Generating Piecewise-Regular Code
from Irregular Structures

Travis Augustine
Colorado State University, USA
Travis.Augustine@colostate.edu

Louis-Noél Pouchet
Colorado State University, USA
pouchet@colostate.edu

Abstract

Irregular data structures, as exemplified with sparse matrices,
have proved to be essential in modern computing. Numerous
sparse formats have been investigated to improve the overall
performance of Sparse Matrix-Vector multiply (SpMV). But
in this work we propose instead to take a fundamentally
different approach: to automatically build sets of regular sub-
computations by mining for regular sub-regions in the irreg-
ular data structure. Our approach leads to code that is special-
ized to the sparsity structure of the input matrix, but which
does not need anymore any indirection array, thereby im-
proving SIMD vectorizability. We particularly focus on small
sparse structures (below 10M nonzeros), and demonstrate
substantial performance improvements and compaction ca-
pabilities compared to a classical CSR implementation and
Intel MKL IE’s SpMV implementation, evaluating on 200+
different matrices from the SuiteSparse repository.

CCS Concepts «Software and its engineering — Source
code generation; « Theory of computation — Data com-
pression; Program analysis.

Keywords Polyhedral compilation, SpMV, trace compres-
sion, sparse data structure.

ACM Reference Format:

Travis Augustine, Janarthanan Sarma, Louis-Noél Pouchet, and Gabriel

Rodriguez. 2019. Generating Piecewise-Regular Code from Irregular
Structures. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’19), June
22-26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3314221.3314615

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06...$15.00
https://doi.org/10.1145/3314221.3314615

625

Janarthanan Sarma
Colorado State University, USA
jsharma@colostate.edu

Gabriel Rodriguez
Universidade da Coruifia, Spain
gabriel.rodriguez@udc.es

1 Introduction

Irregular data structures, as exemplified with sparse matri-
ces, are essential in modern computing: they lie at the core
of many applications ranging from physics simulation to
graph processing. In machine learning, they help represent
sparsely connected neural networks, which themselves can
arise after sparsification (weight / connection pruning) of a
fully-connected trained network, to improve inference speed.

Numerous sparse formats have already been investigated
to improve the overall performance of operations such as
Sparse Matrix-Vector multiply (SpMV, e.g. [4, 5, 17, 39]),
including focusing on vectorizability of the final program
[14, 36]. A compact representation like Compressed Sparse
Rows (CSR) [31] ensures only useful (nonzero) values are
stored but at the cost of the use of indirection arrays and
challenges in effectively SIMD vectorizing the program. In
this work we propose instead to take a fundamentally dif-
ferent approach: to automatically build sets of regular sub-
computations by mining for regular sub-regions in the ir-
regular data structure. Our approach leads to code that is
specialized to the sparsity structure of the input matrix (or
tensor), but which does not need anymore any indirection ar-
ray, thereby improving SIMD vectorizability. This mining is
done at compile-time, and requires the sparsity structure (e.g.,
the nonzero coordinates) to be both known at compile-time
and invariant during the computation, as the code generated
is valid only for one specific sparsity structure. In this paper,
we focus on smaller sparse structures (below 10M nonzeros),
and demonstrate substantial performance improvements and
compaction capabilities compared to a classical CSR imple-
mentation and Intel MKL’s SpMV library, evaluating on 200+
different matrices from the SuiteSparse repository.

Our approach targets specifically small-sized sparse-immu-
table data structures, such as immutable graphs represented
as sparse matrices or sparse weight matrices obtained from
a fully-connected trained Artificial Neural Networks (ANN)
which is sparsified before deployment for inference in pro-
duction. In a nutshell, we develop algorithms to automati-
cally mine for multidimensional Z-polyhedra [18] that cap-
ture sets of nonzero coordinates within the sparse structure,
so that each such polyhedron is then a stand-alone subset

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

T. Augustine, J. Sharma, L.-N. Pouchet, and G. Rodriguez

for(i = @; i < n; ++i) { for(i = 0; i < n; ++i) { for(i = 0; i < 1000; ++i) {
I: y[i] = o; I: y[i] = o; I+ yl[il = o;
for(j=pos[il; j<pos[i+11; ++j) for(j=0; j<m; ++j) for(j=i; j<=i; ++J)
S: y[il+=A_datal[j] * x[cols[j11; if (A_dense[il[j] !'= @) S: yl[il += A_datalil x x[j1;
} S: y[i]l += A_densel[i1[j]1 * x[j1; }
¥
(a) (b) (©

Figure 1. Matrix-vector product implementations. (a) is classical CSR, (b) is classical dense while skipping zero entries, (c) is
an example of a simple specialized SpMV for a diagonal matrix encoded in CSR.

of the computation. Benefiting from the associativity/com-
mutativity of the + operation in SpMV, we are able to mine
and group together operations from anywhere in the sparse
structure, creating more opportunities for code compaction
and/or performance. We perform polyhedral code generation
to create efficient loop-based code scanning these polyhe-
dra, in turn generating code that not only does not need
any indirection array to recover the nonzero coordinates,
but can be tuned to favor the exposure of SIMD vectoriz-
able sub-regions when they exist. We make the following
contributions:

e a set of algorithms and tools to automatically mine
for regular sub-structures in a multidimensional set of
integer tuples;
an end-to-end implementation of a system to gener-
ate efficient C code specialized to the computation’s
sparsity structure;
an extensive experimental validation over 200+ sparse
matrices from the SuiteSparse database as well as a
case study on pruning fully-connected ANNs for im-
proved inference speed, demonstrating performance
trade-offs and significant gains possible over a classical
SpMV CSR implementation and Intel MKL IE.

The paper is organized as follows. Section 2 provides back-
ground and overview of the approach. Section 3 presents
the core approaches for the automatic extraction of regu-
lar pieces from the irregular sparse structure, while Sec. 4

presents hierarchical reconstruction for improved compaction.

A case study for ANN sparsification is presented in Sec. 5,
before extensive experimental results are detailed in Sec. 6.
Related work is discussed in Sec. 7 before concluding.

2 Motivation and Overview

We now outline the problem we address, and the associated
challenges in terms of performance and code size compaction.
In the following, we illustrate our approach using the SpMV
CSR operation while mining for regularity in sparse matrices,
but as detailed in the following sections our approach is not
limited to this specific computation, and is instead able to
handle arbitrary sparse structures as long as each useful
entry (nonzero or other) can be represented with a unique
integer tuple labeling said entry.

626

Implementing matrix-vector product We start illustrat-
ing our approach by focusing on computing §j = A%, a
matrix-vector product where the matrix A is read-only, that
is A is immutable. A is of size N X M, the coordinate (i, j)
identifies the position of an element in A with 0 < i < N,
0 < j < M.When Ais a dense matrix, a computation will typ-
ically iterate over all values (i, j). When A is stored as a sparse
matrix, only nonzero elements are stored and accessible, that
is only a subset of coordinates (i, j) in the N X M grid are rep-
resented. When there is a high amount of zero elements in a
matrix (an extreme case being a diagonal matrix), significant
storage space can be saved by modeling only nonzeros. Fig-
ure 1 shows two implementations of this operation: Fig. 1a
shows a typical CSR implementation, using A_data to store
the nonzero data, and pos and cols arrays to compute/re-
trieve the coordinates (i, j) associated to a nonzero element
and its data value. Fig. 1b shows a similar implementation
but using a classical dense representation, where we skip
“useless” operations (multiplication by 0), it performs the
same number of scalar operations as the CSR code. Fig. 1c
illustrates on an extremely simplified case what can be the
outcome of our system: if the input sparse matrix only stores
nonzeros along its diagonal, then the row and cols array
can be entirely removed, the code in Fig. 1c becomes a spe-
cialized regular matrix-vector product for this sparse matrix
structure and offers all the advantages of a dense-only code,
including contiguous accesses to all three arrays/vectors y,
A_data and x. In a nutshell, our approach is about generating
a collection of loop nests that will iterate on only nonzero
coordinates, one for each sub-part of the computation where
regularity can be discovered and exploited.

Mining a sparse matrix to build polyhedra Our pro-
posed approach intuitively works as follows. We take as
input a matrix (there is no restriction on the input format)
and scan it to output a trace of all the (i, j) coordinates which
are nonzero. We then attempt to rebuild as few polyhedra as
possible that capture all and only points in this trace. In that
sense, our problem has analogy with affine trace reconstruc-
tion [21, 29] where the purpose is to rebuild a polyhedral
representation of a sequence of addresses being accessed.

Generating Piecewise-Regular Code from Irregular Structures

Let us illustrate with a simple diagonal matrix where only
elements (i, i) (on the diagonal) are nonzero, where N = M =
1000. The polyhedron describing the nonzero elements is
D :{[i,j]: 0 <=1i< 1000Ai = j}. Once D is built, the set of
(i,j) values to operate on for this matrix is known. Then these
polyhedra are converted into a loop-based code that scans
them, executing the corresponding matrix-vector operation
in statement S for each point, this is exactly polyhedral code
generation [3]. Figure 1c shows the code specialized to this
diagonal matrix, a purely regular/polyhedral program.!

Numerous difficulties arise with this approach. First, we
must ensure that it is always possible to recover the (i, j)
indexing to enable integration inside a polyhedral program,
yet we do not want to constrain the reconstructed structure
to be 2D: Fig. 1c uses a 1D array for example, which is suffi-
cient to capture in a single domain all nonzero elements here,
but as shown below it may also be possible to reduce the
number of pieces/polyhedra by increasing their dimension-
ality. Second, we must control the number and complexity
of the polyhedra being rebuilt to describe the sparse matrix.
An extreme case where each nonzero is captured in a single
polyhedron (one point in it) is always possible, yet would be
practically useless.

Trading-off regularity discovery for performance We
now illustrate with an actual sparse matrix. Consider the
sequence of accesses in Fig. 2a, corresponding to tracing
the execution of the SpMV code in Fig. 1a using the matrix
HB/nos1 from the SuiteSparse Matrix Collection [13]%. A
convenient feature of the SpMV computation is that the (i, j)
coordinates of each nonzero are explicitly built to access the
vectors, in other words tracing the values of i and cols[j]
gives exactly the (i, j) coordinates at which nonzeros exist.

As can be seen in Fig. 2b, all the nonzeros lie nearby the
main diagonal, and zooming on this diagonal in Fig. 2c, we
can see upon closer inspection a recognizable sparsity pat-
tern. Our objective is to automatically build a collection of
polyhedra D; that captures thse sets of nonzero coordinates.

Table 1 displays for the HB/nos1 the trade-off between the
number of pieces (stmts), their maximal dimensionality (i.e.,
the depth of the loop nest needed to scan a piece), and the per-
formance in cycles obtained by applying a geometric-based
approach for reconstructing polyhedra, similar to Rodriguez
et al. [28]. Code size is reported as Lines of Code (LoC) in
the final reconstructed C program.

Table 1 shows different reconstruction choices, ranging
from a single 8D domain (intuitively this will lead to an 8-
deep loop nest to scan the polyhedrally compressed matrix)
to 312 disjoint 2D pieces. Section 6 discusses the potential
performance impacts of such trade-off.

IThe j loop is shown for illustration purpose, and is not present in the code
we actually generate as it only iterates exactly once.

%In the remainder of the paper we will refer to different matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

627

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

cols[j] &(A_dataljl)
0 0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24
0x28

R A A R
WO YRR =W

U
= O

(a)

(b)

Figure 2. Different sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Figure a) shows an excerpt
of the accesses performed during SpMV of matrix HB/nos1.
The nonzero elements in this matrix are shown in Fig. b),
and a zoom of its main diagonal is provided in Fig. c). This
is a 237 X 237 matrix with 1, 017 nonzero elements, and its
reconstructed code consists of a single statement inside an
8-dimensional loop. Figure d) shows the nonzero elements in
HB/can_1072,a 1,072 X 1,072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
reconstructed code includes 870 pieces of up to 8 dimensions.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (maxy) for matrix HB/nos1
(1,017 nonzero elements).

maxqy 2 3 4 5 6 7 8
pieces | 312 159 81 4 3 2 1
cycles | 11373 11583 9938 35730 34116 39306 50371

LoC 772 1004 671 195 368 165 101

Intuitively, the dimensionality of a piece corresponds to
the number of variables used to describe the evolution of val-
ues of a set of integer tuples, e.g. the 3D tuple (i, colsj, addrA).
For example, the 1D sequence 2, 4, 6, 8 can be totally captured
by a 1D affine function F(i) = 2i : 1 < i < 4, but the se-
quence 2,4, 8,10 cannot.® Here a 2D function F(i,j) = 6i+2j :
0 <i<1A1<Zj< 2instead can capture in a single 2D
polyhedron this set of points. Extending the reasoning, there

3We only reconstruct affine multidimensional functions, to ensure polyhe-
dral code generation can be applied.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

will be typically larger sequences that can be captured by
increasing the dimensionality of the pieces. But as shown
in Table 1 this may come at a performance cost: indeed, if a
dimension is very small (e.g., j in the example above, iterat-
ing only twice) we end up branching extremely often in the
program just to execute these small loops [28]. The situation
is exacerbated with HB/nos1: the entire sparse matrix can
be captured with a single 8-dimensional polyhedron, but its
shape is so complex that its execution time is 6x slower than
when using 470 pieces.

Our approach is therefore as follows. We develop a col-
lection of techniques to rebuild polyhedra from multidimen-
sional traces, exploiting the ability to group non-consecutive
points in the same polyhedra (a consequence of exploiting
associativity/commutativity on +). These techniques, pre-
sented in the next section, include an extension of a geomet-
ric approach based on the Trace Reconstruction Engine by
Rodriguez et al. [29] and several brute-force pattern-driven
mining in the sparse structure to expose easier-to-vectorize
micro-codelets, grouped into polyhedra. We further develop
hierarchical reconstruction processes, as explained in Sec. 4.
As a consequence, the final performance reached for HB/nos1
is down to 5446 cycles, using 423 LoCs, which represents
a performance improvement of 1.4X compared to the CSR-
based SpMV performance. Details of the setup are provided
in Sec. 6. Note that Intel MKL IE specializes in large matrices
and incurs a major slowdown here, given that the time for
preparing/inspecting the data far exceeds the few thousand
cycles needed to compute the actual SpMV operation.

3 From Integer Points to Polyhedra

We now delve into the technical details of our approaches
to represent sets of integer tuples with a union of multidi-
mensional polyhedra. We first define concepts and notation,
before outlining the algorithms to mine for regularity.

3.1 Concepts and Definitions

We first introduce how elements in an irregular structure are
represented in our framework. They must each be uniquely
identified by an integer tuple, or point, and the set of all
points in the structure are captured with a trace.

Definition 3.1 (Integer tuple). A point p is an integer tuple
of dimension dim(p). It is noted p = (p1, ..., Pagim(p)), such
that Vi, pi € N.

Example 3.2. In Fig. 2a, the point on line 2 is a 3D tuple
Pt =1(0.3,9)

Definition 3.3 (Trace of points). A trace T is an ordered
list of n points T = {;;1,p"}. Its dimensionality is noted
dim(T) = dim(p®), where all points in T necessarily have the
same dimensionality. When the trace is reorderable, T can
be viewed as a set instead of a list.

628

T. Augustine, J. Sharma, L.-N. Pouchet, and G. Rodriguez

Example 3.4. InFig. 2a, T is the list of all points in the trace,
and dim(T) = 3.

Note that when the dependences in the computation allow
to proceed with grouping points in any order, we call the
trace reorderable. This is the case for example with SpMV
when exploiting associative reordering. Otherwise we are
limited to merging in the same polyhedron only points which
appear consecutively in the trace, without the possibility to
skip points.

We now define the structures we rebuild from a trace.

Definition 3.5 (affine inequality). Given an integer set of
dimension d involving variables noted (xi, ..., x4), an affine
inequality is written as Z:-izl aixj + f > 0, where Vi,a; € Z
and f € Z.

Definition 3.6 (integer polyhedron). An integer polyhe-
dron D of dimension dim({) contains integer points 1;",
such that dim(D) = d im(j;"). It is defined by the intersection
of finitely many half-planes defined by affine inequalities.
We note a polyhedron by specifying its dimensions name fol-
lowed by the inequalities defining it: D = {[iy, ..., igim(p)] :
ineqq, ..., ineqp}

Example 3.7. In Fig. 2a, considering p7 = (2,4,24) and
p® = (2,5,28). The polyhedron D; = {[i,j,k]:i=2A4 <
Jj <5 Ak = 4j + 8} captures exactly this set of two points.
Note that an equality (e.g., i = 2) can always be written as a
combination of two inequalities (e.g., i < 2 Ai > 2).

Definition 3.8 (integer lattice). An integer lattice F is an
integer multidimensional function F : I — O. F must be
represented exactly via a matrix d im((_j) xd im(f>) with only
integer coefficients. We note a lattice by specifying its input
and output dimensions, followed by the equalities defining
the function: F = {[iy, ..., idim(f)] - o1, “"Odim(é)] 101 =

fid), 0, = (D), ...}

Definition 3.9 (Z-polyhedron). A Z-polyhedron is the in-
tersection of an integer polyhedron and an integer lattice
as defined above. Equivalently, the points represented by a
Z-polyhedron are the image of D by F.

Example 3.10. Taking the set of four 1D points 2, 4, 8, 10.
The integer lattice F = {[i,j] — [x] : x = 6i + 2j} and the
polyhedron D; = {[i,j]: 0 < i < 1A 1< j < 2} capture
exactly this set, which is the image of D, by F, that is F(D5)
takes as values 2,4,8 and 10.

Definition 3.11 (Z-polyhedron origin). The origin of a Z-
polyhedron is the lexicographically first point in this Z-
polyhedron, i.e., porig = lexmin(D N F).

Example 3.12. The origin of the Z-polyhedron from Ex-
ample 3.10 is 2.

Finally, we use standard notation N, U and # for intersec-
tion, union, and number of points.

Generating Piecewise-Regular Code from Irregular Structures

We conclude by defining a reconstructed set of points as
a union of Z-polyhedra of varying dimensions. This also
corresponds to a polyhedral representation [18, 26] of the
irregular structure.

Definition 3.13 (Reconstructed trace). A reconstructed trace
Tpory from the trace T of n elements is a list of finitely

many Z-polyhedra D; noted T,0;y = {Dy, ..., Dy}, such that

2 #D; = nand T = Tpopy (ie., Tpory captures the same exact

set of points as T). Any two Z-polyhedra D; and D; in Ty,

may have different dimensionalities and different number of
points.

Example 3.14. Returning to Fig. 2a. Considering the trace
to be reorderable, we can group non-contiguous points to-
gether in the same polyhedron. Consider p® = (2,2,20)
and p!® = (3,3,36). The polyhedron D; = {[i,j, k] : 2 <
i <3Ai=jAk = 16i — 12} models these two points.
D, ={[i,j,k] : 0 <i<1Ai=jAk=38i} models p' and p°.
Ds={[i.jk] : 1 <i<2A4<j<5Ak=12i+4j—16} mod-
els p*, p°, p” and p8. Taking p? = (0, 3,4) and p'! = (3, 6, 40),
the image of the polyhedron Dy = {[i,j,k] : 0 <i<1Aj=
3i + 3 A k = 36i + 4} by the lattice Fy = {[i, j, k] — [x,y, 2] :
x =3i Ay = j A z =k} models exactly p? and p'!. Finally
Ds = {[i,j,k] : i =3 Aj=0Ak = 32} models the sin-
gle point p’. For all these polyhedra except Dy, the identity
lattice F = {[i,j,k] — [x,y,z] :i=xAj=y Ak =z}is
applied to form the Z-polyhedra D; = D1 N F, D, = D, NF,
etc. The complete reconstructed trace is therefore the collec-
tion D1, D,, D3, D4, Ds which exactly describes the 11 points
in the original trace. Observe some polyhedra may contain
only a single point, a worst-case solution which is always
possible for any trace, but does not achieve compression.
Finally, we remark this is only one possible reconstruction
out of many possible ones, Table 1 displays various possible
reconstructions of the full trace from which this example is
extracted. Loop-based code scanning each of these polyhe-
dra is generated from the vertices of the polyhedra, using
a simplified CLooG [3]-like algorithm. Intuitively, a loop is
created for every dimension of the polyhedron, iterating on
the range of values it can take. In this work we ensure the
vertices and stride of the polyhedra reconstructed are ex-
plicit, for all reconstruction algorithms, so code generation
is straightforward.

3.2 Geometric Trace Compression

The first method we present is an extension of the original
Trace Reconstruction Engine (TRE) approach by Rodriguez
et al. [29] which is targeted at reconstructing into polyhedra
a stream of addresses, as typically originating from memory
accesses when executing the program. In contrast to their
work [29], we have both different objectives and different
requirements: we have as objective to reconstruct a multidi-

mensional stream (i.e., points p? where dim(p’) > 1, while

629

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

TRE is limited to dim(j;") = 1) which complicates the prob-
lem; but we do not need to preserve the order of points in
Tpoly if the trace is reorderable as is the case for SpMV, a
great additional degree of freedom.

The reader may refer to [29, 30] for complete details about
the TRE algorithm, which we only slightly extend here. In
a nutshell, our extended TRE rebuilds a Z-polyhedron that
captures a multidimensional stream of addresses: both an
iteration domain 9 and an affine multidimensional access
function F from that domain to the trace element value are
being built. But a fundamental aspect of this approach is
that it may rebuild an iteration domain O of arbitrary di-
mensionality for the purpose of capturing seemingly “dis-
tant” points into a dense/convex polyhedron. The original
TRE rebuilds (D4, Fa), the reconstructed Z-polyhedron for
a single address stream of A. We want instead as output
(Da, Fiy, Fi,, ..., Fi,) to be reconstructed, for a trace of di-
mension n. We achieve this by modifying TRE to instead
analyze n streams simultaneously, with the additional con-
straint that 9O is identical for all n streams, i.e., only the
reconstructed F;; can be different across different streams.
Precisely for SpMYV, three streams correspond to building
Fa4.0» Fi and F; each being a stream of scalar values. For
each nonzero element, the trace entry has three components:
the address A_data[j] being accessed, the value of i, and
the value of cols[j].

Note that by reconstructing F4,,,, also, which captures
the memory location of the data associated to a particular
(i,j) coordinate, the polyhedral generated code can operate
by indexing directly the input sparse matrix representation
containing the nonzero elements (including, but not limited
to, CSR). This means data does not need to be copied into a
new location for the program to proceed, avoiding additional
storage. Precisely, only A_data is needed, the cols and pos
arrays are not used anymore after polyhedral compression.

Extended TRE algorithm The processing starts at the be-
ginning of the trace, trying to model the trace elements using
a single iteration domain. This may not be possible in the
general case without using an intractably large number of
dimensions [29]. For this reason, timeout mechanisms are
included to halt the analysis when it does not achieve signif-
icant advances after a specified number of steps.

Algorithm 1 shows a simplified pseudocode of key steps of
our extended TRE (¢TRE). Essentially, the processing starts
with an empty Z-polyhedron, and tries to enlarge it by se-
quentially adding points from the trace. A list of candidate
polyhedra is maintained and sorted by fitness heuristics.
Whenever a solution cannot be found building over the best
ranked candidate, control will return to the TRE function,
which will retrieve the best ranked candidate and increase
its dimensionality to incorporate one new point to the poly-
hedron, and continue processing it.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Algorithm 1: Pseudocode of €TRE
Input: Trace T
Output: List of Z-polyhedra

1 Function addlters(T, D)

2 P = lexicographicMaximum(D);

3 Pnext = lexicographicNext(p);

4 if ExistsInTrace(ppex;) then

5 D=Du Enexﬁ

6 D =D U addlters(T, D);

7 end

8 else

9 ‘ return D;
10 end

end

Function TRE(T)

L = emptyList;

11

12

13

while True do

D = retrieveBestZPoly(L);

if timed-out or T = () then
removePointsFromTrace(T, D);
return { D } U TRE(T)

end

14
15
16
17
18
19
D = increaseDimensionality(D);

L = appendList(L, addlters(T, D));

20

21

22 end

23 end

Complexity trade-offs 1t is theoretically always possible
to rebuild a set of integer points as a union of polyhedra, in
the worst case using polyhedra of only one point each. In
this case the variable which may grow uncontrollably is the
number of total pieces s, which is bounded by #xd, where
n is the number of entries per reference in the trace, and
maxg is the maximum number of dimensions allowed per
polyhedron. The fundamental tradeoff is between number of
pieces and dimensionality: a sequence of points which cannot
be captured using a 2D affine loop nest may be captured
using a 3D loop nest, as illustrated in Sec. 2. But, as also
illustrated in Sec. 2 and previously studied by Rodriguez et
al. [28], performance does not necessarily correlate with the
reconstruction size.

3.3 Pattern-Matching to Mine for Codelets

The eTRE approach depicted above provides the ability in the
general case to rebuild polyhedra from a trace. But it remains
driven by geometric criteria that include a window-based
approach: it consumes points consecutively in the trace, try-
ing to add them in a polyhedron, bailing and creating a new
piece when it is not possible. Furthermore, for the sake of
compaction, points could be added leading to impossible-to-
vectorize loops (e.g., non-constant stride in the inner-most
loop) or having very poor locality (e.g., consecutively exe-
cuted points being far away in memory).

630

T. Augustine, J. Sharma, L.-N. Pouchet, and G. Rodriguez

To overcome this limitation, we present a pattern-matching
based approach, to be used in complement with ¢TRE. This
approach only works for reorderable traces, as it is driven by
the ability to group points in a polyhedron that can appear
anywhere in the trace, including non-consecutive points. It
is then to be combined with €TRE, as described in Sec. 4.

Micro-codelets The starting point is to define a family of
template shapes we mine for, that is, partially defined Z-
polyhedra of specific shapes aimed in part at improving
SIMD vectorization opportunities. We present below tem-
plates for the 3D integer tuples that model traces for SpMV.
It is straightforward to generalize to lower or higher dimen-
sionality. Our approach can seamlessly handle sparse tensors
of arbitrary dimensionality, as exemplified in Sec. 5.
Specifically, we are mining for hyperrectangles® of any size
within a given range, allowing strides between points. The
prototype polyhedron shape we are mining for is therefore:

Dspcodeler = {lisjsk] :mi <i < Mi/\mj <Jj< Mj/\mk <k <M}
and the prototype lattice is:
Fspeodeter = {1kl = [1'.)" k'] -1 = sii Aj' = sjj ANk" = sk}

The unknowns, which are found by mining the actual trace,
are m;, M;, mj, Mj, my, M. € N which define the 8 vertices
of the polyhedron; and s;, s, sy € N which define the con-
stant stride allowed between points in the Z-polyhedron.
Note that the polyhedron origin is therefore by construction

po-;ig = (m;, mj, m).

The algorithm Equipped with this template capturing all
rectangles with constant strides, we proceed by mining the
trace from the largest to the smallest rectangle size to find all
places where the template can be applied to model points in
the trace. Algorithm 2 describes this process. Note that our
implementation is in practice slightly different to improve
the exploration speed, but it produces the same outcome. In
essence, the algorithm searches from the largest to the small-
est rectangle in terms of the number of points, searching from
the smallest to largest stride (i.e., distance between points).
Function ZpolyhedronFromVertices builds a Z-polyhedron
from its vertices and stride by instantiating the values from
the template defined above. Finally, note the high complex-
ity of this algorithm: it is important to control the maximal
size of the rectangle and maximal stride explored tightly. In
practice, we search for rectangles containing at most 5X5x5
points, with a maximal stride of 5, and avoiding rectangles
containing less than two points.

For example, a rectangle of size 4 X 1 X 1 with a stride
of 1 between points along the first dimension is a set of
consecutive operations along the i dimension, which can be
SIMD-vectorized trivially. Our implementation favors find-
ing vectorizable rectangles first (i.e., those whose size will be

4 A hyperrectangle is a n-dimensional generalization of a rectangle. For
simplicity, we use the term rectangle when referring to a hyperrectangle.

Generating Piecewise-Regular Code from Irregular Structures

multiple of the vector length along at least one dimension),
that is in practice the for loops iterating on the rectangle
sizes and stride follow a more specific order than simply
decreasing the size continuously, but the same set of possi-
bilities as in Alg. 2 is explored.

Algorithm 2: Micro-codelet mining

Input: Trace T, Msz;, Mszj, Mszj the maximal polyhedron sizes,
Mst;, Mstj, Msty the maximal strides
Output: List of Z-polyhedra
1 Function CodeletMiner(I ,\Msz;, Mszj, Mszy, Mst;, Mstj, Msty)
2 L = emptyList;
3 Treora = lexicographicSort(T);
4 for s; in[Msz;..1], sj in[Msz;..1], s in[Mszg..1],s¢; in
[1..Mst;], stj in[1..Mst;], sty in[1..Mst;] do
5 p = firstPointinTrace(Tyeora);
6 m; =p1, mj = p2, Mg = ps3;
7 M; =m; +s;, Mj=mj+sj, M =my+sg;
8 S =0
9 invalid = false;
for iin[m;..M;],jin[mj..M;], k in[mj..My] do
ﬁsearched = (i*st, j* stj, k* st);
if ExistsinTrace(Psearcheds Treora) then
S$=S Uﬁsearched;
else
invalid = true;
break;
end
end
if invalid = false then
Treora = removePointsFromTrace(T, ¢ora,S);
L = append(L, ZpolyhedronFromVertices(m;, M;, m;, M;,
my, Mg, sti, stj, stg));

end

end
return L;

24
25 end

4 From Polyhedra to Compact and
Efficient Code

The previous section describes how to reconstruct a trace
as polyhedra, using either a multidimensional geometric
approach (eTRE), or a codelet-centric approach. In both cases,
a fully functional program can already be reconstructed, by
generating polyhedron-scanning code for each Z-polyhedra
(e.g., using CLooG [3]), turning them into loop-based code
scanning each point in them.

We now describe how to combine both approaches, by
performing hierarchical reconstruction.

4.1 Mining for Macro-Codelets

The first natural hierarchical composition approach is to find
ways to combine micro-codelets together, that is, attempting
to find regularity in the micro-codelet origins. Our approach
is straightforward, in that it is in essence a recursive call
to Alg. 2, depicted in Algorithm 3 below. We refer to the
polyhedron built from micro-codelets as a macro-codelet.
We simply call recursively Alg. 2 on the subtrace made
only of the Z-polyhedra origins, and proceed by typically ex-
tending the maximal stride constraint to improve the chances

631

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

of grouping micro-codelets together. In essence, we are at-
tempting to build a polyhedron of polyhedra, each uniquely
identified by its origin. To ensure easy code generation we
restrict to only grouping polyhedra of identical shape and
stride, in turn the final polyhedron is built simply by com-
bining the dimensions and constraints of the micro-codelets
considered with the macro-codelet polyhedron.

Algorithm 3: Macro-codelet mining

Input: Trace T, micro-codelet maximal sizes, macro-codelet maximal sizes
Output: List of Z-polyhedra

1 Function HierarchicalMiner(T, micro- and macro-codelet max. sizes)

2 L = emptyList;

3 Lporrom = CodeletMiner(T, micro-codelet max. sizes);

4 for each unique shape size s in Lpot1om do

5 T;rigins = buildTraceFromAllPolyOrigins(L,s);
6

7

8

9

L = CodeletMiner(T?

origins macro-codelet max. sizes);
L - append(L,Ls);
end

return L;

end

This algorithm can be naturally extended in a recursive
fashion. However we have found typically very few if any
opportunity in finding polyhedra of polyhedra of polyhe-
dra when reconstructing sparse matrices for example. In
this work, we have limited to the two-level reconstruction
depicted in Alg. 3.

4.2 Geometric Compression of Micro-codelets

The second hierarchical reconstruction approach we pro-
pose is combining the power of the eTRE geometric recon-
struction, which can lead to non-rectangular shapes of any
dimensionality, with micro-codelet origins. The algorithm is
essentially the same as Alg. 3 except CodeletMiner is substi-
tuted by eTRE: it follows the same approach of building new
traces made of only micro-codelet origins and operating on
such sub-traces.

We remark that, in practice, we attempt to first build
macro-codelets. For the micro-codelet origins which have not
been grouped in polyhedra containing at least four points,
we then resort to using €TRE to attempt to group these left-
over micro-codelets. The rationale is that €TRE will typically
search for significantly more complex shapes than hyper-
rectangles: it will search for arbitrary orientations of the
faces, as well as searching for polyhedra of increasing di-
mensionality. It therefore can find compaction opportunities
the macro-codelet approach cannot discover, but possibly
requiring complex loop control to scan the obtained poly-
hedra. In practice, we limit the maximal dimensionality of
polyhedra rebuilt by €TRE on top of micro-codelets to 3, as
experiments confirmed no benefit in terms of performance
in attempting higher dimensionalities, as already suggested
by Rodriguez et al. [28].

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

4.3 Efficient Synthesis for Micro-codelets

In order to achieve good performance, the picture must be
completed by observing an inherent drawback of our ap-
proach: as we mine for regularity in an irregular structure,
we are tributary from the existence of such regularity. When
only very small micro-codelets can be found, this includes
micro-codelets of two or one points, and therefore the num-
ber of instructions in the generated program can be propor-
tional to the trace size. As Rodriguez et al. observed, per-
formance is hurt in particular because of instruction cache
misses. To address this limitation and ensure good perfor-
mance even in cases where little regularity is found, we post-
process the final ASM code generated to insert prefetching
instructions for the program code.

In order to alleviate the effect of instruction cache misses
for matrices with a working set (code plus data) approxi-
mately fitting the last-level cache, we introduce aggressive in-
struction prefetching into our executables. For this purpose,
we coded a tool to analyze the assembly code of the executed
SpMV kernels, and introduce explicit calls to prefetchti,
targeting blocks of code to be executed in the future. This
transformation is outlined in Algorithm 4. In addition, codes
shall be stored in 2 MB memory pages in order to minimize
the number and impact of iTLB misses.

Algorithm 4: Pseudocode of the prefetch insertion

Input: Assembly code of a function f
Output: Modified assembly code with periodical prefetches
1 Function add_prefetch(f)
2 offset = 0;
3 foreach instruction i in f do
4 if offset >= 64 bytes and not_in_loop(i) then
5 insert prefetcht1 before i;
6 offset = sizeof_prefetch_instruction;
7 end
8 offset += sizeof_instruction(i);
9 end
10 end

Note that built-in prefetch calls were not designed for
prefetching code. For this reason, neither prefetcht nor
prefetchnta, which bring blocks to the data L1, are ap-
propriate, as these blocks will not be found when fetching
instructions. We choose instead to bring them to the unified
L2, from where the blocks will be fetched upon a miss in
I1. The prefetch distance is heuristically chosen to be 4096
bytes, as this provided the best performance improvement.
We conjecture that, given that prefetch hints do not need to
be followed by the processor, using a smaller prefetch dis-
tance does not give enough time to actually find a relatively
idle moment to emit latent prefetches. We insert one prefetch
after each 64 bytes of executable code, i.e., we prefetch ev-
ery single block in the code after the first 4096 bytes. This
increases total code size by approximately 10%.

632

T. Augustine, J. Sharma, L.-N. Pouchet, and G. Rodriguez

5 Case Study: Efficient Inference of Pruned
Neural Networks

We now present a case study to illustrate the potential of our
approach beyond already-existing sparse matrices. Section 6
extensively reports the performance of our approaches for
efficient execution of SpMV on 200+ matrices. We focus here
on another source for sparsity: pruning a trained neural
network to speed up inference.

5.1 Pruning Fully-Connected Artificial Neural
Networks

For this case study, we focus on two small fully-connected
ANNs which have been trained to recognize digits on the
MNIST dataset [24]. These networks take as input a 28x28
gray-scale image, and output one probability for each of the
10 possible digits (0 to 9).

Two networks for digit recognition The first, noted 1L, is
a simple network with an input layer of 784 elements directly
connected to the output layer with 10, for a total of 7, 840
base operations. The second, noted 3L, features the same
input/output layer as 1L, but has two hidden layers made
of 21 and 20 neurons respectively, for a total of 16, 330 base
operations. These two trained networks have been provided
to us by colleagues expert in machine learning. Our objective
here is to speed up the inference execution time.

The trained networks are represented using dense weight
matrices, as a fully-connected network architecture was
trained for, as is typically done. These matrices are of size
784 % 10 for 1L, and for 3L we have three weight matrices:
one of 784 X 20, another of 20 X 21, and the last of size 20 X
10. Inference proceeds typically layer-by-layer, computing
a matrix-vector operation between the weight matrix and
the vector representing the values of the previous layer (or
the input layer). In between each layer the hyperbolic tan-
gent is computed to threshold the values, and a traditional
softmax is implemented on the output layer. The 1L network
achieves 93% accuracy (9, 255 correctly predicted / 745 mis-
predicted), while 3L achieves 96% accuracy (9, 630/370); both
are respectable values in terms of prediction quality.

Network pruning While it is customary to train fully-
connected networks especially for such problem of digit clas-
sification, it is also well-known that a possibly much smaller
network may be trained while achieving similar prediction
accuracy. Techniques such as pruning neurons/connections
which do not contribute much e.g. [20] or re-training a sim-
pler network e.g. [19] have been developed to reduce the
footprint of the network and improving its inference speed.
The challenge in turn is to execute effectively a SpMV op-
eration, as after pruning the weight matrices may become
significantly sparse.

Generating Piecewise-Regular Code from Irregular Structures

Our objective for this case study is to perform a pruning
of 1L and 3L that is solely driven by the importance/contri-
bution of each weight, ignoring any consideration such as
vectorizability or easiness to reconstruct the code. That is,
we sparsify the weight matrices solely based on the individ-
ual contribution of each individual weight. Our algorithm
for pruning proceeds as follows. We first compute a pixel
contribution table, that for each of the 784 pixels quantifies
its significance towards a particular output. We then, for
each of the 10 possible outputs, use this table to order all
operations in the inference of the network contributing to
this output by their relative contribution to the final result.
We discard the hyperbolic tangent during this analysis to
avoid thresholding effects when computing combined con-
tributions, but it is restored in the final code produced. In
essence, the output of this pruning algorithm is a trace of
operations indexed by the layer, source and target neuron
coordinates, which we then reconstruct into polyhedra.

We do not claim there is a specific contribution in our
pruning strategy, it was developed only to illustrate the abil-
ity of our techniques to reconstruct “arbitrary schedules”
applied to an input set of operations. Table 2 shows the ac-
curacy we obtain when executing only the first 30% and first
50% of operations, from the list of all operations ordered by
their relative contribution. Therefore the pruning ratios are
70% and 50% for these two cases. We also compare against
a simple random approach to remove weights and another
somewhat simple approach of removing weights that ex-
ceed a threshold, to ensure our pruning strategy is actually
meaningful. For all entries, inference over the entire 10, 000
images in MNIST has been performed.

Table 2. Pruning accuracy (% correctly predicted images)

full | random threshold reorder-by-sign.
‘ ‘ 30% 50% | 30% 50% | 30% 50%
1L | 93% | 52% 74% | 84% 90% | 85% 90%
3L ‘ 96% | 15% 18% | 90% 95% | 90% 96%

5.2 Reconstruction Results

We applied the techniques presented in previous sections to
reconstruct an efficient code from the sparsified trace of the
first 30% and first 50% points after reordering by significance.
The performance is summarized in Table 3. The baseline is a
fully-regular loop nest for dense matrix-vector product that
computes inference on the full networks, without pruning.

Table 3. Performance obtained, in cycles

| baseline | 30% 50%
1L | 36565 | 9587 12415
3L | 69914 | 16972 25587

633

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 3 presents the final execution time after pruning,
that is, executing only 30% or 50% of the operations that the
baseline computes. As shown in Table 2, this still leads to
nearly identical accuracy. We get a double benefit: reducing
significantly the number of operations, and executing the
remaining ones very fast, by exposing micro-codelets which
are very effectively vectorized by Intel ICC. This experiment
indicates an interesting potential for our approach, which
we reserve for future work: develop a pruning algorithm that
is aware of the reconstruction objectives for performance,
to ensure we implement inference using essentially only
micro-codelets, for best vector performance.

6 Experimental Results
6.1 Experimental Setup

The polyhedral reconstruction process has been applied to
the sparse matrix — vector multiplication kernel to evaluate
its potential for linear algebra computations. For this pur-
pose, the full SuiteSparse collection [13] is targeted, limited
to matrices with at most 10 million nonzero elements for
tractability purposes. This yields 2, 637 matrices for which
a polyhedral reconstruction of their SpMV kernel was built.
Afterwards, a sieve of these results was performed to reduce
the experimental set while retaining the representativity
of the full matrix suite. The selection process is detailed in
Figure 3.

Experiments were executed on an Intel Core i7 8700K with
64 GB of RAM memory. The CPU frequency was fixed at the
base frequency of 3.7 GHz to prevent thermal constraints
affecting experimental variability. Transparent hugepages of
2 MB are automatically used to store the data segment of all
codes. The polyhedral C codes implementing SpMV for each
selected matrix were automatically synthesized and compiled
using ICC v18.0.3 with -02 -xSKYLAKE -vec-thresholdo,
to ensure that the vectorization capabilities of the machine
were fully employed and that all vectorizable operations
were executed as such, regardless of expected profitability.
We experimentally verified that using -03 did not only in-
crease compilation times noticeably, but resulted in slightly
underperforming programs.

6.2 Experimental Results

Figure 4 shows the speedup obtained by our reconstructed
codes with respect to the best baseline version (either the
classical irregular SpMV code, or Intel MKL, whichever is
faster). Note that this data does not use the prefetch insertion
described in Sec. 4.3. The impact of prefetch insertion and
the use of hugepages for code memory is discussed later
below.

As can be observed, the initially good performance de-
grades as the number of nonzeros increases. In order to
study this effect, we extracted and analyzed counters related
to execution performance and memory behavior. An excerpt

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

T. Augustine, J. Sharma, L.-N. Pouchet, and G. Rodriguez

1.0

0.8

0.6

0.4

Percentage of points included in micro-codelets

0.2

3

0.0 -%

T T T
10° 10t 10? 10°

107

Number of nonzero elements in the matrix

Figure 3. Sieve of the 2, 637 SuiteSparse matrices below 10 million nonzeros. First, the SpMV kernel for each of these matrices is
reconstructed and analyzed. These are classified according to the decile they belong to in terms of matrix size (logarithmically)
and percentage of points included in micro-codelets. That yields one hundred buckets, as shown in the figure. Afterwards,
inside each bucket, a k-means clustering process is run to select representative matrices. The number of clusters k for each
bucket is selected to be representative of the probability density of matrices in that bucket, but each non-empty bucket will
have at least one matrix selected. The different clusters created by the process are shown in different colors in the figure.
Afterwards, the matrices closest to each cluster center are selected for the final test set, and marked with an ‘X’ in the figure.

In total, 200 matrices were selected.

of these counters for particularly relevant matrices is shown
in Table 4. As can be seen, matrices which exhibit good
performance, such as Newman/power, are characterized by
a drastic reduction in the number of executed instructions,
stemming from the elimination of loops; and, critically, by a
good last-level cache behavior. But the size of the executable
increases with the number of nonzeros in the sparse matrix.
Eventually, the executable gets too large, and the instruction
misses in the last-level cache dominate the execution time,
as is the case for matrix FIDAP/ex19. To address this issue
we introduce instruction prefetching as outlined in Sec. 4.3.
Figure 5 shows the performance improvements by using this
technique. Large executables also lead to a degraded perfor-
mance due to iTLB misses. To address this issue, we store
the text segment of polyhedral codes in 2 MB hugepages.
This optimization has a performance impact of up to 20%
for the largest matrices in the experimental set. We found
no positive impact to storing the text segment of irregular
SpMV and Intel MKL codes in hugepages.

634

Using fully unrolled codes composed of micro-codelets
only and prefetching is not enough to bring performance
advantages for very large codes, where the working set
size is larger than the last-level cache. In these cases, as
seen in the performance counters of the SpMV of matrix
GHS_indef/sparsine in Table 4, the pollution of the last-
level cache by blocks of code negatively impacts the mem-
ory performance of the kernel, and removes the advantages
brought by vectorization. In order to reduce code sizes, we
perform hierarchical reconstructions as described in Sec-
tion 4. Note that hierarchical reconstruction is not applicable
to all matrices, as it depends on exploiting regularity in the
shape of the matrix that might not be there. Furthermore,
increasing code dimensionality has diminishing returns. The
first limitation is of a structural nature: the vectorizable sec-
tions of code which are recognized in a first pass are relatively
homogeneous, as there are limited computation shapes in
this step. However, when applying hierarchical reconstruc-
tion on top of these shapes the results are much more varied

Generating Piecewise-Regular Code from Irregular Structures

4.5 ° :)
4.0 4 ° e last-level cache size (12 MB)
351 o i
1
3.01 ..:... .. ° :
2.5 ®) o ® ° R :
o
20]{ BRoge .o ° H
o o0, % i
a % o 1
3 1.5 o °° ! o
g’ & :‘ tieg @) e Al
) ° o 1 e o° AA A
1.0 f-==——mmmmmmmm o o ———m- G o EE T LR P
* e oo o® 5
Qe .o:. ® o a0 A A
e o %o
[} A
#°° & o a
0.5 1 I
° |
T T - T
106 107 108

Working set size in bytes

Figure 4. Speedup of the reconstructed polyhedral version,
with no prefetches added, with respect to the best performing
baseline version. Circles indicate that the best performing
version was the classical irregular SpMV code, while trian-
gles correspond to matrices for which the best performing
baseline is Intel IE MKL. As shown in the figure, MKL is only
relevant for the largest matrices in the experimental set.

Table 4. Performance counters for selected matrices.

group Newman FIDAP GHS_indef

matrix power ex19 sparsine

NNZ 13188 259577 1548988
cycles irregular 168534 739414 7064292
poly. nopf 37563 1752757 11169230

poly. pf 40552 975626 11760144

inst. count irregular 211323 1611527 8710349
poly. nopf 37284 682220 4372122

poly. pf 42295 755473 4936644

mem. access. irregular 69380 795183 4593163
poly. nopf 34289 356122 3697497

poly. pf 39300 429375 4262018

D1im irregular 1061 9157 862083
poly. nopf 1890 18046 918569

poly. pf 2316 26815 850316

Ilm irregular 79 90 110
poly. nopf 4858 71685 536917

poly. pf 5391 78716 605120

L2m irregular 7571 95461 1216023
poly. nopf 8942 118846 1571362

poly. pf 11372 158351 2011163

L2im irregular 65 73 73
poly. nopf 4751 70468 535984

poly. pf 144 1664 8719

L3m irregular 0 23 355478
poly. nopf 0 338 1225380

poly. pf 0 13843 771530

and heterogeneous. As a result, finding identically-shaped
higher dimensional macro-codelets to fuse becomes a rarer
occurrence. The second limitation is practical: we have exper-
imentally discovered that, starting with 5-dimensional loops,
induction variables cannot be held in CPU registers and they
have to be accessed through the cache, heavily degrading
performance. For this reason, and considering that our base

635

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

1.8 ° |
1
o ° o:
1.6 1 Y
o ©
o X
. o §Pegpo
1.4 1 |
o © 09y %o
° i°° 2 8% @
é— oo .. $ e %% °
1 J
2 1.2 :‘ : e :.°) Q. °
2 e 000 ’: e ° oo
° H s
1.0 -8®e_ 2___‘!_ _____ oL e
: @ i ° v
.m,o ! °
.. \ ! °
o o s i
f® o @ : °
°
0.8 ° ! °
1
108 107 108

Working set size in bytes

Figure 5. Speedup of the prefetched version with respect
to the original, non-prefetched one. Code prefetches help
take advantage of cache size by overlapping computation and
code fetches from memory. The technique loses effectiveness
for small codes and for working set sizes above the size of
the last-level cache.

codes have no loops (vectorizable micro-codelets are issued
as vector operations, while non-vectorizable fragments are
executed in isolation), we decide to limit the reconstruc-
tion steps to three. In each of them, identical sections of the
reconstructed polyhedra are fused together into a higher di-
mensionality polyhedron, thus achieving code compression.
While hierarchical reconstruction does not necessarily
improve performance, it does achieve code size reduction
for most large matrices. For matrices which expose regular-
ity this allows to dramatically reduce code sizes, at the cost
of increasing the number of loop-related instructions and
therefore the total instruction count. Performance improve-
ments may stem from two different sources: i) reducing the
code size imposes less pressure on the cache hierarchy, im-
proving memory behavior; and ii) increasing loop depth may
improve vectorization efficiency. On the opposite end, hierar-
chically reconstructed codes execute more total instructions
due to the control of additional loops; and may even worsen
memory behavior depending on which micro-codelets are
executed within a macro-codelet, and in which order.
Figure 6 shows selected performance counters for the five
matrices which achieve the most compression to exemplify
interesting tradeoffs from the hierarchical reconstruction
process. The TSOPF matrix is an example where the per-
centage of operations executed with a vector length of 4
is greatly increased. As a result, performance improves by
12% for the 2-dimensional code. However, the 3-dimensional
code is 15% slower than the baseline, due to a 30% instruction
count increase and no further advantages in terms of mem-
ory behavior. The matrix which achieves the best speedup

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

is GHS_psdef/apache2, with up to 55% speedup in the 2-
dimensional version. Vector operations increase significantly,
but in this case the better memory behavior is the culprit
of the improvement. On the side of matrices which do not
benefit at all from hierarchical reconstruction from the per-
formance point of view is Zhao/Zhao2, which does not find
new vectorization opportunities, nor does improve mem-
ory behavior, leading to a 15% slowdown. Note how the
instruction count increases in most cases. The only notable
exceptions are those where the improvement provided by an
increase in vector operations offsets the increase in control
flow instructions.

matrix,version
(GHS_psdef/apache2, 2d)
(GHS_psdef/apache2, 3d)
(Meszaros/r05, 2d)
(Meszaros/r05, 3d)
(QLi/crashbasis, 2d)
(QLi/crashbasis, 3d)
(TSOPF/TSOPF_FS_b39_c30, 2d)
(TSOPF/TSOPF_FS_b39_c30, 3d)
(Zhao/Zhao2, 2d)
(Zhao/Zhao2, 3d)

BIaEnEanon

Normalized value

speed™?

nt 55 80 60
st O o, ac® I

Performance counter

Figure 6. Selected performance counters for the five matri-
ces which achieve a better compression from hierarchical
reconstruction. Values are normalized to those obtained by
the plain polyhedral reconstruction without loops.

We present four figures to summarize the global perfor-
mance/compression aspects of the polyhedral hierarchical
reconstruction of SpMV kernels. Figures 7 and 8 show the
best speedups and compressions, respectively, achieved by
polyhedral reconstructions of different dimensionalities. Fig-
ure 9 shows the performance, in terms of cycles per FLOP,
for the SpMV of matrices larger than 100 nonzero elements.
As illustrated by this figure and Figure 7, the polyhedral
reconstruction achieves a sweet spot in between 1,000 and
approximately 100,000 nonzeros, with performance improve-
ments up to 4x.

Figure 10 shows how the generated code size relates to
the number of nonzeros in the matrix. The number of Lines
of Code (LoC) in the reconstructed program is bounded by
the number of nonzero in the matrix, as in the worst case
one instruction per nonzero will be generated. Note there is
also a small number of LoCs always added for preprocessor
directives and function headers.

636

T. Augustine, J. Sharma, L.-N. Pouchet, and G. Rodriguez

i
4.0 1 e !
3:5 4 A0° :
3.0 A ° » :
25 & Ve i
' N @o 4 i
f © 0o 4 1
a 201 0® 0obq\joo o(%o i
E] 5 s A@%&OO T
$ 151 o % 8% % o "QAAB ;;
Q @ °o g L a8 oo o8 o La
@ ° 0008%0 ¢ oo °%e ° ol 'a
° %% &)
10_.__3 _______________________________ 1 .&._A__A‘Z__
' JpT oy
Ao®
® oo A
1 A
. A
| @
1
0.5 T T T T T T - T
10° 10! 10? 103 104 10° 10 107

Number of nonzero elements in the matrix

Figure 7. Best speedup obtained for polyhedral codes with
respect to the best performing baseline. The vertical dashed
line marks the approximate size of the last-level cache. Dif-
ferent markers are used depending on the best polyhedral
version: a circle for micro-codelets-only codes, a triangle for
micro-codelets grouped under single-level (1D) loops, and a
square for codelets grouped under 2D loop nests.

2.0 e
1.8 A - -]
1.6 A

|
1.4 4
] g®

o 1.21 “ - =

® a u %

= e o o emocums B aa AEm

€ 1.0 f=mmmm= S SEE S @;&—AA-E-ED ————— st FL S o

o B

§ iﬁ%mﬂ mah "n

508+ oakt %&E‘Tﬁ s e

ad

] &4uTA Saf °

s AR .8
0.6 1 o, A A oo
A
o ﬁn"o &
-]
0.4 T T T T T T T T
10° 10t 10?2 103 104 10° 106 107

Number of nonzero elements in the matrix

Figure 8. Best compression obtained for polyhedral codes
with respect to the best performing baseline. Markers (circle,
triangle, square) have the same semantics as in Figure 7. Re-
sults are obtained compiling with -02 and automatic prefetch
insertion, which improves performance by 12% and increases
code sizes by 30%, on average, with respect to compiling with
-0s and without prefetching.

Synthesis time The complete process to synthesize the re-
constructed program is made of three stages. (1) Generating
the trace to obtain the set of nonzero coordinates, which
typically takes between a few milliseconds and a few sec-
onds for the biggest matrices of millions of nonzeros we

Generating Piecewise-Regular Code from Irregular Structures

Cycles per FLOP for each matrix cluster

i (0.9,1.0] 22 1.3 0.86 i15) 1.6 1.7
Q
£ (0.8,09] 22 1.2 0.94 13 1.6 1.8
S
S (0.7,0.8] 2.2 11 1.2 1.6 1.9 2k
>
f, (0.6, 0.7] 2 1.4 1.7 1.7 2.2 25
(7]
el
3 (05,06] 2.1 1.3 1.2 1.6 2.4 2.3
£
8 (0.4,05] 2.3 1.4 1.5 2.3 2.4 2.6
[
N
§ (0.3,0.4] 2.2) 15 15 23 25
k)
0 (0.2,0.3] 2.5 1% 1.7 EXS
g
S (0.1,0.2] 2.5 15 1.4 2.6 3.4
8
o
& (0,01] 13 1.7 2.6 _
1 | 1 1
628} L) A0 o s oM} AN
@250 (2835 5 kA3 g kT \1"-0‘('385 2855¢> (g oW

Number of nonzero elements in the matrix

Figure 9. Heatmap of the cycles per FLOP in categories of
matrices above 100 nonzeros. Best results for the different
hierarchical reconstructions are reported.

= = = = =
o o o o o
W >] E)]
L L

TRV TR TR TR TR TR TR

o
o
~

=
o
A

LOCs in the reconstructed polyhedral versions

-
(=]
El

103 104 10° 106 107

Number of nonzero elements in the matrix

10?

Figure 10. Code sizes of polyhedral reconstructions for ma-
trices above 100 nonzeros. Markers (circle, triangle, square)
have the same semantics as in Figure 7. Dashed lines mark
the ratio between LOCs generated and the number of nonze-
ros in the sparse matrix.

report on. (2) Mining for regularity by using the algorithms
presented above, which typically takes anywhere between
a few hundred milliseconds and a few minutes for complex
traces. Note that the number of nonzeros is very often a
good predictor of the reconstruction time, with a correlation
factor R = 0.94 between both. However the reconstruction
time complexity here is not only a function of the trace size,
but also of the sparsity pattern, leading to some outliers tak-
ing significantly more time. The longest ever reconstruction
time we observed was 80 minutes in our experiments for
Rucci/Ruccil which contains 7.8M nonzeros. (3) Perform-
ing polyhedral code generation and emit the final C program,

637

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

which is typically very fast (one minute or less). As the ver-
tices of the micro-codelets are known at reconstruction time
we use a simplified version of the CLooG [3] code generator
algorithm.

7 Related Work

Optimizing sparse vector-matrix multiply has mostly been
investigated from two fronts: (a) improving the sparse repre-
sentation itself; and (b) inspecting at run-time the sparsity to
pack data for an executor program. None of these approaches
achieve the same objective as ours, that is to create a poly-
hedral (piecewise-regular) representation at compile-time of
the irregular structure for subsequent code generation and
optimization.

Sparse formats There is an extensive amount of prior
work on customizing sparse matrix formats and optimiz-
ing SpMV on different platforms. This is only related work,
in that to the best of our knowledge our work is the first
to automatically mine for regularity in sparse data struc-
tures by rebuilding a polyhedral representation for regular
sub-pieces, in turn enabling polyhedral code generation of
the sparsity structure. We also recall that we focus on small
sparse structures (below 10M nonzeros), which are typically
much less investigated in general SpMV work that mostly
focus on executing very large sparse matrices efficiently. In-
tel MKL IE is a good example: the overhead of just initiating
the library is prohibitive for small matrices.

Some formats require additional tuning of many architec-
ture- or kernel-specific parameters in order to achieve best
performance. For example, Vuduc [39] presented an auto-
mated system for generating efficient implementations of
SpMV on CPUs, while Williams et al. [40] moved toward
multi-core platforms with the implementation of parallel
SpMV kernels. For GPUs, Bell and Garland have implemented
sparse matrix formats in CUDA [5] and proposed the HYB
approach (hybrid of ELL and COO). Choi et al. [8] introduced
the concept of blocks for CSR and ELL (i.e. BCSR and BELL-
PACK). Block-based formats present similarities in objective
with our approach, by ensuring the sparse matrix is viewed as
a collection of regular blocks of matrix coordinates. However,
blocks represent a contiguous set of coordinates, which often
need to include storage for zeros and typically must have
the same size across the entire matrix. Our approach does
not have any of these restrictions. Yang et al. [42] studied
the use of blocks for matrices that present large graphs with
power-low characteristics, combining Transposed Jagged
Diagonal Storage (TJDS) [15] with COO and blocking. Note
that GPU implementations of these formats are logically sig-
nificantly impacted by how nonzeros are distributed across
thread-blocks and threads [2, 4, 5, 8, 16, 41, 42].

The TACO compiler [9, 22] is a framework for generat-
ing code for optimized (sparse) tensor algebra computations,

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

with advanced code synthesis capabilities supporting a vari-
ety of sparse formats. In particular, it emits code to efficiently
compute on tensors stored in any combination of formats,
via clever abstractions about sparse formats. Integrating our
work as a custom sparse format based on Z-polyhedra inside
the TACO compiler would be very interesting, as it has the
potential to deliver additional performance especially when
the sparse tensors operated on are sparse-immutable.

Inspector/executor methods Sparse codes characteristi-
cally exhibit irregular access patterns to one or more arrays
that prevent static code analysis and optimization. Their
prevalence in scientific computing, and in particular using
distributed-memory clusters lead to the design of inspec-
tor/executor (I/E) approaches pioneered by Saltz et al. [32].
They developed runtime infrastructures for distributed mem-
ory parallelization of irregular applications [25, 32, 33]. These
were augmented with compiler approaches that automat-
ically generated parallel code [1, 12, 38]. Ravishankar et
al. [27] exploit runtime regularity to produce polyhedrally-
optimizable executor code in specific cases. Sukumaran-
Rajam and Clauss [35] also detect runtime regularity using
linear interpolation and regression models, selecting opti-
mizations in a speculative fashion. However none of this
approaches allow to customize the program at compile-time
to the specifics of the input sparse matrix, instead generating
code that is always-correct whatever the input sparse matrix.

The Sparse Polyhedral Framework [23, 34, 37] provides
a unified framework to express affine and irregular parts
of the code by representing indirection array access using
uninterpreted function symbols. In essence this amounts to an
(over-)approximation of the non-polyhedral program into a
polyhedral one, which is perfect for the purpose of generat-
ing automatically at compile-time I/E code. Still, the same
advantages and limitations occur: the generated code will
be valid for any input sparse matrix, but will not exploit
opportunities to customize the program for a specific matrix.

Cheshmi et al. [6, 7] developed Sympiler, an I/E compiler
to optimize sparse computations by exploiting properties
of the sparsity structure. This leads to executor code which
leverages the sparsity pattern within the computation. In
contrast to our work, indirection arrays are not fully elim-
inated in the final generated code, appearing both in the
access functions and in the loop bounds.

Polyhedral trace compression The Trace Reconstruction
Engine (TRE) [29] built upon in this paper uses an algebraic
approach to synthesize an affine statement with a single
perfectly nested reference which produces a sequence of
integers provided as input. The tool works by analyzing the
elements in the input sequentially by progressively refin-
ing an initial 1-dimensional affine statement, incorporating
more elements of the input each time, until a full match is
obtained. It finds all the possible solutions to the linear equa-
tion systems which describe the iteration polyhedron and

638

T. Augustine, J. Sharma, L.-N. Pouchet, and G. Rodriguez

its projection on the input sequence. The tool can be used
to analyze memory address streams, but also sequences of
integer indices as we have done in this paper. TRE has been
improved to also support the synthesis of piecewise-affine
domains (i.e., loops using min/max of affine functions in
their lower/upper bounds) [28].

Clauss et al. [11] characterized program behavior using
polynomial piecewise periodic and linear interpolations sep-
arated into adjacent program phases to reduce function com-
plexity. The model can be recursively applied, interpreting co-
efficients of the periodic interpolation as traces in themselves.
Clauss and Kenmei [10] introduced polyhedra to graphically
represent the program memory behavior (including cache
misses) and facilitate its understanding. Ketterlin and Clauss
[21] proposed a method for trace prediction and compression
based on representing memory traces as sequences of nested
loops with affine bounds and subscripts. Such approach could
also be used in place of TRE, but we note that rebuilding
multi-statements or their schedule [21] is not needed in our
present work.

8 Conclusion

Numerous sparse formats have already been investigated
to improve the overall performance of Sparse Matrix-Vector
multiply (SpMV). In this work we took a radically different
approach: synthesize code that is specialized to a particu-
lar sparse structure, automatically building sets of regular
sub-computations by mining for regular sub-regions in the
irregular data structure. We then perform polyhedral code
generation to create efficient loop-based code scanning these
polyhedra, in turn generating code that not only does not
need any indirection array to recover the nonzero coordi-
nates, but can be tuned to favor the exposure of SIMD blocks.

Acknowledgments

This work was supported in part by the U.S. National Sci-
ence Foundation award CCF-1750399, and by the Ministry of
Economy, Industry and Competitiveness of Spain (TIN2016-
75845-P AEI/FEDER/EU).

References

[1] G. Agrawal, J. Saltz, and R. Das. 1995. Interprocedural Partial Re-
dundancy Elimination and its Application to Distributed Memory
Compilation. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI. La Jolla, CA, USA, 258-269.

A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sadayap-
pan. 2014. Fast Sparse Matrix-vector Multiplication on GPUs for Graph
Applications. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC. New Orleans, LA, USA,
781-792.

C. Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier
Than You Think. In 13th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT. IEEE, Antibes, France, 7-16.
N. Bell and M. Garland. 2008. Efficient Sparse Matrix-Vector Multipli-
cation on CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA
Corporation.

[2

—

—
w
[t}

[4

—

Generating Piecewise-Regular Code from Irregular Structures

(5]

(6]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

N. Bell and M. Garland. 2009. Implementing Sparse Matrix-Vector
Multiplication on Throughput-Oriented Processors. In ACM/IEEE Con-
ference on High Performance Computing, SC. Portland, OR, USA.

K. Cheshmi, S. Kamil, M. M. Strout, and M. M. Dehnavi. 2017. Sympiler:
transforming sparse matrix codes by decoupling symbolic analysis.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 13.

K. Cheshmi, S. Kamil, M. M. Strout, and M. M. Dehnavi. 2018. ParSy:
inspection and transformation of sparse matrix computations for par-
allelism. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage, and Analysis. IEEE Press,
62.

JW. Choi, A. Singh, and RW. Vuduc. 2010. Model-Driven Autotuning
of Sparse Matrix-Vector Multiply on GPUs. In 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP.
Bangalore, India, 115-126.

S. Chou, F. Kjolstad, and S. Amarasinghe. 2018. Format abstraction for
sparse tensor algebra compilers. Proceedings of the ACM on Program-
ming Languages 2, OOPSLA (2018), 123.

P. Clauss and B. Kenmei. 2006. Polyhedral Modeling and Analy-
sis of Memory Access Profiles. In IEEE International Conference on
Application-Specific Systems, Architecture and Processors, ASAP. Steam-
boat Springs, CO, USA, 191-198.

P. Clauss, B. Kenmei, and J. C. Beyler. 2005. The Periodic-Linear
Model of Program Behavior Capture. In 11th International Euro-Par
Conference. Lisbon, Portugal, 325-335.

R. Das, P. Havlak, J. Saltz, and K. Kennedy. 1995. Index Array Flatten-
ing Through Program Transformation. In ACM/IEEE Supercomputing
Conference, SC. San Diego, CA, USA, Article 70.

T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Software 38 (2011), 1-25. Issue 1.

E.F. D’Azevedo, M.R. Fahey, and RT. Mills. 2005. Vectorized Sparse Ma-
trix Multiply for Compressed Row Storage Format. In Intl. Conference
on Computational Science, ICCS. Atlanta, GA, USA, 99-106.

A. Ekambaram and E. Montagne. 2003. An Alternative Compressed
Storage Format for Sparse Matrices. In Intl. Symposium on Computer
Science and Information Sciences, ISCIS. Antalya, Turkey, 196-203.

J. Godwin, J. Holewinski, and P. Sadayappan. 2012. High-performance
Sparse Matrix-vector Multiplication on GPUs for Structured Grid Com-
putations. In 5th Annual Workshop on General Purpose Processing with
Graphics Processing Units, GPGPU. London, UK, 47-56.

R.G. Grimes, D.R. Kincaid, and D.M. Young. 1980. ITPACK 2.0: User’s
Guide. http://books.google.com/books?id=h8RcNAAACAA)

G. Gupta and S. Rajopadhye. 2007. The Z-Polyhedral Model. In 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP. San Jose, CA, USA, 237-248.

S. Han, J. Pool, J. Tran, and W. Dally. 2015. Learning both Weights
and Connections for Efficient Neural Network. In Advances in Neural
Information Processing Systems, NIPS. Quebec, Canada, 1135-1143.

B. Hassibi and D.G. Stork. 1992. Second Order Derivatives for Network
Pruning: Optimal Brain Surgeon. In Advances in Neural Information
Processing Systems, NIPS. Denver, CO, USA, 164-171.

A. Ketterlin and P. Clauss. 2008. Prediction and Trace Compression
of Data Access Addresses through Nested Loop Recognition. In 6th
International Symposium on Code Generation and Optimization, CGO.
Boston, MA, USA, 94-103.

F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. 2017.
The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 77.

A. LaMielle and M. Strout. 2010. Enabling Code Generation within
the Sparse Polyhedral Framework. Technical Report. Colorado State
University.

Y. LeCun, C. Cortes, and C. Burges. [n. d.]. The MNIST Database of
Handwritten Digits. http://yann.lecun.com/exdb/mnist/. Last accessed:

639

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

April 2019.

R. Ponnusamy, J.H. Saltz, and A.N. Choudhary. 1993. Runtime Compi-
lation Techniques for Data Partitioning and Communication Schedule
Reuse. In ACM/IEEE Conference on Supercomputing, SC. Portland, OR,
USA, 361-370.

L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache. 2011. Loop Transformations: Con-
vexity, Pruning and Optimization. In Proc. Symposium on Principles of
Programming Languages (POPL °11). ACM, 549-562.

M. Ravishankar, R. Dathathri, V. Elango, L.-N. Pouchet, J. Ramanujam,
A. Rountev, and P. Sadayappan. 2015. Distributed Memory Code
Generation for Mixed Irregular/Regular Computations. In 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP. ACM, San Francisco, CA, USA, 65-75.

G. Rodriguez and L.-N. Pouchet. 2018. Polyhedral Modeling of Im-
mutable Sparse Matrices. In 8th International Workshop on Polyhedral
Compilation Techniques. Manchester, UK.

G. Rodriguez, J. M. Andién, M. T. Kandemir, and J. Tourifio. 2016.
Trace-based Affine Reconstruction of Codes. In Proceedings of the 14th
International Symposium on Code Generation and Optimization, CGO.
Barcelona, Spain, 139-149.

G. Rodriguez, M. T. Kandemir, and J. Tourifio. 2018. Affine Modeling
of Program Traces. ACM. Trans. Comput. 68, 2 (2018), 294-300.

Y. Saad. 1990. SPARSKIT: A basic tool kit for sparse matrix computa-
tions. (1990).

J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. 1990. Run-
time Scheduling and Execution of Loops on Message Passing Machines.
J. Parallel Distrib. Comput. 8, 4 (1990), 303-312.

S. Sharma, R. Ponnusamy, B. Moon, Y.-S. Hwang, R. Das, and J. Saltz.
1994. Run-time and Compile-time Support for Adaptive Irregular Prob-
lems. In ACM/IEEE Conference on Supercomputing, SC. Washington,
DC, USA, 97-106.

M.M. Strout, G. George, and C. Olschanowsky. 2012. Set and Relation
Manipulation for the Sparse Polyhedral Framework. In 25th Interna-
tional Workshop on Languages and Compilers for Parallel Computing,
LCPC. Tokyo, Japan, 61-75.

A. Sukumaran-Rajam and P. Clauss. 2016. The Polyhedral Model of
Nonlinear Loops. ACM Trans. Archit. Code Optim. 12, 4 (2016), 48.
W.T. Tang, R. Zhao, M. Lu, Y. Liang, H.P. Huynh, X. Li, and R.S.M.
Goh. 2015. Optimizing and Auto-tuning Scale-free Sparse Matrix-
vector Multiplication on Intel Xeon Phi. In 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO.
IEEE Computer Society, San Francisco, CA, USA, 136-145.

A. Venkat, M.S. Mohammadi, J. Park, H. Rong, R. Barik, M.M. Strout,
and M. Hall. 2016. Automating Wavefront Parallelization for Sparse
Matrix Computations. In International Conference for High Performance
Computing, Networking, Storage and Analysis, SC. Salt Lake City, UT,
USA, Article 41.

R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. 1992.
Compiler analysis for irregular problems in Fortran D. In 6th Interna-
tional Workshop on Languages and Compilers for Parallel Computing,
LCPC. New Haven, CT, USA, 97-111.

RW. Vuduc. 2004. Automatic Performance Tuning of Sparse Matrix
Kernels. Ph.D. Dissertation. University of California.

S. Williams, L. Oliker, RW. Vuduc, J. Shalf, K.A. Yelick, and J. Dem-
mel. 2009. Optimization of Sparse Matrix-vector Multiplication on
Emerging Multicore Platforms. Parallel Comput. 35, 3 (2009), 178-194.
S.Yan, C. Li, Y. Zhang, and H. Zhou. 2014. yaSpMV: Yet Another SpMV
Framework on GPUs. In 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP. ACM, Orlando, FL, USA,
107-118.

X. Yang, S. Parthasarathy, and P. Sadayappan. 2011. Fast Sparse Matrix-
vector Multiplication on GPUs: Implications for Graph Mining. Proc.
VLDB Endow. 4, 4 (2011), 231-242.

