum is also consistent with the pseudo- C_3 geometry of 3-Y. The EPR spectrum for the putative complex "[Y(OAr')₃]⁻" formed by

reduction of Y(OAr')₃ has similar EPR parameters at 77 K: g_{\perp} = 1.97, g_{\parallel} = 2.00, A_{\perp} = 155.4 G, and A_{\parallel} = 148.7 G.¹⁹

DISCUSSION

Y(OAr^{Ad,Ad,t-Bu})₃, 2-Y, vs Y(OAr^{Ad,Ad,Me})₃, 1-Y. The substitution of the 4-Me position with 4-*tert*-butyl in the 2,6-Ad₂-4-R-C₆H₂O⁻ ligand had a profound effect on the synthesis and handling of the yttrium tris(aryloxide). It was less difficult to synthesize and purify the *tert*-butyl-substituted complex, Y(OAr^{Ad,Ad,t-Bu})₃, 2-Y, compared to the methyl-substituted derivative, Y(OAr^{Ad,Ad,Me})₃, 1-Y. This change also made it possible for 2-Y to be characterized by single-crystal X-ray crystallography. Good-quality single crystals of 1-Y were not obtainable.

 $Y(OAr^{Ad,Ad,t-Bu})_3$, 2-Y, vs $Y(OAr')_3$. The structure of 2-Y with 1-adamantyl substituents in the 2 and 6 positions bears striking resemblance to that of $Y(OAr')_3$ with tert-butyl groups in the 2 and 6 positions. The Y-O bond lengths are the same within error, and the complexes have similar deviations of the Y(III) ion out of the O_3 plane, Table 2. The biggest differences are seen in the degree of steric saturation of the two complexes and the deviation of C_6 ring carbons from the C_6 plane. $Y(OAr')_3$ has a G parameter of 81–82%, while 2-Y has a G parameter of 92%. Alteration of the 2 and 6 substituents from tert-butyl to 1-adamantyl effected minimal change to the primary coordination sphere (i.e., the Y-O distances) but conferred much greater steric saturation.

[K(crypt)][Y($OAr^{Ad,Ad,t-Bu}$)₃], 3-Y, vs "[Y(OAr')₃]-". The reduction of 2-Y in THF with crypt and KC8, a wellestablished protocol for making Ln(II) complexes, 2,9,11,16,19 produced the dark-colored complex [K(crypt)][Y-(OAr^{Ad,Ad,t-Bu})₃], 3-Y, which was identified by single crystal X-ray diffraction. The EPR spectrum of 3-Y is almost indistinguishable from that of the dark product of reduction of $Y(OAr')_3$, which is likely to be " $[Y(OAr')_3]$ "." The axial doublet pattern agrees with the assignment of 3-Y as a complex possessing a 4d¹ electronic ground state configuration, with the single unpaired electron interacting with a single ⁸⁹Y nucleus in a trigonal axial ligand environment. This is also consistent with the theoretical prediction of the geometry and identity of "[Y(OAr')₃]," which was not crystallographically characterized. The optical spectra of 3-Y and " $[Y(OAr')_3]$ "," recorded at -78 °C, also have similar features, which suggests that the ligand change from Ar'O to Ad,Ad,t-BuArO is a minor perturbation to the electronic structure of these tris(aryloxide) Y(II) compounds.

The main difference between $[K(crypt)][Y(OAr^{Ad,Ad,t\cdot Bu})_3]$, 3-Y, and " $[Y(OAr')_3]$ " is the thermal stability. The room temperature stability of 3-Y makes it the most stable Y(II) complex known to date, whereas " $[Y(OAr')_3]$ " has not been isolable. This is likely due to steric saturation since the 90% G parameter of 3-Y is much greater than the estimated 77% of " $[Y(OAr')_3]$ ". Since the electronic structure and donor characteristics have not changed appreciably, this shows the significant influence of optimizing steric saturation for synthesizing thermally stable Y(II) compounds.

Steric Saturation in Other Ligand Sets. It should be noted that simple maximization of the G parameter is not on its own a sufficient strategy for isolating Ln(II) complexes. For example, it was shown that, for the $[Cp'_3Ln]^-$ complexes, the most kinetically stable complex, $[K(crypt)][Cp'_3Pr]$, was neither the most sterically saturated nor least sterically saturated complex in the series. ¹⁹ Hence, there appears to be

an optimum value, and deviation from that value, either more or less sterically saturated, leads to decreased room-temperature stability. Furthermore, the Y(II) complex [K(crypt)]- $[Cp''_2Y(C_5H_5)]$ has a G parameter of 90–91% but is less thermally stable than $[K(crypt)][Cp'_3Y]$ with its G parameter of 86%.³⁰ It is likely that significantly different ligand sets may have different optimum G parameters for stabilizing Ln(II) complexes. Furthermore, the G parameter does not take cation effects into account. The lower thermal stabilities of [Cp'₃Ln]⁻ (Ln = Y, Tb, Ho, Er) complexes when the cation is [K(18crown-6)]⁺ compared to [K(crypt)]⁺ constitute one example.⁴ Likewise, the sterically undersaturated Ln(II) complexes of the small C₅H₄Me⁻ ligand (Cp^{Me-}) can be isolated with an inverse sandwich cation in the $[(18\text{-crown-}6)_2\text{K}_2(\mu\text{-Cp}^{\text{Me}})][\text{Cp}^{\text{Me}}_3\text{Ln}]$ complexes.¹⁰ While steric saturation is clearly not the sole determiner of thermal stability of Ln(II) complexes, it is evidently important and may allow for the isolation of Ln(II) in a broader range of sufficiently sterically saturating ligand

CONCLUSION

By changing the aryloxide ligand from 2,6-t-Bu₂-4-Me-C₆H₂O⁻ (Ar'O⁻) to 2,6-Ad₂-4-t-Bu-C₆H₂O⁻ (Ad,Ad,t-Bu-ArO⁻), it has been possible to synthesize, isolate, and fully characterize a crystalline Y(II) aryloxide complex, [K(crypt)][Y-(OAr^Ad,Ad,t-Bu)₃], 3-Y, that is stable for 48 h at room temperature. In contrast, reduction of Y(OAr')₃ forms a putative "[Y(OAr')₃]⁻" that decomposes within a minute. The difference in this kinetic stability can be attributed to the increased steric saturation in 3-Y, which has a G parameter of 90% compared to an estimated 77% for "[Y(OAr')₃]⁻." Although steric saturation may not be so important with all ligand systems in Ln(II) complexes, it certainly appears to be critical in this aryloxide case.

EXPERIMENTAL SECTION

All manipulations and syntheses described below were conducted with the rigorous exclusion of air and water using standard Schlenk line and glovebox techniques under an argon or dinitrogen atmosphere. Solvents were sparged with UHP argon and dried by passage through columns containing Q-5 and molecular sieves prior to use. Deuterated NMR solvents were dried over NaK alloy or Na/ benzophenone, degassed by three freeze-pump-thaw cycles, and vacuum transferred before use. ¹H and ¹³C{¹H}NMR spectra were recorded on a Bruker AVANCE600 spectrometer (1H operating at 600 MHz, ¹³C{¹H} at 151 MHz) at 298 K unless otherwise stated and referenced internally to residual protio-solvent resonances. Elemental analyses were conducted on a PerkinElmer 2400 Series II CHNS elemental analyzer. UV-visible spectra were collected in THF at -78 °C or room temperature in a 0.1 cm cell fitted with a Teflon stopcock using an Agilent Cary 60 UV-visible spectrophotometer. EPR spectra were collected using the X-band frequency (9.3-9.8 GHz) on a Bruker EMX spectrometer equipped with an ER4119HS-W1 microwave bridge, and the magnetic field was calibrated with DPPH (g = 2.0036). Infrared (IR) transmittance measurements were taken as compressed solids on an Agilent Cary 630 FTIR spectrophotometer with a diamond ATR attachment. 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane, 2.2.2-cryptand (crypt, VWR) was dried under reduced pressure (10^{-3} Torr) before use. HOAr^{Ad,Ad,Me}, HOAr^{Ad,Ad,t-Bu}, KOAr^{Ad,Ad,Me}·1.5(DME), Y(NR₂)₃ (R = SiMe $_3$), and KC $_8$ were synthesized using published preparations. EPR spectra were simulated using EasySpin. ³³

HOAr^{Ad,Ad,t-Bu}. IR (Supporting Information, Figure S1): 3628m, 2961m sh, 2946m sh, 2900s br, 2846s, 2674w, 2654w, 1756w, 1743w, 1597w br, 1476m, 1463m sh, 1454s sh, 1443s, 1420m, 1390m,

1359m, 1342m, 1325m, 1312m, 1277m, 1262w, 1241m, 1206m, 1185m, 1170m, 1131m, 1105m, 1096m, 1078m, 1047w, 1031w, 1021w, 984m, 969m, 939m, 919w, 902w, 887w, 873m, 841w br, 820m, 803m, 779w, 786m, 740w br, 710m, 658w cm⁻¹.

820m, 803m, 779w, 786m, 740w br, 710m, 658w cm⁻¹. Y(OAr^{Ad,Ad,t-Bu})₃, 2-Y. Y(NR₂)₃ (1.50 g, 2.64 mmol, 1.2 equiv) and HOAr^{Ad,Ad,t-Bu} (2.75 g, 6.58 mmol, 3 equiv) were combined in toluene (20 mL) in a 100 mL flask fitted with a Teflon stopcock. The pale yellow mixture was heated to 100 °C in an oil bath with stirring, and all the material was dissolved to form a golden solution. After 2 days of stirring and heating, the solvent was removed in vacuo to form brown-yellow solids with extensive amounts of residual toluene. The solids were suspended in 20 mL of hexane, and solvent was removed in vacuo once more to remove entrained toluene. The resulting solids were washed with pentane (3 \times 20 mL) and dried *in vacuo* to give crude white solids of Y(OAr^{Ad,Ad,t·Bu})₃, **2-Y** (1.15 g, 39% crude yield), identified by ¹H NMR spectroscopy. Cooling a solution made in boiling n-hexane (80 mL) overnight at room temperature followed by washing with pentane (3 × 2 mL) and removal of solvent in vacuo yielded colorless microcrystalline solids of 2-Y (420 mg, 14% crystalline yield). X-ray quality crystals were present after the recrystallization from boiling hexane (Supporting Information, Table S1). ¹H NMR (C_6D_6 , Supporting Information, Figure S2): δ 7.34 (s, 6H, m-H), 2.49 (d, J = 11.2 Hz, 18H, Ad-CH₂, proximal to C_6 ring), 2.35 (d, J = 11.3 Hz, 18H, Ad- CH_2 , proximal to C_6 ring), 2.05 (s, 18H, Ad-CH), 1.75 (d, J = 11.9 Hz, 20H, Ad-CH₂, distal to C₆ ring, overlapping with corresponding resonance in HOArAd,t-Bu), 1.66 (d, J = 12.0 Hz, 18H, Ad–CH₂, distal to C₆ ring), 1.43 (s, 28H, t-*Bu,* overlapping with corresponding resonance in HOAr^{Ad,Ad,t-Bu}) ppm. $^{13}\text{C}\{^1\text{H}\}$ NMR (C₆D₆, Supporting Information, Figure S3): δ 158.2 (two lines with a 4.0 Hz separation, i-C), 139.3 (o-C), 135.8 (p-C), 122.4 (m-C), 44.5 (Ad-CH₂, proximal to C₆ ring), 38.9 (quaternary C, from Ad or t-Bu), 37.3 (Ad-CH₂, distal to C₆ ring), 34.7 (quaternary C, from Ad or t-Bu), 32.1 (CMe₃), 29.8 (Ad-CH). IR (Supporting Information, Figure S4): 3086w br, 2948m sh, 1896s br, 2846s, 2678w, 2654w, 1598w, 1448m sh, 1429s, 1390m, 1359m 1342m, 1314w, 1278s, 1260s, 1243s, 1230s, 1200m, 1167w 1139m, 1100m, 1044w, 1034w, 968s, 923m, 872m, 842s, 818w, 809, 773m, 766m, 734s, 693w, 662m cm⁻¹. Anal. Calcd for C₉₀H₁₂₃O₃Y: C, 80.56; H, 9.24. Found: C, 76.27; H, 9.15. The low %C value is seen in the elemental analysis of other Ln(III) aryloxides, 19 and incomplete combustion and/or difficult elemental analysis is a known problem in f-element chemistry generally. Results formulate as $C_{90}H_{129}$ which is close to the calculated. The results are not consistent with contamination with $HOAr^{Ad,Ad,f-Bu}$.

[K(crypt)][Y(OAr^{Ad,Ad,t-Bu})₃], 3-Y. 2-Y (150 mg, 0.11 mmol) was suspended in a THF (5 mL) solution of crypt (45 mg, 0.12 mmol). With stirring, excess KC₈ (40 mg, 0.30 mmol, 2.6 equiv) was added in two portions, and a deep blue color developed. After stirring for 10 min, the dark blue solution was filtered through Kimwipe-packed glass pipettes to remove black solids (presumably graphite and excess KC₈) to give a dark blue solution. The solids were washed with THF (10 mL), and the resulting filtrate was combined with the initial filtrate. Solvent was removed in vacuo to give oily dark blue solids, which were triturated with hexane (3 \times 2 mL) and pentane (2 \times 2 mL) to yield dark blue solids, which were dried *in vacuo* to give a free-flowing dark blue powder, [K(crypt)][Y(OAr^{Ad,Ad,t-Bu})₃], 3-Y (140 mg, 72%). EPR (Figure 6; THF, 77 K): $g_{\perp} = 1.97$, $g_{\parallel} = 2.00$, $A_{\perp} = 156.5$ G, $A_{\parallel} = 147.8$ G. EPR (THF, room temperature): g = 1.98 and A = 153.3 G. UVvis λ (ε ; room temperature, THF, Figure 4): 629 nm (8100 M⁻¹cm⁻¹). UV-vis λ (-78 °C, THF, Figure 5): 622 nm (9700 M⁻¹cm⁻¹). IR (Supporting Information, Figure S5): 3082w br, 2945m sh, 2888s br, 2838s, 2671w, 2648w, 1734w, 1559w, 1476w, 1444m sh, 1423s, 1388w, 1353m, 1340w, 1310w, 1276s, 1269s sh, 1239s, 1210m br, 1174w, 1131m, 1100s, 1075m, 1059m sh, 1046w, 1034w, 978m, 948m, 931m, 904w, 867m, 863m, 836s, 816m, 809m, 772m, 751w, 729m, 695w, 661w cm⁻¹. Anal. Calcd for C₁₀₈H₁₅₉KN₂O₃Y: C, 80.56; H, 9.24; N, 1.59. Found: C, 70.85; H, 9.15; N, 1.43. See note on the elemental analysis of 2-Y. Results formulate as $C_{108}H_{166}N_2$ which is close to the calculated. X-ray quality crystals could be grown by using diethyl ether instead of THF (using

the same amounts of all reagents) and cooling to -35 °C overnight (Supporting Information, Table S2).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03587.

Plots of NMR and IR spectra (PDF)

Accession Codes

CCDC 1970704–1970705 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Karsten Meyer — Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University, 91058 Erlangen, Germany; ⊚ orcid.org/0000-0002-7844-2998; Email: karsten.meyer@fau.de

William J. Evans — Department of Chemistry, University of California, Irvine, California, United States; ocid.org/0000-0002-0651-418X; Email: wevans@uci.edu

Authors

Samuel A. Moehring — Department of Chemistry, University of California, Irvine, California, United States; ⊙ orcid.org/ 0000-0002-6619-7737

Matthias Miehlich — Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University, 91058 Erlangen, Germany; orcid.org/0000-0003-1857-6270

Christopher J. Hoerger — Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University, 91058 Erlangen, Germany; orcid.org/0000-0001-5229-2146

Joseph W. Ziller — Department of Chemistry, University of California, Irvine, California, United States; ⊙ orcid.org/ 0000-0001-7404-950X

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.9b03587

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

W.J.E. and S.A.M. thank the U.S. National Science Foundation for support of this research under CHE-1855328, Chen Sun for assistance with single-crystal X-ray diffraction, Professor A. S. Borovik for spectroscopic assistance, and Carter Jones for his CJHUNT (Carter Jones' Highly Useful Numbering Tool) program, which assists in processing crystallography data for use with Solid-G. K.M., M.M., and C.H. acknowledge financial support from the Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and the German Federal Ministry of Education and Research (BMBF 2020+ support codes 02NUK012C, 02NUK020C, and BMBF 03SF0502).

■ REFERENCES

- (1) Hitchcock, P. B.; Lappert, M. F.; Maron, L.; Protchenko, A. V. Lanthanum Does Form Stable Molecular Compounds in the +2 Oxidation State. *Angew. Chem., Int. Ed.* **2008**, *47*, 1488–1491.
- (2) MacDonald, M. R.; Ziller, J. W.; Evans, W. J. Synthesis of a Crystalline Molecular Complex of Y^{2+} , [(18-crown-6)K]-[(C_5H_4 SiMe $_3$) $_3$ Y]. J. Am. Chem. Soc. **2011**, 133, 15914–15917.
- (3) MacDonald, M. R.; Bates, J. E.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Expanding rare-earth oxidation state chemistry to molecular complexes of holmium(II) and erbium(II). *J. Am. Chem. Soc.* **2012**, *134*, 8420–8423.
- (4) MacDonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Completing the Series of + 2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr²⁺, Gd²⁺, Tb²⁺, and Lu²⁺. *J. Am. Chem. Soc.* **2013**, *135*, 9857–9868.
- (5) Palumbo, C. T.; Darago, L. E.; Windorff, C. J.; Ziller, J. W.; Evans, W. J. Trimethylsilyl versus Bis(trimethylsilyl) Substitution in Tris(cyclopentadienyl) Complexes of La, Ce, and Pr. Comparison of Structure, Magnetic Properties, and Reactivity. *Organometallics* **2018**, 37, 900–905.
- (6) Fieser, M. E.; MacDonald, M. R.; Krull, B. T.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Structural, Spectroscopic, and Theoretical Comparison of Traditional vs Recently Discovered Ln^{2+} Ions in the $[K(2.2.2\text{-cryptand})][(C_5H_4SiMe_3)_3Ln]$ Complexes: The Variable Nature of Dy^{2+} and Nd^{2+} . J. Am. Chem. Soc. **2015**, 137, 369–382.
- (7) Woen, D. H.; Evans, W. J. Expanding the + 2 Oxidation State of the Rare-Earth Metals, Uranium, and Thorium in Molecular Complexes. In *Handbook on the Physics and Chemistry of Rare Earths*; Elsevier, 2016; Vol. 50, pp 337–394.
- (8) Evans, W. J. Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. *Organometallics* **2016**, 35, 3088–3100.
- (9) Jenkins, T. F.; Woen, D. H.; Mohanam, L. N.; Ziller, J. W.; Furche, F.; Evans, W. J. Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in $[K(2.2.2-cryptand)][(C_5Me_4H)_3Ln]$ Complexes. Organometallics 2018, 37, 3863–3873.
- (10) Huh, D. N.; Ziller, J. W.; Evans, W. J. Isolation of reactive Ln(II) complexes with C_5H_4Me ligands (Cp^{Me}) using inverse sandwich countercations: synthesis and structure of [(18-crown-6)K(μ -Cp^{Me})K(18-crown-6)][Cp^{Me} $_3$ Ln^{II}] (Ln = Tb, Ho). Dalton Trans. **2018**, 47 (48), 17285–17290.
- (11) Angadol, M. A.; Woen, D. H.; Windorff, C. J.; Ziller, J. W.; Evans, W. J. Tert-Butyl(cyclopentadienyl) Ligands Will Stabilize Nontraditional + 2 Rare-Earth Metal Ions. *Organometallics* **2019**, 38 (5), 1151–1158.
- (12) Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F.; Harvey, B. G.; Long, J. R. Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II). *J. Am. Chem. Soc.* **2019**, *141*, 12967–12973.
- (13) Palumbo, C. T.; Halter, D. P.; Voora, V. K.; Chen, G. P.; Chan, A. K.; Fieser, M. E.; Ziller, J. W.; Hieringer, W.; Furche, F.; Meyer, K.; Evans, W. J. Metal versus Ligand Reduction in Ln³⁺ Complexes of a Mesitylene-Anchored Tris(Aryloxide) Ligand. *Inorg. Chem.* **2018**, *57*, 2823–2833.
- (14) Fieser, M. E.; Palumbo, C. T.; La Pierre, H. S.; Halter, D. P.; Voora, V. K.; Ziller, J. W.; Furche, F.; Meyer, K.; Evans, W. J. Comparisons of lanthanide/actinide + 2 ions in a tris(aryloxide)arene coordination environment. *Chem. Sci.* **2017**, *8*, 7424–7433.
- (15) Kelly, R. P.; Maron, L.; Scopelliti, R.; Mazzanti, M. Reduction of a Cerium(III) Siloxide Complex To Afford a Quadruple-Decker Arene-Bridged Cerium(II) Sandwich. *Angew. Chem., Int. Ed.* **2017**, *56*, 15663–15666.
- (16) Ryan, A. J.; Darago, L. E.; Balasubramani, S. G.; Chen, G. P.; Ziller, J. W.; Furche, F.; Long, J. R.; Evans, W. J. Synthesis, Structure, and Magnetism of Tris(amide) {Ln[N(SiMe₃)₂]₃} Complexes of the Non-Traditional + 2 Lanthanide Ions. *Chem. Eur. J.* **2018**, 24, 7702–7709.

- (17) Hitchcock, P. B.; Lappert, M. F.; Singh, A. Three- and Four-coordinate, Hydrocarbon-soluble-Aryloxides of Scandium, Yttrium, and the Lanthanoids; X-Ray Crystal Structure of Tris(2,6-di-t-butyl-4-methylphenoxo)scandium. *J. Chem. Soc., Chem. Commun.* 1983, 1499–1501.
- (18) Boyle, T. J.; Ottley, L. A. M. Advances in Structurally Characterized Lanthanide Alkoxide, Aryloxide, and Silyloxide Compounds. *Chem. Rev.* **2008**, *108* (6), 1896–1917.
- (19) Moehring, S. A.; Beltrán-Leiva, M. J.; Páez-Hernández, D.; Arratia-Pérez, R.; Ziller, J. W.; Evans, W. J. Rare-Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2-cryptand)][Sc(OC₆H₂tBu₂-2,6-Me-4)₃]. *Chem. Eur. J.* **2018**, 24, 18059–18067.
- (20) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* **1976**, 32, 751–767.
- (21) Fischer, R. D.; Li, X.-F. The "solid angle sum rule": A new ligand cone packing model of optimal applicability in organolanthanoid chemistry, part I. J. Less-Common Met. 1985, 112, 303—325
- (22) Ryan, A. J.; Ziller, J. W.; Evans, W. J. The Importance of the Counter-cation in Reductive Rare-Earth Metal Chemistry: 18-Crown-6 Instead of 2,2,2-Cryptand Allows Isolation of [Y^{II}(NR₂)₃]⁻ and Ynediolate and Enediolate Complexes from CO Reactions. *Chem. Sci* **2020**, DOI: 10.1039/C9SC05794C.
- (23) Woen, D. H.; Chen, G. P.; Ziller, J. W.; Boyle, T. J.; Furche, F.; Evans, W. J. Solution Synthesis, Structure, and CO_2 Reduction Reactivity of a Scandium(II) Complex, $\{Sc[N(SiMe_3)_2]_3\}$ -. Angew. Chem., Int. Ed. **2017**, 56 (8), 2050–2053.
- (24) Evans, W. J.; Olofson, J. M.; Ziller, J. W. Utility of the 2,6-Dimethylphenoxide Ligand in Providing Chloride- and Oxide-Free [Y(OR)₃(solvent)₄]_b Complexes with Accessible Coordination Sites. *Inorg. Chem.* **1989**, 28, 4308–4309.
- (25) Watanabe, T.; Ishida, Y.; Matsuo, T.; Kawaguchi, H. Syntheses and structures of zirconium(IV) complexes supported by 2,6-diadamantylaryloxide ligands and formation of arene-bridged dizirconium complexes with an inverse sandwich structure. *Dalton Trans.* 2010, 39, 484–491.
- (26) Hatanaka, T.; Miyake, R.; Ishida, Y.; Kawaguchi, H. Synthesis of two-coordinate iron aryloxides and their reactions with organic azide: Intramolecular C-H bond amination. *J. Organomet. Chem.* **2011**, 696, 4046–4050.
- (27) Hoerger, C. J.; La Pierre, H. S.; Maron, L.; Scheurer, A.; Heinemann, F. W.; Meyer, K. Reductive disproportionation of nitric oxide mediated by low-valent uranium. *Chem. Commun.* **2016**, *52*, 10854–10857.
- (28) Guzei, I. A.; Wendt, M. An improved method for the computation of ligand steric effects based on solid angles. *Dalton Trans.* **2006**, 3991–3999.
- (29) Fang, M.; Lee, D. S.; Ziller, J. W.; Doedens, R. J.; Bates, J. E.; Furche, F.; Evans, W. J. Synthesis of the $(N_2)^{3-}$ Radical from Y^{2+} and Its Protonolysis Reactivity To Form $(N_2H_2)^{2-}$ via the $Y[N(SiMe_3)_2]_3/KC_8$ Reduction System. *J. Am. Chem. Soc.* **2011**, *133*, 3784–3787.
- (30) Corbey, J. F.; Woen, D. H.; Palumbo, C. T.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Ligand Effects in the Synthesis of Ln²⁺ Complexes by Reduction of Tris(cyclopentadienyl) Precursors Including C H Bond Activation of an Indenyl Anion. *Organometallics* **2015**, *34*, 3909–3921.
- (31) Bergbreiter, D. E.; Killough, J. M. Reactions of Potassium-Graphite. J. Am. Chem. Soc. 1978, 100 (7), 2126–2134.
- (32) Bradley, D. C.; Ghotra, J. S.; Hart, F. A. Three-co-ordination in Lanthanide Chemistry: Tris[bis(trimethylsilyl)amido]lanthanide(III) Compounds. J. Chem. Soc., Chem. Commun. 1972, 349–350.
- (33) Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. *J. Magn. Reson.* **2006**, *178*, 42–55.
- (34) Chilton, N. F.; Goodwin, C. A. P.; Mills, D. P.; Winpenny, R. E. P. The first near-linear bis(amide) f-block complex: A blueprint for a

high temperature single molecule magnet. *Chem. Commun.* **2015**, *51*, 101–103.

- (35) Goodwin, C. A. P.; Chilton, N. F.; Vettese, G. F.; Moreno Pineda, E.; Crowe, I. F.; Ziller, J. W.; Winpenny, R. E. P.; Evans, W. J.; Mills, D. P. Physicochemical Properties of Near-Linear Lanthanide-(II) Bis(silylamide) Complexes (Ln = Sm, Eu, Tm, Yb). *Inorg. Chem.* **2016**, *55*, 10057–10067.
- (36) Goodwin, C. A. P.; Reta, D.; Ortu, F.; Chilton, N. F.; Mills, D. P. Synthesis and Electronic Structures of Heavy Lanthanide Metallocenium Cations. *J. Am. Chem. Soc.* **2017**, *139* (51), 18714–18724
- (37) Ortu, F.; Packer, D.; Liu, J.; Burton, M.; Formanuik, A.; Mills, D. P. Synthesis and structural characterization of lanthanum and cerium substituted cyclopentadienyl borohydride complexes. *J. Organomet. Chem.* **2018**, 857, 45–51.
- (38) Huh, D. N.; Roy, S.; Ziller, J. W.; Furche, F.; Evans, W. J. Isolation of a Square-Planar Th(III) Complex: Synthesis and Structure of $[Th(OC_6H_2tBu_2-2,6-Me-4)_4]^-$. J. Am. Chem. Soc. **2019**, 141, 12458–12463.
- (39) Gabbaï, F. P.; Chirik, P. J.; Fogg, D. E.; Meyer, K.; Mindiola, D. J.; Schafer, L. L.; You, S. L. An Editorial about Elemental Analysis. *Organometallics* **2016**, 35 (19), 3255–3256.