Building a Polyhedral Representation from an Instrumented
Execution: Making Dynamic Analyses of Nonaffine
Programs Scalable

MANUEL SELVA, FABIAN GRUBER, and DIOGO SAMPAIQ, University of Grenoble Alpes,
CNRS, Inria, Grenoble INP, LIG

CHRISTOPHE GUILLON, STMicroelectronics

LOUIS-NOEL POUCHET, Colorado State University

FABRICE RASTELLO, Univeristy of Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

The polyhedral model has been successfully used in production compilers. Nevertheless, only a very restricted
class of applications can benefit from it. Recent proposals investigated how runtime information could be used
to apply polyhedral optimization on applications that do not statically fit the model. In this work, we go one
step further in that direction. We propose the folding-based analysis that, from the output of an instrumented
program execution, builds a compact polyhedral representation. It is able to accurately detect affine depen-
dencies, fixed-stride memory accesses, and induction variables in programs. It scales to real-life applications,
which often include some nonaffine dependencies and accesses in otherwise affine code. This is enabled by a
safe fine-grained polyhedral overapproximation mechanism. We evaluate our analysis on the entire Rodinia
benchmark suite, enabling accurate feedback about the potential for complex polyhedral transformations.

CCS Concepts: » Software and its engineering — Compilers;

Additional Key Words and Phrases: Performance feedback, polyhedral model, loop transformations, compiler
optimization, binary, instrumentation, dynamic dependency graph

ACM Reference format:

Manuel Selva, Fabian Gruber, Diogo Sampaio, Christophe Guillon, Louis-Noél Pouchet, and Fabrice Rastello.
2019. Building a Polyhedral Representation from an Instrumented Execution: Making Dynamic Analyses of
Nonaffine Programs Scalable. ACM Trans. Archit. Code Optim. 16, 4, Article 45 (December 2019), 26 pages.
https://doi.org/10.1145/3363785

1 INTRODUCTION

The most effective program optimizations for improving performance or energy consumption are
typically based on rescheduling of instructions so as to expose data locality and/or parallelism.

M. Selva, F. Gruber, and D. Sampaio contributed equally to this research.

This work was supported in part by the U.S. National Science Foundation awards CCF-1645514 and CCF-1750399, and by
the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.

Authors’ addresses: M. Selva, F. Gruber, and D. Sampaio, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG; emails:
{manuel.selva, fabian.gruber, diogo.sampaio}@inria.fr; C. Guillon, STMicroelectronics; email: christophe.guillon@st.com;
L.-N. Pouchet, Colorado State University; email: pouchet@colostate.edu; F. Rastello, Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG; email: fabrice.rastello@inria.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/12-ART45

https://doi.org/10.1145/3363785

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:2 M. Selva et al.

Instruction rescheduling techniques range from basic block reordering to multiloop transforma-
tions such as vectorization or loop nest tiling [7]. The detection of parallelism and spatial lo-
cality properties along existing loops typically does not need a sophisticated representation of
the data dependencies themselves, as validating the absence of dependencies or computing the
dependence distance is usually sufficient. On the other hand, assessing the applicability of loop
transformations that implement complex instruction rescheduling such as loop skewing, inter-
change, or tiling requires precisely characterizing the dependencies. The polyhedral model [16]
is an appropriate representation for this purpose. Bondhugula et al. demonstrated how tiling ap-
plicability can be increased using polyhedral dependencies and scheduling [7]. Polyhedral op-
timizers [7, 17, 34, 42, 45] leverage precise information about data and control-flow dependen-
cies to determine a sequence of loop transformations. These loop transformations aim to improve
temporal and spatial locality and uncover both coarse (i.e., thread) and fine-grained (i.e., SIMD)
parallelism.

Dynamic dependence analysis has been shown to be a useful tool for finding optimization po-
tential. Most existing techniques allow to efficiently inform about the absence of dependencies (for
the particular executions of the program that have been instrumented [14]) along loops in the orig-
inal program, highlighting opportunities for parallelism [25, 41, 44, 46] or SIMD vectorization [23].
Building a polyhedral representation of dependencies and memory access patterns with dynamic
information is a natural way to detect whether applying transformations such as skewing or loop
permutation is legal. Unfortunately, the practical development of such a dynamic analysis faces a
number of problems. In particular, supporting applications that are not fully affine is challenging.
Existing solutions either use overly pessimistic approximations and lose information [40] or do
not scale well to large problem sizes [24, 35].

In this work, we propose a dynamic analysis, called the folding-based analysis, that addresses
these challenges. We successfully used it as a cornerstone of a complete profiling tool chain [19].
This tool chain works on compiled binaries and provides suggestions for loop transformations. It
then uses debugging data to map the suggestions back to the source code to guide users to where
they should apply these transformations. The tool chain consists of three parts:

e The front-end, which instruments the binary to get information from a program execution

e The folding-based analysis, which consumes this information in a streaming fashion to build
a compact polyhedral program representation

e The back-end, which uses this representation to find and suggest interesting loop transfor-
mations

The complete tool chain has been demonstrated in prior work [19], focusing on the overall design
and applicability of our approach. The present article details the underlying techniques in folding-
based analysis, which is a cornerstone of the profiling tool chain. This article is an updated and
peer-reviewed version of our prior technical report [20].

The folding-based analysis can accurately detect polyhedral dependencies in programs and
scales to real-life applications, which often include some nonaffine dependencies in otherwise
affine code. For that, we propose a safe fine-grained polyhedral overapproximation mechanism
for such dependencies. That is, our analysis emits a compact program representation allowing a
classic polyhedral optimizer to find a wide range of possible transformations. Our analysis also al-
lows detecting the presence of fixed-stride memory accesses and induction variables. Fixed-stride
memory accesses are useful for exposing the potential for vectorization and loop transforma-
tions that improve spatial locality. Detecting induction variables allows removing unnecessary
dependencies.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:3

for (j = 1; j <= n2; j++) { // For each unit in second layer
sum = 0.0; // Compute weighted sum of its inputs
for (k = 0; k <= n1; k++)
sum += conn[kI[j] * 11[k1;
12[j] = squash(sum);
3

o A W N e

Fig. 1. A compute-intensive kernel in backprop.

The contribution of this article is the folding-based analysis, which:

e scales to real-life applications thanks to a safe polyhedral overapproximation mechanism
applied to nonaffine parts of the program;

e builds a compact polyhedral program representation from a program execution, enabling
polyhedral optimizations to be applied, that is, to provide feedback about the potential of
complex polyhedral transformations; and

e captures information useful for polyhedral optimizers such as properties of dataflow de-
pendencies, memory accesses, and induction variables in a uniform manner.

An open source implementation of the folding-based analysis is available at [18].

This article is organized as follows. Section 2 illustrates the context of our work through a case
study. Section 3 discusses related work. Section 4 then continues with an in-depth description of
the interface, followed by the core algorithm used by our analysis in Section 5. Section 6 evaluates
our approach by applying it to the entire Rodinia benchmark suite [11]. Finally, Section 7 concludes
the article and provides future perspectives.

2 ILLUSTRATIVE SCENARIO

This section introduces the problem tackled by this work using a concrete example. For this, we use
backprop, a benchmark from the Rodinia benchmark suite [11]. backprop is a supervised learning
method used to train artificial neural networks. We focus on the compute kernel shown in Figure 1.
This kernel is also used as a running example throughout the rest of the article. For complex real-
life case studies, the reader should refer to our work describing the entire profiling tool [19].

2.1 Example Problem: backprop

The main source of inefficiency in backprop is the 2D access to conn on Line 4. The problem
here is that conn is laid out in row-major order, but the accesses are in column-major order. This
leads to unnecessary cache misses. A loop interchange, which switches the order of the j and the
k loop, solves this problem and furthermore unlocks vectorization opportunities. Identifying the
profitability of these transformations requires detecting the strided access along the outer j loop.

However, reconstructing this striding information from the stream of memory addresses being
accessed in a dynamic analysis is not trivial. This is because conn is not a 2-dimensional array, but
an array of pointers, each allocated by a separate call to malloc as illustrated in Figure 2. Since
malloc gives no guarantees on the placement of allocations, the accesses along the innermost k
dimension do not have a constant stride but are irregular as shown in Figure 3.

Existing dynamic polyhedral approaches [24, 35] try to build a completely affine model and are
not able to handle even only partially irregular applications like backprop. These algorithms do
not take iterator values into account and directly work on a linear stream of memory addresses.
The irregularity along the inner k loop either stops them from detecting that there even is an outer
j or causes them to exhibit a prohibitively high time and space complexity. There is an approach
that takes iterator values into account, which allows them to tolerate some irregular accesses using

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:4 M. Selva et al.

+4 +6

j —
A
3 69 73 79 -
] +1
2 68 72 78 -
] +1
1 67 71 77 -
| | | | L .k
@ 66 67 68 69 70 71 72 73 75 76 77 78 0o 1 2 13 4
Fig. 2. Memory layout for the conn array with n2 = 3. Fig. 3. Addresses used to access

For simplicity, pointers and numbers fit in 1 byte. conn[k][j].

approximation [30, 40]. However, this approximation mechanism is relatively conservative, and if
two cells of the conn are too far apart in memory, it will completely give up on trying to model
the loop nest. As a consequence, none of the existing dynamic approaches scale beyond very small
input datasets.

Note that backprop from Rodinia is not a real application but a simplified benchmark that does
not interleave calls to malloc and free. Consequently, conn[@1], conn[1], ..., conn[n1] often hap-
pen to be laid out contiguously in memory even if malloc gives no guarantees on the placement
of allocations. In this case the memory accesses for conn[k][j] are regular along both k and j,
and existing dynamic polyhedral approaches are able to model and optimize this synthetic bench-
mark. However, other more realistic applications such as, for example, sparse matrix algorithms
inherently exhibit irregular access patterns, the same as those in backprop [39, Section 5.2].

2.2 Solution: Folding-based Analysis

Despite the lack of information about aliasing and the presence of a nonaffine memory access,
the above computation kernel presents an interesting opportunity for optimization. Our dynamic
analysis detects:

o the stride-1 access for conn[k][j] along the outer dimension j and
o the absence of dependence along dimension j.

From this information, our back-end was able to suggest loop interchange, vectorization, and tiling,
which in our case led to a speedup of X5.3 [19].

The vectorization opportunity is revealed by looking at the scalar evolution [33, 43] of the ad-
dresses being accessed, that is, how they change as a function of the values of the iterators k and
j. In the case of our example, the addresses used for loading conn[k], as shown in Figure 2, can
be described with the function 0j + 1k + 12, where 12 is the base address of conn. This is because
&conn[k] does not depend on j, and k is incremented by one on each iteration. Note that due
to the gap in the layout of conn, the addresses used to access conn[k][j] cannot be described
by an affine function. This is shown in Figure 3. Our analysis is robust against this irregularity
along dimension k and is able to produce the incomplete function 1j + Tk + 66, where 66 is the
base address of the nested array conn[@], and where T represents the fact that accesses are not
affine along dimension k. However, the obtained function does indicate that the memory address
increases by one every iteration of dimension j. We refer to this as a stride-1 access.

The folding algorithm discovers not only the structure of memory accesses but also the struc-
ture of data dependencies in general. In our running example, it detects that there is no depen-
dence between the reads on Line 4 and the write on Line 5. It is worth mentioning that while the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:5

algorithm is exactly the same for both, the structure of memory accesses and dependencies are
detected separately. The folding algorithm can thus handle cases where accesses are nonaffine and
dependencies are affine, and vice versa. Here the irregularity of the former does not hinder the
folding algorithm from finding the structure of the latter.

The stride-1 access along dimension j allows deducing that SIMD vectorization might be prof-
itable. Since j is not the innermost loop, it is necessary to perform a loop interchange before
vectorizing. That this loop interchange is valid is clear from the absence of dependencies between
the two loops. Our analysis, like any dynamic approach reasoning on an execution, cannot guar-
antee that this holds in general, but it can still provide useful feedback. Note that the interchange
will require an array expansion of the sum variable along with a new 1-dimensional loop iterating
over j to fill the 12 array.

3 RELATED WORK

Integer linear algebra is a natural formalism for representing the computation space of a loop nest.
The polyhedral framework [16] leverages, among others, operators on polyhedra, parametric in-
teger linear programming [15] for dependence analysis [12], and enumeration for code genera-
tion [3]. Historically, it has been designed to work on restricted programming languages and was
used as a framework to perform source-to-source transformations. More recently, efforts have been
made to integrate the technology in mainstream compilers with GCC-Graphite [42] and LLVM-
Polly [17]. The set of loop transformations that the polyhedral model can perform is wide and cov-
ers most of the important ones for exposing locality and parallelism to improve performance [7].

Dynamic data dependency analysis is a technique typically used to provide feedback to the
programmer, e.g., about the existence or absence of dependencies along loops. The detection of
parallelism along canonical directions, such as vectorization, has been particularly investigated [2,
9, 14, 25-27, 41, 44, 46], as it requires only relatively localized information. Another use case is the
evaluation of effective reuse [5, 6, 28, 29] with the objective of pinpointing data locality problems.
Like us, with the objective of gathering more global dependency information, Redux [31] builds a
complete extended dynamic dependency graph from binary level programs. The article concludes
with a negative result. Because of its inability to compress the produced graph, it is only able to
handle very small nonrealistic programs.

Existing trace compression algorithms [24, 35] can be used to extract a polyhedral represen-
tation from an instrumented program execution. However, although they excel in rebuilding a
polyhedral representation for a purely affine execution, they suffer inherent limitations for even
partially nonaffine traces. They share the idea of using pattern matching with affine functions
with our folding algorithm but do not exploit geometric information like we do. The nested loop
recognition algorithm of Ketterlin et al. [24] detects outer loops by maintaining and repeatedly ex-
amining a finite window of memory accesses. Another algorithm by Rodriguez et al. [35] instead
introduces a new loop into its representation every time it cannot handle an access. For perfectly
regular programs, Ketterlin's approach only requires a small window and Rodriguez’s will only
create as many loops as there are in the original program. In that simple case, using a geometric
approach does not make much difference and both algorithms are very efficient. That is, for regular
programs, with D the dimension of the iteration space and n the number of points, the complexity
of both nongeometric approaches is O(n), the same as our approach. However, in the context of
profiling large nonfully affine programs, neither of these two existing approaches can be used.
The complexity of Ketterlin’s algorithm increases quadratically with a parameter k that bounds
the size of the window. Unfortunately, this forces a tradeoff between speed and quality of the out-
put when choosing the size of this window. If k is smaller than the amount of irregularity along
the innermost dimension, it is not able to capture the regularity, and thus compress, along outer

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:6 M. Selva et al.

dimensions. On the other hand, the complexity of Rodriguez’s approach increases exponentially
with the number of irregularities. So in practice, it has to give up even for nearly affine traces.

PSnAP [32] is a memory access trace compression system for performance modeling and trace-
based simulation of scientific applications. Its compression is based on the dynamic detection of
the frequency at which strides occur along the innermost loop dimension.

Streaming convex hull algorithms [8, 22] could also be applied to build a compact geometric
representation of an instrumented execution. However, our approach is able to precisely represent
nonconvex polyhedra via a union of convex ones, while convex hull can only approximate this case
with a single polyhedron.

Similarly to us, existing runtime polyhedral optimizers [30, 38] use runtime information to cre-
ate a polyhedral representation of a program. PolyJIT [38] focuses on handling programs that do
not fit the polyhedral model statically because of memory accesses, loop bounds, and conditionals
that are described by quadratic functions involving parameters. Apollo [30] handles this case and
many others preventing static polyhedral optimizers from operating. Compared to our analysis,
PolyJIT focuses on identifying 100% of affine programs that may be rare in practice for many rea-
sons such as the memory allocation concerns pointed out for backprop. Apollo proposes a tube
mechanism [40] that allows the handling of programs with quasi-affine memory accesses. Because
Apollo focuses on implementing polyhedral transformations at runtime automatically, the overap-
proximation performed by the tube mechanism has to be efficiently verified during the execution.
Indeed, that the approximation is safe has been verified along with every execution of the opti-
mized code. Hence, the check has to be simple so as to have a very low overhead. This is not the
case in our context, since we only provide transformation suggestions to the programmer. As a
consequence, even with the tube extension, on the illustrative example of backprop, Apollo will,
as opposed to our analysis, neither manage to overapproximate the nonconstant stride along the
innermost dimension as soon as the stride distance is greater than a given threshold nor detect the
stride of 1 along the outermost dimension. Also, it is worth mentioning that, as for the example of
backprop, a program might show affine dependencies while having nonaffine memory accesses.
Contrary to our analysis front-end, which tracks both separately, Apollo only traces memory ac-
cesses and then recomputes the dependencies from them. Consequently, Apollo has to give up
completely here, while we can detect an accurate polyhedral representation of dependencies.

Since the transformations proposed by our back-end are based on information gathered dur-
ing one program execution, they are not guaranteed to always be valid. Hybrid analyses using
code versioning combined with runtime alias checks [1, 13] or dynamic checks for the validity of
transformations [36, 37] can optimize programs even when the optimizations are not guaranteed
to always be legal. However, these approaches still have the problem of determining if applying a
transformation would be profitable. Profiling for profitability such as done by pory-proF could be
integrated to guide these hybrid systems to decide what parts of a program to optimize.

4 INTERFACE OF THE FOLDING-BASED ANALYSIS

Before describing the core algorithm of the folding-based analysis in Section 5, we introduce its
inputs and outputs.

4.1 Inputs

The front-end of poLy-PROF, implemented using the dynamic binary translator QEMU [4, 21], in-
struments programs to produce the input for the folding-based analysis as they execute. The trace
generated by the instrumentation is then directly processed by the folding-based analysis as the
program executes. To handle any kind of loops in a uniform way, our front-end inserts canoni-
cal iterators in every loop. These iterators start at zero and advance by one every iteration. Even

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:7

e)
il for (j =1; j <= n2)
2 sum = 0.0;
3 for (k = 0; k <= n1)
4
5 tmp2 = load(tmpl + j) I2 - Memory access
6
7 sum = sum + tmp2 * tmp3 I4 - Computation
8 k =k +1 I5 - Computation
9 j=3+1 16 - Computation
. J

Fig. 4. C-like binary version for the code of Figure 1.

though the front-end analyzes machine code, it works at the level of the generic QEMU IR, making
it CPU architecture agnostic.

The inputs of the folding algorithm are streams of two types, one for instructions and one for
dependencies. In the following sections, a static instruction is a machine instruction in the program
binary. An instruction instance is one dynamic execution of a static instruction. A dependency is a
pair consisting of an instruction instance that produced a value and another instance consuming
it. Also, our front-end only captures dataflow dependencies, that is, read-after-write dependencies
for which there are no intermediate writes to the same memory location or register.

Each input stream has a unique identifier Id. An instruction stream is identified by a static in-
struction. A stream of data dependencies is identified by a pair of static instructions. We note
this as Static instruction source — Static instruction destination. The two types of streams have the
same overall structure, where each entry consists of two elements:

e An iteration vector (IV): a vector made up of the current values of all canonical loop iterators
o A label: the definition of the label differs between the two types of streams and is described
below

For a given stream, all the IVs span a multidimensional space where each entry is a point. Thus,
in the following we use the terms entry and point interchangeably. Also, note that IVs arrive in the
input stream in lexicographical order.

Finally, it is worth mentioning that the front-end tracks the calling context in which instructions
execute and generates different input streams for different calls to the same function [19].

Instructions. An instruction stream for a static instruction Id contains all its instances. The label
is a scalar value whose meaning depends on the type of the static instruction. If the instruction
is an arithmetic instruction dealing with integers, the label is the integer value representing the
result computed by the instruction. If the instruction is a memory access, the label is the address
read or written by the instance. As described in the next section, these labels are used to identify
induction variables and fixed-stride memory accesses.

To illustrate the contents of the input stream of instruction instances, we again use the example
of backprop from Figure 1. At the binary level, the considered loop-nest contains several instruc-
tions that are represented in an abstract C-like fashion in Figure 4. An excerpt of the six instruction
streams for this example is shown in Table 1. The IV of each entry is the vector made up of the
current values of all canonical loop iterators noted cj and ck in the table.

Dependencies. A dependency stream for a pair of static instructions contains an entry for each
pair of instances for these instructions that have a data dependence. The IV of an entry is the IV of
the destination, whereas the label is the IV of the source. Table 2 shows three of the six dependency

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:8 M. Selva et al.

Table 1. Instruction Input Streams from Example in Figure 4 with n1 = 42

d=12 d=14 Id=15 Id=16
1w Label A% Label A% Label v Label
(cj, ck) (cj, ck) (cj, ck) (c3)
(0, 0) 67 (0, 0) N/A (0, 0) 1
(0, 1) 71 (0, 1) N/A (0,1) 2
(0, 42) 243 (0, 42) N/A (0, 42) 43 (0) 2
(1,0) 68 (1,0) N/A (1,0) 1
(1,1) 72 (1, 1) N/A (1,1 2

Table 2. Three of the Six Dependency Input Streams from Example in Figure 4

12 2—->14 I4—-14
v v Label v Label
(cj, ck) (cj, ck) (ecj’, ck’) | (cj, ck) (cj’, ck’)
(0,0) (0,0) (0,0)
0, 1) 0, 1) (0, 1) (0, 1) (0, 0)

input streams for the example in Figure 4. In this example, all the dependencies except 14 — 14 are
intra-iteration dependencies.

4.2 Outputs

The folding algorithm processes each stream independently. For each stream, the final result of
folding is a piecewise linear function mapping IVs to labels. We refer to this piecewise linear func-
tion as a label function. The domain of a label function contains exactly the IVs of all entries of the
input stream. Moreover, when the label function is applied to an IV of its domain, it produces the
label value associated with that point in the input stream. That is, a label function is a compact
representation of an input stream since it can describe arbitrarily many points in one piece. It also
directly exposes regularity in a form that polyhedral optimizers can exploit.

Each piece of the domain of a label function is described by a set of affine inequalities, and hence
it defines a polyhedron. More precisely, a label function can be written as:

k()’l + leisd ki’lci if (Cl,.. .,Cd) [S pOlyhedI‘OIll
f: Nd - Z |f(01,...,cd) = kO,Z"’ZlSiSd ki’zci if(cl,...,Cd) € pOlyhedI‘OIlz
where, ko j € Z,Vi > 1. k; j € Z U {T}, multiplication with T is defined as T¢; = U; j(c;)c;, and
Ui, j is an uninterpreted function of c;.
The coefficients of a label function may be either an integer or an uninterpreted function Uj ;
represented as T!. The use of an uninterpreted function as a coefficient indicates that the evo-
lution of the label cannot compactly be expressed as an affine function along the corresponding

! As described later, the folding algorithm internally also uses special L values for coefficients that have not yet been
determined, but these do not appear in the output.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:9

Table 3. OQutput of the Folding Algorithm for the
Instructions Stream of Table 1
withn2 =16 and n1 =42

d Polyhedron Label function
(¢, ck) f(cj, ck)

[2 0<c¢j<150<ck<42 1lcj+ Tck+67

4 0<cj
I5 0<
16

IA
—
SIS
oS O
INIA
a
=

42 N/A
42 Ocj + 1ck + 1
lcj+2

cj <

S A
IA
Q &
IA

—

w

dimension. This occurs, for example, when modeling the addresses accessed by the nonaffine load
12 in backprop shown in Figure 3.

When a label function does not contain any T coefficient, it can be used to precisely reconstruct
the input stream it was created from. As mentioned before, the domain of a label function contains
all IVs from the input and no other points. We can thus reconstruct the stream simply by applying
the label function to every point of its domain.

If a label function does contain T, one can no longer apply it to a point to produce a value, since
it is defined by an uninterpreted function U; j, but the remaining non-T coefficients still allow
reasoning about the values seen in the input. For example, in the function f(j, k) = 1j + Tk + 66
from Section 2.2, we know that f(j, k) — f(j', k) ==j —j'.

Instructions. For an instruction stream, depending on the type of its corresponding static in-
struction, the label function represents either the integer values computed by the instruction or
the addresses it accesses. These label functions are then used to identify induction variables and
fixed-stride memory accesses. Table 3 illustrates the outputs for the input streams in Algorithm 1,
where n2 = 16 and n1 = 42. All instruction instances of a given input stream are now described
by a single line. We notice from this table that four of the six instructions have an affine function
where all the coefficients are known; that is, they are not T. The affine function of instruction 14 is
marked as N/A because it is computing floating-point values. Instruction 12 has an affine function
with the coefficient for dimension k being T, as already discussed. In this case, the labels of the
input stream cannot be reconstructed from the IVs. Nevertheless, the algorithm still outputs the
single polyhedron describing the domain for this instruction and produces useful information for
a polyhedral optimizer. It is also worth mentioning that, unlike in this example, the label function
of each instruction can be made up of several pieces if the domain of the instruction cannot be
represented as a single convex polyhedron. In this case, the domain would be represented as a
union of polyhedra.

Dependencies. The label function of a dependency is a piecewise linear function with multiple
outputs. The label function maps IVs of the consumer instances of the dependence to IVs of the
producer instances. That is, given an instruction instance, the label function can be used to de-
termine from which other instruction instance it consumed data. Table 4 illustrates the result of
the folding-based analysis for the three dependency input streams in Table 2. All the dependen-
cies of a given input stream are now described by a single line. Each one of these lines states
when the dependency between two instruction instances occurs. For example, the last line tells
us that the instance (cj, ck) of 14 depends on the instance (cj,ck — 1) of itself. As for the out-
put regarding instruction streams, it is worth noting that in this example the domain of all the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:10 M. Selva et al.

Table 4. Output of the Folding Algorithm for the Dependencies Stream
Shown in Table 2

1d Polyhedron (cj, ck) Label function f(cj, ck)
-2 0<¢j<150<ck<42
12—>14 0<c¢j<150<ck <42 cj’ = cj+ 0ck, ck’ = Ocj + ck
4514 0<c¢j<151<ck<42 c¢j/ =cj+0ck,ck’=0cj+ck—-1

dependencies is described by a single polyhedron. Nevertheless, in more complex cases these do-
mains can be represented by a union of polyhedra.

4.3 Using the Output

The output of the folding algorithm is intended to be consumed by the back-end of our tool
chain leveraging a classic polyhedral optimizer. Such an optimizer requires as input the list of
instructions along with their domains and their dependencies. The back-end then searches which
rescheduling transformations can be applied to the instructions under the constraints imposed by
the data dependencies.

Before providing dependencies to the back-end, the output stream of dependencies is pruned
by removing all the dependencies involving a computation instruction identified as an induction
variable. An induction variable is a computation instruction with a label function where all co-
efficients of all pieces are integers, that is, not T. The initial loop iterators are an example of
induction variable, that is, I5 and 16. Removing those instructions serves two purposes. First, in-
duction variables always depend on their value from the previous iteration of the loop they are in.
Consequently, their dependencies constrain the execution to be completely sequential. Removing
these instructions gives the back-end more freedom and may uncover parallelism or potential for
other polyhedral transformations. The second reason for removing induction variables is simply
that it reduces the number of instructions the polyhedral back-end has to deal with.

Then, still before providing the dependencies to the optimizer, we must process dependencies
having T coefficients in their label function. Observe that the fact that some dependencies are
not accurately captured by our folding algorithm is not a limitation of the approach, but a choice
imposed by polyhedral back-ends, the complexity of which is combinatorial with the size of the
polyhedral representation. To that end, we overapproximate those dependencies by imposing a
lexicographical ordering over their IVs for the iterators having at least one T coeflicient. With this
order, it is guaranteed that all instances of the producer come before any instances of the consumer
that might possibly consume them. For instance, let us assume in our running example that the
dependency 14 — I4 isnot ¢j’ = ¢j + Ock, ck” = Ocj + ck — 1 but ¢j’ = ¢j + Ock, ck” = Ocj + Tck: the
overapproximated dependency given to the back-end would be ¢j” = ¢j A ¢k’ < ck.

Finally, the access functions for memory instructions are also given to the polyhedral optimizer
so that it can identify opportunities for exposing vectorization and spatial locality. For this it needs
information about stride, which is given by a non-T coefficient in the label function of an instruc-
tion accessing memory.

5 THE FOLDING ALGORITHM

This section gives an overview of the folding algorithm and then presents its components in detail.

5.1 Overview

As stated in the previous section, the folding algorithm processes the stream for each identifier
separately. It is worth mentioning that exactly the same algorithm is used for both instruction and

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:11

¢j ¢j ¢j
2 2 2
1 ® 1 Lcj+Llck+67 ® 1 @
P1 Pl icj+ack+67 Pl Licj+Tck+67
0 Lcj+ick+67 0 ﬁ-‘ Lcj+Lck+71 0 :Lc/+4ck+(;7: Lcj+J_ck+77
E—
\ ! L » ck 1 i L > ck 5 = ck
0 1 2 0 1 2 0 1 2
¢j ¢j ¢j
A \P7 APl
21 @ 2Lcj+Lck+69 ® 2 ®
P4 P P4
1 Llcj+ Lck + 68 1 4‘ Lcj+Tck +68 : 1 lcj+ Tck +67
|
P1 1cj + Tck + 67
_____________ .
0 Lcj+ Tek +67 0 " Lcj+ Tek +67 : 0
|
I I I e — — = I I I
> ck ck > ck
0 1 2 0 1 2 0 1 2

Fig. 5. Folding process for the input stream of 12 in Table 1 considering only three points in both dimension.

dependency streams. This algorithm receives points in a geometrical space as specified by the IVs.
The main idea of the algorithm is to construct polyhedra from those points. For each polyhedron
the algorithm also constructs an affine function describing the label of the points contained in
the polyhedron. When receiving the first point, the algorithm creates a 0-dimensional polyhedron
containing only that point. It then tries to grow this polyhedron with the next points, adding di-
mensions as necessary. To give an intuition about how the folding algorithm works, let us consider
the stream of 12 in Table 1.

5.1.1 Geometric Folding. The folding process for 12 is illustrated in Figure 5. For now we will
ignore the construction of the affine function. As shown, the process leads to the creation of many
intermediary polyhedra, which are merged as the algorithm executes. The polyhedron P1,a3 X 3
square, is the final result of the algorithm. As shown in Figure 5, the main steps of the algorithm
are as follows:

@ Create the 0-dimensional polyhedron P1 when the first point (cj = 0, ck = 0) is received.

@ When (¢j = 0,ck = 1) is received, P1 absorbs it to become a 1-dimensional polyhedron, that
is, a line segment.

® When (cj = 0, ck = 2) is received, P1 absorbs it.

@ Notice that the loop over ck is completed when point (cj = 1, ck = 0) is received because
the iterator of the surrounding loop cj increased. Then create the new 0-dimensional poly-
hedron P4.

e P4 absorbs (cj = 1,ck = 1) to become a 1-dimensional polyhedron and then absorbs (cj =
1, ck = 2) (not shown in Figure 5).

® Notice that the loop over ck is completed when point (¢j = 2, ck = 0) is received. P1 absorbs
P4 along dimension cj. Then create the new 0-dimensional polyhedron P7.

e P7 absorbs (¢j = 2,ck = 1) to become a 1-dimensional polyhedron and then absorbs (¢j =
2,ck = 2) (not shown in Figure 5).
® P1 absorbs P7 and becomes the final 3 X 3 square.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:12 M. Selva et al.

The geometric folding works exactly the same for dependencies as illustrated above for instruc-
tions. The only difference is the semantic of the reconstructed union of polyhedra. In the case of
an instruction, this union defines when the instruction is executed. For a dependency it tells when
the dependency occurs from the point of view of the destination.

5.1.2 Label Folding. In the previous section we ignored the folding of the labels associated
with each point in the input stream. Nevertheless, this label folding takes place at the same time
as geometric folding. It is also performed in a streaming fashion. In the context of label folding,
the symbol L denotes a coefficient that has not yet been determined because the loop has not
yet iterated along the dimension associated with that coefficient. As shown in Figure 5, the label
folding proceeds as follows:

@ Create f1(cj,ck) = Lcj+ Lck + 67 when point (cj = 0, ck = 0) with label 67 is received.

@ Update f1to Lcj+ 4ck + 67 when P1 absorbs the received point (¢j = 0, ck = 1) with label
71 because ck advanced by 1 and 71 — 67 = 4.

® Checkif f1(cj,ck) = Lcj + 4ck + 67 is valid when P1 absorbs (¢j = 0, ck = 2) with label 77.
It is not the case, so update f1to Lcj+ Tck + 67.

e Repeat the steps above for P4 and get f4(cj, ck) = Lcj + Tck + 68 (not shown in Figure 5).

® Update f1to f1(cj,ck) = 1cj + Tck + 67 when P1 absorbs P4 because cj is advanced by 1
and 68 — 67 = 1.

® Check whether f1(cj, ck) = 1cj + Tck + 67 is compatible with f7(cj, ck) = Lcj + Tck + 69,
when P7 absorbs P1 to get the final 3 X 3 square. It is the case.

When the folding algorithm finishes, all remaining L coefficients can safely be set to zero. The
intuition behind this is that at the end of the folding process, a L coeflicient signals that the loop
for this dimension only iterated once; that is, it never influenced the label value.

The algorithm that folds the labels of a dependency is the same as the one described above for
the labels of an instruction. It is just applied individually for each scalar value in the label vector,
that is, each component of the IV of the source of the dependency.

5.2 The Algorithm

This section introduces the structure of the main algorithm itself and then explains its subcompo-
nents.

5.2.1 Main Folding Function. The main function is shown in Algorithm 1. As explained in Sec-
tion 4, this main function is applied to each input stream separately. To handle real-life applications,
where input streams are huge, the algorithm works in a streaming fashion (Line 9). It is not nec-
essary to have the whole input available at once. The output is also emitted as a stream. The main
principle of the algorithm, as depicted in the example in Figure 5, consists of maintaining a work-
list of intermediate polyhedra per dimension. The intermediate polyhedra then grow by absorb-
ing other polyhedra. Note that a d-dimensional polyhedron can only absorb (d — 1)-dimensional
polyhedra.

Elementary Polyhedra. The absorption process, explained in Section 5.2.2, is restricted to only
produce a subclass of convex polyhedra that we call elementary polyhedra. Because the folding
algorithm only produces elementary polyhedra, the term polyhedra implicitly refers to elementary
polyhedra in the following. A d-dimensional elementary polyhedron is a convex polyhedron with
27 vertices and a restricted shape. The shape restriction is motivated by complexity concerns for
the absorption process as explained in Section 5.3.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:13

¢j ¢j ¢j
........ Upper face
3 3 3 ————
R TR /
2 2 . . 2 ‘ /
ower Jpper
1 1 face 1L
0 0 A 0 Lower face
I I I L > ck "K'QCk T I L > ck
0 1 2 3 3 0 1 2 3
(a) 0-dimensional (b) 1-dimensional (c) 2-dimensional polyhedron
polyhedron (d=0) polyhedron (d=1) (d=2) with degenerate lower face

Fig. 6. Examples of elementary polyhedra in a 2-dimensional space (D = 2) with its vertices in orange.

We define elementary polyhedra in a D-dimensional space using the following recursive defi-
nition:

e An elementary 0-dimensional polyhedron is a polyhedron made of a single point.
e An elementary d-dimensional polyhedron is a convex polyhedron with 2¢ extreme points
such that:

(1) all its extreme points must have identical coordinates in dimensions higher than d. In
other words, the polyhedron is flat on dimensions between d + 1 and D;

(2) it has two (d — 1)-faces flat on dimension d but with different coordinates for that dth
dimension. The face with the lower coordinates in d is called the lower face and the one
with the higher coordinates is called the upper face;

(3) its lower and upper faces must themselves be (d — 1)-elementary polyhedra;

(4) the edges connecting the lower and upper faces can be expressed as kS, where k € N*
and S, the slope vector of the edge, is a vector where all components are either —1, 0, or
+1.

All faces of an elementary polyhedron beside the upper and lower face are called side faces.

More informally, an elementary 0-dimensional polyhedron is a polyhedron made of a single
point. An elementary 1-dimensional polyhedron is an interval. An elementary 2-dimensional poly-
hedron is a trapezoid. An elementary 3-dimensional polyhedron is a trapezoidal prism. Every gen-
eral polyhedron can be represented using unions of elementary polyhedra, meaning any iteration
or dependence space can be described with them. The more regular a space is, the fewer elementary
polyhedra are necessary to represent it.

A polyhedron is degenerate on a given dimension if all its vertices have the same coordinate for
that dimension; that is, it has zero width in that dimension. The elementary polyhedra produced
by the folding algorithm may be degenerate on one or more dimensions.

Figure 6 shows examples of elementary polyhedra in a 2-dimensional space (D = 2). The vertices
of the polyhedra are shown as large dots. The other integer points included in the polyhedra are
shown with small dots. Note that even though the lower face in Figure 6(c) is degenerate, it is still
represented using two vertices, but they have the same coordinates.

Producing only elementary polyhedra as described above allows controlling the worst-case com-
plexity of the absorption process described in Section 5.2.2. The choice of producing only such
polyhedra is also motivated by the nature of the input streams that we want to process. The front-
end we use to feed the folding algorithm always produces canonical IVs starting at zero and only
ever advancing by one. Hence, elementary polyhedra are able to represent the iteration space of
most of the loops fitting the polyhedral model.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:14 M. Selva et al.

ALGORITHM 1: The main folding algorithm

s N

1| # Per dimension list of absorber polyhedra.

2| <int, poly_list_t> absorbers

3| # Per dimension dictionary mapping vertices to polyhedra to be absorbed
4| <int, <point_t, poly_t>> vertices_2_to_be_absorbed

5

6| # While we have points

7 while(True):

8 # End of stream?

9 point = wait_next_point()

10 if point == end_of_stream:

11 break

12 # Put current point in absorbers[0]

13 absorbers[0].insert(new Polyhedron(point))

14 # for each dimension d such that d=1 or loop d-1 completed

15 for d in process_dims(point):

16 # Step 1: promote absorbers[d-1] -> vertices_2_to_be_absorbed[d]
17 for p in absorbers[d-1]:

18 p.move(absorbers[d-1], vertices_2_to_be_absorbed[d])

19 # Step 2: absorbers[d] try to absorb vertices_2_to_be_absorbed[d]
20 for abso in absorbers[d]:

21 absorbed = False

22 for v in abso.search_vectors:

23 corner = abso.upper_left

24 to_be_abs = vertices_2_to_be_absorbed[d][corner + v]

25 if to_be_abs != None:

26 if has_compat_label(abso, to_be_abs, d) and

27 has_compat_geometry(abso, to_be_abs, d):

28 update_geometry(abso, to_be_abs, d)

29 update_label(abso.label_function, to.label_function)

30 absorbed = True

31 break

32 if not absorbed:

33 # abso will never absorb anyone along d, then promote it in the next dimension
34 abso.move(absorbers[d], vertices_2_to_be_absorbed[d+1])

35 # Step 3: promote all of remaining vertices_2_to_be_absorbed[d] -> absorbers[d]
36 for not_abs in vertices_2_to_be_absorbed[d].values:

37 not_abs.move(vertices_2_to_be_absorbed[d], absorbers[d])

38| # Stream finished, flush all pending polyhedra

39| flush_pending_polyhedra()

L J

Data structures. Folding works on spaces with a fixed number of dimensions D, that is, the dimen-
sionality of the corresponding IVs. The state of the folding algorithm is stored using two dictionar-
ies. The first one, absorbers (Line 2), contains a list of intermediate polyhedra for each dimension.
absorbers[d] only contains d-dimensional, potentially degenerate, polyhedra. The polyhedra in
absorbers[d] are those that can still grow along dimension d by absorbing (d — 1)-dimensional
polyhedra. Those (d — 1)-dimensional polyhedra are stored in vertices_2_to_be_absorbed[d]
(Line 4). The keys of the dictionary vertices_2_to_be_absorbed[d] are the lexicographically
smallest vertices of the polyhedra to be absorbed. This point, which we name the anchor, is used
to uniquely identify the absorbed polyhedron. abso.upper_left (Line 23), the lexicographically
smallest point of the upper face of abso, also called its corner, is the vertex from which the ab-
sorption is done. For example, in Figure 5, in the absorption just before step 6, the anchor of P7 is
(¢j = 2,ck = 0) and upper_left of P1is (¢j =,ck = 0).

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:15

Steps of the algorithm. When a point is received, the algorithm first processes the innermost
dimension (numbered 1). Then, for each loop (but for the outermost one) that completes in the
instrumented code, the algorithm processes its enclosing dimension. In other words, if no loop
finishes, the algorithm processes only dimension d = 1; if the innermost loop finishes, it processes
dimensions d = 1and d = 2;if its enclosing loop finishes, it processes dimensionsd = 1, d = 2, and
d = 3; and so forth. In Line 15, process_dims represents that set of dimensions to be processed.

Before processing the different dimensions, the current point is added into absorbers[@]
(Line 13). This state is only transient, because as soon as the innermost dimension is processed, the
point will be promoted into vertices_2_to_be_absorbed[1] (Line 18). Then, for each dimension
d of process_dims (processed from inner to outer), three steps are performed.

The first step (Lines 17 to 18) promotes all polyhedra in absorbers[d-1] into vertices_
2_to_be_absorbed[d]. Because dimensions are processed in increasing order, that is, from in-
nermost to outermost, when processing dimension d we are sure that absorbers[d-1] has al-
ready absorbed all the (d — 2)-dimensional polyhedra it could. This promotion to d-dimensional
degenerate polyhedra allows them to be absorbed in the next step by the d-dimensional polyhedra
already in absorbers[d].

In the second step (Lines 20 to 34), polyhedra from absorbers[d] try to absorb polyhedra in
vertices_2_to_be_absorbed[d]. For absorption to be possible, the polyhedra should be geo-
metrically compatible (Line 27) and their label functions should match (Line 26) as described in
Section 5.2.1 and Section 5.2.2. If a polyhedron in absorbers[d] does not absorb any other poly-
hedron, then it will never grow again along dimension d. As a consequence, it is promoted into
vertices_2_to_be_absorbed[d+1] (Line 34). This promotion also transforms the d-dimensional
polyhedron into a (d + 1)-dimensional degenerate polyhedron.

The third and last step (Lines 36 to 37) promotes all the d-dimensional polyhedra in vertices_
2_to_be_absorbed[d] that have not been absorbed. Since those polyhedra will never be absorbed
again in dimension d, they are moved to the absorbers[d] list so that they will have a chance to
themselves absorb other polyhedra next time dimension d is processed.

During the execution of the algorithm, a polyhedron is retired (i.e., it is emitted to the output
stream) when it is promoted to the dimension above the dimension of the space, that is, 3 for an
instruction in a 2D loop nest. When the stream is finished, all remaining nonretired polyhedra
are also retired. Retired polyhedra are written to the output stream and do not consume memory
anymore. This is safe since we know that they will never grow anymore.

5.2.2 Absorption. As stated in the previous section, the second step of the folding algorithm
grows polyhedra by letting them absorb each other. A d-dimensional polyhedron searches for
candidates to absorb by checking if its corner touches the anchor of any other (d — 1)-dimensional
polyhedron (Algorithm 1, Line 23). This search is performed by adding the search vectors v to the
coordinates of the corner and performing a lookup in vertices_2_to_be_absorbed[d] to see if
there is a polyhedron at this position (Line 24). Once a candidate has been found, the algorithm
must check that the absorption is possible (Line 27), that is, leads to an elementary polyhedron
(has_compat_geometry) with a correct label function (has_compat_label). Which search vec-
tors are used for the lookup and how geometric compatibility is checked depends on whether
the absorber is degenerate in d or not. If the absorber is degenerate, we call this a polyhedra
merge. An example of this is when P1 absorbs P4 in Figure 5. The second case, a polyhedra exten-
sion, occurs when the absorber is not degenerate, as seen, for example, when P1 absorbs P7. The
has_compat_geometry function called once a candidate has been found is shown in Algorithm 2.

Polyhedra merge. In this case, the d-dimensional absorber polyhedron is degenerate on di-
mension d. Hence, it has no edges yet along that dimension. As a consequence, there are many

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:16 M. Selva et al.

AL T

/"\

ci

ck
cj
Fig. 7. Example of invalid polyhedron after absorption.
possibilities where to look for the anchor of the to-be-absorbed polyhedron. Our algorithm uses

the set of all possible 39-1 search vectors written as v = 0,...,0,1,64-1,...,61), where for i < d,
51' € {—1,0, 1}

ALGORITHM 2: The has_compat_geometry function ensures the polyhedron resulting from
absorption is still an elementary polyhedron

s N

1| # Geometry compatibility check

2| def has_compat_geometry(abso, to_be_abs, d):
3 # Polyhedra merge case

4 if abso.is_degenerate_on(d):

5 for k in [0, 2*(d - 1)[:
6

7

8

9

diff = to_be_abs.vertices[k] - abso.vertices[k]
if not diff.is_a_search_vector(d):
return False
for side_face in side_faces_of_merged_polyhedron(abso, to_be_abs, d):

10 if not all_points_lie_on_same_hyperplane(d, side_face):
11 return False
12 # Polyhedra extension case
13 else:
14 for k in [0, 2*(d - 1)[:
15 v = abso.growing_directions[k]
16 if abso.vertices[k] + v != to_be_abs.vertices[k]:
17 return False
18 return True
“ J

Once a candidate polyhedron has been found, the has_compat_geometry function call verifies
that concatenating the vertices of the two polyhedra leads to a well-formed polyhedron (Algo-
rithm 2, Lines 4 to 11). First, the function checks (Lines 4 to 8) that all the corresponding vertices
of both polyhedra are connected through the search vectors used to find the anchor of the to-be-
absorbed polyhedron described just above. Second, the function checks (Line 9 to Line 11) that all
the side faces of the polyhedron resulting from the absorption are valid. As shown in Figure 7, even
if the lower (a square) and the upper (a triangle) faces are valid elementary polyhedra, the result of
the absorption may not be a valid polyhedron. For this we check if all the points of the side face lie
on the same hyperplane (Line 11). To begin with, we arbitrarily designate one point of the face as
the origin of the plane. We then pick d — 1 other points to calculate a normal vector n for the plane

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:17

Label_Function:
int num_dimensions
int init_point[num_dimensions + 1]
int coeffs[num_dimensions + 1]
coeff_t coeff_types[num_dimensions + 1]

Fig. 8. The data structure used to represent label functions.

by calculating the nullspace of the space spanned by the vectors from the origin to the other points.
And finally, we verify for all remaining points p that the dot product (origin — p) - n equals zero.

If absorption is performed, the resulting polyhedron will no longer be degenerate in d. By con-
struction, if well formed, the so-obtained polyhedron is necessarily an elementary d-dimensional
polyhedron. Its lower face will be the original absorbing polyhedron, while its upper face will be
the absorbed polyhedron.

Polyhedra extension. In this case the absorber is a nondegenerate d-dimensional polyhedron.
Hence, the absorber already has edges along dimension d. When looking for candidates to absorb,
there is only one search vector, the edge connecting the lexicographically smallest vertex of the
lower face to that of the upper face. To check if the absorption is legal, has_compat_geometry
simply verifies (Line 13 to Line 17) whether the vertices of the two polyhedra can be connected
using the existing edges of the absorber stored in the growing_directions list.

5.2.3 Compatibility and Update of label functions. The absorption is performed only if both
geometric and label compatibility are satisfied (Line 27). This section describes how label functions
are represented, created, and combined together.

Label functions. The data structure used for label functions is shown in Figure 8. num_
dimensions is the number of loops enclosing the static instruction or the destination instruction
associated with the input stream.

Creation. Label functions are created when a new polyhedron is created from a single point
(Line 13). At this time, all the coefficients of the function are still unknown. Their types in the
coeff_types array are set to L. The coordinates of the point used to create the new polyhedron
are saved in the initial_point array. The first cell of this array is never used but still kept to make
accesses more readable; that is, initial_point[d] contains the d* h coordinate. These coordinates
are used when coefficients are updated. Note that once a coefficient has been updated from an
unknown to a known value, it is never updated again except to be set to T. The lifecycle of a
coeflicient is then the following one:

1->7Z->T.

At creation time, coeff[@] is given the value of the label associated with the initial point. As long
as there are some L coefficients, coeff[@] contains the remaining amount contributed by un-
known coefficients. We refer to coeff[0] as the remaining value in the following. This remaining
value is updated whenever a coefficient is updated. When all coefficients are known, the remaining
value represents the constant coefficient of the affine function.

The two polyhedra involved in a compatibility check along dimension d may be degenerate on
one or more dimensions, including the d* h one. As a consequence, the check may be faced with
affine functions where some coefficients are L. In the following, we note the label function of
the absorbing polyhedron as f_abs, and that of the polyhedron to be absorbed as f_to_be_abs.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:18 M. Selva et al.

We notice that the polyhedron to be absorbed is always degenerate on dimension d, as stated in
Section 5.2.1. Hence, f_to_be_abs.coeff_types[d] = L.

All dimensions below are known. For illustrative purposes, we first cover the simplified case
where all dimensions below d are known for the two label functions. The compatibility check for
this simple case is shown in Algorithm 3. First, the function are_compat_dims_known verifies that
all coefficients for dimensions from 1 to d — 1 are the same. If this is not the case, the two label
functions are incompatible (Line 6).

Otherwise, the check may be faced with two cases corresponding to the two different absorption
cases described in Section 5.2.2. In the polyhedra merge case, where the absorber polyhedron
is degenerate on dimension d, that is, f_abs.coeff_types[d] = L, the check always succeeds
and the are_compat_dims_known function returns true (Line 11). Indeed, by setting the proper
coeflicient for dimension d and by updating the remaining value, it is always possible to make the
two functions compatible as shown by the update_label_dims_known function in Algorithm 3.
The new coefficient is equal to the difference of remaining values (Line 20). Note that, in general, we
would also have to divide the new coefficient by the progress made along dimension d. However,
because absorption guarantees that the two polyhedra whose label functions are being merged
touch each other, the progress is always equal to 1. Finally, the remaining value is decreased by
the effective contribution of the new coefficient taking into account the d*” coordinate of the initial
point (Line 24).

ALGORITHM 3: Simplified version of the compatibility check and update of coefficient for the
case when all dimensions below d are known. See Algorithm 4 for the general case of has_compat_
label. The general case for update_label uses the same principle as the simplified case.

s)
Compatibility check when all dimensions below d are known

1
2| def has_compat_label(f_abs, f_to_be_abs, d):

3 # Verifies coefficients below d are the same

4 for q in range [1, d-11:

5 if f_abs.coeffs[q] != f_to_be_abs.coeffs[q]:
6

7

8

9

return False
Polyhedra merge case
if f_abs.coeffs[d] == L:
return True

10 # Polyhedra extension case

11 else:

12 new_coeff_contrib = f_abs.coeffs[d] * f_to_be_abs.coeffs[d]
13 new_remain = f_to_be_abs.coeffs[0] - new_coeff_contrib

14 return new_remain == f_abs.coeffs[0]

16| # Update coefficient for dimension d and remaining value of f_abs.
17| # No need to update f_to_be_abs because it will be thrown away after absorption
18| def update_label(f_abs, f_to_be_abs, d):

19 # Update of coefficient
20 new_coeff = f_to_be_abs.coeffs[0] - f_abs.coeffs[0]
21 f_abs.coeffs[d] = new_coeff
22 # Update of remaining value
23 new_coeff_contrib = new_coeff % f_abs.init_point[d]
24 f_abs.coeffs[0] = f_abs.coeffs[0] - new_coeff_contrib
. J

In the polyhedra extension case, the absorber polyhedron is not degenerate on dimension
d. Tts affine function already has a value computed for the coefficient on dimension d. Then
f_abs.coeff_types[d] # L and nothing needs to be updated. The compatibility check must

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:19

only ensure that this coefficient is compatible with f_to_be_abs. This is done by first comput-
ing the contribution of the known coefficient of f_abs into f_to_be_abs using the initial point of
f_to_be_abs (Line 12). Then, the check subtracts this contribution from the remaining value of
f_to_be_abs to compute its new remaining value. For the check to return true, this new remain-
ing value must be equal to the remaining value of f_abs (Line 14).

General case. In the general case the two polyhedra may be degenerate for some dimensions
below d. This happens if a dimension below d only iterates once. The compatibility check described
above must take this into account.

ALGORITHM 4: General compatibility check for label functions

1r # General compatibility check 1
2| def has_compat_label(abso, to_be_abs, d):
3 # Loop over all pairs of label functions
4 for f_abs, f_to_be_abs in abso.label_functions, to_be_abs.label_functions:
5 # Contributions from other functions
6 abs_diff = 0
7 to_be_abs_diff = 0
8 # Loop over all coefficients
9 for q in [1, d]:
10 abs_t = f_abso.coeff_types[q]
11 to_be_abs_t = f_to_be_abs.coeff_types[q]
12 # Both coefficients known, must be the same
13 if abs_t != L1 and to_be_abs_t != L:
14 if f_abso.coeffs[q] != f_to_be_abs.coeffs[q]:
15 return False
16 # One coefficient is not known, the other is
17 if abs_t == 1 and to_be_abs_t != L:
18 abs_diff += f_abso.init_point[q] * f_to_be_abs.coeffs[q]
19 # One coefficient is known, the other is not
20 if abs_t != 1 and to_be_abs_t == 1:
21 to_be_abs_diff += f_abso.coeffs[q] * f_to_be_abs.init_point[q]
22 # The check
23 if (f_abso.coeff[0] - abs_diff) != (f_to_be_abs.coeff[0] - to_be_abs_diff):
24 return False
25 return True
.- J

Function has_compat_label in Algorithm 4 shows the general compatibility check between
two polyhedra. The check is performed on all the matching pairs of label functions of the two
polyhedra. Remember that there are several such label functions in the case of dependencies, one
for each dimension of the source instruction.

The check works by comparing the coefficients of both functions for all the dimensions from
1 to d. If both coefficients for a dimension are known, they must be the same or the check fails
(Line 13). If one is known and not the other (Line 17 and Line 20), then the function increments the
total contribution coming from the other function for the function having the unknown coefficient.
At the end of the loop (Line 23), the check ensures that the coefficient for dimension d in f_abs is
compatible with f_to_be_abs. This check relies on the total contribution variables incremented
during the loop to ensure that the two functions still produce the same value after merging.

In case they are compatible, the new coefficients, that is, the one on dimension d and potentially
others, and the new remaining value for the function of the absorber are computed by the same
principle as in the simplified case from Algorithm 3.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:20 M. Selva et al.

Label widening. As shown by the backprop example, the folding algorithm must be capable of
identifying labels that are affine on some dimensions and not on others. To that end, the algo-
rithm has a mechanism called label widening, enabling it to skip the matching of labels on a per
dimension basis. If the compatibility check between two coefficients fails, then instead of return-
ing false (Line 15 in Algorithm 4), the coefficient is set to T and True is returned instead. The
absorption can still happen, even if the labels of the two polyhedra are not fully compatible. The
label function of the resulting polyhedron is no longer a fully accurate representation of the input
stream. Nevertheless, this mechanism allows the folding algorithm to handle real-life applications
without a perfect affine behavior. The name label widening stems from the fact that in the case of
dependencies it widens the label functions from equalities to inequalities, as shown in Section 4.3.

The integration of this feature into Algorithm 4 is straightforward. A T coefficient is compatible
with any other coefficient, and when performing absorption, any such coefficient in one of the two
label functions leads to a T coefficient in the updated function.

The label widening mechanism is crucial for the label functions of instructions because T is a
clear indicator that a memory access is not affine along a dimension. For dependencies it simply
reduces the size of the output given to the back-end by reducing the number of produced pieces.

5.2.4 Geometric Give-Up. Even with the label widening mechanism described above, some ap-
plications may lead to the creation of a huge number of polyhedra. This happens when the ge-
ometry of instructions and dependencies are not affine. It occurs for statements surrounded by if
conditionals in the program. In the worst case, the folding algorithm creates one polyhedron for
each dynamic instruction and for each dynamic dependency.

To mitigate this issue, the folding algorithm has another global option called geometric give-up.
This options allows defining an upper limit on the number of intermediate polyhedra. Remember
that an intermediate polyhedron is a polyhedron in one of the worklists that can still grow by
absorbing other polyhedra. Before creating a new polyhedron (Line 13), the algorithm checks if
the number of intermediate polyhedra exceeds the threshold. If so, the associated input stream is
marked as give up. Once a stream has been marked as give up, all intermediate polyhedra for that
stream are discarded. The discarded polyhedra are then replaced by a hyperrectangle that starts
at the origin and extends to the maximum coordinate seen in the IVs of any point contained in the
discarded polyhedra. In other words, the geometry of the input stream is overapproximated by a
single large polyhedron. From then on, every time a new point is received for the given-up stream,
the folding algorithm previously described is skipped. Instead, only the maximum coordinates of
the hyperrectangle are updated as necessary for every point. Lastly, all coefficients for all outputs
of the label function for this input stream are set to T; that is, a geometric give-up implies giving
up on all dimensions of the label function.

Similar to the widening of label functions, once geometric give-up has occurred, it is no longer
possible to reproduce the original input stream. However, the overapproximated geometry is guar-
anteed to contain all points seen in the input.

5.3 Complexity Analysis

Let us first recall the main idea of our folding algorithm. The folding process starts with polyhedra
of dimensionality zero, one for each point. Then, absorption is performed dimension by dimension
from innermost to outermost. As the process advances, the dimensionality of the polyhedra in-
volved grows. It turns out that the complexity of an absorption also grows with its dimensionality.
But as the dimensionality increases, the number of absorptions, that is, the number of intermediate
polyhedra, also decreases. The more regularity there is, the more the number of intermediate poly-
hedra decreases. In other words, as formalized below, but for fully irregular programs for which

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:21

neither label widening nor geometric give-up has been enabled, one should expect an overall com-
plexity linear in the number of input points.

More formally, in a D-dimensional space, we note the total number of input points as N and the
overall number of intermediate polyhedra seen in the absorbers[d] list when iterating over it as
Ng,V1 < d < D (Algorithm 1, Line 20). For a given d < D we have:

the number of total iterations of the for loop over absorbers[d] (Line 20) is Ng;

for each absorber, there are at most 37! lookups to find a polyhedron to absorb (Line 22);
testing if absorption is possible with regards to the label criterion (has_compat_label
Line 27) has cost O(d);

testing if absorption is possible with regard to the geometry criterion (has_compat_
geometry Line 27) has cost O(d x 2971 + (2% (d — 1)) x (d® +d x (2971 = d))) = O(d? x
24=1). Here, the first d x 297" corresponds to checking the search vectors or growing di-
rections. The factor (2 X (d — 1)) comes from the loop over the side faces of the merged
polyhedron (Line 9). The term d° corresponds to calculating the normal vector of the hyper-
plane of the sideface. And the final d x (247" — d) corresponds to checking if the remaining
points of the side lie on the same hyperplane.

This leads to an overall complexity of

D D
O<ZNd><3‘“><d><2d1):O(ZNd><6‘“><d).

d=1 d=1

To illustrate the notations, let us assume a perfectly nested loop of depth D and size N =
np X --- X ng X ny. Let us also consider the scenarios where the loop nest is either fully regu-
lar or geometrically regular only and label widening is enabled. In these two cases, the fold-
ing algorithm leads to a single polyhedron. We have N = ny X ny X - -+ Xnp, Ny = N, N, = N/ny,
N3 = N/(ny X ny), ..., Np = ng. The overall complexity is then

D d-1 D d-1 D d-1,
Nx6%'xd 6 +1 6
O(N+§T>=O N+N><§d><||—=0 N+N><§ IRV
a2 o d=2 =1 i -1 nj

Observe that in practice we will almost always have V1 < j < D, n; > jji X 6, which leads to a
complexity of O(N).

Obviously, Ny being always bounded by N, we have a worst-case complexity of O(N X D X 67).
This worst-case scenario will occur for fully irregular input streams where every absorption fails
even with label widening, that is, where absorption failures are caused by geometric incompatibil-
ity. Geometric give-up allows the algorithm to handle these input streams with a linear complexity.

6 EXPERIMENTAL RESULTS

This section applies our analysis to a full benchmark suite to demonstrate the scalability of the
folding algorithm and shows that it extracts rich information for optimization.

Experimental setup. We use the latest revision, 3.1, of the Rodinia benchmark suite [10, 11].
All measurements and experiments were performed on a Xeon Ivy Bridge CPU with two 6-core
CPUs, each running at 2.1GHz. As the front-end producing the IVs and labels does not support
multithreaded applications yet, each benchmark is run with a single thread. All benchmarks were
compiled using GCC 8.1.1. Since QEMU, which the front-end is based on, currently cannot han-
dle newer AVX instructions, we used the compiler flags -g -02 -msse3. For the 5.3 speedup

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:22 M. Selva et al.

Table 5. Evaluation of the Folding Algorithm

Dependencies Instructions
Benchmark |Input F Fw Feg Foe,w Input Fw Foo,w Optim
Size| #P #MP;| #P %A #MP;|#P %A #MP;|#P %A #MP;| Size| #P %A #MP;| #P %A #MP;

backprop 19M| 160 385 160 100% 385|160 100% 385|160 100% 385| 15M| 140 99% 304|140 99% 304(T2D,P,V
bfs 5M|903K 965K|874K 93% 951K| 74 31% 772 70 31% 772 4M|[520K 82% 472K| 38 51% 367|T 2D, P
b+tree 95M| 91K 390K| 86K 99% 336K|113 99% 3K| 113 99% 3K| 61M| 50K 90% 153K|160 89% 1K|T 3D, P,V
cfd 782M| 530 1K| 525 98% 1K|[530 100% 1K|[525 98% 1K| 498M | 332 100% 961|332 100% 961|T 3D, P,V
heartwall 33G| 3K 8K[2K 90% 6K| 1K 10% 5K| 1K 10% 5K| 18G 1K 69% 3K[1K 9% 3K|T 5D, P
hotspot 19M| 11K 22K| 10K 95% 21K 785 0% 6K [785 0% 6K| 11IM 6K 71% 13K 520 0% 3K|T2D, P
hotspot3D 235M| 168 1K| 162 91% 1K| 168 100% 1K|[162 91% 1K| 183M 84 85% 782| 84 85% 782(T 3D, P
kmeans 1G| 135 477 131 99% 472(135 100% 477131 99% 472 911M 82 95% 281| 82 95% 281|T4D, P,V
lavaMD 1G| 7K 2K| 7K 94% 2K| 7K 100% 2K| 7K 94% 2K|923M| 4K 71% 1K| 4K 71% 1K|T 3D, P
leukocyte 5G| 516K 161K|514K 99% 113K[162 99% 66K|162 99% 65K| 2G|355K 84% 72K|[128 84% 40K|T3D,P,V
lud 89M| 2K IK|[2K 98% 1K| 2K 98% 1K| 2K 98% 1K| 51M 1K 97% 864| 1K 97% 864|T 3D, P
myocyte 4M 5K 9K 5K 100% 9K| 5K 100% 9K | 5K 100% 9K 3M 3K 99% 4K|[3K 99% 4K|T 1D, P,V
nn 782K| 124 242| 124 100% 211|124 100% 241|124 100% 211| 855K| 160 100% 189|160 100% 189| T 1D, P
nw 217M| 301 1K| 296 99% 1K|[301 100% 1K |[296 99% 1K| 111IM| 155 100% 555|155 100% 555|T2D,P,V
particlefilter 3G 5K 92K 3K 99% 2K | 550 8% 2K [541 8% 2K 2G 2K 99% 1K |474 11% 1K|T 2D, P,V
pathfinder 74M 35 139 35 100% 135 35 100% 139| 35 100% 135 42M 24 61% 116| 24 61% 116|T 2D, P
srad_v1 3G| 250 851 242 94% 824250 100% 851(242 94% 824 2G| 179 93% 531|179 93% 531| T 2D, P
srad_v2 1G| 276 811| 268 97% 791|276 100% 811(268 97% 791 721IM| 204 93% 4931204 93% 493| T 2D, P
streamcluster 2G| 1M M| 1M 85% IM| 8K 85% 13K|[6K 85% 12K 1G| 611K 71% 618K| 3K 71% 6K |-

measurements of backprop mentioned in Section 2.2, we used the Intel icc 18.0.3 compiler and the
flags -Ofast -march=native -mtune=native.

Note that the instructions in our experiments are real X86 machine instructions. Many X86
instructions both read or write memory and perform computations at the same time. As a con-
sequence, the instruction streams that form the input of the folding algorithm are actually more
complicated than the ones presented in Section 4.1 and Algorithm 1 in a simplified way for clarity
purposes. In reality, the label of an instruction can have multiple values to account for both the
addresses accessed and the values produced. The label functions for instructions thus potentially
have multiple outputs as well, just like those for dependencies.

Table 5 gives statistics on the size and precision of the output of four versions of the folding
algorithm:

e F is the basic algorithm as described in Section 5, with label widening for instructions and
without for dependencies.

e Fy is the algorithm with label widening for both instructions and dependencies.

e Fgg is the same as F but with geometric give-up.

e Fgg,w is the same as Fy but with geometric give-up.

The threshold for the geometric give-up was set to allow 4d + 1 intermediate polyhedra in each
d-dimensional space—that is, enough for the affine function constructed to be made up of up to
four d-dimensional pieces.

For each algorithm we report the following statistics:

o #P is the number of polyhedra in the output stream.

e For dependencies, %A is the number of dependence instances that were in an affine piece of
the label function. A piece of the label function is considered affine if it has no T coefficient.
This column is omitted for algorithm F since by construction it always contains 100%.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:23

e Similarly for instructions, %A is the number of instruction instances that were in an affine
piece of the label function. A piece of the label function of a static instruction is considered
affine if it either:

—does not perform a memory access or
—has no T coefficient in its memory access function.

o #MP; is the maximum number of intermediate polyhedra live at any moment of the execu-

tion, indicating the memory usage of the algorithm.

The remaining columns in the table are as follows:

e Input Size shows the total number of entries in all dependency and instruction input
streams.

e Optim shows a very brief outline of the optimization feedback given by our polyhedral
back-end using the output of Fgg,w [19]:
— T nD indicates that the back-end has found that n-dimensional tiling was possible.
— Pindicates that the back-end has detected parallelism that can be exploited using threads.
— Vindicates that the back-end has detected potential for vectorization.

Note that the entire feedback of the tool is immensely richer and more elaborate [19]; this column
gives only a simplified summary.

Finally, note that the numbers reported in Table 5 correspond to applying the folding-based
analysis on the hot region of each benchmark; we have filtered out the phases where the bench-
marks read their input or write their output. This hot region often involves numerous function
calls [19].

Discussion of the results. Since the polyhedral optimization performed in the back-end is an
exponential problem, it is crucial that the output of the folding-based analysis is of tractable size.
Table 5 clearly shows that Fgg and Fgg,w produce drastically smaller outputs than the other two
versions. As indicated by the %A column, Fgg,w is roughly as precise as Fgg but produces an even
smaller output. In fact, only the output of Fgg, w is small enough for the back-end to handle.

Since Rodinia is a benchmark suite designed to exploit multicore parallelism, each benchmark
contains at least one parallel loop. As seen in column Optim, the folding-based analysis clearly
detects this parallelism across the entire suite, even in the presence of may-alias dependencies in
the source code. We also find that there is tiling potential across Rodinia.

Note that streamcluster, the least affine of all benchmarks, exhausted memory in the polyhe-
dral back-end and therefore no result is displayed. Benchmark mummergpu is not included in the
results since it contains CUDA code and the front-end can only instrument code run on the CPU.

7 CONCLUSION AND PERSPECTIVES

We have presented a folding algorithm able to create a polyhedral representation of a program from
its execution trace. Based on a geometric approach, our algorithm scales to real-life applications
by safely overapproximating the dependencies that do not fit the polyhedral model while still
recovering precise information for those that do. Thanks to our overapproximation mechanisms,
we are able to build a compact polyhedral representation in which we can detect the potential for
several high-level loop optimizations.

Regarding the perspectives opened by this work, we are already working in two directions that
will allow handling more programs. The first one consists of adding new dimensions not present
in the program to our representation. Said differently, an instruction contained in a 2-dimensional
loop nest in the program could be represented by a 3-dimensional polyhedron. This mechanism,
already at work in trace compression algorithms [24, 35], will allow our analysis to handle tiled

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:24 M. Selva et al.

stencil computations and programs where 2-dimensional arrays are traversed by linearized 1-
dimensional loops. The second extension we want to investigate is a clever mechanism for the
activation of widening for dependency label functions. We are planning to replace the existing

user-controlled global option with an adaptive mechanism that automatically activates widening
as needed. For example, the option could be activated when the number of polyhedra used to repre-
sent a given instruction or dependency is becoming too large. This would allow having a tradeoff
between the accuracy and the size of the output of the folding algorithm.

REFERENCES

[1]

[2]

(3]

(4]

(5]

(6]
(71

[8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]
[17]

(18]

[19]

Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexandros Lamprineas, Tobias Grosser, Fabrice Rastello, and
Fernando Magno Quintdo Pereira. 2015. Runtime pointer disambiguation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’15). ACM.
Ran Ao, Guangming Tan, and Mingyu Chen. 2013. Paralnsight: An assistant for quantitatively analyzing multi-
granularity parallel region. In 2013 IEEE 10th International Conference on High Performance Computing and Com-
munications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC’13). IEEE.
Cédric Bastoul. 2004. Generating loops for scanning polyhedra: Cloog users guide. Polyhedron 2 (2004).

Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (ATEC 05).

Erik Berg and Erik Hagersten. 2005. Fast data-locality profiling of native execution. In ACM SIGMETRICS Performance
Evaluation Review. ACM.

Kristof Beyls and Erik D’Hollander. 2006. Discovery of locality-improving refactorings by reuse path analysis. High
Performance Computing and Communications 4208 (2006), 220-229.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral paral-
lelizer and locality optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'08). ACM.

G. S. Brodal and R. Jacob. 2002. Dynamic planar convex hull. In The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002, Proceedings.

Khansa Butt, Abdul Qadeer, Ghulam Mustafa, and Abdul Waheed. 2012. Runtime analysis of application binaries
for function level parallelism potential using QEMU. In 2012 International Conference on Open Source Systems and
Technologies (ICOSST’12). IEEE.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.
Rodinia: A benchmark suite for heterogeneous computing. In IEEE International Symposium on Workload Character-
ization, 2009 (IISWC’09).

Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang, and Kevin Skadron. 2010. A charac-
terization of the Rodinia benchmark suite with comparison to contemporary CMP workloads. In Proceedings of the
IEEE International Symposium on Workload Characterization (ISWC’10). IEEE Computer Society.

Jean-Francois Collard, Denis Barthou, and Paul Feautrier. 1995. Fuzzy array dataflow analysis. In Proceedings of the
5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP’95). ACM.

Johannes Doerfert, Tobias Grosser, and Sebastian Hack. 2017. Optimistic loop optimization. In Proceedings of the 2017
International Symposium on Code Generation and Optimization (CGO’17). IEEE Press.

Karl-Filip Faxén, Konstantin Popov, Sverker Jansson, and Lars Albertsson. 2008. Embla - data dependence profiling
for parallel programming. In Proceedings of the 2008 International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS’08). IEEE Computer Society.

Paul Feautrier. 1988. Parametric integer programming. RAIRO-Operations Research 22, 3 (1988), 243-268.

Paul Feautrier and Christian Lengauer. 2011. Polyhedron model. In Encyclopedia of Parallel Computing. Springer.
Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly - performing polyhedral optimizations on
alow-level intermediate representation. Parallel Processing Letters 22, 4 (2012). https://www.worldscientific.com/doi/
10.1142/50129626412500107.

Fabian Gruber, Manuel Selva, Diogo Sampaio, Christophe Guillon, Antoine Moynault, Louis-Noél Pouchet, and Fab-
rice Rastello. Python implementation of the folding based analysis. Retrieved from https://gitlab.inria.fr/fgruber/
python-folding.

Fabian Gruber, Manuel Selva, Diogo Sampaio, Christophe Guillon, Antoine Moynault, Louis-Noé&l Pouchet, and
Fabrice Rastello. 2019. Data-flow/dependence profiling for structured transformations. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP’19).

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

Building a Polyhedral Representation from an Instrumented Execution 45:25

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]

(30]

(31]

(32]

(38]

(39]

[40]

[41]

[42]

Fabian Gruber, Manuel Selva, Diogo Sampaio, Christophe Guillon, Louis-Noél Pouchet, and Fabrice Rastello. 2019.
Building of a Polyhedral Representation from an Instrumented Execution: Making Dynamic Analyses of Non-Affine Pro-
grams Scalable. Research Report RR-9244. Retrieved from https://hal.inria.fr/hal-01967828.

Christophe Guillon. 2011. Program instrumentation with QEMU. In Proceedings of the International QEMU User’s
Forum (QUF’11).

John Hershberger and Subhash Suri. 2003. Convex hulls and related problems in data streams. In Proceedings of the
ACM/DIMACS Workshop on Management and Processing of Data Streams.

Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar, Naznin Fauzia, Louis-Noél Pouchet, Atanas
Rountev, and P. Sadayappan. 2012. Dynamic trace-based analysis of vectorization potential of applications. ACM
SIGPLAN Notices 47, 6 (2012).

Alain Ketterlin and Philippe Clauss. 2008. Prediction and trace compression of data access addresses through nested
loop recognition. In Proceedings of the 6th Annual IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO’08). ACM.

Alain Ketterlin and Philippe Clauss. 2012. Profiling data-dependence to assist parallelization: Framework, scope, and
optimization. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
45). IEEE Computer Society.

Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. Prospector: A dynamic data-dependence profiler to help
parallel programming. In HotPard10: Proceedings of the USENIX Workshop on Hot Topics in Parallelism.

Zhen Li, Rohit Atre, Zia Ul-Huda, Ali Jannesari, and Felix Wolf. 2015. DiscoPoP: A profiling tool to identify paral-
lelization opportunities. In Tools for High Performance Computing 2014. Springer.

Xu Liu and John Mellor-Crummey. 2011. Pinpointing data locality problems using data-centric analysis. In 2011 9th
Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO’11). IEEE.

G. Marin, J. Dongarra, and D. Terpstra. 2014. MIAMI: A framework for application performance diagnosis. In 2014
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’14).

Juan Manuel Martinez Caamafio, Manuel Selva, Philippe Clauss, Artyom Baloian, and Willy Wolff. 2017. Full run-
time polyhedral optimizing loop transformations with the generation, instantiation, and scheduling of code-bones.
Concurrency and Computation: Practice and Experience 29, 15 (2017). 4192 cpe.4192.

Nicholas Nethercote and Alan Mycroft. 2003. Redux: A dynamic dataflow tracer. Electronic Notes in Theoretical Com-
puter Science 89, 2 (2003), 149-170.

Catherine Mills Olschanowsky, Mustafa M. Tikir, Laura Carrington, and Allan Snavely. 2010. PSnAP: Accurate syn-
thetic address streams through memory profiles. In Languages and Compilers for Parallel Computing, Guang R. Gao,
Lori L. Pollock, John Cavazos, and Xiaoming Li (Eds.). Springer, Berlin.

Sebastian Pop, Albert Cohen, and Georges-André Silber. 2005. Induction variable analysis with delayed abstrac-
tions. In Proceedings of the 1st International Conference on High Performance Embedded Architectures and Compilers
(HiPEAC’05).

Louis-Noél Pouchet. 2019. The PoCC polyhedral compiler collection. Retrieved from http://pocc.sourceforge.net.
Gabriel Rodriguez, José M. Andién, Mahmut T. Kandemir, and Juan Touriflo. 2016. Trace-based affine reconstruction
of codes. In Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO’16). ACM.
Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2003. Hybrid analysis: Static & dynamic memory reference
analysis. International Journal of Parallel Programming 31, 4 (Aug. 2003), 251-283.

Diogo N. Sampaio, Louis-Noél Pouchet, and Fabrice Rastello. 2017. Simplification and runtime resolution of data
dependence constraints for loop transformations. In Proceedings of the International Conference on Supercomputing
(ICS’17). ACM.

Andreas Simbiirger, Sven Apel, Armin Groflinger, and Christian Lengauer. 2018. PolyJIT: Polyhedral optimization
just in time. International Journal of Parallel Programming (Aug. 2018).

Aravind Sukumaran-Rajam. 2015. Beyond the Realm of the Polyhedral Model: Combining Speculative Program
Parallelization with Polyhedral Compilation. Theses. Université de Strasbourg. Retrieved from https://hal.inria.fr/
tel-01251748.

Aravind Sukumaran-Rajam and Philippe Clauss. 2015. The polyhedral model of nonlinear loops. ACM Transactions
on Architecture and Code Optimization 12, 4 (Dec. 2015), 27.

Georgios Tournavitis and Bjérn Franke. 2010. Semi-automatic extraction and exploitation of hierarchical pipeline
parallelism using profiling information. In Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT’10). ACM.

Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian
Pop, Jan Sjodin, and Ramakrishna Upadrasta. 2010. GRAPHITE two years after: First lessons learned from real-world
polyhedral compilation. In GCC Research Opportunities Workshop (GROW’10). ACM.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

45:26 M. Selva et al.

[43] Robert A. Van Engelen. 2001. Efficient symbolic analysis for optimizing compilers. In International Conference on
Compiler Construction. Springer.

[44] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. 2010. The paralax infrastructure: Automatic paralleliza-
tion with a helping hand. In 2010 19th International Conference on Parallel Architectures and Compilation Techniques
(PACT’10). ACM.

[45] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gémez, Christian Tenllado, and Francky Catthoor.
2013. Polyhedral parallel code generation for CUDA. ACM Transactions on Architecture and Code Optimization 9, 4
(Jan. 2013), 23.

[46] Zheng Wang, Georgios Tournavitis, Bjorn Franke, and Michael F. P. O’Boyle. 2014. Integrating profile-driven par-
allelism detection and machine-learning-based mapping. ACM Transactions on Architecture and Code Optimization
(TACO) 11, 1 (2014), 26.

Received February 2019; revised August 2019; accepted September 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 45. Publication date: December 2019.

