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Abstract

We present a novel framework to automatically derive highly

efficient parametric multi-way recursive divide-&-conquer

algorithms for a class of dynamic programming (DP) prob-

lems. Standard two-way or any fixed R-way recursive divide-

&-conquer algorithms may not fully exploit many-core pro-

cessors. To run efficiently on a given machine, the value of R

may need to be different for every level of recursion based on

the number of processors available and the sizes of memory/-

caches at different levels of the memory hierarchy. The set of

R values that work well on a given machine may not work ef-

ficiently on another machine with a different set of machine

parameters. To improve portability and efficiency, Multi-way

Autogen generates parametric multi-way recursive divide-&-

conquer algorithms where the value of R can be changed on

the fly for every level of recursion. We present experimental

results demonstrating the performance and scalability of the

parallel programs produced by our framework.

CCS Concepts. • Software and its engineering→ Source

code generation.

Keywords.Multi-way RecursiveDivide-&-Conquer, Dynamic

Programming, Polyhedral Compilation, Parametric Tiling,

Index Set Splitting, Manycore

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CGO ’20, February 22–26, 2020, San Diego, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00

h�ps://doi.org/10.1145/3368826.3377916

ACM Reference Format:

Mohammad Mahdi Javanmard, Zafar Ahmad, Martin Kong, Louis-

Noël Pouchet, Rezaul Chowdhury, and Robert Harrison. 2020. De-

riving Parametric Multi-way Recursive Divide-and-Conquer Dy-

namic Programming Algorithms using Polyhedral Compilers. In

Proceedings of the 18th ACM/IEEE International Symposium on Code

Generation and Optimization (CGO ’20), February 22–26, 2020, San

Diego, CA, USA. ACM, New York, NY, USA, 13 pages. h�ps://doi.

org/10.1145/3368826.3377916

1 Introduction

Dynamic Programming (DP) is a technique for efficiently

implementing a recursive algorithm by memoizing partial

results in memory [7, 26, 66, 67]. DP is used in a wide variety

of application areas including operation research [10], eco-

nomics [65], bioinformatics and computational biology [40],

mechanical engineering [9, 58], and molecular modeling [52].

A DP algorithm is usually implemented using a loop-based

code that populates the DP table incrementally. However, it

has been shown that DP implementations based on recursive

divide and conquer lead to excellent performance both in

theory and practice as a result of improved I/O efficiency

(i.e., better spatial and temporal locality) [11, 19, 20, 31, 73].

In this paper we present Multi-way Autogen, a novel com-

piler framework for developing high-performing DP algo-

rithms for manycore systems, based on parametric R-way

recursive divide and conquer where R ∈ N∗. Our framework

works for a wide class of DP and DP-like problems known

as fractal DPs [20] which includes Floyd-Warshall’s APSP,

and sequence alignment among many others.

The R-way recursive divide-&-conquer DP algorithms,

which we will call R-way r -DP algorithms, were introduced

in [22, 48, 49] as a generalization of 2-way r -DP algorithms.

Such an algorithm divides a d-dimensional hypercubic DP

table of size nd is divided into R
d hypercubic orthants of

size (n/R)d each. It then uses one or more recursive func-

tions to compute the entire DP table which are defined based

on the read-write dependencies among the hypercubic or-

thants. In addition to having optimal serial I/O complexity
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[20, 21, 23, 36], a parametric R-way r -DP algorithm over-
comes several important limitations of its fixed 2-way coun-
terpart, as follows. For R > 2, an R-way r -DP has more par-

allelism than a 2-way r -DP and the parallelism increases
with R [36]. An R-way r -DP can be run with R = 2 on
shared-memory multi-core machines that seamlessly sup-
port recursion and fully automatic cache replacement to
be both cache-oblivious [32] and cache-adaptive [8]. But it
can also be run efficiently on GPUs with limited support
for recursion and without any automatic data transfer pro-
tocol between memory/cache levels by choosing R values
based on the memory/cache sizes. Since our approach gen-
erates programs where both the problem size and decompo-
sition factors (R) are parametric, they are easier to autotune
than e.g., fixed-size tiled programs. Indeed, both fully re-
cursive (i.e., 2-way r -DP) and fully iterative (both with or
without single-level or multi-level tiling) DP algorithms are
special cases ofR-way r -DP. Finally, it has been shown thatR-
way r -DPs can run with high efficiency on multi-core CPUs,
GPUs and distributed-memory machines without any major
change in its basic structure of the algorithm [48, 49]. For
any given CPU and/or GPU memory hierarchy, including
for distributed-memory architectures, the value of R can be
tuned to adequately match the hardware resources available
at each level of the hardware stack.
Our framework heavily leverages polyhedral compiler

techniques [29].Multi-wayAutogen combinesmono-parame-
tric tiling [5, 45] of the input iterative DP (or i-DP) code with
loop-to-recursion conversion [78] to obtain a parametrically
recursive divide-&-conquer algorithm as a starting point.
Then it applies multiple rounds of index-set splitting [37],
where loop nests are decomposed into several pieces to ex-
pose additional parallelism across loop iterations, and across
recursive calls. The outcome is a fully specified parallel al-
gorithm that is easily mapped to parallel machines such as
multi-core CPUs, GPUs or clusters of homogeneous compute
nodes each containing multi-core CPUs and/or GPUs. We
make the following contributions:
1. We present a novel framework to automatically synthesize

an efficient parametric R-way r -DP algorithm from an
input sequential specification of a DP algorithm.

2. We leverage and customize a variety of polyhedral compi-
lation techniques combining parametric tiling and index-
set splitting to automatically analyze and transform a class
of recursive polyhedral programs, exposing asynchronous
recursive calls and doall parallelism.

3. We provide theoretical analysis to argue that, in this
framework, applying index-set splitting technique not
only boosts performance in practice but also improves the
theoretical span and parallelism.

4. We present several case studies demonstrating the perfor-
mance of the implementations of the generated algorithms
on multi-core and manycore CPUs.

The paper is organized as follows. Sec. 2 presents back-
ground and motivation on recursive divide-and-conquer al-
gorithms for dynamic programming. Sec. 3 presents our
compiler framework to automatically generate parametric
multi-way recursive divide-&-conquer algorithms. Evalua-
tion is conducted in Sec. 4. Related work is presented in Sec. 5
before concluding.

2 Background and Motivation

Recursive divide and conquer is a well-known algorithm
design technique that solves complex problems by decom-
posing them into smaller and more manageable subproblems.
The division continues recursively until the subproblems be-
come small enough for direct solution (base case) without
further divide and conquer. A solution to the original prob-
lem is then obtained by recursively combining solutions
to the subproblems. The decomposition can be either ho-
mogeneous or heterogeneous. In case of a homogeneous
decomposition each subproblem is a smaller instance of the
original problem and as a result, can be solved in exactly
the same way as the original problem. Usually, such an algo-
rithm is implemented using recursion. Two-way recursive
square matrix multiplication is a classic example of such an
algorithm, where each dimension of the input and output
matrices of size n×n is divided by 2 and hence, each matrix is
divided into 4 submatrices of size n

2
× n

2
each. Another exam-

ple is the recursive divide-&-conquer algorithm for Gaussian
Elimination without pivoting (GE) [26], which we will be
using as a running example to explain our framework.
The GE algorithm is used for solving systems of linear

equations and LU decomposition of symmetric positive-defi-
nite or diagonally dominant real matrices [24, 26]. A system
of (n − 1) equations in (n − 1) unknowns (x1,x2, ...,xn−1) is
represented by an n×n matrixX , where each row represents
an equation. For example, the ith row, represents the equa-
tion

∑n−1
j=1 (X [i, j] × x j ) = X [i,n]. Figure 1 illustrates both a

loop-based serial iterative (i.e., i-DP) algorithm LOOP_GE
and a 2-way r -DP algorithm for GE [36]. The recursive func-
tions used by the 2-way r -DP are AGE , BGE , CGE and DGE .
Execution of the r -DP starts by calling function AGE . For
updating the input matrix X , it recursively calls itself and
other recursive functions BGE , CGE and DGE . Function AGE

updates X by reading only from X . Function BGE (resp.CGE )
updates X by reading from X and and a disjoint matrix U
(resp.V ). FunctionDGE updatesX by reading from twomutu-
ally disjoint matricesU andV both of which are also disjoint
from X (similar to matrix multiplication).
An R-way r -DP algorithm is a generalization of the stan-

dard 2-way r -DP which divides each dimension of the in-
put/output matrices into R equal segments, where R ∈ Z+

[22]. R-way r -DP algorithms can be either f ixed R-way or
parametric R-way. In a fixed R-way r -DP, the value of R
used for dividing the dimensions of the matrices remains
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LOOP_GE(X )

1. for k = 1 to (n − 1) do

2. for i = (k + 1) to n do

3. for j = k to n do

4. X [i][j]− = (X [i][k] × X [k][j])

/X [k][k]

AGE (X )

1. if X is small then loop-based GE(X )

2. else

3. AGE (X11)

4. par: BGE (X12,X11), CGE (X21,X11)

5. DGE (X22,X21,X12)

6. AGE (X22)

BGE (X ,U )

1. if X is small then loop-based GE(X ,U )

2. else

3. par: BGE (X11,U11), BGE (X12,U11)

4. par: DGE (X21,U21,X11),

DGE (X22,U21,X12)

5. par: BGE (X21,U22), BGE (X22,U22)

CGE (X ,V )

1. if X is small then loop-based GE(X ,V )

2. else

3. par: CGE (X11,V11), CGE (X21,V11)

4. par: DGE (X12,X11,V12),

DGE (X22,X21,V12)

5. par: CGE (X12,V22), CGE (X22,V22)

DGE (X ,U ,V )

1. if X is small then loop-based GE(X ,U ,V )

2. else

3. par: DGE (X11,U11,V11), DGE (X12,U11,V12), DGE (X21,U21,V11), DGE (X22,U21,V12)

4. par: DGE (X11,U12,V21), DGE (X12,U12,V22), DGE (X21,U22,V21), DGE (X22,U22,V22)

Figure 1. The serial iterative algorithm (LOOP_GE) and the
2-way recursive algorithm (functions AGE , BGE , CGE , and
DGE ) for Gaussian elimination (GE) without pivoting.

Figure 2. Excerpt of the distributed-memory execution of the
R-way r -DP algorithm for GE on a grid P of 2 × 2 processors,
comparing the non-overlapping and overlapping cases. The
overlap between computation and communication increases
with the increase of Rshared .

fixed at all levels of recursion. Assuming R to be a power
of two, a fixed R-way r -DP can be obtained by unrolling
the corresponding 2-way r -DP multiple times (e.g., a 4-way
r -DP can be obtained if we unroll the 2-way r -DP once).
The R-way r -DP obtained in this way can be optimized by
analyzing its dependency constraints and eliminating artifi-
cial dependencies among subtasks inherited from unrolling
the R

2
-way r -DP. These optimizations may alter the recur-

sive function call schedule of the algorithm. Javanmard et al.
[48, 49] have introduced a computer-aided framework which
can semi-automatically produce these algorithm by using the
unrolling technique explained. They have also explained how
to map these algorithms to different architectures including
GPU and distributed-memory machines.

In heterogeneous compute systems, including GPUs and
distributed-memory machines, if R is chosen independent
of the system configuration, the resulting fixed R-way r -DP
algorithm can be very inefficient. To run efficiently on a
given machine, the value of R may need to be different for
every level of recursion based on the number of processors
available and the sizes of memory/caches at different levels of
thememory hierarchy. The set ofR values that workwell on a
given machine may not work efficiently on another machine
with a different set of machine parameters. For efficiency on
any given machine and portability across machines, we need
parametric R-way r -DP algorithms in which the value of R
can be changed on the fly for every level of recursion. We
need parametric R-way r -DP algorithms for GPUs because
on a GPU all data transfers must be done explicitly by the
programmer and its support for recursion is very limited.
The value of R can be chosen based on the sizes of the

GPU global memory and shared memories for obtaining
maximum I/O performance. Additionally, R-way algorithms
can be easily mapped to distributed-memory machines. A
parametric R-way r -DP allows for the tuning of the R value
to get the maximum possible overlap of computation and
communication in a network of multi-core compute nodes
(either on the fly by using adaptive runtime configuration
selection or using estimates from hardware parameters).
Figure 2 shows how tuning the value of R can improve

the overlap between computation and communication in a
distributed-memory setting with 4 processors, during the ex-
ecution of the GE algorithm on an input matrixX , which has
been initially distributed among the processors. In this ex-
ample, we have four processors P[i, j](0 ≤ i, j ≤ 1) that form
a 2D processor grid. Because of this setting, the distributed-
memory version of the R-way algorithm has Rdist = 2. The
execution starts by running the functionAGE (...) (the top left
red corner) on processor P[0, 0]. In the non-overlapping case,
after completely running AGE (...) processor P[0, 0] sends its
whole matrix to processor P[0, 1] so that after receiving
it, processor P[0, 1] can initiate the execution of function
BGE (...) (the top right red corner). However, in the over-
lapping case, if we choose Rshared = 2, for the first step,
processor P[0, 0] sends its top-left submatrix to P[0, 1] as
soon as it is donewith it. Then, after receiving that submatrix,
processor P[0, 1] starts running two instances of BGE and at
the same time can receive some other parts of the data from
processor P[0, 0] for the next steps of the computation. In
the next section, we introduce a polyhedral based approach
to derive such parametric multi-way algorithm.

3 Parametric Multi-way Recursive
Divide-&-Conquer DP Algorithms

In this section, we describe the necessary techniques to ex-
tract efficient parametric R-way r -DP algorithms. We deploy
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a variety of loop transformations and optimization tech-
niques such as parametric tiling [5, 63] and iteration space
splitting (index set splitting [37]) to make full automation
feasible when generating such implementations.

3.1 Overview

1 / / upda t ing ma t r i x X ( s i z e NxN) us ing I−DP

2 vo id I_DP ( i n t ∗ ∗X , i n t N)

3 f o r ( i n t k . . . ) / / i n c r emen t a l / d e c r emen ta l

4 f o r ( i n t i . . . ) / / i n c r emen t a l / d e c r emen ta l

5 f o r ( i n t j . . . ) / / i n c r emen t a l / d e c r emen ta l

6 i f ( Cond i t i on on i t e r a t i o n po i n t ( k , i , j ) )

7 / / Update X[ h1 ( i , j , k ,N ) ] [ h2 ( i , j , k ,N ) ]

8 X[ h1 ( i , j , k ,N ) ] [ h2 ( i , j , k ,N ) ] =

9 func (X[ f 1 ( i , j , k ,N ) ] [ f 2 ( i , j , k ,N ) ] ,

10 X[ g1 ( i , j , k ,N ) ] [ g2 ( i , j , k ,N ) ] , . . . ) ;

Listing 1. I-DP program

The input to Multi-way Autogen is a polyhedral program
which is fully-tilable [46], that is where all loops in the pro-
gram carry only forward dependences (or, no dependence).
Note a polyhedral program can be transformed to expose
tilable loop nests [15]. We call such input programs Itera-
tive DP programs (I-DP) with the general structure shown
in Lst. 1, where the functions hi (i, j,k,N ), fi (...), дi (...), etc.
used to compute array indices are affine functions of the
surrounding loop iterators and program constants.

Our framework typically targets computation that repeat-
edly updates data. DP algorithms usually have this property.
Gaussian Elimination without Pivoting (GE) [18], Sequence
Alignment with Gap Penalty (Gap) [34, 35, 77], and Protein
Accordion Folding (PAF) [38, 51, 73] are typical examples of
I-DP. There are other algorithms, such as Floyd-Warshall’s
all pairs shortest path problem (FW-APSP) [30, 32], which
are not initially fully-tilable [15] but can be made fully-tilable
by either modifying the algorithm via array expansion to
process a 3D array instead of a 2D array [20]; or applying
index-set splitting to expose a sequence of fully-tilable loop
nests as a preprocessing step [47].
Our approach is summarized in Alg. 1. The framework

takes as input a fully-tilable loop nest modeling an I-DP
following the template of Lst. 1.

Step 1 first computes a parametrically tiled version of the
program, using the PTile algorithm [5]. Technically as we do
not need wavefront parallelism between parametric tiles, our
process is a vastly simplified instance of PTile. In addition,
we use a single tile size parameter for each dimension (i.e.,
tile size is identical in each dimension), which puts us in the
realm of mono-parametric tiling [45]. Iooss et al. recently
proved that a mono-parametrically tiled code is amenable to
standard polyhedral representation and analysis [45], while
a classical parametric tiling is not [5]. This is detailed in
Sec. 3.2.
In Step 2, we transform a parametrically tiled loop nest

into a recursive form. The idea is to prepare the process for

Algorithm 1:MWA(I-DP)

input : I-DP, fully tileable serial DP program, written as a

nested for loop in a single function

output : R-DP, parametric R-way r -DP program,

containing one or more recursive functions

1 Step 1. Apply mono-parametric tiling to all the dimensions

of the input program

2 Step 2. Convert the tiled program to a recursive algorithm

by (1) adding recursive function parameters, (2) adding

base case section to the code and (3) replacing the

intra-tile loops with recursive function call

3 Step 3. Apply index set splitting over the inter-tile loops by

considering which input tile(s) overlap with the output

tile. The result is a set of cases, index_set_cases, in each of

which a distinct subset of the input tiles overlap with the

output tile

4 Step 4. foreach case ∈ index_set_cases do

5 Step 4-1. Define a new serial function, called new_func

6 Step 4-2. Call new_func instead of the original top level

recursive function obtained in Step 2

7 Step 4-3. MWA(new_func)

further optimization of the recursive calls themselves, so this
step remains as simple as possible. We leverage ideas from
Yi et al. [78] to perform this step. This is detailed in Sec. 3.3.

In Step 3, we compute explicitly a disjunction of cases (that
is, a set of subsets of the iteration domain, each enforcing a
certain property) that capture either full independence be-
tween tiles/iterations, thereby exposing easy-to-synthesize
parallelism; or when there are dependences. This is detailed
in Sec. 3.4.

In Step 4, we synthesize optimized recursive function calls,
covering all the subsets (to eventually cover the entire iter-
ation space) from the previous Step 3. The main idea is to
expose recursive calls which, whenever possible, make ex-
plicit that there is no overlap between the read and written
data (i.e., that there is available parallelism across divide-
and-conquer steps in this call). To ensure high discovery of
parallelism, the entire Alg. 1 process is then called recur-
sively on the generated functions, which themselves each
form a valid input to Alg. 1 by design. This mechanism han-
dles the automatic discovery and exploitation of parallelism
that may occur only within a subset of the iteration domain,
i.e., after only some level of division of the iteration domain
(or, equivalently, after some amount of recursive calls at
runtime). This is detailed in Sec. 3.5.
The steps described allow to extract and expose paral-

lelism across multiple recursive steps by generating disjoint
read and write regions. Finally, a post-processing stage is
implemented to emit the final parallel implementation. This
process is specific to the parallel framework targeted. We
built our framework to generate an annotated AST with the
final program structure that contains all parallelism info, so
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as to ease subsequent translations to e.g., CUDA, OpenMP,
Cilk, MPI, etc. we illustrate in this paper how parallelism is
found by implementing a final post-transformation of the
loop nests if necessary, using OpenMP multi-threaded li-
brary [17, 27]. This is detailed in Sec. 3.6.

Throughout this section, we use the Gaussian Elimination
without Pivoting (GE) [26] example from Lst. 2 to illustrate
the various transformation stages.

1 vo id I_GE ( doub le ∗ ∗X , i n t N)

2 f o r ( k =0 ; k<N−1 ; ++k )

3 f o r ( i = 0 ; i <N ; ++ i )

4 f o r ( j = 0 ; j <N ; ++ j )

5 i f ( i >k && j >=k )

6 X[ i ] [ j ]−=(X[ i ] [ k ] ∗X[ k ] [ j ] ) / X[ k ] [ k ] ;

Listing 2. input serial GE program

3.2 Mono-parametric Tiling

By design of our framework, the I-DP class we handle be-
longs to polyhedral programs [15, 29]. That is, loops are reg-
ular and iterate by constant stride, and the iteration domain
(that is, the set of all dynamically executed instances of the
statements inside the loops) can be exactly represented using
Z-polyhedra [39]. Array accesses must use affine subscript
functions of only the surrounding loop iterators. This covers
a wide class of I-DP algorithms, and extremely importantly
ensures we can use a variety of existing polyhedral optimiza-
tion algorithms, such as automatic parametric tiling [5] that
we employ here.

Procedure for Step 1. The process takes as input a sequen-
tial C implementation of a fully-tilable I-DP (sub-)computation
(e.g., exactly Lst. 2), and produces a C implementation on
which parametric tiling has been applied. To this end, we
use the PTile algorithm [5]. This general-purpose paramet-
ric tiling algorithm takes a tilable loop nest as input and
produces a tiled implementation where the tile sizes are pa-
rameters whose value may be instantiated only at run-time,
but the code produced is necessarily valid for any possible
value those parameters can take [71]. This is an essential
property to ensure that through recursive decomposition,
which will “use” different tile sizes at different levels, the
generated code will be correct.
There are several important differences between off-the-

shelf parametric tiling and the actual tiling procedure we
employ. First, we restrict the tile sizes along all loop dimen-
sions to have always the same value. This restriction leads to
decomposed domains which have the same size in each direc-
tion (but different sizes for different levels of decomposition),
which is typical practice in recursive divide-&-conquer algo-
rithms [19, 47]. The tiled code produced is therefore mono-
parametric, and so amenable to polyhedral program repre-
sentation [45] to further analyze and optimize it. Second,
we do not generate any wavefront parallel inter-tile schedule,
which is the core difficulty in parametric tiling code gener-
ation [5]. This process is simply not needed, given that we

exploit parallelism by other means (via decomposition and
parallel recursive calls). This both greatly simplifies the pro-
cess of tiling, and also ensures no skewing of the inter-tile
loops is needed. In practice, avoiding this step is sufficient to
ensure the inter-tile loops still form a polyhedral program
after tiling. Finally, to facilitate the generation of subsequent
steps, we also perform a small processing to expose explicitly
a simple-rectangular or simple-triangular loop nest where
the exact iteration domain is preserved by instead using
conditionals inside the loop body to skip empty iterations.

Note also that we restrict by construction thatR is a divisor
of N , the problem size, possibly padding the input problem
with extra zeros to achieve this property. This ensures we
have only “full tiles” in the generated code [5] and no par-
tial tile. Intuitively, a partial tile is needed to cope with the
boundary of the problem where the tile sizeT is such that N
mod T , 0, in that case the last tile to be executed is incom-
plete (partial) and executes N mod T iterations, instead of
T for all other tiles. Such partial tile support is essential in
typical parametric tiling, as the code has to be robust to any
possible tile size (value of T ). Removing the need for partial
tiles greatly simplifies the code we manipulate.

Example output. Applying mono-parametric tiling to
the GE program results in the following program in Lst. 3:

1 vo id GE_Ti led ( doub le ∗ ∗X , i n t N , i n t R )

2 / / i npu t X i s d i v i d e d i n t o ( RxR ) t i l e s .

3 / / Each t i l e i s ( ( N/R ) x (N/R ) )

4 i n t i , j , k , i i , j j , kk ,

5 t _ s z =N/R ; / / t _ s z i s the new t i l e s i z e

6 f o r ( kk =0 ; kk<R ; ++kk )

7 f o r ( i i =kk ; i i <R ; ++ i i )

8 f o r ( j j =kk ; j j <R ; ++ j j )

9 f o r ( k=kk ∗ t _ s z ; k <( kk + 1 ) ∗ t _ s z ; ++k )

10 f o r ( i = i i ∗ t _ s z ; i < ( i i + 1 ) ∗ t _ s z ; ++ i )

11 f o r ( j = j j ∗ t _ s z ; j < ( j j + 1 ) ∗ t _ s z ; ++ j )

12 i f ( i >k && j >=k )

13 X[ i ] [ j ]−=(X[ i ] [ k ] ∗X[ k ] [ j ] ) / X[ k ] [ k ] ;

Listing 3. mono-parametric tiled GE

3.3 Recursive Transformation

The next step is to convert the program produced by Step 1
into a valid recursive form, albeit not yet optimized. Given
the restrictions on the class of program that needs to be han-
dled here (that is, a perfectly-nested mono-parametrically
tiled loop nest), the process is mostly a syntactic manipula-
tion and is guaranteed to be always correct.

Procedure for Step 2. The procedure starts by processing
the intra-tile loops and the loop nest body to create the
base case, i.e., the code executed at the bottom level of the
recursion. A conditional is created to implement the criterion
to stop the recursion/decomposition.
Then the inter-tile loop nest is massaged, replacing its

body (the intra-tile loop nest) by a recursive call with the
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proper loop bounds to be used. Note that we also adjust
the inter-tile loop bounds, which at start enumerates the
original tile space, so as to correctly handle the coverage of all
tiles when implementing recursive decomposition. Precisely,
the overall shape of a sub-domain after decomposition may
not correspond to the overall full iteration domain shape:
for example, recursively R-way decomposing a triangular
iteration domain will end up exposing triangles but also
square pieces. So we make the loop nest that will invoke the
recursive function call valid for any shape it may encouter,
by making it iterate on a rectangular space. We still prevent
unnecessary recursive calls by generating inner conditionals
to ensure the sub-domain to be decomposed does belong to
the original iteration space, as shown in line 21 of Lst. 4. To
implement R-way recursive decomposition, the new tile size
computed for level l is simply the tile size of the previous
level (l − 1) divided by R.

Example output. The resulting recursive program is given
in Lst. 4.

1 / ∗ The i n i t i a l i npu t ma t r i x i s o f s i z e (NxN)

2 The t i l e s i z e i s ( TxT ) ∗ /

3 vo id GE_Rec ( doub le ∗ ∗X , i n t N , i n t T ,

4 i n t R , i n t b a s e _ s i z e , i n t k_lb ,

5 i n t i _ l b , i n t j _ l b )

6 i n t i , j , k , i i , j j , kk ;

7 / / base c a s e

8 i f ( T<= b a s e _ s i z e | | T<= R ) {

9 f o r ( k= k_ lb ; k< k_ lb +T ; ++k )

10 f o r ( i = i _ l b ; i < i _ l b +T ; ++ i )

11 f o r ( j = j _ l b ; j < j _ l b +T ; ++ j )

12 i f ( i >k && j >=k )

13 X[ i ] [ j ]−=(X[ i ] [ k ] ∗X[ k ] [ j ] ) / X[ k ] [ k ] ;

14 r e t u r n ;

15 }

16 i n t t _ s z =T /R ; / / t _ s z i s the new t i l e s i z e

17 f o r ( kk =0 ; kk<R ; ++kk )

18 f o r ( i i = 0 ; i i <R ; ++ i i )

19 f o r ( j j = 0 ; j j <R ; ++ j j )

20 i f ( i _ l b >= k_ lb && j _ l b >= k_ lb )

21 GE_Rec (X ,N , t _ s z , R , b a s e _ s i z e ,

22 k_ lb +kk ∗ t _ s z , i _ l b + i i ∗ t _ s z , j _ l b + j j ∗ t _ s z ) ;

Listing 4. recursive GE program

3.4 Discovering Disjoint Computations

After the initial steps, we are left with a program in which
parallelism is not necessarily clearly exposed, as possibly
only subsets of the iteration domain expose parallelism be-
tween each other. That is, only doall parallelism across inter-
or intra-tile loops is easily exploitable, but this forms only
a fraction of the parallelism available. The objective of Step
3 (which is tightly coupled with Step 4) is to decompose the

iteration domains into subsets to facilitate the exposure of par-

allelism.
As a result, Multi-way Autogen applies index-set splitting

by considering the criteria of disjointness of the output data

tile with the input data tiles. This gives further opportunity
for the framework to produce a more efficient algorithm
from a parallelism point of view: procedures with necessarily
disjoint input and output have available parallelism across
calls that can be exploited. Considering the inter-tile loops
of the GE algorithm, we observe that output tile with origin
X [ii][jj] gets updated by the cells in the input tiles with
origin X [ii][kk], X [kk][jj] and X [kk][kk]. As a result, the
inter-tile loops can be automatically split into several cases:
case (A) all input tiles and output tile overlap completely (i.e.,
kk = ii and kk = jj), case (B) output tile X [ii][jj] overlaps
only with the input tile X [ii][kk] (i.e., kk = ii but kk , jj),
case (C) output tile X [ii][jj] overlaps only with the input
tile X [kk][jj] (i.e., kk = jj but kk , ii) and finally, case (D)
output tile is completely disjoint with the input tiles (i.e.,
kk , ii and kk , jj). Case (A) is indeed the initial recursive
function obtained and as the framework discovers cases (B),
(C) and (D), it creates another serial function for each case
and process it recursively. Later we will discuss that the
more disjoint the input and output tiles, the more parallel
the function is.

Procedure for Step 3. The process is a variation of the
classical Index-Set Splitting algorithm for parallelism [37].
The original ISS algorithm focuses on finding slices of the
iteration domain which are independent (no data depen-
dences) between each other. Here we slightly modify this
criterion to explicitly model the disjointness between the
read set and write set, reasoning on inter-tile loops where
the read/write sets contains multiple points. That is, we sim-
plify the process especially to avoid finding complex splits
that may have marginally better fine-grain parallelism but
which would lead to significantly more complex code gener-
ation. Specifically, we only need to analyze and split a single
iteration domain (the inter-tile loops) which has been sim-
plified by construction to be either fully rectangular or fully
triangular. The algorithm produces a split of the iteration
domain into subsets such that either (a) the read and written
datasets (at the tile level) are necessarily disjoint; or (b) they
overlap on at least one memory location, which implies they
fully overlap given the divisibility between R and N we im-
posed. As described below in Step 4, we employ a recursive
code generation procedure to re-analyze each such subset
generated, further splitting as necessary, to discover more
parallelism when possible.
Alg. 2 is used to decompose the iteration domain of an

I-DP program into a set of disjoint iteration spaces where
each pair of sets are either totally disjoint or identical. The al-
gorithm takes two arguments, read_set and write_set, which
represent the access relations performing the reads and the
writes of the computation. We adopt the ISL [74] notation,
where curr and ref are relations mapping points in the itera-
tion domain to the dataspace. The union (∪) and intersection
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Algorithm 2: I-DP Index Set Splitting

input : read_set: read access relations; write_set: write

access relations

output : iss: set of disjoint read and write access functions

1 iss ← ∅

2 writes ← write_set

3 for each read reference ref ∈ read_set do

4 for each write set curr ∈ writes do

5 common ← curr ∩ re f

6 write_only ← curr − common

7 read_only ← read − common

8 iss ← iss ∪ read_only

9 iss ← iss ∪write_only

10 writes ← writes ∪ common

11 return iss

(∩) operations for maps have similar semantics as for set op-
erations. In contrast, the difference (−) between twomapsm1

andm2 is defined as the relationmdif f s.t. domain(mdif f ) ⊆

domain(m1) and ranдe(mdif f ) = ranдe(m1)−ranдe(m2). Our
algorithm proceeds by determining the common data space
between each read reference with each of the subsets in the
write dataspace. Both the write_only and read_only maps
are immediately added to the iss result, whereas the com-

mon part is kept to further decompose it with subsequent
read references. This procedure produces at most 2n dis-
joint maps, where the following post-condition is respected:
∪s ∈iss domain(s) = domain(write_set) ∪domain(read_set).
The subsets added to iss are decorated with the jointness

and overlapness properties to simplify the post-processing
dependence analysis and to further expose more parallelism.

Example output. The recursive program after splitting
is shown in Lst. 5. Recursive call has been split into multiple
cases, case (A) represents full overlapping while cases (B) and
(C) represent the partial overlapping and case (D) represents
complete disjoint ones. It is worth mentioning that the order
of function calls are the same before (Lst. 4) and after (Lst. 5)
applying index-set splitting.

1 / ∗ The i n i t i a l i npu t ma t r i x i s o f s i z e (NxN)

2 The t i l e s i z e i s ( TxT ) ∗ /

3 vo id GE_Rec_A ( doub le ∗ ∗X , i n t N , i n t T ,

4 i n t R , i n t b a s e _ s i z e , i n t k_lb ,

5 i n t i _ l b , i n t j _ l b )

6 / / base c a s e

7 i f ( T<= b a s e _ s i z e | | T<= R ) {

8 f o r ( i n t k= k_ lb ; k< k_ lb +T ; ++k )

9 f o r ( i n t i = i _ l b ; i < i _ l b +T ; ++ i )

10 f o r ( i n t j = j _ l b ; j < j _ l b +T ; ++ j )

11 i f ( i >k && j >=k )

12 X[ i ] [ j ]−=(X[ i ] [ k ] ∗X[ k ] [ j ] ) / X[ k ] [ k ] ;

13 r e t u r n ;

14 }

15 i n t t _ s z =T /R ; / / t _ s z i s the new t i l e s i z e

16 f o r ( kk =0 ; kk<R ; ++kk ) {

17 i n t k_lb_new=k_ lb +kk ∗ t _ s z ;

18 / / CASE A : kk = i i and kk = j j

19 GE_Rec_A (X ,N , t _ s z , R , b a s e _ s i z e ,

20 k_lb_new , i _ l b +kk ∗ t _ s z , j _ l b +kk ∗ t _ s z ) ;

21 / / CASE B : kk = i i but kk != j j

22 f o r ( j j = ( kk + 1 ) ; j j <R ; ++ j j )

23 GE_Rec_B (X , X , X ,N , t _ s z , R , b a s e _ s i z e ,

24 k_lb_new , i _ l b +kk ∗ t _ s z , j _ l b + j j ∗ t _ s z ) ;

25 f o r ( i i = ( kk + 1 ) ; i i <R ; ++ i i ) {

26 / / Case C : kk = j j but kk != i i

27 GE_Rec_C (X , X , X ,N , t _ s z , R , b a s e _ s i z e ,

28 k_lb_new , i _ l b + i i ∗ t _ s z , j _ l b +kk ∗ t _ s z ) ;

29 / / CASE D : kk != i i and kk != j j

30 f o r ( j j = ( kk + 1 ) ; j j <R ; ++ j j )

31 GE_Rec_D (X , X , X , X ,N , t _ s z , R , b a s e _ s i z e ,

32 k_lb_new , i _ l b + i i ∗ t _ s z , j _ l b + j j

33 ∗ t _ s z ) ;

34 }

35 }

Listing 5. recursive GE_A with ISS

3.5 Parallel Recursive Call Synthesis

The previous Step 3 ensures we have explicitly isolated re-
cursive function calls where the read and written data spaces
are necessarily disjoints or overlapping. Each such call/case
is then processed so as to (a) clearly expose the parallelism at
the data access level, typically by using array renaming, and
very importantly (b) recursively call the MWA algorithm on
each such function, to expose further parallelism whenever
possible. This recursive generation of new recursive func-
tions terminates when no new function can be discovered at
some level of recursion, that is when no further splitting per-
mits to expose new cases of disjoint data space. We remind
again that by design, our framework can always analyze and
optimize subsets of the iteration domain produced by Steps
3/4, as they necessarily are polyhedral programs that fit the
template of Lst. 1 by construction.

1 / ∗ The i n i t i a l i npu t ma t r i x i s o f s i z e (NxN)

2 The t i l e s i z e i s ( TxT ) ∗ /

3 vo id GE_Rec_D ( doub le ∗ ∗X , doub le ∗ ∗U ,

4 doub le ∗ ∗V , doub le ∗ ∗W, i n t N , i n t T ,

5 i n t R , i n t b a s e _ s i z e , i n t k_lb , i n t i _ l b ,

6 i n t j _ l b )

7 / / base c a s e

8 i f ( T<= b a s e _ s i z e | | T <= R ) {

9 f o r ( i n t k= k_ lb ; k< k_ lb +T ; ++k )

10 f o r ( i n t i = i _ l b ; i < i _ l b +T ; ++ i )

11 f o r ( i n t j = j _ l b ; j < j _ l b +T ; ++ j )

12 i f ( i >k && j >=k )

13 X[ i ] [ j ]−=(U[ i ] [ k ] ∗V[ k ] [ j ] ) /W[ k ] [ k ] ;

14 r e t u r n ;

15 }

16 i n t i i , j j , kk , t _ s z = T /R ;

17 f o r ( kk =0 ; kk<R ; ++kk )

18 f o r ( i i = 0 ; i i <R ; ++ i i )

19 f o r ( j j = 0 ; j j <R ; ++ j j )

20 GE_Rec_D (X , U , V ,W,N , t _ s z , R , b a s e _ s i z e ,

21 k_ lb +kk ∗ t _ s z , i _ l b + i i ∗ t _ s z , j _ l b + j j

22 ∗ t _ s z ) ;

Listing 6. recursive GE_D
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Procedure for Step 4. By property of Step 3, the cases
(subsets of the iteration domain) representing disjointness
between the read and written data are explicitly marked.
Therefore defining a new recursive function newfun simply
amounts to cloning the input function, and adjusting its ar-
guments and statement body to explicitly use different array
names for the array references which are necessarily oper-
ating on disjoint data spaces. This leads to a new function
where, from a polyhedral data dependence analysis point of
view, it is guaranteed that there is no dependence between
such read/written references which have been renamed. Im-
portantly, Step 4 invokes the full MWA algorithm again on
the updated function definition, so as to discover possible
disjointness by splitting that corresponds to the next level of
recursive call in the generated program. Indeed, we do recur-
sively generate recursive functions, a natural way to reason
on the various levels of recursion and create specialized code
for each achieving the implementation idea depicted in Fig. 3.
produces the updated code in Lst. 6. Note U , V andW are
explicitly used now to represent the disjointness with the
output tile X and therefore lack of dependences explicitly.
Figure 3 shows the index set splitting for the four cases
(A), (B), (C), and (D) for kk = 0, when executing R-way r -DP
GE algorithm for R = 4.

Figure 3. Index set splitting for GE_Rec_A’s inter-tile loops
for kk = 0. Arrows show dependency among tiles.

3.6 Parallel Code Generation

The final step is to emit a parallel implementation of the
produced recursive program. The concrete implementation
of this stage of course depends on the parallel framework
targeted (e.g., GPU, CPU, etc.) but all require the same infor-
mation as input: which loops are parallel (doall), and which
consecutive function calls can be executed asynchronously.
Here we again leverage polyhedral analysis: as the programs
generated all fit the model, we simply rely on standard poly-
hedral techniques [29] to determine for each loop in the
program whether they incur a loop-carried dependence, and
between each consecutive calls whether there is any data
dependence. In addition, we also perform a last stage of
index-set splitting if necessary, if an inter-tile loop has a
non-uniform dependence which can be split into a parallel
and sequential loop execution.

Procedure for final parallel code generation. We lever-
age properties of the function representation to model the
data space being accessed by each separate recursive call,
and plug this information into a polyhedral representation
of the inter-tile loops that perform the recursive calls. It
casts the (sub-)program as a standard polyhedral program,
on which we determine doall parallelism by ensuring there
are no backward dependence (testing the legality of a loop
reversal is sufficient [6]). Similarly doacross parallelism is an-
alyzed, across consecutive calls. The complementary index-
set splitting to discover additional coarse-grain parallelism is
optionally performed, only if there is only one level of doall
parallelism in the current program.

Example output. As an example, targeting the OpenMP
multi-threaded library [17, 27] from our generated AST (with
explicitly annotated parallelism) is straightforward, Lst. 7
shows the final parallel code produced by our framework.

1 vo id GE_Rec_A_Par ( doub le ∗ ∗X , i n t N , i n t T ,

2 i n t R , i n t b a s e _ s i z e , i n t k_lb , i n t i _ l b ,

3 i n t j _ l b )

4 / / base c a s e

5 i f ( T<= b a s e _ s i z e | | T<=R ) {

6 f o r ( i n t k= k_ lb ; k< k_ lb +T ; ++k )

7 f o r ( i n t i = i _ l b ; i < i _ l b +T ; ++ i )

8 f o r ( i n t j = j _ l b ; j < j _ l b +T ; ++ j )

9 i f ( i >k && j >=k )

10 X[ i ] [ j ]−=(X[ i ] [ k ] ∗X[ k ] [ j ] ) / X[ k ] [ k ] ;

11 r e t u r n ;

12 }

13 i n t t _ s z =T /R ; / / t _ s z i s the new t i l e s i z e

14 f o r ( kk =0 ; kk<R ; ++kk ) {

15 i n t k_lb_new=k_ lb +kk ∗ t _ s z ;

16 / / CASE A : kk = i i and kk = j j

17 GE_Rec_A_Par (X ,N , t _ s z , R , b a s e _ s i z e ,

18 k_lb_new , i _ l b +kk ∗ t _ s z , j _ l b +kk ∗ t _ s z ) ;

19 / / CASE B : kk = i i but kk != j j

20 #pragma omp p a r a l l e l f o r

21 f o r ( j j = ( kk + 1 ) ; j j <R ; ++ j j )

22 #pragma omp t a s k

23 GE_Rec_B_Par (X , X , X ,N , t _ s z , R , b a s e _ s i z e ,

24 k_lb_new , i _ l b +kk ∗ t _ s z , j _ l b + j j ∗ t _ s z ) ;

25 / / Case C : kk = j j but kk != i i

26 #pragma omp p a r a l l e l f o r

27 f o r ( i i = ( kk + 1 ) ; i i <R ; ++ i i )

28 #pragma omp t a s k

29 GE_Rec_C_Par (X , X , X ,N , t _ s z , R , b a s e _ s i z e ,

30 k_lb_new , i _ l b + i i ∗ t _ s z , j _ l b +kk ∗ t _ s z ) ;

31 / / Case D : kk != i i and kk != j j

32 #pragma omp p a r a l l e l f o r

33 f o r ( i i = ( kk + 1 ) ; i i <R ; ++ i i )

34 #pragma omp p a r a l l e l f o r

35 f o r ( j j = ( kk + 1 ) ; j j <R ; ++ j j )

36 #pragma omp t a s k

37 GE_Rec_D_Par (X , X , X , X ,N , t _ s z , R ,

38 b a s e _ s i z e , k_lb_new , i _ l b + i i ∗ t _ s z ,

39 j _ l b + j j ∗ t _ s z ) ;

40 #pragma omp t a s kwa i t

41 }

Listing 7. parallel recursive GE_A
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4 Evaluation

In this section, first, we provide theoretical analysis to show
that identifying new recursive functions after applying index-
set splitting (Step 3) improves the theoretical span and par-
allelism. Ganapathi [36] and Javanmard et al. [48, 49] de-
rived other theoretical bounds, such as I/O complexity of
shared-memory and GPU algorithms as well as communica-
tion bounds for distributed-memory algorithms. In [48, 49],
Javanmard et al. provided experimental results for GPU and
distributed-memory algorithms as well as detailed discus-
sion on how to map R-way r -DP algorithms to GPUs and
distributed-memory machines. In this paper, we present ex-
perimental results for several DP (and DP-like) algorithms
for a manycore machine using the OpenMP multi-threaded
library [17, 27].

4.1 Theoretical Bounds

Taking FW-APSP [30, 32] as an example, we analyze the span
of the following two FW-APSP algorithms: (1) parallel R-way
r -DP with only one recursive function, and (2) parallel R-
way r -DP with multiple recursive functions identified using
index-set splitting (Step 3). The spanT∞ of a multi-threaded
program is its smallest running time when no limit is im-
posed on the number of processors it can use. The span is,
indeed, the length of the critical path in the execution DAG
[26] of the program. ByT1 we denote the serial running time

of the program. Then T1
T∞

gives its parallelism.

For R-way r -DP with only one function, T∞ is given by:

T
(1)
∞ (n) =

{

Θ(1) n = 1

4R × (T
(1)
∞ (

n
R
) + log2 R) n > 1

Solving this recurrence, we get T
(1)
∞ (n) = Θ(n1+logR 4).

For R-way r -DP with multiple functions we have the fol-
lowing recurrences when n > 1 (for n = 1, all are Θ(1)):

• T
(A)
∞ (n) = R ×

(

T
(A)
∞ (

n
R
) + (log2 R +T

(B)
∞ (

n
R
))+

(log2 R+T
(C)
∞ (

n
R
))+(2 log2 R+T

(D)
∞ (

n
R
))
)

• T
(B)
∞ (n) = (3R + n) log2 R + RT

(B)
∞ (

n
R
)

• T
(C)
∞ (n) = (3R + n) log2 R + RT

(C)
∞ (

n
R
)

• T
(D)
∞ (n) = 2R log2 R + RT

(D)
∞ (

n
R
)

Solving, we obtain T
(A)
∞ (n) = Θ(

n(log2 n)
2

log2 R
) which is o(T

(1)
∞ (n)).

For both algorithms one can show that T1(n) = Θ(n3).
The analysis above emphasizes the importance of the

index-set splitting step (Step 3) of our framework. Indeed,
that step can lead to the discovery of new algorithms with
multiple recursive functions which have asymptotically bet-
ter parallelism than more traditional algorithms with a single
recursive function. We also observe that the larger the value
of R, the smaller the span of the algorithm and hence, the
more parallelism the algorithm exploits. Similar improved
theoretical bounds can be proved for the other DP algorithms
we consider in this paper.

4.2 Experimental Results

In this section, we present and compare performance re-
sults of the R-way r -DP implementations produced using
our framework and the parallel tiled codes generated by
PLuTo [12] for three benchmark programs.

4.2.1 Benchmarks. We consider the following important
DP/DP-like problems. Floyd-Warshall’s all-pairs shortest
path (FW-APSP): FW-APSP is an DP algorithm invented
by Robert Floyd [30] which finds the shortest path among
every pair of vertices in a directed graph. Stephen Warshall
also introduced an algorithm with the same dependency
structure for finding transitive closures [76]. Gaussian Elim-
ination without Pivoting (GE): The GE algorithm is used for
solving systems of linear equations and LU decomposition of
symmetric positive-definite or diagonally dominant real ma-
trices [24, 26]. Protein Accordion Folding (PAF): A protein is
a sequence of amino acids some of which are hydrophobic. In
nature, a protein sequence folds itself to minimize the force
due to hydrophobic area exposed to water. The PAF problem
computes the score of an accordion fold (i.e., a sequence of
alternating folds) which minimize that force [38, 51, 73].

4.2.2 Experimental Setup. All our experimentswere per-
formed on Knights Landing (Intel Xeon Phi 7250) or KNL
nodes of Stampede2 Supercomputer [1]. Each node has 68
cores and 272 hardware threads (4 hardware threads per
core) on a single socket. Each KNL node has 32KB L1 data
cache per core, 1MB of L2 per two-core tile, MCDRAM as a
16GB direct-mapped L3 cache, and 96GB DDR4 RAM.

All the algorithms were implemented in C++. We used
Intel C++ compiler v18.0.2 to compile our implementations
with the optimization parameters -O2 -qopenmp -xKNL -
qopt-prefetch=5 -xhost -AVX512. We used OpenMP 5.0 with
ICC for our shared memory parallel implementation. We
pinned the threads to CPU cores using GOMP_CPU- _AFFIN-
ITY, we used 68 pinned threads for all our experiments.

4.2.3 Performance Results. In Figure 4 we compare the
running times of the parallel R-way r -DP implementations
produced using our framework with the parallel tiled im-
plementations generated by PLuTo as n varies from 1000 to
6000. Pluto [15] represents the state-of-practice to compile
affine programs via tiling and parallelization. It presents an
important baseline a specialized polyhedral compiler must
meet or beat.

For every value of n, we ran each of our r -DP implementa-
tion for all 6 × 5 = 30 possible 〈R, base case size〉 pairs with
R ∈ {2, 4, 8, 16, 32, 64} and base case size ∈ {8×8, 16×16, 32×
32, 64 × 64, 128 × 128}, and report the smallest running time
among them. On the other hand, for PLuTo generated codes
rectangular tile sizes were selected via a small autotuning
phase, exploring sizes from {8, 16, 32} for the outer dimen-
sions and from {64, 128, 512} for the inner-most dimension.
These sizes were chosen to ensure that enough multithread
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(a) (b) (c)

Figure 4. Running times of the parallel R-way r -DP implementations produced using our framework and the parallel tiled
implementations generated by PLuTo.

(a) (b) (c)

Figure 5. Comparing execution of R-way r -DP algorithms for R ∈ {2, 4, 8, 16, 32, 64}.

parallelism was exposed in the wavefront dimension created
by PLuTo, while ensuring the tile footprint neared the cache
size. While higher performance may be achieved with more
autotuning, the bulk of the performance shall be achieved by
the tiles we explored. Note the same serial affine C program
modeling the I-DP evaluated was provided as input to both
Pluto and our framework.
For n = 6000, the r -DP implementations ran 9.3×, 8.4×,

and 3.5× faster than the corresponding PLuTo generated
code for FW-APSP, GE, and PAF, respectively. Those per-
formance gains result from the asymptotically shorter span
r -DP implementations have compared to the PLuTo imple-
mentations. For example, assuming that the PLuTo code for
FW-APSP uses b × b square tiles, its span can be shown to
be Θ

(

bn2
)

, while as we have shown in Section 4.1, the r -DP

code for FW-APSP has spanΘ
(

nlog2 n

logR

)

. Indeed, for FW-APSP,

while PLuTo parallelizes only one of the three nested loops,
our r -DP framework parallelizes two of them.

For R-way r -DP algorithms, Figure 5 illustrates the impor-
tance and difficulty of selecting the right value R to maximize
performance. We use problem size 6000×6000. The base-case
size for Floyd-Warshall APSP is 32, and for Gaussian Elimi-
nation and Protein Accordion Folding the base-case size is
64. These experiments show that while often several values
of R give similar performance, poor values that dramatically
reduce the performance do exist as well. For example, 64-
way execution is the best for GE, but the worst (2× slower)
execution for FW-APSP; conversely 4-way execution which
is the best for FW-APSP performs around 40% slower for

64-way execution of GE. Selection of R can be on the fly by
using adaptive runtime configuration (e.g., Petabricks [3]) or
using estimates from hardware parameters.

Finally in Figure 6, using the PAPI library [16, 28], we com-
pare L2 cache misses incurred by r -DP and PLuTo codes for
FW-APSP and PAF. For n = 6000, PLuTo codes incur 3× and
13× more cache misses than r -DP for FW-APSP and PAF,
respectively. One of the reasons r -DP incurs fewer cache
misses than PLuTo codes is beacuse it copies the input/out-
put submatrices to local arrays for updates. In addition to
improving cache performance the local arrays also creates
better vectorization opportunities.

5 Related Work

Polyhedral compilation is an active field, with the primary fo-
cus of generating efficient parallel implementations of affine
programs. By far the most employed technique uses fixed-
size tiling [15, 46] where the tile sizes are constants known
at compile-time. This enables complex transformation algo-
rithms to be designed such as the Pluto algorithm [12, 13, 15]
which transforms a polyhedral program to maximize the
exposure of tilable loop nests. Such techniques have demon-
strated their ability to produce high-performance parallel
implementations for both CPUs and GPUs with the PPCG
compiler [61, 75]. However a strong limitation of such ap-
proaches is the extreme difficulty to select at compile-time
the best tile sizes for performance: despite varying complex-
ity of tile size selection models [25, 56] the state of practice
remains auto-tuning, making the program not portable.
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(a)

(b)

Figure 6. L2 cache misses incurred by the parallel R-way
r -DP implementations produced using our framework and
the parallel tiled implementations generated by PLuTo.

To alleviate the problem of compile-time selection of tile
sizes for polyhedral programs, parametric tiling techniques
have been designed [5, 43, 63] that take as input a tilable
program and implement a tiled version which is necessarily
correct for any possible tile sizes. This allows to defer the tile
size selection problem to runtime, possibly even dynamically
changing the sizes [71]. However such systems have typically
focused on the ability to expose inter-tile parallelism via
a wavefront schedule, an extremely difficult task. In our
work, we take a totally different approach to parallelism
exposure, where such wavefront schedule does not need
to be generated anymore. It simplifies tremendously the
parametric tiling process compared to e.g. [5]. Iooss et al.
have shown that for parametrically tiled programs, if one
restricts the number of tile size parameters to one (hence
mono-parametric tiling), the generated tiled loop nest still
fits the polyhedral model [45].

The process of creating cache-oblivious programs has been
investigated both via semi-manual designs e.g. [31, 33] and
via automated approaches including in the polyhedral model
such as PCOT [62] or by transformation of loops to recursive
calls [78]. Studies to assess the (performance) merits of tra-
ditional tiling versus recursive / cache-oblivious processes
[62, 79] have shown potentially limited benefits of recursive
decomposition [62]. Our work focuses on a specific subclass
of polyhedral programs, but in contrast to these works we
take extreme care of exposing and exploiting parallelism be-
tween (sub-)tiles, especially by means of index-set splitting
(which is not employed in other works [62]). Rugina and Ri-
nard developed a compiler framework to exploit parallelism

in recursive calls for divide-and-conquer algorithms [64], our
work follows a similar design strategy, but in contrast we
deploy index-set splitting for increased parallelism exposure.
High performing distributed-memory graph algorithms,

e.g. [4, 54, 57] and dynamic programming algorithms, e.g.
[41, 44, 50, 53–55, 70, 72] have also been designed. Solomonik
et al. [68] have used a block-cyclic approach to design a
2.5D APSP algorithm [69] that builds on top of a recursive
divide-and-conquer APSP algorithm (i.e., Kleene’s algorithm
[2]). Compilation to 2.5D algorithms has been developed
[59, 60], it does not however implement index-set splitting
for parametric recursive decomposition as we propose. Cus-
tom solutions, e.g. for APSP have also been designed [14, 42]
that exploit some form of index-set splitting to expose paral-
lelism, however they do not provide automated techniques
to generate parametric code, in contrast to our work.

6 Conclusion

DP problems are encountered in a wide range of application
areas. Recursive divide-and-conquer algorithms for solving
DP problems have been shown to perform very well.
In this paper, we presented a novel compiler framework

that produces highly efficient parametric multi-way recur-
sive divide-&-conquer algorithms for a class of DP prob-
lems. Our framework, Multi-Way Autogen, combines (mono-
)parametric tiling of the input iterative DP code with loop-
to-recursion conversion to obtain a parametrically recursive
divide-&-conquer algorithm. Then it applies multiple rounds
of loop splitting, so as to decompose a loop nest into several
pieces to expose additional parallelism across loop iterations,
and very importantly also across recursive calls. We pre-
sented several case studies demonstrating the performance
of the generated codes on a manycore Xeon Phi.
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